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Abstract

We study a semilinear PDE generalizing the Fujita equation whose evolution operator is the sum of a fractional p
the Laplacian and a convex non-linearity. Using the Feynman–Kac representation we prove criteria for asymptotic e
versus finite time blow up of positive solutions based on comparison with global solutions. For a critical power non-l
we obtain a two-parameter family of radially symmetric stationary solutions. By extending the method of moving pl
fractional powers of the Laplacian we prove that all positive steady states of the corresponding equation in a finite
radially symmetric.

Résumé

Nous étudions une équation de réaction-diffusion semilinéaire (généralisant l’équation de Fujita), dont l’opérateur d’évo
tion est la somme d’une puissance fractionnelle du Laplacien et d’une non-linéarité convexe. A l’aide de la représen
Feynman–Kac nous exhibons des critères entrainant l’extinction asymptotique, respectivement l’explosion en temp
solutions positives. Ces critères s’obtiennent en comparant avec des solutions globales. Pour une certaine puissan
de la non-linéarité nous obtenons une famille paramétrisée de solutions stationnaires à symétrie radiale. Par extension d
méthode de déplacement d’hyperplans à des puissances fractionnelles du Laplacien, nous prouvons que toute solut
stationnaire de l’équation correspondante dans une boule finie comporte une symétrie radiale.
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1. Introduction

We consider the “generalized Fujita equation”

∂

∂t
u(t, x) = Lu(t, x) + G

(
u(t, x)

)
, t � 0, x ∈ Rd,

u(0, x) = ϕ(x) � 0,
(1.1)

whereL = �α is the fractional power−(−�)α/2 of the Laplacian, 0< α � 2, andG : R+ → R+ is a convex
function satisfying conditions (2.1) and (2.2) below. Solutions will be understood in the mild sense (see e.
so that (1.1) makes sense for any non-negative bounded measurable functionϕ on Rd .

A well known fact is that for any non-trivial initial valueϕ there exists a numberTϕ ∈ (0,∞] such that (1.1) ha
a unique solutionu on Rd × [0, Tϕ) which is bounded onRd × [0, T ] for any 0< T < Tϕ , and if Tϕ < ∞, then
‖u(·, t)‖L∞(Rd) → ∞ ast ↑ Tϕ .

WhenTϕ = ∞ we say thatu is a global solution, and whenTϕ < ∞ we say thatu blows up in finite time or tha
u is non-global.

The study of blow up properties of (1.1) goes back to the fundamental work of Fujita [11], who studied Eq. (1
with α = 2 and G(z)= z1+β , β > 0. The investigation of (1.1) with a generalα was initiated by Sugitani [23], who
showed that ifd � α/β , then for any non-vanishing initial condition the solution blows upin finite time. Using
a Feynman–Kac representation for the solutions of semilinear problems of the form (1.1), this conclus
re-derived in [4] and the corresponding behaviors of equations with time-dependent non-linearities and of vari
systems of semilinear pde’s were studied.

It is known (e.g. [18,19]) that in supercritical dimensionsd > α/β , Eq. (1.1) admits global as well as non-glob
positive solutions, depending on the “size” of the initial condition. For short we address this parameter constella
as theglobal regime.

In the first part of the present note we prove two comparison criteria in the global regime:

(i) Assume the initial valueϕ � 0 leads to a globally bounded solution. Then any initial valueψ with 0 � ψ �
(1− ε)ϕ, ε > 0, gives rise to a solution converging to zero.

(ii) Assume the initial valueϕ � 0 leads to a solution which is uniformly bounded away from 0 for allt > 0 and
all x in some ball⊂ Rd . Then any initial valueψ with ψ � (1 + ε)ϕ, ε > 0, gives rise to a solution whic
blows up in finite time.

The essential tool in proving (i) and (ii) is the probabilistic representation of the solution of (1.1) provid
the Feynman–Kac formula, that was obtained in [4] (see (2.4) below).

Natural candidates for the comparison in (i) and (ii) are (time-)stationary solutions of (1.1), i.e. solutions
“elliptic” equation

�αu(x) + G
(
u(x)

) = 0, x ∈ Rd . (1.2)

In the caseα = 2 and G(z)= z1+β , it is known that (see [15,8,13,24])

– for d > 2, 1+ β < (d + 2)/(d − 2), apart fromu ≡ 0, no bounded non-negative solution of (1.2) exists,
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– for d > 2, β = (d + 2)/(d − 2) − 1, all bounded stationary solutions of (1.2) are given by the family

uc,A(x) = A(d(d − 2))(d−2)/2

(d(d − 2) + (A2/(d−2)‖x − c‖)2)(d−2)/2
, c, x ∈ Rd, A ∈ R+ (1.3)

(note that the two parameters of the family are the symmetry centerc of u and its valueA at c),
– for d > 2, β > (d + 2)/(d − 2) − 1, there exists a one-parameter familyuA,A > 0 of solutions of (1.2) with

the properties:uA(x) is symmetric aroundx = 0,

uA(0) = A, ‖x‖2/βuA

(‖x‖) → K(d,β) as‖x‖ → ∞, (1.4)

whereK(d,β) is a constant not depending onA.

In the caseα < 2, much less is known. Ford > α, β = (d + α)/(d − α) − 1, we specify in Proposition 3.1
two-parameter familyuc,A, c ∈ Rd , 0< A < ∞, of radially symmetric solutions of

�αu(x) + u1+β(x) = 0, x ∈ Rd (1.5)

with the property

uc,A(c) = A, ‖x‖d−αuc,A

(‖x‖) → K(d,α,β) as‖x‖ → ∞,

whereK(d,α,β) is a positive constant. A natural conjecture now is that, like in the Laplacian case, foβ =
(d + α)/(d − α) − 1 theuc,A constituteall the bounded solutions of (1.5), and that forβ < (d + α)/(d − α) − 1
there are no bounded non-zero solutions at all.

As a first step to answer these questions, in Section 4 we make use of the so called “method of moving
which is well known in the Laplacian case, to show symmetry of positive solutions in a ball. Essential too
Hopf’s boundary lemma) can be carried over to theα-Laplacian case. With this method, we were able to show
Theorem 4.1) that the following equation has only radially symmetric non-negative solutions:

�αu(x) + F
(
u(x)

) = 0, x ∈ B,

u(x) = 0, x ∈ Rd \ B.

HereB is an open ball centered around 0 andF : R+ → R+ is non-decreasing. We conjecture that an analog
statement is valid forF(z) = zp with p = (d +α)/(d −α) andRd instead ofB. In Section 4.3 we describe seve
problems we think one would have to overcome for carrying over the moving planes method to the unb
space setting in this case.

2. Two comparison criteria

In this section we assume that the functionG in Eq. (1.1) satisfies the conditions

lim
z→0+

G(z)

z1+β
= c ∈ (0,∞) (2.1)

and
∞∫

θ

dz

G(z)
< ∞ (2.2)

for certain positive numbersβ andθ .
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Lemma 2.1. LetG be a convex function satisfying(2.1), andε > 0. For anyM > 0 there existsε′ > 0 such that

G((1+ ε)z)

(1+ ε)z
> (1+ ε′)G(z)

z
for 0 < z � M.

Proof. By consideringG/c instead ofG we can assume thatc = 1. Givenε̃ > 0 there existsδ > 0 such that

(1− ε̃)zβ <
G(z)

z
< (1+ ε̃)zβ

for z ∈ (0, δ). Takeε̃ < ((1+ ε)β − 1)/((1+ ε)β + 1). Then forz < δ/(1+ ε) := x0,

G((1+ ε)z)

(1+ ε)z
> (1− ε̃)(1+ ε)βzβ >

(1− ε̃)(1+ ε)β

(1+ ε̃)

G(z)

z
= (1+ c′)G(z)

z

where c′ > 0. Sincez 
→ G(z)/z is continuous and strictly increasing in(0,∞) it follows that infz∈[x0,M]
(G((1+ε)z)

(1+ε)z
/G(z)

z
) > 1+ c′′ with c′′ > 0. Takingε′ = c′ ∧ c′′ yields the assertion.�

Let us observe that ifv is a globally bounded solution of (1.1) we necessarily have, for allx,

Ptv(0, x) → 0 ast → ∞,

where(Pt ) is the semigroup with generatorL. Indeed, from the integral form of (1.1)

v(t, x) = Ptv(0, x) +
t∫

0

Pt−sG
(
v(s, x)

)
ds

� Ptv(0, x) +
t∫

0

Pt−sG
(
Psv(0, x)

)
ds

� Ptv(0, x) +
t∫

0

G
(
Ptv(0, x)

)
ds

� tG
(
Ptv(0, x)

)
,

where we used in the first inequality thatPtv(0, ·) � v(t, ·), and Jensen’s inequality after the second line. It follo
from the global boundedness ofv that

lim
t→∞Ptv(0, x) � lim

t→∞G−1(Const. t−1) = 0. (2.3)

Proposition 2.1. Let G be a convex, increasing function satisfying(2.1)and(2.2). Assume the initial valueϕ � 0
leads to a globally bounded solution of(1.1). Then any initial valueψ with 0 � ψ � (1− ε)ϕ, ε > 0, gives rise to
a solution converging uniformly to zero.

Proof. Recall that the Feynman–Kac representation of solutions of (1.1) is given by (see [4])

u(t, x) =
∫

Rd

u(0, y)pt (y, x)Ey

[
exp

t∫
0

G(u(s,Xs))

u(s,Xs)
ds

∣∣∣∣Xt = x

]
dy, (2.4)

where(Xt) is the Lévy process with generatorL, andpt(x, y), t > 0, x, y ∈ Rd , are its transition densities.
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Suppose thatv is a globally bounded solution of (1.1) and that 0� u(0, ·) � (1 − ε)v(0, ·) where 0< ε < 1.
As (1.1) preserves ordering we haveu(t, x) � v(t, x) for all t � 0 andx ∈ Rd , which together with (2.4) improve
to

u(t, x) �
∫

Rd

(1− ε)v(0, y)pt (y, x)Ey

[
exp

t∫
0

G(v(s,Xs))

v(s,Xs)
ds

∣∣∣∣Xt = x

]
dy = (1− ε)v(t, x)

uniformly in t andx. Inserting this bound again into the Feynman–Kac representation ofu yields

u(t, x) �
∫

Rd

u(0, y)pt (y, x)Ey

[
exp

t∫
0

G((1− ε)v(s,Xs))

(1− ε)v(s,Xs)
ds

∣∣∣∣Xt = x

]
dy.

Puttingz(t, x) := (1− ε)v(t, x) in the above inequality and using Lemma 2.1 (withε in Lemma 2.1 substituted b
ε̃ := ε/(1− ε)) we get

u(t, x) �
∫

Rd

u(0, y)pt (y, x)Ey

[
exp

t∫
0

1

1+ ε′
G((1+ ε̃)z(s,Xs))

(1+ ε̃)z(s,Xs)
ds

∣∣∣∣Xt = x

]
dy

=
∫

Rd

u(0, y)pt (y, x)Ey

[
e(1−ε′′)At | Xt = x

]
dy,

whereε′ > 0 is given by Lemma 2.1,ε′′ := ε′/(1+ ε′) and

At :=
t∫

0

G(v(s,Xs))

v(s,Xs)
ds. (2.5)

Thus,

u(t, x) �
∫

Rd

u(0, y)pt (y, x)Ey

[
e(1−ε′′)At 1

(
eAt <

(
Ptv(0, x)

)−1/2) | Xt = x
]
dy

+
∫

Rd

u(0, y)pt (y, x)Ey

[
e(1−ε′′)At 1

(
eAt �

(
Ptv(0, x)

)−1/2) | Xt = x
]
dy.

Since eAt � (Ptv(0, x))−1/2 implies e(1−ε′′)At � eAt (Ptv(0, x))ε
′′/2, we obtain

u(t, x) �
∫

Rd

u(0, y)pt (y, x)
(
Ptv(0, x)

)−1/2 + (
Ptv(0, x)

)ε′′/2
∫

Rd

u(0, y)pt (y, x)Ey[eAt | Xt = x]dy

� (1− ε)
((

Ptv(0, x)
)1/2 + v(t, x)

(
Ptv(0, x)

)ε′′/2)
which tends to 0 uniformly ast → ∞ due to (2.3). �
Proposition 2.2. Let G be a convex, increasing function satisfying(2.1) and (2.2). Assume the initial valueϕ =
v(0, ·) � 0 leads to a globally bounded solution of(1.1)which for some open ballB ⊂ Rd and someκ > 0 obeys

inf
x∈B

v(t, x) � κ for all sufficiently larget > 0. (2.6)

Then for anyε > 0, the initial condition(1+ ε)ϕ leads to blow-up in finite time.
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Proof. By the Feynman–Kac formula,

v(t, x) =
∫

Rd

v(0, y)pt (y, x)Ey[eAt | Xt = x]dy,

whereAt is given by (2.5). IfK > 0 then∫
Rd

v(0, y)pt (y, x)Ey[eAt ;At � K | Xt = x]dy � eKExv(0,Xt ) → 0

ast → ∞ uniformly in x due to (2.3). Therefore, for allK > 0 there existsT0 = T0(K,γ ) > 0 such that fort > T0

v(t, x)∫
Rd v(0, y)pt (y, x)Ey[eAt ;At � K | Xt = x]dy

� 2. (2.7)

Without loss of generality we can assume that infx∈B1(0) v(t, x) � κ for all t large enough, whereBr(x) denotes
the ball inRd of radiusr centered atx. Arguing as above we check via the Feynman–Kac representation that
t � 0 and x∈ Rd , u(t, x) � (1+ ε)v(t, x). Plugging this again into the Feynman–Kac representation foru yields

u(t, x) � (1+ ε)

∫
Rd

v(0, y)pt (y, x)Ey

[
exp

t∫
0

G((1+ ε)v(s,Xs))

(1+ ε)v(s,Xs)
ds

∣∣∣∣Xt = x

]
dy

� (1+ ε)

∫
Rd

v(0, y)pt (y, x)Ey[e(1+ε′)At | Xt = x]dy

for someε′ > 0 by Lemma 2.1. Using this and (2.7) we obtain for givenK > 0 andt big enough that

u(t, x) � (1+ ε)eKε′
∫

Rd

v(0, y)pt (y, x)Ey[eAt ;At � K | Xt = x]dy � (1+ ε)eKε′ v(t, x)

2
.

Hence, for anyK > 0 we find infx∈B1(0) u(t, x) � κ(1+ ε)eKε′
/2 for all sufficiently larget . As is well known (see

e.g. [17]), this inequality together with (2.2) are sufficient for finite-time blow-up ofu. �
The kind of threshold phenomenon described by the following corollary is well known for the classical

cian, see e.g. [9, Theorems 1.1] or [14, Theorem 1.14] for related results.

Corollary 2.1. Let G be a convex, increasing function satisfying(2.1)and (2.2), andϕ � 0 a non-trivial positive
bounded solution of

Lϕ(x) + G
(
ϕ(x)

) = 0.

(a) For eachε > 0 the solutionu of (1.1) with initial valueu(0, x) = (1 + ε)ϕ(x), x ∈ Rd , blows-up in finite
time.

(b) For eachε ∈ (0,1) the solutionu of (1.1) with initial valueu(0, x) = (1 − ε)ϕ(x), x ∈ Rd converges uni-
formly to 0 ast → ∞.

Proof. This is immediate from Propositions 2.1 and 2.2.�
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3. A class of radially symmetric stationary solutions

We now set out to specify a family of positive stationary solutions of (1.1) in the particular case ofG(z) = zp,
wherep = (d +α)/(d −α). Before doing this, we still consider the case of a generalp, and note that the “elliptic”
equation

�αu(x) + up(x) = 0, x ∈ Rd (3.1)

can be rewritten in integral form as

u(x) =
∞∫

0

Ex

[
up(Xt )

]
dt, x ∈ Rd , (3.2)

where(Xt ) denotes the (symmetric)α-stable process inRd . Hence, ford � α, due to recurrence of(Xt ), the
only non-negative solutions of (3.1) areu ≡ 0 andu ≡ ∞. Therefore, we henceforth assume thatd > α, in which
case (3.2) rewrites as (see [5, p. 264])

u(x) =
∫

Rd

A(d,α)up(y)

‖y − x‖d−α
dy, x ∈ Rd , (3.3)

whereA(d,α) := �(1
2(d − α))/[�(1

2α)2απd/2].

Proposition 3.1. If p = (d + α)/(d − α), then for anyA ∈ (0,∞) andc ∈ Rd the function

uc,A(x) = A

[1+ (A2/(d−α)2−1(�(d+α
2 )/�(d−α

2 ))−1/α‖x − c‖)2](d−α)/2

solves(3.1).

Proof. Without loss of generality we assume thatc is the origin. Due to (3.3) it suffices to show that

u0,A(x) =
∫

Rd

A(d,α)u
p

0,A(y)

‖y − x‖d−α
dy, x ∈ Rd . (3.4)

Let us writea := A−2/(d−α)2(�(d+α
2 )/�(d−α

2 ))1/α . We first note that

u0,A(x) = A

(1+ 4π2‖ x
2πa

‖2)(d−α)/2
= AB̂d−α

(
x

2πa

)
(see [10, p. 155]), where for anyf ∈ L1(Rd ), f̂ (x) := ∫

Rd e−2πiy·xf (y)dy is the Fourier transform off , and for
any complexw with Re(w) > 0

Bw(x) := 1

�(w
2 )(4π)d/2

∞∫
0

r(w−d)/2−1e−r−‖x‖2/4r dr.

Hence

û0,A(x) = A

[
B̂d−α

( ·
2πa

)]̂
(x) = A(2πa)d

̂̂
Bd−α(2πax) = A(2πa)dBd−α(−2πax).

Notice that

Bw(x) = 2(d−w)/2+1

�(w )(4π)d/2‖x‖(w−d)/2K(d−w)/2
(‖x‖), x ∈ Rd , (3.5)
2
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where for any complexν, Kν is the Macdonald’s function [25, §6·22], also known as modified Bessel function
the second kind, which is given by

Kν(z) = 1

2

(
1

2
z

)ν
∞∫

0

r−ν−1e−r−z2/4r dr, Re(z2) > 0.

It follows that

û0,A(x) = Aad−α/2π(d−α)/2 2

�(d−α
2 )

‖x‖−α/2Kα/2
(‖2πax‖). (3.6)

To compute the Fourier transform of the other side of (3.4) we use the convolution theorem, (3.5) and[
A(d,α)‖ · ‖−(d−α)

]̂
(x) = (

2π‖x‖)−α
, x ∈ Rd , 0 < Re(α) < d,

(e.g. [10, p. 154]) to obtain[∫
Rd

A(d,α)u
p

0,A(y)

‖y − ·‖d−α
dy

]̂
(x) = (2π)−α‖x‖−αAp

[
1

(1+ 4π2‖ ·
2πa

‖2)(d+α)/2

]̂
(x)

= (2π)−α‖x‖−αAp

[
B̂d+α

( ·
2πa

)]̂
(x)

= (2π)−α‖x‖−αAp(2πa)dBd+α(−2πax)

= 2−απ(d−α)/2‖x‖−α/2Apad+α/2 2

�(d+α
2 )

K−α/2
(‖2πax‖).

SinceKν = K−ν [1, Formula 9.6.6], by comparing the RHS of the last equality with that of (3.6) we see tha
are equal for the value ofa stated at the beginning of the proof. The result follows from uniqueness of Fo
transforms. �
Remarks. 1. Recall [7,16] that for 0< α � 2 and d > αthe Kelvin transform ofu is defined by

v(x) := 1

‖x‖d−α
u

(
x

‖x‖2

)
, x ∈ Rd , x �= 0. (3.7)

A simple calculation shows that for any fixedc ∈ Rd the family of solutions{uc,A}A�0 rendered by Proposition 3.
is invariant under the Kelvin transform with centerc

vc(x) := 1

‖x − c‖d−α
uc,A

(
c + x − c

‖x − c‖2

)
.

2. Moreover, ifu is anygiven regular positive solution of (3.1) (where 0< α � 2, p > 1 and d > α) andx �= 0,
then its Kelvin transformv(x) satisfies

�αv(x) + vp(x)

‖x‖(d+α)−p(d−α)
= 0. (3.8)

Indeed, letGα denote the Green’s operator corresponding to�α , andx �= 0. Then,

−Gα

(
− vp(x)

‖x‖(d+α)−p(d−α)

)
=

∫ A(d,α)

‖x − y‖d−α
· 1

‖y‖(d+α)−p(d−α)
· 1

‖y‖(d−α)p
· up

(
y

‖y‖2

)
dy

=A(d,α)

∫
1

‖x − z
2 ‖d−α

· 1

‖z‖d−α
· up(z)dz
‖z‖
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=A(d,α)

∫
1

‖ x · ‖z‖ − z
‖z‖‖d−α

· up(z)dz

=A(d,α)

∫
Rd

up(z)dz

‖ x
‖x‖ − ‖x‖ · z ‖d−α

= 1

‖x‖d−α
u

(
x

‖x‖2

)
= v(x),

where we used the elementary identity‖x · ‖z‖ − z
‖z‖‖ = ‖ x

‖x‖ − ‖x‖ · z‖ in the fourth equality.
3. Proceeding as in the proof of Proposition 3.1 one can verify, again assumingd > α andp = (d +α)/(d −α),

that a singular explicit solution to (3.1) is given by

using(x) =
[
2α

(
�

(
d + α

4

)/
�

(
d − α

4

))2]1/(p−1)

· 1

‖x‖(d−α)/2
, x �= 0,

and thatusing is a fixed point of the Kelvin transform (3.7).

4. Rotational symmetry of solutions in a ball

Let F : R+ → R+ be non-decreasing, not identically constant, andα ∈ (0,2). Let u : Rd → R+ be a non-
negative bounded solution to

�αu + F(u) = 0, x ∈ B1(0), u ≡ 0 in B1(0)c, (4.1)

i.e., for allx in the unit ball we have

u(x) =
∞∫

0

Ex

[
F(Xt );sup

u�t

|Xu| < 1
]
dt =

∫
B1(0)

Gα(x, y)F
(
u(y)

)
dy, (4.2)

whereX is the symmetricα-stable process andGα(x, y) is the corresponding Green’s function for the unit bal
It is well known that (4.1) possesses non-trivial positive solutions ifF is of the formF(u) = Ku, whereK > 0

is a constant [12]. Existence of positive solutions to (4.1) for non-linear reaction terms is a delicate question wh
answer depends rather sensitively onF . For example in the case of the classical Laplacian (α = 2) in d � 3 and a
non-linearity of power typeF(u) = u1+β it is well known that there are non-trivial solutions to (4.1) if and only
1+ β < (d + 2)/(d − 2), see e.g. [21].

It is tempting to conjecture that this phenomenon extends fromα = 2 toα ∈ (0,2], the Laplacian being replace
by �α , and the threshold for 1+ β being(d + α)/(d − α). Note that this complements our conjecture given at
end of Section 1: Whereas in the case ofRd non-trivial solutions should exist iff 1+ β � (d + α)/(d − α), in the
case of bounded balls the condition for existence of non-trivial solutions should be 1+ β < (d + α)/(d − α).

In our setting, proving existence of a non-trivial positivesolution to (4.1) constitutes a challenging project
future research. In the present paper we will not treat this question, but rather prove

Theorem 4.1. Any non-negative solution to(4.1) is symmetric about the origin.

Our approach is based on themethod of moving planes, a device that goes back to Alexandrov [2] and
by now a venerable history in the study of symmetries of solutions of pde’s, see also [22,13] and [3]. T
is as follows: Choose any direction inRd , without loss of generality thex1-direction, and show thatu is mirror
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Fig. 1.

symmetric with respect to the hyperplane through the origin with this given direction as a normal vector. I
to achieve this let us define forλ ∈ (−1,1)

Tλ := {x ∈ Rd : x1 = λ}, Σλ := {x ∈ Rd : x1 < λ}
and forx ∈ Rd let xλ := (2λ − x1, x2, . . . , xd) be the image under reflection alongTλ; see Fig. 1.

Define the setΛ by

Λ :=
{
λ ∈ (−1,0): u(xλ) � u(x) ∀x ∈ Σλ,

∂

∂x1
u(x) > 0 ∀x ∈ Tλ ∩ B1(0)

}
. (4.3)

Observe that by the minimum principle we haveu(xλ) > u(x) for x ∈ Σλ ∩ B1(0) andλ ∈ Λ, i.e.,λ ∈ Λ means
that reflection alongTλ (strictly) increases the value ofu. In Section 4.2 we prove that

supΛ = 0 (4.4)

so that by continuityu(−x1, x2, . . . , xd) � u(x1, x2, . . . , xd) wheneverx1 � 0. By consideringλ > 0 and working
in the opposite direction we can then conclude the reversed inequality and hence obtain the desired symmetry

4.1. Some preparatory lemmas

Lemma 4.1. A bounded solutionu of (4.2)satisfiesu ∈ C(Rd) ∩ C∞(B1(0)).

Proof. Using the explicit form of the Green’s kernel of the ball (see e.g. [7, formula (2.3)]) one easily chec
interchange of integration and differentiation is justified.�
Lemma 4.2 (Minimum principle).LetD ⊂ Rd be a bounded domain. Supposew : Rd → R+ is continuous,�αw �
0 onD, and satisfiesw ≡ 0 onDc . Then eitherw ≡ 0 or w > 0 onD.

Proof. Let Dε := {x ∈ D: w(x) > ε}. By continuity Dε is open. Assume thatDε �= ∅ for someε > 0. Let
(Xt ) be theα-stable process, andτ := inf{s: Xs /∈ D} the hitting time ofDc . ThenMt := w(Xt∧τ ) − w(X0) −
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ing

all

g. [7,
∫ t∧τ

0 �αw(Xs)ds is a Px -martingale for eachx ∈ D. Let furthermoreτ ′ := inf{s: Xs ∈ Dε}. For eachx ∈ D we
haveExMτ ′ = 0, or

w(x) = Ex

[
w(Xτ ′∧τ )

] + Ex

[ τ ′∧τ∫
0

(−�αw)(Xs)ds

]
� Ex

[
w(Xτ ′∧τ )

]
� εPx(τ

′ < τ) > 0

because(Xt) hits any open subset ofD with positive probability before exiting fromD. �
We will have occasion to consider the behavior ofu at the boundary of the ball. In this respect, the follow

lemma is helpful:

Lemma 4.3 (Hopf’s α-stable boundary lemma).Let D ⊂ Rd be open,w : Rd → R+ continuous withw ≡ 0 on
Dc , �αw � 0 onD, w not identically zero. Letx0 ∈ ∂D satisfy an interior sphere condition, i.e. there exists a b
Bδ(x1) ⊂ D with Bδ(x1) ∩ Dc = {x0}, and letν be an outward pointing unit vector atx0. Then

∂

∂ν
w(x0) < 0

(in fact, limε↘0(w(x0) − w(x0 − εν))/ε = −∞).

Proof. Because of the interior sphere condition atx0 we can find a ballBδ(x1) ⊂ D such thatBδ(x1) ∩ Dc = {x0}
and alsõB ⊂ D, whereB̃ is the “left half” of a spherical shell aroundx1 with interior radiusδ and exterior radius
δ′ > δ; see Fig. 2. Observe thatw > 0 in D by Lemma 4.2, in particular inf̃B w > 0 becausẽB is compact andw
continuous. Letτ := inf{t: Xt /∈ Bδ(x1)}. Then

w(x) = Ex

[
w(Xτ ) −

τ∫
0

(�αw)(Xt )dt

]
� Ex w(Xτ )

for x ∈ Bδ(x1). Takex = x0−εν with ε > 0 small enough, and denote byγ the angle betweenx1 x0 andx x0. Then
γ ∈ (−π/2,π/2) becauseν is an outward pointing vector, hence cosγ > 0. The cosine theorem gives|x − x1|2 =
δ2 + ε2 − 2δε cosγ . Using the explicit form of the Poisson kernel for the complement of a ball (see e.
formula (2.2)] or [6, Theorem A] and rescale) we can estimate

w(x) � Ex w(Xτ ) �
∫
B̃

P (x, y)w(y)dy

Fig. 2.
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d

aling
� (inf
B̃

w)Cα,d

∫
B̃

(
δ2 − |x − x1|2
|y − x1|2 − δ2

)α/2

|x − y|−d dy

� C
(
δ2 − |x − x1|2

)α/2 � C′εα/2.

Thus we see that lim supε↘0(w(x0) − w(x0 − εν))/ε = −∞. �
Lemma 4.4. Letw : Rd → R be continuous, bounded withw � 0 onΣ0, w(x0) = −w(x). Letx∗ ∈ T0 be such that
there exists aδ > 0 with �αw � 0 onBδ(x∗) ∩ Σ0. Then either

w ≡ 0, or w > 0 onBδ(x∗) ∩ Σ0 and
∂

∂x1
w(x∗) < 0.

Proof. Assumew �≡ 0. Letx ∈ Bδ(x∗) ∩ Σ0. If w(x) = 0 we would have (see e.g. [7])

�αw(x) = cα,dPV
∫

Rd

w(x + y) − 0

|y|d+α
dy > 0

by the non-triviality and symmetry ofw, in contradiction to the assumption.
To show that the derivative is non-zero chooseδ′ > 0 such that supΣ0\Bδ′ (x∗) w > 0. Let (Xt ) be theα-stable

process,τ := inf{t: Xt /∈ Bδ′(x∗)}. Definev(x) := Exw(Xτ ), ṽ(x) := Ex

∫ τ

0 (−�αw)(Xs)ds. Observe that

�αv = 0 in Bδ′(x∗) and v = w in Rd \ Bδ′(x∗),
�αṽ = �αw in Bδ′(x∗) and ṽ = 0 in Rd \ Bδ′(x∗).

Uniqueness of the Dirichlet problem for�α in Bδ′(x∗) thus givesw = v + ṽ. We have

v(x) =
∫

|y−x∗|>δ′
P(x, y)w(y)dy

for x ∈ Bδ′(x∗), where the Poisson kernel is given by (see e.g. [7, formula (2.2)])

P(x, y) = Cα,d

[
δ′ 2 − |x − x∗|2
|y − x∗|2 − δ′ 2

]α/2

|x − y|−d, x ∈ Bδ′(x∗), y /∈ Bδ′(x∗).

One checks that∂
∂x1

P(x∗, y) < 0 for y ∈ Σ0 and ∂
∂x1

P(x∗, y) > 0 for y ∈ −Σ0. The interchange of integration an
differentiation is justified becausew is bounded, so we can compute

∂

∂x1
v(x∗) =

∫
|y−x∗|>δ′

∂

∂x1
P(x∗, y)w(y)dy < 0.

Furthermore, forx ∈ Bδ′(x∗)

ṽ(x) =
∫

Bδ′ (x∗)

G(x, y)(−�αw)(y)dy,

where the Green kernel forBδ′(x∗) is given by (see e.g. [7, formula (2.3)] or [6] and consider the obvious sc
properties ofα-stable processes)

G(x,y) = cα,d

(|x − y|)α−d

wδ′ (x,y)∫
rα/2−1

(r + 1)d/2 dr, (4.5)
0
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wherewδ′(x, y) = (δ′ 2 − |x − x∗|2)(δ′ 2 − |y − x∗|2)/|x − y|2. Inspection shows that forx, y ∈ Bδ′(x∗) ∩ Σ0 we
haveG(x,y) � G(x,y0), henceṽ � 0 in Bδ′(x∗) ∩ Σ0 and by symmetrỹv � 0 in Bδ′(x∗) ∩ (−Σ0). We conclude
that(∂/∂x1)ṽ(x∗) � 0 and thus

∂

∂x1
w(x∗) � ∂

∂x1
v(x∗) < 0. �

4.2. Proof of (4.4)

We proceed in three steps and show that

(1) Λ ⊃ (−1,−1+ ε) for some smallε > 0,
(2) Λ is open. In particular forλ ∈ Λ there existsε > 0 such that[λ,λ + ε) ⊂ Λ.
(3) From (1) and (2) we conclude thatΛ = (−1, λmax). We finally show thatλmax = 0.

Step1. Obviously(−1,0, . . . ,0) is an outward pointing direction for eachx ∈ ∂B1(0)∩Σ−1/2. By the boundary
lemma and the fact that(∂/∂x1)u is continuous inB1(0) there is an open neighborhoodD of ∂B1(0)∩Σ−1/2 such
that(∂/∂x1)u > 0 on D∩ B1(0). Chooseε > 0 so small thatΣ−1+ε ∩ B1(0) ⊂ D. Then−1+ ε/2 ∈ Λ.

Step2. We argue by contradiction. Assume there wasλ∗ ∈ Λ and also a sequence(λn) ⊂ (−1,0) \ Λ with
λn ↘ λ∗. From the definition ofΛ, possibly passing to a suitable subsequence (which we again would den
(λn)) we can always arrive at one of the following possibilities:

(a) there exists a sequence(xn) ⊂ B1(0), xn ∈ Σλn , with xn → x∗ ∈ B1(0) andu(xn) � u(x
λn
n ) for all n, or

(b) there exists a sequence(xn) ⊂ B1(0), xn ∈ Tλn , with xn → x∗ ∈ B1(0) and(∂/∂x1)u(xn) � 0 for all n.

Assume (a) was true. We cannot havex∗ ∈ Σλ∗ becauseu is continuous andu(xλ∗) > u(x) for x ∈
Σλ∗ by the above remark. Hencex∗ ∈ Tλ∗ ∩ B1(0). But then we have(∂/∂x1)u(x∗) = limn→∞(u(x

λn
n ) −

u(xn))/(2d(xn, Tλn)) � 0. By Hopf’s boundary lemma, this forcesx∗ to be away from∂B1(0), but then we ob-
tain a contradiction toλ∗ ∈ Λ.

If (b) was true we would again find a pointx∗ ∈ Tλ∗ ∩B1(0) with (∂/∂x1)u(x∗) � 0 and arrive at a contradiction
Step3. From the preceding steps we know thatΛ = (−1, λmax). If u(xλmax) ≡ u(x) for x ∈ Σλmax then we have

found a symmetry center. Asu is continuous,u = 0 on ∂B1(0) and strictly positive insideB1(0) this can only
be true forλmax = 0. Indeed, ifλmax < 0 then by continuity we would haveu(x) � u(xλmax) for x ∈ Σλmax, but
with u(x) �≡ u(xλmax). Definew(x) := u(xλmax) − u(x). Observe thatw is continuous and bounded, non-negat
in Σλmax andw(xλmax) = −w(x). Forx ∈ Σλmax ∩ B1(0) we have

�αw(x) = (�α)u(xλmax) − (�α)u(x) = −[
F

(
u(xλmax)

) − F
(
u(x)

)]
� 0,

and we infer from Lemma 4.4 that(∂/∂x1)w(x) < 0 for all x ∈ Tλmax ∩ B1(0). In conclusion,λmax < 0 implies
λmax ∈ Λ which by step 2 forces supΛ > λmax. This is a contradiction.

4.3. Remarks and open questions

1. The approach developed above invites to try to use the moving planes method also for the corres
problem onRd in order to prove the analogue of Gidas and Spruck’s theorem [15] in our setting, namely th
solutionu of (3.1) withp = (d + α)/(d − α) must be symmetric about some point.

In fact, steps 2 and 3 from Section 4.2 can be carried over easily to the infinite space setting: Once we ha
given normal direction, a “good” hyperplaneTλ, we can push it along until we hit a symmetry center. Here, “go
means thatλ lies in the analogue of (4.3), withRd instead of the unit ball. Unfortunately, we have not been ab
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implement step 1 in theRd setting. In order to get the moving planes method started, one would have to sho
for λ sufficiently negative we haveu(xλ) > u(x) for all x ∈ Σλ. We conjecture that this is the case. Indeed, us
the tools developed in Section 4.1 it is possible to adapt several steps of the proof of Chen and Li, [8] to
of generalα. There is however a technical difficulty which we were not able to overcome, and which we b
explain below.

Via the Kelvin transformation and (3.8) we may assume thatu decays likec‖x‖α−d at infinity. Putwλ(x) :=
u(xλ) − u(x). Thenwλ is anti-symmetric with respect to reflection atTλ and satisfies�αwλ(x) + c(x)wλ(x) = 0
onRd , wherec(x) = pξ(x)p−1 with someξ(x) ∈ [u(x)∧uλ(x),u(x)∨uλ(x)]. Following [8] the task would be to
prove that forλ � 0, wλ does not become negative onΣλ. More precisely we would like to show that forλ � 0,
a situation where the restriction ofwλ to Σλ has a strictly negative minimum leads to a contradiction. Howe
the non-locality of�α together with the fact that we actually do not have a boundary value problem forwλ onΣλ,
but a more complicated restriction in form of an anti-symmetry, seem to invalidate the arguments of the
Lemma 2.1 in [8] in the caseα < 2: A minimum value of the restriction ofwλ to Σλ atx∗ ∈ Σλ need not be a globa
minimum ofwλ, and thus�αwλ(x∗) � 0 need not lead to a contradiction, at least not without further argume

2. It is an open question whether Theorem 4.1 holds if�α is replaced by the generator of a Lévy process w
rotationally symmetric increment distribution. We conjecture that the answer is in the affirmative.
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