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Abstract

We prove the existence of a stationary solution of any given mass to the coagulation—fragmentation equation without as-
suming a detailed balance condition, but assuming instead that aggregation dominates fragmentation for small particles while
fragmentation predominates for large particles. We also show the existence of a self-similar solution of any given mass to the
coagulation equation and to the fragmentation equation for kernels satisfying a scaling property. These results are obtainec
following the theory of Poincaré—Bendixson on dynamical systems, by applying the Tykonov fixed point theorem on the semi-
group generated by the equation or by the associated equation written in “self-similar variables”. Moreover, we show that the
solutions to the fragmentation equation with initial data of a given mass behaves, as, as the unique self similar solution
of the same mass.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Pour toute masse donnée, nous démontrons I'existence d’au moins une solution stationnaire pour I'équation de coagulation:
fragmentation. Nous ne faisons pas d’hypigte d'équilibre en détails sur les di@énts mais nousupposons que la coagula-
tion domine la fragmentation pour les paules de petite taille et que la fragmentation est prépondérante pour les particules de
grande taille. Nous démontrons également I'existence dé@esauto-similaires pour I'équation de coagulation et pour I'équa-
tion de fragmentation sous une hypothése d’homogéneité sur leexaagas résultats sont obtenus, s'inspirant de la preuve
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du Théoréme de Poincaré—Bendixson, en appliquant le théoréme de point fixe de Tykonov sur le semi-groupe engendré pe
I’équation ou par I'équation écrite en variables auto-similaires associée. Enfin, nous démontrons que les solutions de I'équatior
de fragmentation de masse donpée 0 se comportent en temps grand comme la solutions auto-simialire de masse

© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction and notations

We consider the Cauchy problem for a spatidilynogeneous kinetic equationodelling the dynamic of a
system of particles which undergo linear (secondary) fragmentation and/or aggregation events. More precisely, if
we denote byf (¢, y) > 0 the density of particles with masss R := (0, co) attimer > 0, we study the following
equation

T -0t iRy xRy, (11)

FO=fin InR4. (1.2)
The coagulation—fragmentation opera@splits into two terms

Q(f)=Lf+C(f). (1.3)

The first term L f, describes the spontaneous fragmentation of one (mother) particle in several (possibly infinity)
(daughters) particles. This process may be schematically written as

{y} > {y(l)}_|_..._|_{y(k)}+...

with the mass conservation condition
o0
Y20 y=3 0,
k=1

The linear fragmentation operatbrreads
00 y ,
Lro) = [ 00" ay = 1) | by (1.4)
y 0

whereb = b(y, y’) corresponds to the formation rate of particles of siZey fragmentation of a particles of sizé
Here and below, we use the shorthand notatibrs ¥ (y), ¥’ = ¥ (y’) andy” = v (y") for any function onRR .
We will consider a fragmentation rabesatisfying

b(y,y") =bo(y)B('/ ), (1.5)
wherebg is a function andB is a measure such that
1
bo(y)=yY, y>=-1, B>0, with suppB C][O0,1], /ydB(y) < 400. (1.6)
0
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The second term in the right-hand side of (1@3),), models the growth mechanismaulting from the encounter
of two mother particles. This may be schematically written

W+ -5 07, withy’ =y +y,

wherea = a(y, y’) is the rate of occurrence of the aggregation of two particles of massl y’. The operatoCC
is then given by:

y 00
1
C(HY) = E/a(y =Y IO =Ny — /a(y, WO FON Y. (1.7)
0 0
We will consider a coagulation rate satisfying
a(y,y)=y" 0" +yP ()", —1<a<0<B<L r=a+pe[01). (1.8)

Remark 1.1.Hypothesis (1.8) is made in order to simplify the presentation. All the results presented in this paper
are also true for a coagulation raie= a1 + --- + a; where each of the functions, i € 1,..., I, satisfy the
assumption (1.8) and all the others hypothesis that are made in the paper (see (4.2), (4.3) and (5.2)). In particula
our results are true for the Smoluchowski coagulation rate

a(y,y)=0"+0"")" (7 + "),
withv=1/3,u=1ando =—-1/3.

The main motivation of this work is to describe the long time asymptotic behavior of the solutions to such
type of coagulation and fragmentation equations. As it is well known, the stationary and self-similar solutions
turn out to be important to describe such behavior. We are then led to consider first the existence of this type of
particular solutions. These are two important questions both for the applications and from a mathematical point
of view. Among the extensive physical and appliedritere we may quote for exapte [16,17,14,44,30,38] and
references therein. In the mathematical literature, the study of self-similar solutions for the fragmentation equation
has been studied using probabilistic methods in [3,9,1],the asymptotic behavior in [6,7]. The convergence
to the equilibrium state for the coagtilon—fragmentation equation with di¢éal balance condition is considered
in [35] (see also the references therein), and without this condition in [19,26]. Finally, the self-similar solutions
and asymptotic behavior for coagulation equation have been considered by probabilistic methods in [8,13], and
in [39,40], fora(y, y") =1 anda(y, y") = y + ¥/, using deterministic analytic methods. See also [12,21,31,32] for
related works. (We do not pretend to be exhaustive at all.)

We do not consider here coagulation fragmentatigumagions whose solutions undergo finite time singularity
formation such as gelation (loss of mass by the formation of “particles of infinite size” or gel) or shattering (loss of
mass by the formation of “particles of zero size” or dust).

Therefore, in the present article, we only treat coagulation fragmentation equations which preserve the mas:s
of the solutions for all time. This property is fundamental for all the results presented in this work. Under the
conditions (1.6) and (1.8) the existence of global massgrkéng solutions for coagulation fragmentation equations
is classical, and well known. We refer to the recent bibliography as [33,22,25].

On the other hand, our purpose is not to prove the results under the greatest generality, nor to be exhaustive. W
only want to get some insight into this problem using a simple argument. We then make simplifying hypothesis,
such as (1.6) and (1.8) for the sake of clarity and brevity. Our strategy for proving existence result of particular
solutions for such a coagulation and/or fragmentation equations follows the one presented in [28] in the Boltzmann
equation context. It is based on the following simple abstract result, Theorem 1.2, on semigroups leaving invariant
a convex and compact set, which is reminiscent yet in the theory of Poincaré—Bendixson on dynamical systems
see for instance [4] (Théoreme 7.4). Theorem 1.2 isrgpke consequence of the Tykonov fixed point theorem and
it is a variant to similar results presented in [4,2,28].
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Theorem 1.2.LetY be a Banach space and;),»o be a continuous semigroup dh Assume thas; is weakly
(sequentially continuous for any > 0 and that there exist€ a nonempty convex and weaKkequentially

compact subset af which is invariant under the action ¢f (thatisS;z € Z for anyz € Z andr > 0). Then, there
existszg € Z which is stationary under the action 8f (that is S;zo = zo for anyr > 0).

Proof of Theorem 1.2. For anyr > 0, thanks to the Tykonov point fixed theorem (see for instance [20, pp. 161—
163]), there exists, € Z such thatS,z; = z;. On the one hand,

Sizfmszn =2Z2-n for anyi, n,me N, m<n. (19)

On the other hand, by weak compactnes£ofve may extract a subsequengeg-»; )x which converges weakly
to a limit zg € Z. By weak continuity ofS; we may pass to the limii; — oo in (1.9) and we obtairs;zo = zo
for any dyadic time > 0. We conclude thatg is stationary by continuity of — S; and density of the dyadic real
numbers in the real line. O

The proof of the existence of steady solutions using this abstract result is a slight modification of the method
used in [28] for granular flows equations. It has also been used in [5] to prove existence of stationary solutions for
the Boltzmann—Pauli equation and in [41] to prove existence of self-similar profiles for the inelastic Boltzmann
equation of granular flows.

Once the existence of stationary or self-similar solutions is established, one may conjecture that these particula
solutions should describe the long time behavior of the solutions of the Cauchy problem (1.1), (1.2) for a certain
set of initial datafi,. Nevertheless, we are only able to prove this result for the fragmentation equation, i.e. when
a = 0. This is done using, very classically, the uniqueness of the asymptotic state and the existence of a strict
Lyapunov functional. These two facts are not known forgeeeral coagulation fragmentation equation or for the
self-similar profile equation associated to the coagulation equation. For all these questions and more, the intereste
reader may consult the surveys[1,18,36,38].

We describe now rather briefly the contents of this paper. Let us start saying that, when the two terms in Eqg. (1.3)
are present, we look for a stationary solution. We search then, for any givenomas$s a solutionF, to the
stationary problem

Qcr(f):=C(f)+Lf=0 and Mi(f)=np, (1.10)

whereM1(f) = [y° vfdy is the mass.
But, if only one of the two term€&'(f) or Lf is present, the only stationary solution is the trivial ghe 0 and
we look then for mass preserving self-similar solutions. These solutions are of the form

ft,y)=t*g"y)

for some exponent = (1+ y)~1 > 0 for the fragmentation equation and= —(1 — 1)~ < 0 for the coagulation
equation. The functiog, called sometimes the self-similar profile, satisfies a stationary equation of the form:

Dg—(1+y)Lg=0 and Mg =p, (1.11)
for the fragmentation equation, and
Dg+(1—1)C(g)=0 and Mi(g)=p, (1.12)

for the coagulation equation, whefeis the following linear transport operator preserving mass
Dg=2g+yg,. (1.13)
It is then natural to consider the following family of equation
g =0(g) (1.14)
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where,

0(g) = e0D(g) + e1Lg + £2C(g), (1.15)

with g9 € {—1, 0, 1}, e1, e2 € {0, 1}. There exists a strong and explicit relation between the solutfanisEq. (1.2)
where only the coagulation or the fragmentation are present and the solgtidri&.14) withe1e2 = 0. Suppose
for example thag is a solution to (1.14) witkg=—1,¢1 =1+ y0 and & = 0. Then, the function

1
+v

satisfies the fragmentation equation (1.1) (withf) = 0). Similarly, if ¢ is a solution to (1.14) witlkz; = 0 and
go = 1. Then, the function

f(t,y)=(1+t)%g(1 N+ 1), (1+1)T7 y) (1.16)

()= At g —
satisfies the coagulation equation (1.1) (witf = 0).
On the other hand, iff satisfies the fragmentation equation, we obtain a solyitm (1.14) witheg = —1,
e1=y + 1 and e =0, defining

glt,y)=e 2 f(eM 1 yey, (1.18)

and if f satisfies the coagulation equation, we obtain a solufiom (1.14) witheg=1,e1 =0 andea =1 — A,
defining

gt,y)=e? f(eT™M —1, yeh. (1.19)

This well known property of the self-similar change of variables has already been extensively used for the
study of the long time behavior of the solutions to partial differential equations (see for example [24] and the
references therein) and is also used here. In particular, all our results about the existence or the uniqueness ¢
solutions to Eq. (1.14) will automatically give an existerar uniqueness result for the corresponding coagulation
or fragmentation equation.

The rest of the paper is organized as follows. In Section 2 we define precisely the notions of solutions used in
all this work. We prove uniqueness and stability of solutions to the growth equation (1.14), (1.15), and existence
for “truncated” rate functions andb. These results will be very useful in the following sections.

In Section 3 we consider the fragmentation equation. We show the existence, for any givem massf a
unique self-similar solution. Then we prove that this solution describes the long time behavior of the solutions to
the Cauchy problem with initial datg, of massp.

In Section 4 we consider the coagulation fragmentagiquation without detailed balance condition. We prove
the existence, for any given mags> 0, of a stationary solution. Finally, we treat in Section 5 the coagulation
equation and prove the existence, for any given masd, of a unique self-similar solution.

|n(1+z),(1+z)ﬁy) (1.17)

2. Generalities and tool box

We gather in this section some elementary results about the Cauchy problem associated to the growth eque
tion (1.14), (1.15). Since all of them are very classical the proofs will only be sketched. For further developments
and more precise statements and proofs we refer, &airte, to [36,33,25] and the numerous references therein.

We first present some notations. We denoteu;’gé the space of integrable functiorfs: (0, co) — R on any
compact[e, 1/¢], € € (0,1) and by Ml}JC the associated measures spaces. For any given continuous function
¢:(0,00) — (0, 00), we define

My = {u € Mg, suchthat,(|ul) <oo},  L}:=MJN L.
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where for any measureQv € M|%>c’ we define the generalized momeif} (v) by

o0

My (v) :=/¢(y)dv(y).
0
In order to shorten notations we also (abusively) denote, fokanR,
Mi=My,  Li=Ly,  M{=Mj ..  Li=Li
Finally, we define
BV1:={f € Li. suchthatf’ e M}}.

The same construction is made on the suliBet). In that caseLlloc(O, 1) is the set of measurable functions,
integrable orfe, 1] for anye > 0. Theses spaces are always denoted indicating the int€&) like for instance
ME(0,1), L1(0,1), M(0,1), L}(0,1), BV1(0, 1). Let us emphasize that all these are Banach spaces.
We show in the next lemma how to define the different growth operdtpts and D in the strong and weak
sense that will be needed later.
Lemma 2.1.For anyk € R,
Pl Pl 1

€ Lyiminon M Lgrmaxory = C)ely,
and,ifB e LN L},

fell +lmLy+l+k = Lfelj.

Foranypue M} ;N M:,}Jrl and¢ e C1(0, o), the duality product

(Cuw),¢):= // @" —¢—¢)du(y)duy) (2.1)

is well defined. ]
Foranyu € M}%H + M)}Jrz and¢ € C1(0, o), the duality product

y

(Lw, ) =, L"), (L*¢)(y)=/b(y,y’)[¢’— y;cb} dy’ (2.2)
0

is well defined.
For any . € M0, 00) and¢ € C1(0, oo) the duality product

is well defined.

Proof of Lemma 2.1. For any¢ € CCZ(O, 00), we writeg = y¢(y) with ¢ € Ccl(O, o0). Then
P == =y = O+YC" =)=V, )
with ¥ € C5((0, 00)?), since ¢ — ¢ = y' 4 (1 — 5)y +sy") = y'¥1(y, ). Therefore,

(cif).e)= //ayy vff dydy'

andayy’ = yte(y )1+ﬁ + ey L e 4y By () + (v)1TA).
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For any¢ € C1(0, 00), we writeg = y¢ () with ¢ € C,(0, 00). Then
y

/yyB(y’/y)y’[ﬁ' —¢ldy'| < 2y”+2||BIIL%IIC (123

0

|(L*p)(»)| =

and
[(L*) | <27 Bl 2lll=. O

In the next lemma, whose proof is straightforward and is skipped, we associate a sentigrmufhe opera-
tor D.

Lemma 2.2.For anyhin € L7 there exists a unique solutidne C([0, T1; L}) to the equation

oth = Dh, h(0,.) = hjn,
which is given by

h(t, ) = (Sphin)(t, y) := e? hin(e' ). (2.3)
As a consequence, for ay € L((0, T); L}(0, 00)) and anyhin € L}, the unique solution € C([0, T1; L}) to
the equation

oh=2h+ydyh+H, h(0,.)=hipn,
is given by the Duhamel formula

t
h(t,y) = e? fin(e'y) + / 2= H(s, ' "Sy)ds. (2.4)
0

We define now the notions of dual and mild solutions, as two kinds of weak solutions, that are used in the rest
of this paper. First, we define the natural space of weak (dual) solution with finite mag¥'8ly= X_. for the co-
agulation equationy9'a = X ; for the fragmentation equation asf"® = X for the coagulation—fragmentation
equation, where

. 7l 7l . 7l 7l . 7l 7l
XC = MO{-‘rlmMﬁJ’-l’ Xf = Mma)((l,}/+l)mM1’ ch: Moc—i—lanax(ﬂ,y)Jrl

Definition 2.3. Let bep™ e X943, with X943 defined depending of the valuesef A weak solution to (1.14) with
initial datum ™ is a nonnegative measupee L (0, T; X948 which satisfies\1(r) = M1(0) for ¢ > 0 and the
duality equation

oo oo

[ [nawayar+ [urv.ray+ [(GGo.v)ar=o 25)
00 0 0

for eachyr € C3° ([0, +00) x (0, 00)), where

(é(u), V) :=eo(Dp, ¥) +e1(L, ¥) + 2(C (1), ¥)
and the three terms at the right-hand side are defined thanks to the dual formulation presented in Lemma 2.1.

We also define the natural space of weak (mild) solutions with finite mag&"#y= v;, y™Mid = y; or ymild —
Yci, where now

Yo = Li N I;%, Yi = I;)lH_l N I;%, Yo = Li N I;%nax(erl,l)'
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Definition 2.4. Let be fi" € yMid_ A mild solution to (1.14) with initial datumf™ is a nonnegative function
fecCqo,T1; LYy n L>(0, T; Y™9) which satisfiesM1(r) = M1(0) for + > 0 and one of the three (equivalent)
formulation of Eq. (1.14):
1. The mild sense
t

J =50 fin +/So(t—S)(81Lf(S)+82C(f)(S))ds, (2.6)
0

whereSp is the semigroup associateddgD;
2. The distributional sense

T o
/ / {f% + (e1Lf +82C(P)) — 8ofD*¢} dydi = / Fnd (0, ) dy, (2.7)
00 Y

for anyr > 0 and anyp € C1([0, T) x (0, 0));
3. The renormalized sense (which nothing but the chain rule)

o]

d
E/ﬁ(f)cbdy:/{(81Lf+82C(f))ﬁ’(f)¢—80fD*¢}dy, (2.8)
Y

0
in D'([0, T)), for any 8 € CL(R) N WL-®(R), ¢ € L>°(0, 00), and £ (0, .) = fin.

Remark 2.5. We refer to [15,33] for the proof of the equivalence of these three formulations. Since the semi-
group Sp is well defined onM} one can also define mild solutions with™'d given by M1, , N M}

7l 7l yat et
M nME, or ML N M,

1
max(1,y+1) max(8,y)+1°

The following result is a straightforward consequence of Lemma 2.1 and of the two definitions above.

Lemma 2.6.Assumef € L°°([0, T]; X9an ymildy Thenf is a dual solution of(1.14)if, and only if, it is a mild
solution of (1.14)

From now on, we will only call weak solution of (1.14) a dual solution or a mild solution. We present now a
useful stability principle for weak solutions.

Theorem 2.7.Let X be a Banach space such that the inclusirc X is weakly compact. Consider a sequepte
of weak solutions to the growth equati¢h14)and assume thatu") is bounded inL*°(0, T'; X’). Then, there
exists a nonnegative measwes L°°(0, T; X) and a subsequencg*) such thatu* — u in the sense of distri-
butionD’((0, T) x (0, c0)). Moreoveru is still a weak solution to the growth equati¢h14)

Proof of Theorem 2.7. It is a straightforward consequence of the weak compact injedtian X and of the weak
formulation given in Lemma 2.1, in which it is easy to pass to the limit. We only point out that, gihsatisfies
Eq. (2.5) or (2.6), the sequence

(/ du"(t, dy))
0

is strongly compact i€ ([0, T']) for any¢ € D(0, oo), and anyl’ > 0. It is then possible to pass to the limit in the
(quadratic) coagulation term.O
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A natural and classical strategy to prove the existence of solutions to (1.14) is to obtain an existence result for
some truncated or regularised rate functions, then to obtain a priori estimates, strongly dependent on each particul:
model and of the hypothesis on the rates functions, and to use finally the stability result Theorem 2.7.

Our nextlemma concerns the growth equation (1.14) with “truncated” rate funetiamndb. It will be extended
to more general functionsandb in each of the three different caseg & 0,1 = 0 orez = 0) that are considered
in the following sections.

Lemma 2.8.Consider the growth equatidi.14)and assume that the coagulation and fragmentation rates satisfy
0<aeL®R%), 0<bo, BelL™Ry) (2.9)
and
suppB C (0,1], suppbgis a compact ofR .. (2.10)

Then, for any0 < fin € L}, there exists a unique global weak solutior< f € C([0, 00); LY) to the growth
equation(1.14) Moreover, if fiy € L,} for somek € R, thenf € L*°(0, T L,}) foranyT > O;if fin € L? for some
p>1thenf e L*(,T; L") foranyT > 0.

Proof of Lemma 2.8. For anyT, A > 0 andh € C({[0, T]L}) we define

t

(Ph)(1) == S;. (1) fin + / Si(t = $)(C(h)(s) + Lh(s))ds,
0

wheres, is the semigroup associated to the equadign+- Ag = eoDg. We easily see that for large enough the
map @ preserves the positivity and that férsmall enough the mag is a contraction irC ([0, T]L%). Therefore
by the Banach fixed point theorem there exists a unifjgeC ([0, T']; LY) such thatd f = f, and this is precisely
a mild solution to (1.14). By an iterative argument we may chdosebitrary large. Finally, we may establish the
a priori bounds

supllfllz <Crlifnlls for&=1Ly, 8=L”

[0.7]
and this is enough to conclude the proof. We refer for instance to [34] for more details.

We finally present a general uniquenessult for the growth equation (1.14).

Theorem 2.9.Assume that the rate functiomsand b satisfy(1.5), (1.6), (1.8)and consider the growth equa-
tion (1.14), (1.15) Whene, = 0, there exists at most or{enild) solution inC([O, T']; L,%) forall T > 0, for any
k>1. Whenez # 0, if B € M2, there exists at most or(enild) solution inC([0, T1; L n LY N 210, T; L3, N
I;é+k) withk:=max8,y + 1+ ) if e1 >0andk:= B if e1=0.

Proof of Theorem 2.9. Consider two solutiong andg to (1.14), (1.15) which belong to the functional space
as stated above. Let introduce the functios: p1 + @ with ¢; = ¢;y%i, ¢; > 0, ki € R, k1 < k» andky < 1. We
multiply the equation satisfied by — g by v = sign(f — g)¢ and we integrate in the variable

d o0 o0 o0 o0
E/ \f — glpdy < eo/<f — (20 — ¥)y) dy + 8—22//a(f O W~y — ¢y dydy’
0 0 00o0

00 y
+81/(f—g)(y)/b(y,y’)<w(y’) - y;ww) dy'dy.
0 0
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On the one hand, the subadditivityf (that is¢] < ¢1 + ¢7) ensures that
a(f —@)(W{ —y1—yp) <alf —gl(@] — o1+ ¢
<2f =gl P + )P (e,
The same holds with if k2 < 1, and wherk, > 1 we may use the elementary inequality
O+ =y + ()2 < O, (Y + 0NR)
to obtain
a(f — QW5 — vz — Yp) < Cp, | f — g1 + ¥ h () T + ()P H2).

In any case, taking = c1y* + c2y*, with k defined in the statement of the theorem, we obtain
(.¢] (.¢]
([c(H-C@.v)<K / |f = glpdy / (f + &) (% + (N ) dy.
0 0

On the other hand, we have

(f =) L*Y2<|f —glL*p2<0

and
(f =L V1< If =L o1 <[(f =W = 1Bl g s (L —oy" .
Finally, we notice thai2g — (y¢),| < K'¢ for some constark’ = K’(¢), and then
|(f =) 2y — Owy) | =If — 8120 — Go)y) | < Kol f — .

Therefore,
o0
d ’ / N 20 Nk+B /
[ 1 —gledy <K [If =gledy [ (f + ) (O + N P)dy +(K+K) | |f —gledy,
Y Y 0 Y

whencef = g thanks to the Gronwall lemma.n

We may finally define the notion of strong solution used in the rest of this work. We sayf tisas strong
solution if f is a weak solution, such that(f) and Lf are functions, and satisfies a uniqueness principle. The
spaces we use to look for strong solutions are denoteH byY; for the coagulation equatiory, = Y; for the
fragmentation equation aril= Y for the coagulation—fragmentation equation, where

_jl il 71 Fl 7l Pl
Yo:= L3, M Linax2p.1) Yei=L, 1NL7, Yot := L3, N Linax2g,y+1,1)-

We end this section with a straightforward consequence of the uniqueness Theorem 2.9 and the stability Theo
rem2.7.

Corollary 2.10. Suppose that is a Banach space such thet c Y with weakly compact injection. Consider a se-
guence /™) of strong solutions to the growth equati@in14) (1.15) Assume thatf") is bounded in.*>°(0, T'; Y)
and thatf"(0,.) — fin weakly inY. Then there existg € C([0, T']; Y) such thatf™ — f weakly inL>*°(0, T; Y),
and f is the strong solution to the growth equatifih14), (1.15)associated tofi.
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3. Self-similarity for the fragmentation equation

We consider in this section the fragmentation equation

of=Lf. f@QO.)=fin, (3.1)
where the fragmentation operatbiis given by (1.4) and the fragmentation rate by (1.5)—(1.6). We assume further-
more

y>-1, BeM(0,1) withm<1, and B>0, (3.2)
and, for part of the result,

BeBV1(0,)NML(0,1) withm <y +1. (3.3)

Our aimis to study the long time asymptotic behavior of the solufida the Cauchy problem (3.1) for initial data
with finite massf0°° yfin(y)dy = p > 0. We establish that there exists a unique self-similar solufipof (3.1)
with massp and that the behavior of (¢, .) whenr — oo is described by, (z, .).

It is well known that under the condition (1.5)—(1.6) the fragmentation equation (3.1) has a global solution
which preserves the total mass, see for instance [22] lamdeferences therein. That means that there is no mass
loss in finite time due to the appearance of dust phase (see for instance [7,25], for a description of that singulat
phenomena). We then look for self-similar solutions to Eg. (3.1) of the form

flt,y) =128y, (3.4)
in such a way that the total mass is constant in time
(0.¢] oo
[ramyay=[soay=p. wzo 35)
0 0
On the one hand, introducing the auxiliary variablte- yz”, we obtain

o f =v?71(25(2) + 28:(2)) = 1 1Dg(2). (3.6)

On the other hand, making the change of variables- y, :=¢"y’, we obtain

o y
Lf(t,y)=1% / O B(y/y)g* =y)dy — 1% f y;yVB(y’/y) dy' g(t"y)

y 0
t

v

o0 y

=t”/(t’”y*)yB(t“y/y*)g(y*)dy*—t”/tyv—*yVB(y*/t“y)dy*g(t“y)
tVy 0

=" Lg(2).

Therefore,f is a (self-similar) solution to the fragmentation equation (3.1) if we choose = v(1 — y), which
implies
vi=——>0, 3.7
14y 3.7)
and if the self-similar profilg is a solution to the “self-similar profile fragmentation” equation already introduced
in Section 1:

Dg(y) —(1+y) F(g)(y)=0. (3.8)



110 M. Escobedo et al. / Ann. I. H. Poincaré — AN 22 (2005) 99-125

Let us then introduce the so-called “self-similar fragmentation” evolution equation
08 = QssHg) :=—Dg+ (1+y)Lg. (3.9)

The evident but fundamental remark is that a self-similar prgfienothing but a stationary solution to (3.9). We
may state now the main result of this section.

Theorem 3.1.Assumg1.5)—(1.6), (3.2). ]
1. For anyp > Othere exists a unique solutia®, in Mll to the self-similar profile fragmentation equati$8)
such thatM1(G,) = p. Moreover

GpeXooi=[) M.
k>m
2. For any fin € Y := L} n L} with p := Mi(fin), there exists a unique solutiofi € C([0,T); L) N

Lo, T; L)1/+2) to the fragmentation equatiof8.1), such thatM1(f(z)) = p for any ¢ > 0. The solutiong in
self-similar variables, defining bl.18) satisfies

(8(1)),, is uniformly bounded i} Vk > m. (3.10)
Theorem 3.2.Assumg1.5)—(1.6), (3.2), (3.3).

1. The self-similar profile5 , has the regularity property, BV1.
2. For any fin € Y N BV the associated solutiog in self-similar variables satisfies

(g(1),5, is uniformly bounded BV . (3.11)
3. Finally, for any fi, € Y, the solutionf satisfies the asymptotic behavior
(,¢]
2 1
t Iirp /y|f(t, V)= A+ G,(y(1+ 0T )|dy=0. (3.12)
—> 100

0

In order to prove Theorems 3.1 and 3.2 we first establish some a priori bounds on the solutions to the self-similar
fragmentation equation (3.9). We first recall, for the sake of completeness the following version of the Gronwall's
lemma to which we systematically refer in all the following. Its proof is classical and well known, and is skipped.
Lemma 3.3.Let0 < u € C([0, 00)) satisfy(in the sense of distributiohs

u' + ku®t < kou? + k3
with61 > 1,02 >0, 62/01 < 1, k1 > 0 andkz, k3 > 0. Then, there exist§g = Co(k;, 6;) > 0 such that

supu(t) < max(Co, u(0)). (3.13)
t>0

Assume moreove¥ > 1. For anyt > 0, there exist; = C; (k;, 6;, T) > 0 such that
supu(t) < Cr. (3.14)

t>t

Lemma 3.4.Considergi, € & := L1 N L} with k > 1 such thatM}(gin) = p. For anyt > O there exists, :=
vz (p, a, b, k, ) such that the two following estimates hold

sug g(t.)] o <max(vo, liginllz) (3.15)
1>
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and
- <y forrz>0. (3.16)

Considergin € & := LI N LI withk < 1and¢ := max(1, k + (1+y)). There existso := vo(|| finl Frysanies 45
b, k, T) such that estimates 15)holds
Considergiy € & = BV1inN LyJr2 N me(l 1) There existayg := v0(||fn||L1 AL ,a,b) such that

+2 min(1,y+1)
estimate(3.15)holds. ’
As a consequence, for apy> 0, there exists an increasing sequeripg)x>, 2 such that the sets

Xe:={g € X, Mi@) =p, ligllx, <m} and Xo:= (] X (3.17)
k>y+2

are invariant under the flow of the self-similar fragmentation equat®8) when(3.2) holds and the family of
sets

Zi:=XN{g€BVL llglgy, <o} and Zo:= [ Z (3.18)
kzy+2

are invariant wher(3.2)—(3.3)hold. In both case, we defing, := M,}, N M,} with the corresponding value of.

Proof of Lemma 3.4. We first recall that for any solutiog to (3.9) and any e C1, the following identity holds

[ee) o0 o0 y
o | s¢dy= /g((ycb)y —2¢)dy+ 1+ y)/gyV/B(y//y)<¢’— y;czb) dy'dy.
0 0 0 0

Taking¢ = y*, we get

d
d_Mk:(k_1)Mk+Ck,y(l_k)My+l+k7 (3.19)

with Cy,,, = 1+” [0 B(o)(c* — o) do > 0. We deduce first, fot = 1, the conservation of mass

d
EM:L =0 and Mi1(t) =M1(0)=

Next, fork > 1, since, by Holder's inequalityd < M1~’M?_, , with 6 € (0, 1), we deduce from (3.19)

d
M <k~ HMy — M,

with k =k (k, y, p) > 0 and we conclude (3.15) and (3.16) wih= L1 N L thanks to the Gronwall's Lemma 3.3.
Finally, fork < 1, let us write (3.19) as,

d
= k+ Q= kMg =Cr,y (L — k)M, y14k. (3.20)

In the one hand, if X y + 1+ k and thengj, € LHH,{ by assumption, we deduce from (3.20), the estimates
already obtained fok > 1, and Gronwall's Lemma 3.3 that (3.15) holds wgh= LlJrl x N Ll On the other
hand, ify + 14k < 1, we deduce from the Young inequalidy, +141 < eMy + Cng (remind thaty +1>0)
that

d 1

—k
—M, - My=C, M
di k+ 5 k ky M1

for some positive constanll’(’y, and we conclude as above that (3.15) holds \&@tk- L'% N L,}.
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In order to obtain the8V ; estimate, we differentiate the self-similar fragmentation equation (3.9) and we obtain

018y = —8y — D(gy) + (Lg)y,
with
e y / b /
(Lg)y =—2b(y,y)g+/8zb(y”, y)g”dy”+/y—<%

y
y/
S — d1b(y, y’)) dy'g — / S0 yHdy'gy.
0

y

As a consequence, we get

d o0 o0 o0 o0
" / gylydy < — / 18,1(v + BLy?*) dy + Cs / oy’ Ldy < / vigyldy + Co M, 41(1)
0 0 0 0

with Cp = (2+y)B1+ By+2B(1), By = [1 zB(z) dz, B} = [3 z|B'(z)| dz. We conclude, again by the Gronwall's

Lemma 3.3 that (3.15) holds wheh = BV1N LY, N Liing gy O

We present now a contraction propertyiiﬁn of the self-similar fragmentation operatQissr.

Lemma 3.5.For any functionH € L%er, there holds

D(H) = / OssH(H) signH)y dy <O. (3.21)
0

Moreover,

oo
D(H)=0 and /dey:O implies H =0.
0

As a consequence, for apy> 0, there exists at most one solutiah), to the stationary self-similar fragmentation
equation(3.8) such thatM1(G,) = p.

Proof of Lemma 3.5. Suppose firsH € C.. Then, a straightforward calculation gives
o) y ,
Di)i= [ # [ by (¢’ - y;qs) dy'dy, :=signH)y.
0 0
By density this identity holds for alll € L1n L;W Then, (3.21) follows from the fact:

H<¢’ - y;fﬁ) = (H Sign(H’) — IHI)y' <0 Vy,y.
If we suppose now thab(H) = 0, we deduce
Hsign(H') = [H| Vy,y"

As a consequence, sigh=signH’ Vy, y’ or, in other words, sigi/ is constant o0, co). Therefore ifH #£ 0
then [y H dy # 0 which is a contradiction. O
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Proof of Theorem 3.2. Point 2. Assume first thaffin € Y := ¥ N L1 for a givent > y + 1. Let us defingin € ¥,
using (1.18) and introduce the truncated fragmentation kernel

bu(y,y ) =min(y”,n)B(y'/y). (3.22)

By Lemma 2.8, there exists a unique solutigne C ([0, T']; Y) to the associated self-similar fragmentation equa-
tion (3.9) with initial datagj,. Moreover, coming back to the proof of Lemma 3.4, we easily verify (hatsatisfies
estimates (3.15) and (3.16) uniformlysir> 1. Proceeding along the line of the existence theorem in [27] (which

is based on a perturbation of the uniqueness Theorem 2.9 introduced in [43]), we dedugg)tiet Cauchy
sequence il ([0, T']; Y;). Let us denote by its limit. Then we may pass to the limit in the equation satisfied by
(g») and we obtain thag € C ([0, T']; Y¢) is a solution to the self-similar fragmentation equation (3.9) with initial
datagin and satisfying (3.10) and (3.11). By the differential inequality established in the uniqueness Theorem 2.9
we may remove the additional assumptigne Y,. We conclude using (1.16).

Proof of Theorem 3.2. Point 1. We denote bys the semigroup associated to the self-similar fragmentation equa-
tion (3.9) built above. On the one hand, the s&tsdefined in Lemma 3.5 are invariant under the actio aihd,

of course,Z; C Y with compact injection for th weak sense of convergencelinOn the other hand, by the sta-

bility result Theorem 2.7 and the uniqueness result Theorem 2.9, we infer that fosabiyhe map S(#)Y — Y

is weakly sequentially continuous. Therefore, we may apply Theorem 1.2 and we obtain the existence of a self-
similar profileG, € Z; with massp. Finally, G, is unique by to the contraction property Lemma 3.5. Sinosay

be taken arbitrary large, we finally obtaif, € Z.

Proof of Theorem 3.2. Point 2.Let us prove now (3.12). To this end we considgf € C}(R+), such that
M1(fin) = p and fin # G, (since otherwise there is nothing to be proved). ket S(z) fin be the unique cor-
responding solution to (3.9) such thgD) = fi,. Let us show that

Hp(g(f))=/y|g(t, y)—G,(»)|dy.
0

is a strict Lyapunov functional oﬁ%. To this end, we first notice, using the equation and introdusifngy) =
8(t,y) — Go(y), that

d

EHp(g(z)) = D(h(r)) <0.

This shows that,(g(¢)) is nonincreasing. In order to prove that it is actually strictly decreasing, suppose that
there exists two different instants,<0r; < 12 such thatd, (g(r1)) = H,(g(12)). Then,

2
/D(H(t))dt =0.
71

Since D(H (t)) < 0 for all t > 0 we deduce thab(H (tr)) = 0 for T € (71, t2). SinceM1(H) = 0 for all T we
deduce, by Lemma 3.5, thak(z) =0 foy all.r € (11, T2). But this impliesH = 0 which is absurd.
On the other hand, sincg, € LL N BVlel/Jr2 for anyk > 2, Lemma 3.4 implies thai(r)). -0 is bounded in

L n B'V1L)1/+2. The trajectory(g(t)).~o belongs then to a compact subset df We conclude by the Lasalle’s
invariance principle (sefor instance [11]), that

tﬂToo Hp(g(r)) =0. (3.23)

Using a classical density argument and the contraction propeftyrof we deduce that (3.23) holds for all initial
datafin €Y.
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Consider now the functiorf defined by (1.16). By constructiorf, € C ([0, +00); L%), Mi(f(@) =p. ltisa
straightforward calculation to check that this functipisatisfies

8tf:Lf7 f(07y):fln

The uniqueness of this solution @¥[0, 4+o0); L%) is given by Theorem 2.9. The regularity propertiesSof) fin
give the corresponding properties for the functjorFinally, by (3.4), we obtain

e¢]

2 1
/y\f(t, Y) = A+ DT G,(yL+ )T )| dy = Hy(g)
0
and (3.12) follows thanks to (3.23).00

Proof of Theorem 3.1. The proof of Theorem 3.1 follows exactly alotige same lines as the proof of Theorem 3.2.
We then skip it. O

Remark 3.6.To prove the existence part in Theorem 3.1 one may also use the stability result Theorem 2.7, intro-
ducing the regularized fragmentation kernel

. 2
be(y,y)=y!B:(y'/y), ye= mln(O, e y>, Be := (BXe) *; Pe,

where 0< xe, p. € D(R), suppxe C (2¢, 1], suppo: C (—¢, €), xe /' 1 uniformly ando, — 8¢ in D’ (R).

4. Stationary solutions for the coagulation—fragmentation model

In this section we consider the coagulation—fragmentation equation

W f=0(H)=C(H+Lf fQO.)=fin, (4.1)

where the fragmentation and the coagulation operatandC are defined by (1.4), (1.7) with fragmentation and
coagulation rates given by (1.5), (1.6) and (1.8). We furthermore assume that

B.y)# 1L -1, (a,y)#(0,-1) and BeM: withm <2a. (4.2)
We will also need the following additional assumption
BelL™. (4.3)
Our main result is the existence of stationary solution to the coagulation—fragmentation equation (4.1) for any

given masg > 0.

Theorem 4.1.1. Assume that andb satisfy(1.5), (1.6), (1.8), (4.2)For anyp > 0 there exists at least one weak
stationary solutionF, € X« to the coagulation—fragmentation equati@hl)such thatM1(F,) = p, where

Xoo:=[)Xx with X; := M3, "M} ifa=0, Xi:=MynM}ife<O.
k>1

Assuming moreoved.3), we may choose the stationary solution such #at Y., where

Yoo := ﬂ Ye, Yi:=LMnx,.
k>1
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2. Assume(4.2) and fin € Y := L} N L%]aX(Z/fiz—ﬂ,yH)' Then there exists a unique strong solutigne

C([0, T); L%) NL*®(0,T;Y) VT > 0to the coagulation—fragmentation equati@hl). Moreover, f satisfies
(f(®),, is uniformly bounded irX; Vk > 1. (4.4)
Assume moreovéd.3)and fin € L?, p > 2. Thenf also satisfies

(f (), is uniformly bounded irL.”. (4.5)
We start with some a priori estimates on the solutions to the CF equation.

Lemma 4.2.Assumép, y) # (1, —1) andB € MAl There exists a constang := vo(p, a, b) > 0 such that for any
fine8o:=LinL} 4 the global estimat¢3.15)holds.

Consider nowfin € & := Zg N L,} with k > 2 — B. For anyt > 0, there existe; = v; (|| finll z,, @, b, k) such
that the global estimatg8.15)and (3.16)hold.

Proof of Lemma 4.2. For anyk € R, let us define
A, ) = k=D OGN + 3PN+ ) =y =) =0, (4.6)
and denote = y’/y. On the one hand, fdr> 1 and y > ¥, we have
Ay, y) = (k= Dy + 2Py (A + 2 — 25 1)
<Gyttt <o [yﬁ—l+k(y/)l+a n (y/)/fi—1+kyl+a]’

for a constanty > 0, and therefore, the same holds for any’ > 0. We deduce that for > 1

d
EMk < CraiMp_14iM1yo — Cr2M1yy 4k, 4.7)

for some constantSy ; > 0. On the other hand, for > y’, and using that < 1, we have
My, Y) = A=y + 2P+ 1= A+ %) = G = Gyt )

for a constant; > 0 and therefore, the same holds for any’ > 0. We deduce that

d
EMA < Cr 1M1y 45 — G 2M2, (4.8)

for some constants, ; > 0. Gathering (4.7) and (4.8) we find

d
E(Mx + Mo p) < CopgiMiMiy + Co aMriy4a — Cy.2M? — Co_go2Miyyio g

< CopaM1(M1+ M) + Cp 1Ke My, — C 2M7 + (6Cr1 — C2-p 2)Miyy 12

for a constank, for anye > 0, where we have use twice the Young inequality and the fact that & [, 1] and
1+y+rer,l+y+2-5).
Fore > 0 small enough and using the Holder inequalifiés s < Mll‘ererJrz_lS with 6 € (0, 1], we obtain
d
T (Ms+ M) < C1+ CoM; — CaM}: — CaM.

for some constants; = C;(p) > 0 andp = 1/6 (if 8 < 1) or p =1 (if 8 = 1). Therefore, using a straightforward
variant of the Gronwall's Lemma 3.3, we deduce (3.15) for some positive constan{p, a, b).
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On the other hand, fok > 2 — 8, we come back to (4.7). Usinyf1+, < M, + M1, the Holder inequalities
Mp_11x < My M7, M2 < M7 My 414, with 61 € [0, 1], 62 > 1 andé,/61 > 1 (due to condition (4.2)) we
obtain

d 02
d_Mk C1M — CoM, =,

for some constant€; = C;(p) > 0. Using again the Gronwall’s Lemma 3.3 we conclude that (3.15) and (3.16)
holdsfork >2—8. O

We prove now some more a priori estimates on sohdito Eq. (4.1) under additional assumptions on the
fragmentation and the coagulation rate functions.

Lemma 4.3.Assume(, y) # (0, —1) and B € M} with k < 0. Consider fi, € & := Eo N L} with Zp:= L} N
Lmax(Herk 2-p)- There exists a constang := vo(llflluo, a, b, k) > 0 such that the global estima{8.15)holds.
Assume moreover < 0, but just fin € Zo. For anyt > 0, there exists a constant := v; (|| f || z,, a, b, k) = 0 such
that the global estimatg8.16)hold.

Assuméa, y) # (0, —1) and B € L*°. Considerfin € & := EgN LP with g := me( 0N Lma><(1+y 2-f) and
p = 2. Then, there exists a constamt:= vo(|| f || =, @, b) = 0 such that the global estlmate 15)holds.
Proof of Lemma 4.3. First, fork < 0, we haveA; (v, y') < —y***(y)# and thus
d 1 01 62
d—Mk < CraMiyyr — 2Ma+kM/3 <CiM" — CoM7, (4.9)

with 61 € [0, 1), 62 > 1, C; > 0, where we have used the Holder inequalitlés; , 1, < Ml 01 pgtn

max(1+y+k,1)’
M < M1 eleﬂrk and the fact thadg and Mmax1+y-+k,1) can be bounded using to Lemma 4.2. Estimates (3.15)

and (3.16) withg = L} follow from (4.9) and Lemma 3.3.
We now prove thd.” estimate. On the one hand, we have

(C(f). frY = / / YOO F (PR P (P Y dy dy!

np "np
fy “(y’)ﬂ<(fp) fp) )d dy’ —M,s/fpy dy - M, /(f)”(y)ﬂdy

N
~u\|H 0\8

/fy NP = »Plyey — )P dydy’ —M,s/f”y dy
0

My / £7y% dy.
0

where we have used the Young inequality and the change of varighle§ — (v,y” =y + /). On the other
hand, we have

00 y ,
(Lf. fPYy = / £y / B(y’/y)[(f/)”‘l— y;f”] dy' dy
0

0
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o o
<8I, [ 77y = 1Bl [ 7737 ay.
0 0

Putting together these two bounds and noticing éh&tO < y + 1 and that

]of”—ldyg (ffdy)pll<]of”dy>
0 0 0

(Holder’s inequality), we obtain

p—2
p—1

d oofp _ -1 -1
= 7dy—(c(f)afp )4+ (LS, fP7)
0

p—2

o £ = (e.¢]
1 p—1
<IIBllMy MJ " (/ f”dy) —min(IIBIIL'i,M,s)/f”dy-
0 0

Notice thatMp and M, have been bounded by above in the preceding step or in Lemma 4.2 (béause
implies B € MX y’o)) and thatMg may be bounded by below in the following wafg > Mlz’ﬂMf’l using the

min
Holder inequality and Lemma 4.2 in order to estimate (by aba¥g)Finally, we conclude that (3.15) holds for
Z = L? thanks to the Gronwall's Lemma 3.30

Remark 4.4.Lemma 4.3 extends to the coagulation—fragmentation model a unif@renpriori bound which was
already known to be true for the coagulation equation [34,42].

Proof of Theorem 4.1. Point 2. Consider the truncated fragmentationrer(3.22) and the truncated coagulation
kernel:

an(y,¥) = MY ODP + O™ )P,y =min(y,n), y" =maxy, 1/n),

we may easily proceed as in the proof of Theorem 3d @nclude to the existence of a unique solution to the
Cauchy problem owning the properties as stated in Theorem 4.1 2. We refer again to [34,33,22,36] for more details

Proof of Theorem 4.1. Point 1. Assume first (1.5), (1.6), (1.8), (4.2), (4.3) and let denoté liye semigroup asso-
ciated to the coagulation—fragmentation equation. THel,— Y and, for well chosen constanig, S: Ay — Ax
where

Ag={f eL", Mi(f)=p. lIfll .2 < no. Il nit <uk} Vk=maxy +1,2).

Next, for any integef > 2 we defineZ, = (,_, , Ak, so thatS: Z, — Z, and(Z,) is a decreasing sequence
of sets. Following step by step the proof of Theorem 3.1, we prove the existence of a stationary $olutoz,

to the coagulation—fragmentation equation, tha@{g, () = 0 for any intege¥ > 2. By compactness, there exists

a subsequeno@, ¢,) of (F,¢) and a functionF, of massp, such thatF, ,, — F, weakly in anyZ,, whenn
goes tooo, for any integern > 2. We conclude thaF, satisfies the properties stated in Theorem 4.1 thanks to the
stability principle Theorem 2.7.

Suppose finally that we do not make the assumptid) (8y regularisation, we may find a sequeiiBé) such
that B¢ € L*° and B* — B weakly in Mnll Using the preceding step, we infer that, for any 0 ande > 0, there
exists a stationary solutiof; € Z to the regularized coagulation—fragmentation equation, that ig;) =0,
Ml(F;j) = p. From Lemmas 4.2 and 4.3, the sequenEg) is bounded inX;, for anyk > 2 — 8, and therefore,
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there existsF, € Xo, and a subsequen¢&?’) such thatF’ — F, weakly in X for any integek > 2. Again, we
conclude thatF, is a weak stationary solution with maggto the coagulation—fragmentation equation thanks to
the stability principle Theorem 2.7.0

5. Self-similarity for the coagulation equation

We consider in this section the coagulation equation

W f=C(f), [fQO.)= fin, (5.1)

where the coagulation operator is given by (1.7) amdhtbmogeneous coagulation frequency is given by (1.8). We
make the additional assumption

B <Ll (5.2)

Our main result is the existence of mass preserving self-similar solutions to the coagulation equation (5.1) for
any given masg > 0. Since the solutions to the coagulation equatt)with subcritical coagulation frequency
(1.8) are known to conserve the mads(f) of the solution for all time (see for instance [37,23]), we look for a
self-similar solutionf of the form (3.4) withg € L1.

On the one handf satisfies (3.5) and (3.6). On the other hand, after the change of varidbles, :=1"y’
and using the scaling propeiyty, ty) = t*a(y, y«), we obtain

y e’}
/ a(y'sy — g(t" (5 — ¥))g "y ) dy — 1™ / ag(t'y)g(t"y) dy’
0 0

CHE y)=

t4v
2

tVy 00
3
_ i —v —v v d 3v —v VY d
=3 a(t™" Y, y =1 Y)Y — yi)gudyx — 1 a(y, 1 " yx)gxg(t"y) dyx«
0 0
t'y o0
t3V7)Lv 3v—Av v v
= /a(y*, 1"y —y)8(t"y — yi)gsdys —t /a(t Y, y$)8x8(t"y) dyx
0 0

="M (g)(2),

where we have set:= yt". If we choose 3v- Av =2v — 1, or equivalently,

1
v::—m <0, (5.3)
the self-similar profileg satisfies the homogeneous self-similar profile coagulation equation
Dg(z) + (1-21)C(g)(z) =0. (5.4)
A self-similar profile is therefore a stationary solution of the “self-similar coagulation” evolution equation
g=Dg+ (1-1C(g). (5.5)

Theorem 5.1.1. Supposer = 0. Then, for anyp > 0 there exists at least one self-similar profifg € X, dual
weak solution of the coagulation equatiil), (1.8), (5.2puch thatM1(F,) = p, where

Xeo:= () Xt Xe=M{NM} (5.6)
k>2-p
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2. Supposer < 0. Then, for anyp > 0 there exists at least one self-similar profig € X, dual weak and
mild solution of the coagulation equati¢s.1), (1.8), (5.2puch thatM1(F,) = p, where

Xoo i = ﬂ Xp, Xi:=MEnmt,. (5.7)
k=2-8

3.Forany fineY:=L1 n L%]ax(Z/fi,Z— , there exists a unique solutiofie C([0,T); L}) N L>(0, T; Y) to
the coagulation equatio(b.1), (1.8), (5.2§Moreover, the associated function “in rescaled variablgs"defined
by (1.19) is a solution to the self-similar coagulation equati@5) and satisfies

(8(1)),~, is uniformly bounded X Vk > 2 — g. (5.8)

The main idea of the proof is to obtain Theorem 5.1 from Theorem 4.1 using a singular perturbation limit, more
precisely using &okker—Planck like asymptotaf the coagulation—fragmentation model.

Proof of Theorem 5.1. Point 1. First notice that, by a simple homogeneity argument, a solgtiofithe “evolution
self-similar coagulation” equation (5.5) satisfieg th priori bounds established in Lemmas 4.2 and 4.3 for the
solution of the coagulation fragmentation equation (4.1) with fragmentation/rate-1. Namely, for anygi, €
EoNLi,k>2-p8,80:=Lin L’%fﬂ, and for anyr > 0, there exists; := v, (||ginll ,, @, k, T) such that

ts;gﬂg(t, .)||Xk <maxvo, lIginllx,) and ts;urmg(t, | x, Sve forz>0. (5.9)
Let us introduce now the fragmentation keriig| associated to the kernkl, defined by
be(y,y) =y B (V' /y)s  Be(@) =261 1. (5.10)
A straightforward computation shows that, for ak R,
Liyf =@ —k)y* +y*O(), ase — 0. (5.11)
For anye > 0, let then considet ;. € X, the stationary solution to the coagulation—fragmentation equation
018e = C(ge) + Lege, (5.12)

such thatM1(G.) = p. The existence o, has been established in Theorem 4.1. Due to the form of (5.11) we
easily see that the estimates (5.9) hold far), uniformly with respect te¢ > 0. That implies (one has to come
back to how it has been established the existeneg.ah the proof of Theorem 4.1) that

(G,) is bounded inX; foranyk > 2 — 8. (5.13)

By compactness, there exists a subsequébeg) and a measuré € X, such thatM1(G) = p andG,, — G
weakly in X for anyk > 2— 8. On the one hand, thanks to Theorem 2.7 we may pass to the limit in the coagulation
kernel and then, for any € C2,

(C(Gep). 8)— (C(G),$) whenk — oo, (5.14)
where(C(G), ¢) stands for the dual formulation of the @pdation kernel which makes sense beca([iseMAl N
M3 .

On the other hand, for any € Cf(O, o0), we have

y
(LeGe,9) = (G, Li9),  Lig =/bs(y,y/) <¢’ - y;q)) dy'.
0

By Taylor expansion (y') = ¢ (y) + (v — »)¢y(») + (v — y)2¢yy(§)/2 for somes = ¢(y, y') > 0, so that
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O - y)2

y
L6 / (”)[@ V)b + (v — vy () +y 2 ¢yy(c)}dy
0

=¢(¥)Se(y) —yby(3)Se(y) + T
with
1

y
Se(y) :=/be(y,y’)(l—y//y)dy/=y“l/Be(cr)(l—a)do =1
0 0

and

A ’_ 2 !
To(y) = / ber S 60,0 d < Byl f Bo()(1— 2)2dz = O(e)y" 2.
0 0

As a conclusion,
Li¢ — ¢ — y¢p, uniformly in (0, 00),
and therefore
(Ley Gy, #) = (Gey, Ly, @) = (G, ¢ — y¢y) = (DG, ¢). (5.15)

Using (5.14) and (5.15) we can pass to the limit in the stationary equation associated to Eq. (5.12), and we obtair
thatG is a dual solution to the self-similar profile coagulation equation (5.4).

Proof of Theorem 5.1. Point 2. First notice that, for the coagulation equation (5.1), the a priori estimates are

supllfllz2 <l finllzz and  sup [ fll 1y, <Cr (5.16)

t>0 te[0,T]

for a constanCy = CT(||fin||L%, a,b,k) foranyT > 0 and anyk > A. See [34,42] for the former and just copy
the proof of Lemma 4.2 for the last ones. A first consequence is that for any fjiver,.*> with compact support
included in(0, co), one may build a solutiotf € C([0, co); Y) satisfying (5.16), see [36], which is unique thanks
to Theorem 2.9. A second consequence is that the solgtiorself-similar variables associated fosatisfies the
local analogy to the estimates (5.16ak is enough (because of the regularityedpfto compute once again in a
rigorous way the formal derivative of the estimates stated in Lemma 4.2. Thepefatesfies (5.8).

Now, for a givenfin € Y, we approximate it by the sequencgf,) defined by, := min(fin, 8_1)1[8’871]. The
associated solutiong?, g¢ € C([0, co); L1(Y)) satisfy the conclusion of Theorem 5.1 with uniform bound with
respect te > 0 thanks to the previous step, and they are Cauchy sequences thanks to the uniqueness Theorem 2.
We conclude, passing to the limit> 0. O
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Appendix A. From fragmentation mechanism to fragmentation operator

The aim of this section is to present a simple derivation of the fragmentation operator (1.4) from a more intuitive
and precise description of the fragnt@tion mechanism. Let us then consider a system of many particles which are
only characterized by #ir sizes. We denote by} any particle of size € (0, 00). A linear fragmentation reaction
is a microscopic event in which a single parti¢ja breaks a part in a family of smaller particles in such a way that
the total size is conserved. Schematically, it can be written as

{y} — (¥}, (A.1)

whereY = (y;);en+ is one of the possible sequence of daughter fragments which steni fcand satisfies

o
iz Zyizyia=--20 and y=>) i, (A.2)
i=1

andv = v(y,dY) is a measure o8 (y), the set of all sequencés such that (A.2) holds. It accounts for the
probability of getting a particular sequence of fragmdiitsas the result of the fragmentation{of}.

At the (larger) mesoscopic level, the system oftigtes is described by the concentration dengity, y) > 0
of particles of sizey € (0, co) at timer. The evolution of the system which undergoes the only fragmentation
microscopic mechanism may then be written as

9
a_];(t’ V=Lf({ ),

where(L f)(y) is the infinitesimal fragmentation operator which accounts for the creation-annihilation of particles
of sizey due to fragmentation. The fragmentation operator splits into two terms

Lf=LYf-L].

where thegain term(£ ™ £)(y) accounts for all fragmentation events which give rise to a particle ofysiz€, o),
while theloss term(L~ f)(y) counts all possible fragmentation of a particle of size (0, co). Let us introduce
v; theith marginal measure of, which is defined by

V¢ € Cp((0, 00)) /tﬁ(y’)vi(y,dy’): / ¢ (yi)v(y; dY).
0 S4(y)

The meaning of; is the following. For anyy, y" € (0, 00), v; (y; dy’) stands for the rate of creation of a daughter
particle {y’} as theith fragment (with decreasing order) of the parti¢lg or, in other wordsy; = y’, where
Y = (yi)i>1 is the sequence of daughter fragments defined in (A.1)—(A.2).

The infinitesimal fragmentation operator is then given by

LHG) :=Z/f”\fj(y”; dy)dy” — f(y) / v(y; dY). (A.3)

i=1o Sty
We introduce nowb, the rate of creation of a particle’} as a fragment of the particlg’} given by
o
by, dy) = vj(y,dy).

j=1
Notice that
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v [ vowan= [ (Zyj)v(y,dn:Z [ vivoan

Sy Sty U=t =15l

00 o0 o0 00 o0

ZZ/y/vj(y,dy/b/y/(Z vj(yidy/)) =/y’b(y,dy/),
J=19 0 j=1 0
from where we obtain
o0 o0
y/ ’
(L)) = / FIb("s dy)dy” — £(3) / Zbiy.dy). (A.4)
0

Since we have the evident support condition skipp.) C [0, y] for any y > 0, we have thus obtained precisely
the expression of givenin (1.4).
On the other hand, for any test functigre C,((0, 00)), there holds

/¢>(y>2/f”v,<y” dy)dy”—Z//as(y)f(y) i (v dy)) dy

J=19 J=10 o

) o0
= Z/ / PO v(y:dY) f(y)dy
=10 siy
and there also holds

/¢(y>f(y) [ vosavyay= Zf [ 2vwianeo roray,

SY(y) =10 StH(y)
We obtain therefore the following expression for the dual formulation of the fragmentation operator

(Lf.¢)=(f. L D),
with

L= / Z(ab(y,) - —¢(y)> v(y:dY).
Sty =1
In particular, for a self-similar fragmentation ratein the sense of [9], that is(y,dY) = t(y)u(dS) with
S=Y/yandz(y) = y*, @ € R, or more precisely, such that:

Ve € Cp(RY) / dX)v(y,dY)=1(y) / d(yS) n(dS),
St St
we recover the fragmentation operator expression of [9,29]

o
Coi=t0) [ 3000~ 5i60)) (@),
shay /=1
Our final aim is to make a link between the general formalism presented here with the (mostbirsaisf)

fragmentation mechanism. A binary fn@entation mechanism isedcribe by (A.1)—(A.2) where the measure
satisfies

suppv(y,.) C S5 (y)
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with Szl(y) ={Y = (i1 € S¥; vk =0Vk >3}~ {(y1, y2) € Ry, y1+ y2 = y}. For any test functionp e
C([0, y]), there holds

y
/w(y,y/)rﬁ’dy/: / p(y2)v(y,dY) = / ¢y g v(y. dY)
0 SH(y) Sty

y
= / <b(y—y1)V(y,dY)=/¢(y—y/)vz(y,y/)dy’
St(y) 0

R
=/¢(y/) va(y,y —yHdy'.
0

This implies the main fundamental symmetry property

vi(y, Y =v2(y,y =y ¥y €l0,yl. (A.5)
One can also show thatis such that

suppva(y,.) C[y/2,y], suppua(y,.) C[0,y/2], and v =0 Vk>3.
Let define, as before,

oo
b(y, )=y vj(y,y)=v1(y, ¥) +va(y, ¥").
j=1

We observe that, thanks to (A.b)enjoys the symmetry property
b(y,y =y =v1(y,y =) +v2(y,y = ¥) = v2(y, ¥) + vy, ¥) =b(y, ¥). (A.6)
We finally introduce
B, Y)=bly+y, ),

the rate of formation of a pair of particles of siz¢, y) as the breakage result of a particle of size- y'. We
deduce from (A.6) thgs enjoys the symmetry property

B, y) =B ). (A7)
Puttingg in (A.4), we find

(e¢] y
/7
(LH) = / "B,y = y)dy” — f(y)/ y;ﬁ(yﬂ y—yhdy' (A.8)
y 0
Making the change of variables — y — y” and using the symmetry property (A.7), we observe that

y

§

’ o/
/y;ﬁ(yﬂy—y’)dy’=/y LBy —y.y)dy,
0 0

y

from which we deduce
y

y
' / / 1 / / /
/y;ﬁ(y’,y—y)dy=§/ﬁ(y—y,y)dy. (A.9)
0 0
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Gathering (A.8) and (A.9), we then recover the usual expression for the binary fragmentation operator, namely

00 y
1
(Ef)(y)=/f”/3(y,y”—y)dy”—E/ﬁ(y/,y—y/)dy’f(y).
y 0
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