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Abstract

We study a semilinear PDE generalizing the Fujita equation whose evolution operator is the sum of a fractional power of
the Laplacian and a convex non-linearity. Using the Feynman—Kac representation we prove criteria for asymptotic extinction
versus finite time blow up of positive solutions based on comparison with global solutions. For a critical power non-linearity
we obtain a two-parameter family of radially symmetric stationary solutions. By extending the method of moving planes to
fractional powers of the Laplacian we prove that all positive steady states of the corresponding equation in a finite ball are
radially symmetric.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous étudions une équation de riéag-diffusion semilinéaire @néralisant I'équation de Fujita), dont I'opérateur d'évolu-
tion est la somme d’'une puissance fractionnelle du Laplacien et d'une non-linéarité convexe. A I'aide de la représentation de
Feynman—-Kac nous exhibons des critéres entrainant I'extinction asymptotique, respectivement I'explosion en temps fini, de
solutions positives. Ces critéres s’obtiennent en comparant avec des solutions globales. Pour une certaine puissance critiq
de la non-linéarité nous obtenons une famille paramétrisée demwgtationnaires a symétrie radiale. Par extension de la
méthode de déplacement d’hyperplans a des puissances fractionnelles du Laplacien, nous prouvons que toute solution positi
stationnaire de I'équation correspondante dans une boule finie comporte une symétrie radiale.
© 2005 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction
We consider the “generalized Fujita equation”

0
Eu(t,x) =Lu(t,x)+ G(u(t,x)), t>0, xeRY,
u(0,x) =g¢(x) >0,

(1.1)

whereL = A, is the fractional power-(—A)*/? of the Laplacian, O< « < 2, andG:R,; — R, is a convex
function satisfying conditions (2.1) and (2.2) below. Solutions will be understood in the mild sense (see e.qg. [20])
so that (1.1) makes sense for any non-negative bounded measurable fgnoti&f .

A well known fact is that for any non-trivial initial valug there exists a numb@j, € (0, oo] such that (1.1) has
a unique solutiom on R? x [0, T,) which is bounded oR? x [0, T] forany 0< T < T,, and if T, < oo, then
lu (s D) oo (ray = 00 @st 1 Typ.

WhenT,, = oo we say that: is a global solution, and whef}, < oo we say that: blows up in finite time or that
u is non-global.

The study of blow up properties of (1.1) goes back eftmdamental work of Fujita [11], who studied Eq. (1.1)
with @ = 2 and G(z)= z*#, g > 0. The investigation of (1.1) with a genetalvas initiated by Sugitani [23], who
showed that ifd < «/8, then for any non-vanishing initial conditiadhe solution blows ujn finite time. Using
a Feynman—Kac representation for the solutions of semilinear problems of the form (1.1), this conclusion was
re-derived in [4] and the corresponding behaviorsapfations with time-dependent non-linearities and of various
systems of semilinear pde’s were studied.

Itis known (e.g. [18,19]) that in supercritical dimensiehs «/8, EqQ. (1.1) admits global as well as non-global
positive solutions, depending on the “size” of the initiahdition. For short we address this parameter constellation
as theglobal regime.

In the first part of the present note we prove two comparison criteria in the global regime:

(i) Assume the initial value > 0 leads to a globally bounded solution. Then any initial valuerith 0 < v <
(1-¢)p, ¢ > 0, gives rise to a solution converging to zero.

(i) Assume the initial value > 0 leads to a solution which is uniformly bounded away from 0 for all0 and
all x in some ballc RY. Then any initial valuey with v > (1 + )¢, ¢ > 0, gives rise to a solution which
blows up in finite time.

The essential tool in proving (i) and (ii) is the probabilistic representation of the solution of (1.1) provided by
the Feynman—Kac formula, that was obtained in [4] (see (2.4) below).

Natural candidates for the comparison in (i) and (ii) are (time-)stationary solutions of (1.1), i.e. solutions of the
“elliptic” equation

Aqu(x) +G(u(x)) =0, xeR’ (1.2)

In the caser = 2 and G(z)= z*#, it is known that (see [15,8,13,24])

— ford > 2,14 8 < (d+2)/(d — 2), apart fromu = 0, no bounded non-negative solution of (1.2) exists,
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— ford >2,8=(d+2)/(d—2)— 1, all bounded stationary solutions of (1.2) are given by the family
A(d(d —2)“~2/2

(d(d —2) + (A% @=2)||x — c|)>)d=D/2’

(note that the two parameters of the family are the symmetry cemtes and its valueA atc),

— ford >2,8>(d+2)/(d—2)— 1, there exists a one-parameter family, A > 0 of solutions of (1.2) with
the propertiesz 4 (x) is symmetric aroung =0,

c,xeRY AeRy (1.3)

e A(X) =

ua©@=A4, |xI?Pus(lxll) > K, B) as|x|l - oo, (1.4)
wherekK (d, B) is a constant not depending @n
In the casex < 2, much less is known. Faf > «, 8 = (d + «)/(d — o) — 1, we specify in Proposition 3.1 a
two-parameter family:. 4, c € R?, 0 < A < oo, of radially symmetric solutions of
Aqu(x)+utP(x)=0, xeR? (1.5)
with the property
uea(@=A4, x|’ “uca(lxll) > Kd.a.p) as|x| — oo,

where K (d, «, 8) is a positive constant. A natural conjecture now is that, like in the Laplacian casg,=for
(d+a)/(d —a) — 1 theu, 4 constituteall the bounded solutions of (1.5), and that fok (d + @)/(d —a) — 1
there are no bounded non-zero solutions at all.

As a first step to answer these questions, in Section 4 we make use of the so called “method of moving planes”
which is well known in the Laplacian case, to show symmetry of positive solutions in a ball. Essential tools (like
Hopf’s boundary lemma) can be carried over todhkaplacian case. With this method, we were able to show (see
Theorem 4.1) that the following equation has only radially symmetric non-negative solutions:

Aqu(x) + F(u(x))=0, x€B,
u(x)=0, xeRd\B.

Here B is an open ball centered around 0 afidR — R is hon-decreasing. We conjecture that an analogous
statement is valid foF (z) = z” with p = (d +«)/(d — &) andR? instead ofB. In Section 4.3 we describe several
problems we think one would have to overcome for carrying over the moving planes method to the unbounded
space setting in this case.

2. Two comparison criteria

In this section we assume that the funct@nn Eqg. (1.1) satisfies the conditions
G(2)

lim —= = 2.1
ZLnS+Zl+ﬂ ¢ € (0, 00) (2.1)
and
T d
f—z <0 2.2)
G(2)

0

for certain positive numbers andé.
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Lemma 2.1. Let G be a convex function satisfyir{g.1), ande > 0. For any M > 0 there existg’ > 0 such that

G((1+e)2) G
Z

110 forO<z< M.
€)X

> (1+¢)

Proof. By consideringG/c instead ofG we can assume that= 1. Giveng > 0 there exist$ > 0 such that
G
1-8z7F < 6@ _ 14878
Z

for z € (0,6). Takeé < (1+¢)f —1)/((1 +¢)? +1). Then forz < §/(1+ ¢) := xo,

G((1+¢)z2) . 1-8)1+e)Pf G(2) G(z)
— S 1-8(1+e)fP — =1+H——=
14+e)z > =+ > 1+9) Z (1+¢) Z
where ¢’ > 0. Sincez — G(z)/z is continuous and strictly increasing i@, co) it follows that inf,cpx, ar

(%/@) > 1+ ¢” with ¢ > 0. Takings’ = ¢’ A ¢” yields the assertion. O

Let us observe that if is a globally bounded solution of (1.1) we necessarily have, for,all
Pv(0,x) - 0 ast — oo,
where(P;) is the semigroup with generatér Indeed, from the integral form of (1.1)
t

v(t,x) = Pv(0,x)+ / P,_SG(v(s, x)) ds

0
t

> P,v(O,x)+/PI,SG(PSU(O,x))ds

0
t

> Pv(0, x) +/G(P,v(0,x)) ds
0
> 1G(Pv(0,x)),

where we used in the first inequality th3tw (0, -) < v(¢, -), and Jensen’s inequality after the second line. It follows
from the global boundedness othat

lim Pv(0,x) < lim G~Y(Const:—%) =0. (2.3)
11— 00 11— 00

Proposition 2.1. Let G be a convex, increasing function satisfyif#yl) and(2.2). Assume the initial value > 0
leads to a globally bounded solution df.1). Then any initial valuey with0 < v < (1 —¢)g, ¢ > 0, gives rise to
a solution converging uniformly to zero.

Proof. Recall that the Feynman—Kac representatibsodutions of (1.1) is given by (see [4])

t

Gu(s, X

u(t,x)=/u(0, Vpe(y, X)Ey [exp/%six)))%IXFX] dy, (2.4)
0 k) s

R4

where(X;) is the Lévy process with generatbrandp; (x, y), t > 0, x, y € R?, are its transition densities.
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Suppose that is a globally bounded solution of (1.1) and tha&:(0, -) < (1 — ¢)v(0, -) where O< ¢ < 1.
As (1.1) preserves ordering we hawve, x) < v(z, x) for all # > 0 andx € R¢, which together with (2.4) improves
to

G(v(s, Xy))

t
u(t,x)gf(l—s)v(O, V) pe(y, X)Ey [GXP/ (s, Xy)
Rd 0

ds ‘ X, =xi| dy =1 —-¢e)v(, x)

uniformly in 7 andx. Inserting this bound again into the Feynman—Kac representatioyiefds

M(l, X) < /M(O, )’)Pr(y, X)Ey|:
R4
Puttingz(z, x) := (1 — &)v(z, x) in the above inequality and using Lemma 2.1 (witim Lemma 2.1 substituted by
g:=¢/(1—¢))we get

ds‘Xt =xi| dy.

t
G((L—e)u(s. X,))
eXp/ d— ). X,)
0

u(t,x) < fu(O, ey, X)Ey|:

R4

ds’thx]dy

. /’ 1 G(A+8)s X))
po 11e (11826 X))

= / u(0, y)pi(y, x)Ey[€27¢04 | X, = x]dy,

Rd
wheree’ > 0 is given by Lemma 2.15" :=¢’/(1+¢’) and
t
X
A, :=/Mds. (2.5)
U(S, XS)

Thus,

u(t, x) < / u(0, y) pi(y, \)E, [e1¢ 41 (e < (Pu(0,x)) %) | X, =x]dy

R4
+ / w(0, y)pi (v, )E, [61 41 (e > (Pw(0,x)) V) | X, = x]dy.
R4
Since & > (P,v(0, x))~ Y2 implies é1-¢"4: < e (P,v(0, x))¢"/2, we obtain

ult 0 S /M(O, Npi(y, x)(P,v(O,x))_l/z + (va(ovx))S///Z/u(Oa y)pt(y,x)Ey[eA’ | X; =x]dy
R4 Rd

< @—&)((P(©0, )2 + v(t. x) (Pv(0, x))* 2

which tends to 0 uniformly as— oo due to (2.3). O

Proposition 2.2. Let G be a convex, increasing function satisfyif®y1) and (2.2). Assume the initial valug =
v(0, ) > 0 leads to a globally bounded solution @f.1) which for some open baB c R¢ and somer > 0 obeys

ing v(t,x) >« for all sufficiently larger > 0. (2.6)
xXe

Then for any > 0, the initial condition(1 + ¢)¢ leads to blow-up in finite time.
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Proof. By the Feynman—Kac formula,

v(t,x)=/v(0, Y pe(y, X)Ey[e? | X, = x]dy,
Rd

whereA; is given by (2.5). IfK > 0 then

f 00, 1) pr(y, DE, (€45 A, < K | X, = x]dy < eXEcn(0, X,) — 0
R4
ast — oo uniformly in x due to (2.3). Therefore, for ak > 0 there existdp = Tp(K, v) > 0 such that for > Tp

v(t, x) <9
Jra v, ) pi (v, x)Ey[€; A, > K | X, =x]dy

2.7)

Without loss of generality we can assume thatdmf o) v(z, x) > « for all ¢ large enough, whers, (x) denotes
the ball inR? of radiusr centered at. Arguing as above we check via the Feynman—Kac representation that for all
r>0and xe RY, u(t,x) > (14 ¢)v(t, x). Plugging this again into the Feynman—Kac representation faelds

G((A+e)v(s, X))
A+ 9)v(s, Xy)

t
ut,x)>=A+e) / v(0, y)p: (¥, x)Ey [exp/ ds ’ X; =x:| dy
Rd 0

>(1+e) f v(0, y)pi (3, 1)E,y [€4 | X, = x]dy
R4
for somes’ > 0 by Lemma 2.1. Using this and (2.7) we obtain for givén- 0 andr big enough that

u(t,x) > (1+e)ek? / (0, y) i (v, X)E, [€Y; A, > K | X, =x]dy > (He)e’“’””—éx).

R4
Hence, for anyk > 0 we find infep, ) u(t, x) 2> k(14 s)e’“’/z for all sufficiently large . As is well known (see
e.g. [17]), this inequality together with (2.2) are sufficient for finite-time blow-up.of O

The kind of threshold phenomenon described by the following corollary is well known for the classical Lapla-
cian, see e.g. [9, Theorems 1.1] or [14, Theorem 1.14] for related results.

Corollary 2.1. Let G be a convex, increasing function satisfyiffyl) and (2.2), and¢ > 0 a non-trivial positive
bounded solution of

Lo(x)+ G((p(x)) =0.

(a) For eache > 0 the solutionu of (1.1) with initial value u (0, x) = (1 + &)¢(x), x € R, blows-up in finite
time.

(b) For eache € (0, 1) the solutionu of (1.1) with initial value (0, x) = (1 — &)¢(x), x € R? converges uni-
formly to 0 agt — oo.

Proof. This is immediate from Propositions 2.1 and 2.2]
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3. A classof radially symmetric stationary solutions

We now set out to specify a family of positive stationary solutions of (1.1) in the particular c&sg oE 77,
wherep = (d + «)/(d — «). Before doing this, we still consider the case of a gengraind note that the “elliptic”
equation

Agu(x) +uP(x)=0, xeR? (3.1)
can be rewritten in integral form as
o
u(x)=/Ex[u”(Xz)]dt, xeR’, (3.2)

0

where (X;) denotes the (symmetri@)-stable process iR?. Hence, ford < «, due to recurrence ofX;), the
only non-negative solutions of (3.1) ate= 0 andu = co. Therefore, we henceforth assume thiat «, in which
case (3.2) rewrites as (see [5, p. 264])

[ AW o’ ()

u(x) = dy, xeRY, (3.3)

Iy — x||d—
whereA(d, a) :=T'(3(d — «)) /[T (3a)2°79/2].

Proposition 3.1. If p = (d + «)/(d — @), then for anyA € (0, 00) andc € R¢ the function
A
(14 (AZ/@=e0272(0 (2 / T (452)) el — ef2)d=0/2

Ue,Alx) =
solves(3.1).

Proof. Without loss of generality we assume tlads the origin. Due to (3.3) it suffices to show that

Ald, ayuf 4 ()
uo,A(x):/—Oé’iAydy, x e RY. (3.4)
ly —x|¢=
R4
Let us writea := A~/ @=02(P(45%) / ' (452))Y*. We first note that
(x) A ABy—o( 5~
u X) = = _ -
O T A an? @2 T PP 2ng

(see [10, p. 155]), where for any e LY(R?), f(x) := [rs € 27¥* f(y) dy is the Fourier transform of , and for
any complexw with Re(w) > 0

o0

1 2
o (w—d)/2—=1—r—|Ix[|7/4
By(x):= 71"(%)(471)0’/2/” w e Ix " dr.
0
Hence
oA (x) = A[B/d_\a (f)]?x) = A(21a)! By—o(2max) = A(2ra)! By—o(~27ax).
Ta
Notice that
(d—w)/24+1
By(x) = | W=D (a_wy2(IlxN),  x €RY, (3.5)

T @naz ™!
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where for any complex, K, is the Macdonald’s function [25, §B2], also known as modified Bessel function of
the second kind, which is given by

o0

1/11\"

Ky (z) = E(EZ) /rfvflefrfzz/“r dr, Re(zz) > 0.
0

It follows that

_ w2 - 2 B
oA (x) = Aa?/ 2 @ ")/anxn “2Kyja(l27ax])). (3.6)
2

To compute the Fourier transform of the other side of (3.4) we use the convolution theorem, (3.5) and
[Ad. )| - 79T )= (27lx]) ™, xeR? 0<Re@) <d,
(e.g. [10, p. 154]) to obtain

Ad, 0ul ,o) T e e 1 -
[/ Iy — -4 dy} (0 =@m) A [(1+4n2||m||2)<d+a>/2} 0

2ma
= (27) " ||x||"* AP (27a)! By 4o (—2max)

= (2n>—“||x||—“A”[B/dB (;ﬂ?x)

_o—a_(d-a)/2 —a/2 pAp d+o/2
=2"% x| ~%/?APa 7F(d%)K_a/2(||2nax||).

SincekK, = K_, [1, Formula 9.6.6], by comparing the RHS of the last equality with that of (3.6) we see that they
are equal for the value of stated at the beginning of the proof. The result follows from uniqueness of Fourier

transforms. 0O

Remarks. 1. Recall [7,16] that for < « < 2 and d > athe Kelvin transform of: is defined by
1 X
v(x) = 714(—), xeR? x#£0. 3.7
flac [l 9=\ [l |2 ” (3.7)

A simple calculation shows that for any fixed R4 the family of solutiongu. 4} 4>0 rendered by Proposition 3.1
is invariant under the Kelvin transform with center

) 1 n xX—c
Vol X) i=m) ———U C —_—F ).
‘ Ix —cfd— A\ T =2

2. Moreover, ifu is anygiven regular positive solution of (3.1) (where<w <2, p > 1 and d > o) andx # 0,
then its Kelvin transformv(x) satisfies
vP(x)

oo = (38)

Agv(x) +

Indeed, letG, denote the Green’s operator corresponding o andx # 0. Then,

vP(x) Ald, o) 1 1 y
—Gy| ——— ———— ) = . . -u? dy
[l || (@+e)=pld=a) lx — ylld=e |ly||@+—pld=a) | y||d=a)p Iyl?

1 1
= Ad, . -uP()d
( “)/nx—indfa A

l1z12
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1
ZAd’ / .yP d
( Ol) ||x'||Z||—”§—'”||d*a u (Z) z

p
=A(d,a)/ _ uP(z)dz _
I — xl-z 1=
R4

_ 1 x )\
- ||x||d“”(||x||2> =i,

where we used the elementary identjty- || z|| — ﬁll = ||”j§—H — |lx|I - z|l in the fourth equality.
3. Proceeding as in the proof of Proposition 3.1 one can verify, again assdnsingandp = (d + «)/(d — ),
that a singular explicit solution to (3.1) is given by

o fd+a d—a\\2 Y 1
S L VG R S

and thatsing is a fixed point of the Kelvin transform (3.7).

4. Rotational symmetry of solutionsin a ball

Let F:R, — R, be non-decreasing, not identically constant, and (0, 2). Let u:R¢Y — R, be a non-
negative bounded solution to

Aqu+ F(u)=0, xe€B1(0), u=0 inB1(0)°, 4.1)

i.e., for allx in the unit ball we have

e ¢]

u(x) = / E.[F(X,): supiX,| <1]di = / G, ) F (u(y)) dy. (4.2)

u<t
0 B1(0)
whereX is the symmetrie-stable process an@, (x, y) is the corresponding Green'’s function for the unit ball.

Itis well known that (4.1) possesses non-trivial positive solutiorsig of the formF (u) = Ku, whereK > 0
is a constant [12]. Existence of positive solutions to 4ot non-linear reaction terms is a delicate question whose
answer depends rather sensitively BnFor example in the case of the classical Laplaciag@) ind > 3 and a
non-linearity of power type (1) = u1*# it is well known that there are non-trivial solutions to (4.1) if and only if
1+8<(d+2)/d-2),seee.g.[21].

Itis tempting to conjecture that this phenomenon extends frea? tow € (0, 2], the Laplacian being replaced
by A, and the threshold for % 8 being(d + «)/(d — «). Note that this complements our conjecture given at the
end of Section 1: Whereas in the caséRdfnon-trivial solutions should exist iff + 8 > (d + «)/(d — «), in the
case of bounded balls the condition for existence of non-trivial solutions should-tie 4 (d + o) /(d — ).

In our setting, proving existence of a non-trivial posita@ution to (4.1) constitutes a challenging project for
future research. In the present paper wik ot treat this question, but rather prove

Theorem 4.1. Any non-negative solution {@.1)is symmetric about the origin.

Our approach is based on theethod of moving planes device that goes back to Alexandrov [2] and has
by now a venerable history in the study of symmetries of solutions of pde’s, see also [22,13] and [3]. The idea
is as follows: Choose any direction Rf, without loss of generality the;-direction, and show that is mirror
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o

A

\ 4

Fig. 1.

symmetric with respect to the hyperplane through the origin with this given direction as a normal vector. In order
to achieve this let us define fare (—1, 1)

Th:i={xeR¥ x1=1}, Xy :={xeR% x1 <A}

and forx € R? letx* := (21 — x1, x2, .. ., x4) be the image under reflection alofig, see Fig. 1.
Define the setA by

A= {A e (—1,0): u(x)‘) >u(x)Vx € Xy, aiu(x) >0VxeT, N Bl(O)}. 4.3)
X1

Observe that by the minimum principle we hava*) > u(x) for x € X, N B1(0) andx € A, i.e.,A € A means
that reflection alond;, (strictly) increases the value of In Section 4.2 we prove that

supA =0 (4.4)

so that by continuityi(—x1, x2, . .., xg) = u(x1, x2, ..., xg) whenever < 0. By considering. > 0 and working
in the opposite direction we can then conclude the saeinequality and hence obtain the desired symmetry.

4.1. Some preparatory lemmas
Lemma 4.1. A bounded solution of (4.2)satisfies: € C(R?) N C*®(B1(0)).

Proof. Using the explicit form of the Green’s kernel of the ball (see e.g. [7, formula (2.3)]) one easily checks that
interchange of integration and differentiation is justifieda

Lemma 4.2 (Minimum principle).Let D c R? be a bounded domain. SuppaseR? — R, is continuousAqw <
0 on D, and satisfiesy =0 on D¢. Then eithetw =0o0r w > 0on D.

Proof. Let D, := {x € D: w(x) > ¢}. By continuity D, is open. Assume thab, # ¢ for somee > 0. Let
(X;) be thea-stable process, and:= inf{s: X; ¢ D} the hitting time of D¢. ThenM; := w(X;r;) — w(Xo) —
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é“ Ayw(X;) ds is aP,-martingale for eacl € D. Let furthermorer’ :=inf{s: X, € D.}. For eachx € D we

haveE, M, =0, or

AT

/(—Aaw)(Xs) dS} > Ex[w(Xpar)] > ePx(r' <7) >0
0

becauséX;) hits any open subset @ with positive probability before exiting fronb. O

w(x) = Ex [w(Xr’/\r)] + Ex|:

We will have occasion to consider the behaviouddt the boundary of the ball. In this respect, the following
lemma is helpful:

Lemma 4.3 (Hopf’s a-stable boundary lemmallet D ¢ R¢ be openw : R? — R, continuous withw = 0 on
D¢, A,w < 0on D, w notidentically zero. Letg € 3 D satisfy an interior sphere condition, i.e. there exists a ball
B;s(x1) € D with Bs(x1) N D€ = {xp}, and letv be an outward pointing unit vector ap. Then

ad
—w(xg) <0
av

(in fact, limg\ o(w(xg0) — w(xg — €v)) /e = —00).

Proof. Because of the interior sphere conditioncgtwve can find a balBs(x1) C D such thatBs(x1) N D = {xo}
and alsoB C D, whereB is the “left half” of a spherical shell around with interior radiuss and exterior radius
8 > 8, see Fig. 2. Observe that > 0 in D by Lemma 4.2, in particular igfw > 0 becauses is compact andv
continuous. Let :=inf{z: X; ¢ Bs(x1)}. Then

w(x) =Ex |:w(Xr) - /(Aaw)(Xz)dt] > Exw(Xy)
0

for x € Bs(x1). Takex = xg — ev with ¢ > 0 small enough, and denote bythe angle betweely xg andxxg. Then

y € (—m/2, w/2) because is an outward pointing vector, hence gos- 0. The cosine theorem gives — x1|% =

8% + 2 — 28scosy. Using the explicit form of the Poisson kernel for the complement of a ball (see e.g. [7,
formula (2.2)] or [6, Theorem A] and rescale) we can estimate

w(x)>Exw(xf>>fP(x,y)w(y)dy

Fig. 2.
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. 82 — |x — x1)?\ /2 J
> (infw)C o ox—ml —yd
g “"’/<|y—x1|2—52> e

B

> (62— |x — 1)

> (C'eY/2,

Thus we see that limsyp(w(xo) — w(xo — ev))/e = —oc0. O

Lemma4.4. Letw : R? — R be continuous, bounded with > 0 on X, w(x%) = —w(x). Letx, € Tp be such that
there exists & > 0 with A,w < 0on Bs(x4) N Xo. Then either

0
w=0, or w>00nBs(xx) NXp anda—w(x*) <0.
X1

Proof. Assumew # 0. Letx € Bs(x4) N Xp. If w(x) =0 we would have (see e.qg. [7])

wkx+y)—0

ST dy>0

Aqw(x) = ca)dPV/
R4

by the non-triviality and symmetry ab, in contradiction to the assumption.
To show that the derivative is non-zero choése- 0 such that SUB,\ By (x,) W > 0. Let(X;) be thea-stable

processt :=inf{t: X, ¢ By (x4)}. Definev(x) := E;w(X¢), v(x) := Ey for(—Aaw)(Xs) ds. Observe that

Aqu=0 inBy(xy) and v=w inRY\ By(xs),
AgD=Aqw inBy(xy) and 9=0 inRY\ By (xy).

Uniqueness of the Dirichlet problem fay, in Bs (x,) thus givesw = v + 9. We have

v(x) = f P(x, y)w(y)dy
[y—xs]>8

for x € By (x4), where the Poisson kernel is given by (see e.g. [7, formula (2.2)])

5/2 _ I-x _ x*lz

a/2

—d
- X — , X € Bg(xy), Bs (xy).
Iy X*|2 5,2:| | )7| 8(*) y¢ 5(*)

P(X,Y)=Ca,d[

One checks thag,i—lP(x*, y) <O0forye Xp andai“P(x*, y) > 0 fory € —Xp. The interchange of integration and
differentiation is justified because is bounded, so we can compute

d d
—u(xy) = — P (x4, y)w(y)dy <0.
dx1 0x1

[y—x4|>8"

Furthermore, forx € By (x+4)

v(x) = / G(x, y)(—Aqw)(y) dy,

By (X4)

where the Green kernel fd;s (x,) is given by (see e.g. [7, formula (2.3)] or [6] and consider the obvious scaling
properties ofx-stable processes)

wy (x,y)

Gx,y)=caa(lx —y))** /
0

roz/2—l

W dr, (45)
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wherewg (x, y) = (8'2 — |x — x412)(8'2 — |y — x4|2)/|x — y|%. Inspection shows that far, y € By (x5) N o we
haveG (x, y) > G(x, y°), hencel > 0 in By (x,) N o and by symmetry < 0 in By (x,) N (—Xo). We conclude
that(9/0x1)v(x,) < 0 and thus

0
—w(xy) < —v(x) <0. O
dx1 0x1

4.2. Proof of (4.4)
We proceed in three steps and show that

(1) AD>(—1,—-1+¢) forsome smalk > 0,
(2) Aisopen. In particular fok € A there existg > 0 such thafx, A + &) C A.
(3) From (1) and (2) we conclude that= (—1, Amax). We finally show thakmax= 0.

Stepl. Obviously(—1,0, ..., 0) is an outward pointing direction for eaghe 0 B1(0) N ¥_1,2. By the boundary
lemma and the fact th&b/dx1)u is continuous inB1(0) there is an open neighborho®dof d B1(0) N X'_1,»> such
that(d/dx1)u > 0 on DN B1(0). Choose:s > 0 so small that?_1,.. N B1(0) C D. Then—1+¢/2 € A.

Step2. We argue by contradiction. Assume there wass A and also a sequendg,) C (—1,0) \ A with
An \4 Ax. From the definition ofA, possibly passing to a suitable subsequence (which we again would denote by
(A)) we can always arrive at one of the following possibilities:

(a) there exists a sequen¢s,) C B1(0), x, € Xy, with x, — x, € B1(0) andu(x,) > u(x,){”) forall n, or
(b) there exists a sequencs,) C B1(0), x,, € Ty, with x, — x, € B1(0) and(d/dx1)u(x,) < 0 for all n.

Assume (a) was true. We cannot have € X;, becauseu is continuous and:(x**) > u(x) for x
X,, by the above remark. Hence, € T, N B1(0). But then we have(d/dx1)u(xy) = limy_eo(u(xi") —
u(x,))/(2d(x,, Ty,)) < 0. By Hopf's boundary lemma, this forces to be away fromd B1(0), but then we ob-
tain a contradiction ta., € A.

If (b) was true we would again find a poinf € 73, N B1(0) with (3/8x1)u(x,) < 0 and arrive at a contradiction.

Step3. From the preceding steps we know thiat (—1, Amay). If w(x*m2) = u(x) for x € X)max then we have
found a symmetry center. As is continuousy = 0 on dB1(0) and strictly positive insideB1(0) this can only
be true forimax= 0. Indeed, ifAmax < O then by continuity we would have(x) < u(x*m) for x € Zrmax DUL
with u(x) % u(x*ma). Definew(x) := u(x*m>) — u(x). Observe thatv is continuous and bounded, non-negative
in X, andw (x*ma) = —w(x). Forx € X,,,, N B1(0) we have

Aqw () = (A)u(x*m) — (Ag)u(x) = =[F (u(x*m)) — F (u(x))] <0,

and we infer from Lemma 4.4 th&b/dx1)w(x) < 0 for all x € Ty, N B1(0). In conclusion Aimax < O implies
Amax € A which by step 2 forces sup > Amax. This is a contradiction.

4.3. Remarks and open questions

1. The approach developed above invites to try to use the moving planes method also for the corresponding
problem onR? in order to prove the analogue of Gidas and Spruck’s theorem [15] in our setting, namely that any
solutionu of (3.1) with p = (d + «)/(d — o) must be symmetric about some point.

In fact, steps 2 and 3 from Section 4.2 can be carried over easily to the infinite space setting: Once we have, for ¢
given normal direction, a “good” hyperplafig, we can push it along until we hit a symmetry center. Here, “good”
means that lies in the analogue of (4.3), witR? instead of the unit ball. Unfortunately, we have not been able to
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implement step 1 in thR? setting. In order to get the moving planes method started, one would have to show that
for x sufficiently negative we have(x”) > u(x) for all x € ;. We conjecture that this is the case. Indeed, using
the tools developed in Section 4.1 it is possible to adapt several steps of the proof of Chen and Li, [8] to the case
of generake. There is however a technical difficulty which we were not able to overcome, and which we briefly
explain below.

Via the Kelvin transformation and (3.8) we may assume thdecays likec||x||*~¢ at infinity. Putw, (x) :=
u(x*) — u(x). Thenw; is anti-symmetric with respect to reflection®t and satisfies\,w; (x) + c(x)w; (x) =0
onR?, wherec(x) = p&(x)?~1 with somet (x) € [u(x) Auy (x), u(x) Vv u; (x)]. Following [8] the task would be to
prove that fork « 0, w, does not become negative afy . More precisely we would like to show that far« 0,
a situation where the restriction af, to X, has a strictly negative minimum leads to a contradiction. However,
the non-locality ofA,, together with the fact that we actually do not have a boundary value problem fon X,
but a more complicated restriction in form of an anti-symmetry, seem to invalidate the arguments of the crucial
Lemma2.1in[8]in the case < 2: A minimum value of the restriction ab, to X, atx, € X, need not be a global
minimum ofw;,, and thusA, w; (x,) < 0 need not lead to a contradiction, at least not without further arguments.

2. Itis an open question whether Theorem 4.1 holds,ifis replaced by the generator of a Lévy process with
rotationally symmetric increment distribution. We conjecture that the answer is in the affirmative.
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