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Abstract

We prove the existence of a stationary solution of any given mass to the coagulation–fragmentation equation wi
suming a detailed balance condition, but assuming instead that aggregation dominates fragmentation for small parti
fragmentation predominates for large particles. We also show the existence of a self-similar solution of any given ma
coagulation equation and to the fragmentation equation for kernels satisfying a scaling property. These results are
following the theory of Poincaré–Bendixson on dynamical systems, by applying the Tykonov fixed point theorem on th
group generated by the equation or by the associated equation written in “self-similar variables”. Moreover, we show
solutions to the fragmentation equation with initial data of a given mass behaves, ast → +∞, as the unique self similar solutio
of the same mass.

Résumé

Pour toute masse donnée, nous démontrons l’existence d’au moins une solution stationnaire pour l’équation de coa
fragmentation. Nous ne faisons pas d’hypothèse d’équilibre en détails sur les coefficients mais nous supposons que la coagula
tion domine la fragmentation pour les particules de petite taille et que la fragmentation est prépondérante pour les particu
grande taille. Nous démontrons également l’existence de solutions auto-similaires pour l’équation de coagulation et pour l’éq
tion de fragmentation sous une hypothèse d’homogéneité sur les noyaux. Ces résultats sont obtenus, s’inspirant de la pre
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du Théorème de Poincaré–Bendixson, en appliquant le théorème de point fixe de Tykonov sur le semi-groupe eng
l’équation ou par l’équation écrite en variables auto-similaires associée. Enfin, nous démontrons que les solutions de
de fragmentation de masse donnéeρ > 0 se comportent en temps grand comme la solutions auto-simialire de masseρ.
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Keywords:Equilibrium; No detailed balance condition; Poincaré–Bendixson’s Theory; Tykonov fixed point theorem; Self-similar solutions;
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1. Introduction and notations

We consider the Cauchy problem for a spatiallyhomogeneous kinetic equation modelling the dynamic of a
system of particles which undergo linear (secondary) fragmentation and/or aggregation events. More pre
we denote byf (t, y) � 0 the density of particles with massy ∈ R+ := (0,∞) at timet � 0, we study the following
equation

∂f

∂t
= Q(f ) in R+ × R+, (1.1)

f (0) = fin in R+. (1.2)

The coagulation–fragmentation operatorQ splits into two terms

Q(f ) = Lf + C(f ). (1.3)

The first term,Lf , describes the spontaneous fragmentation of one (mother) particle in several (possibly i
(daughters) particles. This process may be schematically written as

{y} → {y(1)} + · · · + {y(k)} + · · ·
with the mass conservation condition

y(i) � 0, y =
∞∑

k=1

y(k).

The linear fragmentation operatorL reads

Lf (y) =
∞∫

y

b(y ′′, y)f ′′ dy ′′ − f (y)

y∫
0

y ′

y
b(y, y ′) dy ′, (1.4)

whereb = b(y, y ′) corresponds to the formation rate of particles of sizey ′ by fragmentation of a particles of sizey ′.
Here and below, we use the shorthand notationsψ = ψ(y), ψ ′ = ψ(y ′) andψ ′′ = ψ(y ′′) for any functionψ onR+.
We will consider a fragmentation rateb satisfying

b(y, y ′) = b0(y)B(y ′/y), (1.5)

whereb0 is a function andB is a measure such that

b0(y) = yγ , γ � −1, B � 0, with suppB ⊂ [0,1],
1∫
y dB(y) < +∞. (1.6)

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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The second term in the right-hand side of (1.3),C(f ), models the growth mechanism resulting from the encounte
of two mother particles. This may be schematically written

{y} + {y ′} a−→ {y ′′}, with y ′′ = y + y ′,
wherea = a(y, y ′) is the rate of occurrence of the aggregation of two particles of massy andy ′. The operatorC
is then given by:

C(f )(y) = 1

2

y∫
0

a(y − y ′, y ′)f (y − y ′)f (y ′) dy ′ −
∞∫

0

a(y, y ′)f (y)f (y ′) dy ′. (1.7)

We will consider a coagulation rate satisfying

a(y, y ′) = yα(y ′)β + yβ(y ′)α, −1 � α � 0 � β � 1, λ := α + β ∈ [0,1). (1.8)

Remark 1.1.Hypothesis (1.8) is made in order to simplify the presentation. All the results presented in this
are also true for a coagulation ratea = a1 + · · · + aI where each of the functionsai , i ∈ 1, . . . , I , satisfy the
assumption (1.8) and all the others hypothesis that are made in the paper (see (4.2), (4.3) and (5.2)). In p
our results are true for the Smoluchowski coagulation rate

a(y, y ′) = (
yν + (y ′)ν

)µ(
yσ + (y ′)σ

)
,

with ν = 1/3, µ = 1 andσ = −1/3.

The main motivation of this work is to describe the long time asymptotic behavior of the solutions to
type of coagulation and fragmentation equations. As it is well known, the stationary and self-similar so
turn out to be important to describe such behavior. We are then led to consider first the existence of this
particular solutions. These are two important questions both for the applications and from a mathematic
of view. Among the extensive physical and applied literature we may quote for example [16,17,14,44,30,38] an
references therein. In the mathematical literature, the study of self-similar solutions for the fragmentation e
has been studied using probabilistic methods in [3,9,10], and the asymptotic behavior in [6,7]. The converge
to the equilibrium state for the coagulation–fragmentation equation with detailed balance condition is considere
in [35] (see also the references therein), and without this condition in [19,26]. Finally, the self-similar so
and asymptotic behavior for coagulation equation have been considered by probabilistic methods in [8,
in [39,40], fora(y, y ′) = 1 anda(y, y ′) = y + y ′, using deterministic analytic methods. See also [12,21,31,32
related works. (We do not pretend to be exhaustive at all.)

We do not consider here coagulation fragmentation equations whose solutions undergo finite time singula
formation such as gelation (loss of mass by the formation of “particles of infinite size” or gel) or shattering (
mass by the formation of “particles of zero size” or dust).

Therefore, in the present article, we only treat coagulation fragmentation equations which preserve t
of the solutions for all time. This property is fundamental for all the results presented in this work. Und
conditions (1.6) and (1.8) the existence of global mass preserving solutions for coagulation fragmentation equati
is classical, and well known. We refer to the recent bibliography as [33,22,25].

On the other hand, our purpose is not to prove the results under the greatest generality, nor to be exhau
only want to get some insight into this problem using a simple argument. We then make simplifying hypo
such as (1.6) and (1.8) for the sake of clarity and brevity. Our strategy for proving existence result of pa
solutions for such a coagulation and/or fragmentation equations follows the one presented in [28] in the Bo
equation context. It is based on the following simple abstract result, Theorem 1.2, on semigroups leaving i
a convex and compact set, which is reminiscent yet in the theory of Poincaré–Bendixson on dynamical s
see for instance [4] (Théorème 7.4). Theorem 1.2 is a simple consequence of the Tykonov fixed point theorem
it is a variant to similar results presented in [4,2,28].
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Theorem 1.2.Let Y be a Banach space and(St )t�0 be a continuous semigroup onY . Assume thatSt is weakly
(sequentially) continuous for anyt > 0 and that there existsZ a nonempty convex and weakly(sequentially)
compact subset ofY which is invariant under the action ofSt (that isSt z ∈Z for anyz ∈ Z andt � 0). Then, there
existsz0 ∈Z which is stationary under the action ofSt (that isSt z0 = z0 for any t � 0).

Proof of Theorem 1.2. For anyt > 0, thanks to the Tykonov point fixed theorem (see for instance [20, pp.
163]), there existszt ∈Z such thatStzt = zt . On the one hand,

Si2−mz2−n = z2−n for anyi, n,m ∈ N, m � n. (1.9)

On the other hand, by weak compactness ofZ, we may extract a subsequence(z2−nk )k which converges weakl
to a limit z0 ∈ Z. By weak continuity ofSt we may pass to the limitnk → ∞ in (1.9) and we obtainStz0 = z0
for any dyadic timet � 0. We conclude thatz0 is stationary by continuity oft �→ St and density of the dyadic rea
numbers in the real line.�

The proof of the existence of steady solutions using this abstract result is a slight modification of the
used in [28] for granular flows equations. It has also been used in [5] to prove existence of stationary solu
the Boltzmann–Pauli equation and in [41] to prove existence of self-similar profiles for the inelastic Bolt
equation of granular flows.

Once the existence of stationary or self-similar solutions is established, one may conjecture that these p
solutions should describe the long time behavior of the solutions of the Cauchy problem (1.1), (1.2) for a
set of initial datafin. Nevertheless, we are only able to prove this result for the fragmentation equation, i.e
a ≡ 0. This is done using, very classically, the uniqueness of the asymptotic state and the existence o
Lyapunov functional. These two facts are not known for thegeneral coagulation fragmentation equation or for
self-similar profile equation associated to the coagulation equation. For all these questions and more, the i
reader may consult the surveys [1,18,36,38].

We describe now rather briefly the contents of this paper. Let us start saying that, when the two terms in E
are present, we look for a stationary solution. We search then, for any given massρ > 0, a solutionFρ to the
stationary problem

QCF(f ) := C(f ) + Lf = 0 and M1(f ) = ρ, (1.10)

whereM1(f ) = ∫ ∞
0 yf dy is the mass.

But, if only one of the two termsC(f ) or Lf is present, the only stationary solution is the trivial onef ≡ 0 and
we look then for mass preserving self-similar solutions. These solutions are of the form

f (t, y) = t2νg(tνy)

for some exponentν = (1+ γ )−1 > 0 for the fragmentation equation andν = −(1− λ)−1 < 0 for the coagulation
equation. The functiong, called sometimes the self-similar profile, satisfies a stationary equation of the form

Dg − (1+ γ )Lg = 0 and M1(g) = ρ, (1.11)

for the fragmentation equation, and

Dg + (1− λ)C(g) = 0 and M1(g) = ρ, (1.12)

for the coagulation equation, whereD is the following linear transport operator preserving mass

Dg = 2g + ygy. (1.13)

It is then natural to consider the following family of equation

∂tg = Q̃(g) (1.14)
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Q̃(g) = ε0D(g) + ε1Lg + ε2C(g), (1.15)

with ε0 ∈ {−1,0,1}, ε1, ε2 ∈ {0,1}. There exists a strong and explicit relation between the solutionsf of Eq. (1.2)
where only the coagulation or the fragmentation are present and the solutionsg of (1.14) withε1ε2 = 0. Suppose
for example thatg is a solution to (1.14) withε0 = −1, ε1 = 1+ γ 0 and ε2 = 0. Then, the function

f (t, y) = (1+ t)
2

1+γ g

(
1

1+ γ
ln(1+ t), (1+ t)

1
1+γ y

)
(1.16)

satisfies the fragmentation equation (1.1) (withC(f ) ≡ 0). Similarly, if g is a solution to (1.14) withε1 = 0 and
ε0 = 1. Then, the function

f (t, y) = (1+ t)−
2

1−λ g

(
1

1− λ
ln(1+ t), (1+ t)−

1
1−λ y

)
(1.17)

satisfies the coagulation equation (1.1) (withLf ≡ 0).
On the other hand, iff satisfies the fragmentation equation, we obtain a solutiong to (1.14) withε0 = −1,

ε1 = γ + 1 and ε2 = 0, defining

g(t, y) = e−2tf (e(1+γ )t − 1, ye−t ), (1.18)

and if f satisfies the coagulation equation, we obtain a solutiong to (1.14) withε0 = 1, ε1 = 0 andε2 = 1 − λ,
defining

g(t, y) = e2tf (e(1−λ)t − 1, yet). (1.19)

This well known property of the self-similar change of variables has already been extensively used
study of the long time behavior of the solutions to partial differential equations (see for example [24] a
references therein) and is also used here. In particular, all our results about the existence or the uniqu
solutions to Eq. (1.14) will automatically give an existence or uniqueness result for the corresponding coagula
or fragmentation equation.

The rest of the paper is organized as follows. In Section 2 we define precisely the notions of solutions
all this work. We prove uniqueness and stability of solutions to the growth equation (1.14), (1.15), and ex
for “truncated” rate functionsa andb. These results will be very useful in the following sections.

In Section 3 we consider the fragmentation equation. We show the existence, for any given massρ > 0, of a
unique self-similar solution. Then we prove that this solution describes the long time behavior of the solu
the Cauchy problem with initial datafin of massρ.

In Section 4 we consider the coagulation fragmentation equation without detailed balance condition. We pr
the existence, for any given massρ > 0, of a stationary solution. Finally, we treat in Section 5 the coagula
equation and prove the existence, for any given massρ > 0, of a unique self-similar solution.

2. Generalities and tool box

We gather in this section some elementary results about the Cauchy problem associated to the grow
tion (1.14), (1.15). Since all of them are very classical the proofs will only be sketched. For further develo
and more precise statements and proofs we refer, for instance, to [36,33,25] and the numerous references ther

We first present some notations. We denote byL1
loc the space of integrable functionsf : (0,∞) → R on any

compact[ε,1/ε], ε ∈ (0,1) and byM1
loc the associated measures spaces. For any given continuous fu

ϕ : (0,∞) → (0,∞), we define

M1
ϕ := {

µ ∈ M1
loc, such thatMϕ

(|µ|) < ∞}
, L1

ϕ := M1
ϕ ∩ L1

loc,
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where for any measure 0� ν ∈ M1
loc, we define the generalized momentMϕ(ν) by

Mϕ(ν) :=
∞∫

0

ϕ(y) dν(y).

In order to shorten notations we also (abusively) denote, for anyk ∈ R,

Ṁ1
k = M1

yk , L̇1
k = L1

yk , M1
k = M1

1+yk , L1
k = L1

1+yk .

Finally, we define

˙BV 1 := {f ∈ L1
loc, such thatf ′ ∈ Ṁ1

1}.
The same construction is made on the subset(0,1). In that case,L1

loc(0,1) is the set of measurable function
integrable on[ε,1] for anyε > 0. Theses spaces are always denoted indicating the interval(0,1), like for instance
Ṁ1

k (0,1), L̇1
k(0,1), M1

k (0,1), L1
k(0,1), ˙BV 1(0,1). Let us emphasize that all these are Banach spaces.

We show in the next lemma how to define the different growth operatorsL, C andD in the strong and wea
sense that will be needed later.

Lemma 2.1.For anyk ∈ R,

f ∈ L̇1
α+min(0,k) ∩ L̇1

β+max(0,k) ⇒ C(f ) ∈ L1
k,

and, ifB ∈ L̇1
1 ∩ L̇1

k ,

f ∈ L̇1
γ+1 ∩ L̇1

γ+1+k ⇒ Lf ∈ L̇1
k.

For anyµ ∈ Ṁ1
α+1 ∩ Ṁ1

β+1 andφ ∈ C1
c (0,∞), the duality product

〈
C(µ),φ

〉 := 1

2

∞∫
0

∞∫
0

a(φ′′ − φ − φ′) dµ(y) dµ(y ′) (2.1)

is well defined.
For anyµ ∈ Ṁ1

γ+1 + Ṁ1
γ+2 andφ ∈ C1

c (0,∞), the duality product

〈Lµ,φ〉 := 〈µ,L∗φ〉, (L∗φ)(y) =
y∫

0

b(y, y ′)
[
φ′ − y ′

y
φ

]
dy ′ (2.2)

is well defined.
For anyµ ∈ M1

loc(0,∞) andφ ∈ C1
c (0,∞) the duality product

〈Dµ,φ〉 := 〈µ,D∗φ〉, D∗(φ) = 2φ − (yφ)y

is well defined.

Proof of Lemma 2.1. For anyφ ∈ C2
c (0,∞), we writeφ = yζ(y) with ζ ∈ C1

c (0,∞). Then

φ′′ − φ − φ′ = y(ζ ′′ − ζ ) + y ′(ζ ′′ − ζ ′) = yy ′ψ(y, y ′)
with ψ ∈ Cb((0,∞)2), since ζ′′ − ζ = y ′ dζ

dy
((1− s)y + sy ′) =: y ′ψ1(y, y ′). Therefore,

〈
C(f ),φ

〉 = 1

2

∞∫
0

∞∫
0

ayy ′ψff ′ dy dy ′,

andayy ′ = y1+α(y ′)1+β + (y ′)1+αy1+β � (y1+α + y1+β)((y ′)1+α + (y ′)1+β).
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For anyφ ∈ C1
c (0,∞), we writeφ = yζ(y) with ζ ∈ Cc(0,∞). Then

∣∣(L∗φ)(y)
∣∣ =

∣∣∣∣∣
y∫

0

yγ B(y ′/y)y ′[ζ ′ − ζ ]dy ′
∣∣∣∣∣ � 2yγ+2‖B‖L̇1

1
‖ζ‖L∞

and ∣∣(L∗φ)(y)
∣∣ � 2yγ+1‖B‖L1

1
‖φ‖L∞ . �

In the next lemma, whose proof is straightforward and is skipped, we associate a semigroupSD to the opera-
tor D.

Lemma 2.2.For anyhin ∈ L̇1
k there exists a unique solutionh ∈ C([0, T ]; L̇1

k) to the equation

∂th = Dh, h(0, .) = hin,

which is given by

h(t, y) = (SDhin)(t, y) := e2thin(ety). (2.3)

As a consequence, for anyH ∈ L1((0, T ); L̇1
k(0,∞)) and anyhin ∈ L̇1

k , the unique solutionh ∈ C([0, T ]; L̇1
k) to

the equation

∂th = 2h + y∂yh + H, h(0, .) = hin,

is given by the Duhamel formula

h(t, y) = e2t fin(ety) +
t∫

0

e2(t−s)H (s, et−sy) ds. (2.4)

We define now the notions of dual and mild solutions, as two kinds of weak solutions, that are used in
of this paper. First, we define the natural space of weak (dual) solution with finite mass byXdual = Xc for the co-
agulation equation,Xdual= Xf for the fragmentation equation andXdual= Xcf for the coagulation–fragmentatio
equation, where

Xc := Ṁ1
α+1 ∩ Ṁ1

β+1, Xf := Ṁ1
max(1,γ+1) ∩ Ṁ1

1, Xcf := Ṁ1
α+1 ∩ Ṁ1

max(β,γ )+1.

Definition 2.3.Let beµin ∈ Xdual, with Xdual defined depending of the values ofεi . A weak solution to (1.14) with
initial datumµin is a nonnegative measureµ ∈ L∞(0, T ;Xdual) which satisfiesM1(t) = M1(0) for t � 0 and the
duality equation

∞∫
0

∞∫
0

µ∂tψ dy dt +
∞∫

0

µinψ(0, .) dy +
∞∫

0

〈
Q̃(µ),ψ

〉
dt = 0 (2.5)

for eachψ ∈ C∞
0 ([0,+∞) × (0,∞)), where〈

Q̃(µ),ψ
〉 := ε0〈Dµ,ψ〉 + ε1〈Lµ,ψ〉 + ε2〈C(µ),ψ〉

and the three terms at the right-hand side are defined thanks to the dual formulation presented in Lemma

We also define the natural space of weak (mild) solutions with finite mass byY mild = Yc, Y mild = Yf or Y mild =
Ycf, where now

Yc := L̇1
α ∩ L̇1

1, Yf := L̇1
γ+1 ∩ L̇1

1, Ycf := L̇1
α ∩ L̇1

max(γ+1,1).
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Definition 2.4. Let be f in ∈ Y mild. A mild solution to (1.14) with initial datumf in is a nonnegative functio
f ∈ C([0, T ]; L̇1

1) ∩ L∞(0, T ;Y mild) which satisfiesM1(t) = M1(0) for t � 0 and one of the three (equivalen
formulation of Eq. (1.14):

1. The mild sense

f = S0(t)fin +
t∫

0

S0(t − s)
(
ε1 Lf (s) + ε2 C(f )(s)

)
ds, (2.6)

whereS0 is the semigroup associated toε0D;
2. The distributional sense

T∫
0

∞∫
0

{
f

∂φ

∂t
+ (

ε1Lf + ε2C(f )
)
φ − ε0f D∗φ

}
dy dt =

∫
Y

finφ(0, .) dy, (2.7)

for anyt > 0 and anyφ ∈ C1
c ([0, T ) × (0,∞));

3. The renormalized sense (which nothing but the chain rule)

d

dt

∫
Y

β(f )φ dy =
∞∫

0

{(
ε1Lf + ε2C(f )

)
β ′(f )φ − ε0f D∗φ

}
dy, (2.8)

in D′([0, T )), for anyβ ∈ C1(R) ∩ W1,∞(R), φ ∈ L∞(0,∞), andf (0, .) = fin.

Remark 2.5. We refer to [15,33] for the proof of the equivalence of these three formulations. Since the
group SD is well defined onṀ1

k one can also define mild solutions withY mild given by M1
α+1 ∩ Ṁ1

β+1,

M1
max(1,γ+1) ∩ Ṁ1

1, or Ṁ1
α+1 ∩ Ṁ1

max(β,γ )+1.

The following result is a straightforward consequence of Lemma 2.1 and of the two definitions above.

Lemma 2.6.Assumef ∈ L∞([0, T ];Xdual∩ Y mild). Thenf is a dual solution of(1.14)if, and only if, it is a mild
solution of (1.14).

From now on, we will only call weak solution of (1.14) a dual solution or a mild solution. We present n
useful stability principle for weak solutions.

Theorem 2.7.LetX be a Banach space such that the inclusionX′ ⊂ X is weakly compact. Consider a sequenceµn

of weak solutions to the growth equation(1.14)and assume that(µn) is bounded inL∞(0, T ;X′). Then, there
exists a nonnegative measureµ ∈ L∞(0, T ;X) and a subsequence(µnk ) such thatµnk ⇀ µ in the sense of distri
butionD′((0, T ) × (0,∞)). Moreoverµ is still a weak solution to the growth equation(1.14).

Proof of Theorem 2.7. It is a straightforward consequence of the weak compact injectionX′ ⊂ X and of the weak
formulation given in Lemma 2.1, in which it is easy to pass to the limit. We only point out that, sinceµn satisfies
Eq. (2.5) or (2.6), the sequence( ∞∫

0

φ(y)µn(t, dy)

)

is strongly compact inC([0, T ]) for anyφ ∈ D(0,∞), and anyT > 0. It is then possible to pass to the limit in th
(quadratic) coagulation term.�
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A natural and classical strategy to prove the existence of solutions to (1.14) is to obtain an existence r
some truncated or regularised rate functions, then to obtain a priori estimates, strongly dependent on each
model and of the hypothesis on the rates functions, and to use finally the stability result Theorem 2.7.

Our next lemma concerns the growth equation (1.14) with “truncated” rate functionsa andb. It will be extended
to more general functionsa andb in each of the three different cases (ε0 = 0, ε1 = 0 orε2 = 0) that are considere
in the following sections.

Lemma 2.8.Consider the growth equation(1.14)and assume that the coagulation and fragmentation rates sa

0� a ∈ L∞(R2+), 0� b0,B ∈ L∞(R+) (2.9)

and

suppB ⊂ (0,1], suppb0 is a compact ofR+. (2.10)

Then, for any0 � fin ∈ L̇1
1, there exists a unique global weak solution0 � f ∈ C([0,∞); L̇1) to the growth

equation(1.14). Moreover, iffin ∈ L̇1
k for somek ∈ R, thenf ∈ L∞(0, T ; L̇1

k) for anyT > 0; if fin ∈ Lp for some
p > 1 thenf ∈ L∞(0, T ;Lp) for anyT > 0.

Proof of Lemma 2.8. For anyT ,λ > 0 andh ∈ C([0, T ]L̇1
1) we define

(Φh)(t) := Sλ(t)fin +
t∫

0

Sλ(t − s)
(
C(h)(s) + Lh(s)

)
ds,

whereSλ is the semigroup associated to the equation∂tg + λg = ε0Dg. We easily see that forλ large enough the
mapΦ preserves the positivity and that forT small enough the mapΦ is a contraction inC([0, T ]L̇1

1). Therefore
by the Banach fixed point theorem there exists a uniquef ∈ C([0, T ]; L̇1) such thatΦf = f , and this is precisely
a mild solution to (1.14). By an iterative argument we may chooseT arbitrary large. Finally, we may establish t
a priori bounds

sup
[0,T ]

‖f ‖Ξ � CT ‖fin‖Ξ for Ξ = L̇1
k, Ξ = Lp

and this is enough to conclude the proof. We refer for instance to [34] for more details.�
We finally present a general uniquenessresult for the growth equation (1.14).

Theorem 2.9.Assume that the rate functionsa and b satisfy(1.5), (1.6), (1.8)and consider the growth equa
tion (1.14), (1.15). Whenε2 = 0, there exists at most one(mild) solution inC([0, T ]; L̇1

k) for all T > 0, for any
k � 1. Whenε2 �= 0, if B ∈ Ṁ1

2α there exists at most one(mild) solution inC([0, T ]; L̇1
α ∩ L̇1

k) ∩ L1(0, T ; L̇1
2α ∩

L̇1
β+k) with k := max(β, γ + 1+ α) if ε1 > 0 andk := β if ε1 = 0.

Proof of Theorem 2.9. Consider two solutionsf andg to (1.14), (1.15) which belong to the functional spa
as stated above. Let introduce the functionϕ = ϕ1 + ϕ2 with ϕi = ciy

ki , ci � 0, ki ∈ R, k1 < k2 andk1 � 1. We
multiply the equation satisfied byf − g by ψ = sign(f − g)ϕ and we integrate in they variable

d

dt

∞∫
0

|f − g|ϕ dy � ε0

∞∫
0

(f − g)
(
2ψ − (yψ)y

)
dy + ε2

2

∞∫
0

∞∫
0

a(f − g)(f ′ + g′)(ψ ′′ − ψ − ψ ′) dy dy ′

+ ε1

∞∫
(f − g)(y)

y∫
b(y, y ′)

(
ψ(y ′) − y ′

y
ψ(y)

)
dy ′ dy.
0 0
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On the one hand, the subadditivity ofϕ1 (that isϕ′′
1 � ϕ1 + ϕ′

1) ensures that

a(f − g)(ψ ′′
1 − ψ1 − ψ ′

1) � a|f − g|(ϕ′′
1 − ϕ1 + ϕ′

1)

� 2|f − g|(yα(y ′)k1+β + yβ (y ′)k1+α
)
.

The same holds withϕ2 if k2 � 1, and whenk2 > 1 we may use the elementary inequality

(y + y ′)k2 − yk2 + (y ′)k2 � Ck2

(
yk2−1y ′ + (y ′)k2

)
to obtain

a(f − g)(ψ ′′
2 − ψ2 − ψ ′

2) � C′
k2

|f − g|(yα + yβ+k2−1)
(
(y ′)α+1 + (y ′)β+k2

)
.

In any case, takingϕ = c1y
α + c2y

k, with k defined in the statement of the theorem, we obtain

〈
C(f ) − C(g),ψ

〉
� K

∞∫
0

|f − g|ϕ dy

∞∫
0

(f ′ + g′)
(
(y ′)2α + (y ′)k+β

)
dy.

On the other hand, we have

(f − g)L∗ψ2 � |f − g|L∗ϕ2 � 0

and

(f − g)L∗ψ1 � |f − g|L∗ϕ1 �
∣∣(f − g)(y)

∣∣(L∗yk) = ‖B‖Ṁ1
k1

∩L̇1
1
(1− k)yγ+1+k.

Finally, we notice that|2ϕ − (yϕ)y | � K ′ϕ for some constantK ′ = K ′(ϕ), and then∣∣(f − g)
(
2ψ − (yψ)y

)∣∣ = ∣∣|f − g|(2ϕ − (yϕ)y
)∣∣ � K ′ϕ|f − g|.

Therefore,

d

dt

∫
Y

|f − g|ϕ dy � K

∫
Y

|f − g|ϕ dy

∞∫
0

(f ′ + g′)
(
(y ′)2α + (y ′)k+β

)
dy + (K + K ′)

∫
Y

|f − g|ϕ dy,

whencef = g thanks to the Gronwall lemma.�
We may finally define the notion of strong solution used in the rest of this work. We say thatf is a strong

solution if f is a weak solution, such thatC(f ) andLf are functions, and satisfies a uniqueness principle.
spaces we use to look for strong solutions are denoted byY = Yc for the coagulation equation,Y = Yf for the
fragmentation equation andY = Ycf for the coagulation–fragmentation equation, where

Yc := L̇1
2α ∩ L̇1

max(2β,1), Yf := L̇1
γ+1 ∩ L̇1

1, Ycf := L̇1
2α ∩ L̇1

max(2β,γ+1,1).

We end this section with a straightforward consequence of the uniqueness Theorem 2.9 and the stabil
rem 2.7.

Corollary 2.10. Suppose thatY is a Banach space such thatY ′ ⊂ Y with weakly compact injection. Consider a s
quence(f n) of strong solutions to the growth equation(1.14), (1.15). Assume that(f n) is bounded inL∞(0, T ;Y ′)
and thatf n(0, .) ⇀ fin weakly inY . Then there existsf ∈ C([0, T ];Y ) such thatf n ⇀ f weakly inL∞(0, T ;Y ),
andf is the strong solution to the growth equation(1.14), (1.15)associated tofin.
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3. Self-similarity for the fragmentation equation

We consider in this section the fragmentation equation

∂tf = Lf, f (0, .) = fin, (3.1)

where the fragmentation operatorL is given by (1.4) and the fragmentation rate by (1.5)–(1.6). We assume fu
more

γ > −1, B ∈ Ṁ1
m(0,1) with m < 1, and B > 0, (3.2)

and, for part of the result,

B ∈ ˙BV 1(0,1) ∩ Ṁ1
m(0,1) with m � γ + 1. (3.3)

Our aim is to study the long time asymptotic behavior of the solutionf to the Cauchy problem (3.1) for initial da
with finite mass

∫ ∞
0 yfin(y) dy = ρ > 0. We establish that there exists a unique self-similar solutionFρ of (3.1)

with massρ and that the behavior off (t, .) whent → ∞ is described byFρ(t, .).
It is well known that under the condition (1.5)–(1.6) the fragmentation equation (3.1) has a global s

which preserves the total mass, see for instance [22] and the references therein. That means that there is no
loss in finite time due to the appearance of dust phase (see for instance [7,25], for a description of that
phenomena). We then look for self-similar solutions to Eq. (3.1) of the form

f (t, y) = t2νg(tνy), (3.4)

in such a way that the total mass is constant in time

∞∫
0

f (t, y)y dy =
∞∫

0

g(y)y dy ≡ ρ, ∀t � 0. (3.5)

On the one hand, introducing the auxiliary variablez := ytν , we obtain

∂tf = νt2ν−1(2g(z) + zgz(z)
) = νt2ν−1Dg(z). (3.6)

On the other hand, making the change of variablesy ′ → y∗ := tνy ′, we obtain

Lf (t, y) = t2ν

∞∫
y

(y ′)γ B(y/y ′)g(tν = y ′) dy ′ − t2ν

y∫
0

y ′

y
yγ B(y ′/y) dy ′ g(tνy)

= tν

∞∫
t νy

(t−νy∗)γ B(tνy/y∗)g(y∗) dy∗ − tν

tνy∫
0

y∗
tνy

yγ B(y∗/tνy) dy∗ g(tνy)

= tν(1−γ )Lg(z).

Therefore,f is a (self-similar) solution to the fragmentation equation (3.1) if we choose 2ν − 1= ν(1− γ ), which
implies

ν := 1

1+ γ
> 0, (3.7)

and if the self-similar profileg is a solution to the “self-similar profile fragmentation” equation already introdu
in Section 1:

Dg(y) − (1+ γ )F (g)(y) = 0. (3.8)



110 M. Escobedo et al. / Ann. I. H. Poincaré – AN 22 (2005) 99–125

e

f-similar
nwall’s
pped.
Let us then introduce the so-called “self-similar fragmentation” evolution equation

∂tg = QSSF(g) := −Dg + (1+ γ )Lg. (3.9)

The evident but fundamental remark is that a self-similar profileg is nothing but a stationary solution to (3.9). W
may state now the main result of this section.

Theorem 3.1.Assume(1.5)–(1.6), (3.2).
1. For anyρ > 0 there exists a unique solutionGρ in Ṁ1

1 to the self-similar profile fragmentation equation(3.8)
such thatM1(Gρ) = ρ. Moreover

Gρ ∈ X∞ :=
⋂
k�m

Ṁ1
k .

2. For any fin ∈ Y := L̇1
m ∩ L̇1

1 with ρ := M1(fin), there exists a unique solutionf ∈ C([0, T ); L̇1
1) ∩

L1(0, T ; L̇1
γ+2) to the fragmentation equation(3.1), such thatM1(f (t)) = ρ for any t � 0. The solutiong in

self-similar variables, defining by(1.18), satisfies(
g(t)

)
t�1 is uniformly bounded inṀ1

k ∀k � m. (3.10)

Theorem 3.2.Assume(1.5)–(1.6), (3.2), (3.3).
1. The self-similar profileGρ has the regularity propertyGρ ∈ ˙BV 1.
2. For anyfin ∈ Y ∩ ˙BV 1 the associated solutiong in self-similar variables satisfies(

g(t)
)
t�1 is uniformly bounded in ˙BV 1. (3.11)

3. Finally, for anyfin ∈ Y , the solutionf satisfies the asymptotic behavior

lim
t→+∞

∞∫
0

y
∣∣f (t, y) − (1+ t)

2
1+γ Gρ

(
y(1+ t)

1
1+γ

)∣∣dy = 0. (3.12)

In order to prove Theorems 3.1 and 3.2 we first establish some a priori bounds on the solutions to the sel
fragmentation equation (3.9). We first recall, for the sake of completeness the following version of the Gro
lemma to which we systematically refer in all the following. Its proof is classical and well known, and is ski

Lemma 3.3.Let 0 � u ∈ C([0,∞)) satisfy(in the sense of distributions)

u′ + k1u
θ1 � k2u

θ2 + k3

with θ1 � 1, θ2 � 0, θ2/θ1 < 1, k1 > 0 andk2, k3 � 0. Then, there existsC0 = C0(ki, θi) � 0 such that

sup
t�0

u(t) � max
(
C0, u(0)

)
. (3.13)

Assume moreoverθ1 > 1. For anyτ > 0, there existsCτ = Cτ (ki, θi, τ ) � 0 such that

sup
t�τ

u(t) � Cτ . (3.14)

Lemma 3.4.Considergin ∈ Ξ := L̇1
1 ∩ L̇1

k with k > 1 such thatM1
1(gin) = ρ. For anyτ � 0 there existsντ :=

ντ (ρ, a, b, k, τ ) such that the two following estimates hold:

sup
∥∥g(t, .)

∥∥
Ξ

� max
(
ν0,‖gin‖Ξ

)
(3.15)
t�0
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sup
t�τ

∥∥g(t, .)
∥∥

Ξ
� ντ for τ > 0. (3.16)

Considergin ∈ Ξ := L̇1
k ∩ L̇1

� with k < 1 and� := max(1, k + (1+γ )). There existsν0 := ν0(‖fin‖L̇k+γ+1∩L̇�
, a,

b, k, τ ) such that estimate(3.15)holds.
Considergin ∈ Ξ := ˙BV 1 ∩ L̇1

γ+2 ∩ L̇1
min(1,γ+1). There existsν0 := ν0(‖fin‖L̇1

γ+2∩L̇1
min(1,γ+1)

, a, b) such that

estimate(3.15)holds.
As a consequence, for anyρ > 0, there exists an increasing sequence(µk)k�γ+2 such that the sets

Xk := {
g ∈ Xk, M1(g) = ρ, ‖g‖Xk � µk

}
and X∞ :=

⋂
k�γ+2

Xk (3.17)

are invariant under the flow of the self-similar fragmentation equation(3.9) when(3.2) holds; and the family of
sets

Zk :=Xk ∩ {
g ∈ ˙BV 1, ‖g‖ ˙BV 1

� µ0
}

and Z∞ :=
⋂

k�γ+2

Zk (3.18)

are invariant when(3.2)–(3.3)hold. In both case, we defineXk := Ṁ1
m ∩ Ṁ1

k , with the corresponding value ofm.

Proof of Lemma 3.4. We first recall that for any solutiong to (3.9) and anyφ ∈ C1, the following identity holds

d

dt

∞∫
0

gφ dy =
∞∫

0

g
(
(yφ)y − 2φ

)
dy + (1+ γ )

∞∫
0

gyγ

y∫
0

B(y ′/y)

(
φ′ − y ′

y
φ

)
dy ′ dy.

Takingφ = yk, we get

d

dt
Mk = (k − 1)Mk + Ck,γ (1− k)Mγ+1+k, (3.19)

with Ck,γ = 1+γ
1−k

∫ 1
0 B(σ)(σ k − σ) dσ > 0. We deduce first, fork = 1, the conservation of mass

d

dt
M1 = 0 and M1(t) ≡ M1(0) = ρ.

Next, fork > 1, since, by Holder’s inequality,Mk � M1−θ
1 Mθ

γ+1+k with θ ∈ (0,1), we deduce from (3.19)

d

dt
Mk � (k − 1)Mk − κM

1/θ
k ,

with κ = κ(k, γ,ρ) > 0 and we conclude (3.15) and (3.16) withΞ = L̇1
1 ∩ L̇1

k thanks to the Gronwall’s Lemma 3.
Finally, for k < 1, let us write (3.19) as,

d

dt
Mk + (1− k)Mk = Ck,γ (1− k)Mγ+1+k. (3.20)

In the one hand, if 1� γ + 1 + k and thengin ∈ L1
γ+1+k by assumption, we deduce from (3.20), the estima

already obtained fork > 1, and Gronwall’s Lemma 3.3 that (3.15) holds withΞ = L̇1
γ+1+k ∩ L̇1

k . On the other
hand, ifγ + 1 + k < 1, we deduce from the Young inequalityMγ+1+k � εMk + CεM1 (remind thatγ + 1 > 0)
that

d

dt
Mk + 1− k

2
Mk = C′

k,γ M1

for some positive constantC′ , and we conclude as above that (3.15) holds withΞ = L̇1 ∩ L̇1.
k,γ 1 k
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In order to obtain the ˙BV 1 estimate, we differentiate the self-similar fragmentation equation (3.9) and we o

∂tgy = −gy − D(gy) + (Lg)y,

with

(Lg)y = −2b(y, y)g +
∞∫

y

∂2b(y ′′, y)g′′ dy ′′ +
y∫

0

y ′

y

(
b(y, y ′)

y
− ∂1b(y, y ′)

)
dy ′g −

y∫
0

y ′

y
b(y, y ′) dy ′ gy.

As a consequence, we get

d

dt

∞∫
0

|gy |y dy � −
∞∫

0

|gy |(y + B1y
2+γ ) dy + CB

∞∫
0

gyγ+1 dy � −
∞∫

0

y|gy |dy + CBMγ+1(t)

with CB = (2+γ )B1+B ′
2+2B(1), B1 = ∫ 1

0 zB(z) dz, B ′
1 = ∫ 1

0 z|B ′(z)|dz. We conclude, again by the Gronwal
Lemma 3.3 that (3.15) holds whenΞ = ˙BV 1 ∩ L̇1

γ+2 ∩ L̇1
min(1,γ+1). �

We present now a contraction property inL̇1
1 of the self-similar fragmentation operatorQSSF.

Lemma 3.5.For any functionH ∈ L1
2+γ , there holds

D(H) :=
∞∫

0

QSSF(H)sign(H)y dy � 0. (3.21)

Moreover,

D(H) = 0 and

∞∫
0

yH dy = 0 implies H = 0.

As a consequence, for anyρ � 0, there exists at most one solutionGρ to the stationary self-similar fragmentatio
equation(3.8)such thatM1(Gρ) = ρ.

Proof of Lemma 3.5. Suppose firstH ∈ Cc. Then, a straightforward calculation gives

D(H) :=
∞∫

0

H

y∫
0

b(y, y ′)
(

φ′ − y ′

y
φ

)
dy ′ dy, φ := sign(H)y.

By density this identity holds for allH ∈ L̇1
1 ∩ L̇1

2+γ . Then, (3.21) follows from the fact:

H

(
φ′ − y ′

y
φ

)
= (

H sign(H ′) − |H |)y ′ � 0 ∀y, y ′.

If we suppose now thatD(H) = 0, we deduce

H sign(H ′) = |H | ∀y, y ′.

As a consequence, signH = signH ′ ∀y, y ′ or, in other words, signH is constant on(0,∞). Therefore ifH �≡ 0
then

∫
yH dy �= 0 which is a contradiction. �
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Proof of Theorem 3.2. Point 2.Assume first thatfin ∈ Y� := Y ∩ L̇1
� for a given� > γ + 1. Let us definegin ∈ Y�

using (1.18) and introduce the truncated fragmentation kernel

bn(y, y ′) = min(yγ , n)B(y ′/y). (3.22)

By Lemma 2.8, there exists a unique solutiongn ∈ C([0, T ];Y ) to the associated self-similar fragmentation eq
tion (3.9) with initial datagin. Moreover, coming back to the proof of Lemma 3.4, we easily verify that(gn) satisfies
estimates (3.15) and (3.16) uniformly inn � 1. Proceeding along the line of the existence theorem in [27] (w
is based on a perturbation of the uniqueness Theorem 2.9 introduced in [43]), we deduce that(gn) is a Cauchy
sequence inC([0, T ];Y�). Let us denote byg its limit. Then we may pass to the limit in the equation satisfied
(gn) and we obtain thatg ∈ C([0, T ];Y�) is a solution to the self-similar fragmentation equation (3.9) with ini
datagin and satisfying (3.10) and (3.11). By the differential inequality established in the uniqueness Theo
we may remove the additional assumptiongin ∈ Y�. We conclude using (1.16).

Proof of Theorem 3.2. Point 1.We denote byS the semigroup associated to the self-similar fragmentation e
tion (3.9) built above. On the one hand, the setsZk defined in Lemma 3.5 are invariant under the action ofS and,
of course,Zk ⊂ Y with compact injection for the weak sense of convergence inY . On the other hand, by the st
bility result Theorem 2.7 and the uniqueness result Theorem 2.9, we infer that for anyt > 0 the map S(t):Y → Y

is weakly sequentially continuous. Therefore, we may apply Theorem 1.2 and we obtain the existence o
similar profileGρ ∈ Zk with massρ. Finally,Gρ is unique by to the contraction property Lemma 3.5. Sincek may
be taken arbitrary large, we finally obtainGρ ∈ Z∞.

Proof of Theorem 3.2. Point 2.Let us prove now (3.12). To this end we considerfin ∈ C1
c (R+), such that

M1(fin) = ρ andfin �= Gρ (since otherwise there is nothing to be proved). Letg = S(τ)fin be the unique cor
responding solution to (3.9) such thatg(0) = fin. Let us show that

Hρ

(
g(τ)

) =
∞∫

0

y
∣∣g(τ, y) − Gρ(y)

∣∣dy,

is a strict Lyapunov functional oṅL1
1. To this end, we first notice, using the equation and introducingh(τ, y) =

g(τ, y) − Gρ(y), that

d

dt
Hρ

(
g(τ)

) = D
(
h(τ)

)
� 0.

This shows thatHρ(g(t)) is nonincreasing. In order to prove that it is actually strictly decreasing, suppos
there exists two different instants, 0< τ1 < τ2 such thatHρ(g(τ1)) = Hρ(g(τ2)). Then,

τ2∫
τ1

D
(
H(τ)

)
dt = 0.

SinceD(H(τ)) � 0 for all τ > 0 we deduce thatD(H(τ)) = 0 for τ ∈ (τ1, τ2). SinceM1(H) = 0 for all τ we
deduce, by Lemma 3.5, thatH(τ) = 0 for all τ ∈ (τ1, τ2). But this impliesH ≡ 0 which is absurd.

On the other hand, sincefin ∈ L̇1
m ∩ ˙BV 1L̇

1
γ+2 for anyk � 2, Lemma 3.4 implies that(g(τ ))τ>0 is bounded in

L̇1
m ∩ ˙BV 1L̇

1
γ+2. The trajectory(g(τ ))τ>0 belongs then to a compact subset ofL̇1

1. We conclude by the Lasalle
invariance principle (see for instance [11]), that

lim
τ→+∞Hρ

(
g(τ)

) = 0. (3.23)

Using a classical density argument and the contraction property ofS(τ), we deduce that (3.23) holds for all initi
datafin ∈ Y .
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Consider now the functionf defined by (1.16). By construction,f ∈ C([0,+∞); L̇1
1), M1(f (t)) = ρ. It is a

straightforward calculation to check that this functionf satisfies

∂tf = Lf, f (0, y) = fin.

The uniqueness of this solution inC([0,+∞); L̇1
1) is given by Theorem 2.9. The regularity properties ofS(τ)fin

give the corresponding properties for the functionf . Finally, by (3.4), we obtain

∞∫
0

y
∣∣f (t, y) − (1+ t)

2
1+γ Gρ

(
y(1+ t)

1
1+γ

)∣∣dy = Hρ(g)

and (3.12) follows thanks to (3.23).�
Proof of Theorem 3.1. The proof of Theorem 3.1 follows exactly alongthe same lines as the proof of Theorem 3
We then skip it. �
Remark 3.6.To prove the existence part in Theorem 3.1 one may also use the stability result Theorem 2.7
ducing the regularized fragmentation kernel

bε(y, y ′) = yγ
ε Bε(y

′/y), yε = min

(
0, y − ε,

2

ε
− y

)
, Bε := (Bχε) ∗z ρε,

where 0� χε,ρε ∈ D(R), suppχε ⊂ (2ε,1], suppρε ⊂ (−ε, ε), χε ↗ 1 uniformly andρε ⇀ δ0 in D′(R).

4. Stationary solutions for the coagulation–fragmentation model

In this section we consider the coagulation–fragmentation equation

∂tf = Q(f ) = C(f ) + Lf, f (0, .) = fin, (4.1)

where the fragmentation and the coagulation operatorL andC are defined by (1.4), (1.7) with fragmentation a
coagulation rates given by (1.5), (1.6) and (1.8). We furthermore assume that

(β, γ ) �= (1,−1), (α, γ ) �= (0,−1) and B ∈ Ṁ1
m with m � 2α. (4.2)

We will also need the following additional assumption

B ∈ L∞. (4.3)

Our main result is the existence of stationary solution to the coagulation–fragmentation equation (4.1)
given massρ > 0.

Theorem 4.1.1. Assume thata andb satisfy(1.5), (1.6), (1.8), (4.2). For anyρ > 0 there exists at least one wea
stationary solutionFρ ∈ X∞ to the coagulation–fragmentation equation(4.1)such thatM1(Fρ) = ρ, where

X∞ :=
⋂
k�1

Xk with Xk := Ṁ1
2α ∩ Ṁ1

k if α = 0, Xk := Ṁ1
m ∩ Ṁ1

k if α < 0.

Assuming moreover(4.3), we may choose the stationary solution such thatFρ ∈ Y∞ where

Y∞ :=
⋂

Yk, Yk := Lk+1 ∩ Xk.
k�1
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rd
2. Assume(4.2) and fin ∈ Y := L̇1
2α ∩ L̇1

max(2β,2−β,γ+1)
. Then there exists a unique strong solutionf ∈

C([0, T ); L̇1
1) ∩ L∞(0, T ;Y ) ∀T > 0 to the coagulation–fragmentation equation(4.1). Moreover,f satisfies(

f (t)
)
t�1 is uniformly bounded inXk ∀k � 1. (4.4)

Assume moreover(4.3)andfin ∈ Lp , p � 2. Thenf also satisfies(
f (t)

)
t�0 is uniformly bounded inLp. (4.5)

We start with some a priori estimates on the solutions to the CF equation.

Lemma 4.2.Assume(β, γ ) �= (1,−1) andB ∈ Ṁ1
λ . There exists a constantν0 := ν0(ρ, a, b) � 0 such that for any

fin ∈ Ξ0 := L̇1
λ ∩ L̇1

2−β the global estimate(3.15)holds.

Consider nowfin ∈ Ξ := Ξ0 ∩ L̇1
k with k > 2 − β . For anyτ � 0, there existsντ = ντ (‖fin‖Ξ0, a, b, k) such

that the global estimates(3.15)and(3.16)hold.

Proof of Lemma 4.2. For anyk ∈ R, let us define

Λk(y, y ′) := (k − 1)
(
yα(y ′)β + yβ(y ′)α

)(
(y + y ′)k − yk − (y ′)k

)
� 0, (4.6)

and denotez = y ′/y. On the one hand, fork > 1 and y > y′, we have

Λk(y, y ′) = (k − 1)yλ+k(zα + zβ)
(
(1+ z)k − zk − 1

)
� Cky

λ+kz1+α � Ck

[
yβ−1+k(y ′)1+α + (y ′)β−1+ky1+α

]
,

for a constantCk > 0, and therefore, the same holds for anyy, y ′ � 0. We deduce that fork > 1

d

dt
Mk � Ck,1Mβ−1+kM1+α − Ck,2M1+γ+k, (4.7)

for some constantsCk,i > 0. On the other hand, fory > y ′, and using thatλ < 1, we have

Λλ(y, y ′) = (1− λ)yλ+λ(zα + zβ)
(
zλ + 1− (1+ z)λ

)
� Cλy

λ+λzλ � Cλy
λ(y ′)λ,

for a constantCλ > 0 and therefore, the same holds for anyy, y ′ � 0. We deduce that

d

dt
Mλ � Cλ,1M1+γ+λ − Cλ,2M

2
λ, (4.8)

for some constantsCλ,i > 0. Gathering (4.7) and (4.8) we find

d

dt
(Mλ + M2−β) � C2−β,1M1M1+α + Cλ,1M1+γ+λ − Cλ,2M

2
λ − C2−β,2M1+γ+2−β

� C2−β,1M1(M1 + Mλ) + Cλ,1Kε Mλ − Cλ,2M
2
λ + (εCλ,1 − C2−β,2)M1+γ+2−β

for a constantKε for anyε > 0, where we have use twice the Young inequality and the fact that 1+ α ∈ [λ,1] and
1+ γ + λ ∈ [λ,1+ γ + 2− β).

For ε > 0 small enough and using the Holder inequalitiesM2−β � M1−θ
1 Mθ

1+γ+2−β with θ ∈ (0,1], we obtain

d

dt
(Mλ + M2−β) � C1 + C2Mλ − C3M

2
λ − C4M

p

2−β

for some constantsCi = Ci(ρ) > 0 andp = 1/θ (if β < 1) orp = 1 (if β = 1). Therefore, using a straightforwa
variant of the Gronwall’s Lemma 3.3, we deduce (3.15) for some positive constantν = ν(ρ, a, b).
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the

.15)
On the other hand, fork > 2 − β , we come back to (4.7). UsingM1+α � Mλ + M1, the Holder inequalities
Mβ−1+k � M

1−θ1
1 M

θ1
k , Mθ2

k � M
1/θ2−1
1 Mk+1+γ , with θ1 ∈ [0,1], θ2 � 1 andθ2/θ1 > 1 (due to condition (4.2)) we

obtain

d

dt
Mk � C1M

θ1
k − C2M

θ2
k ,

for some constantsCi = Ci(ρ) > 0. Using again the Gronwall’s Lemma 3.3 we conclude that (3.15) and (3
holds fork > 2− β . �

We prove now some more a priori estimates on solutions to Eq. (4.1) under additional assumptions on
fragmentation and the coagulation rate functions.

Lemma 4.3.Assume(α, γ ) �= (0,−1) andB ∈ Ṁ1
k with k � 0. Considerfin ∈ Ξ := Ξ0 ∩ L̇1

k with Ξ0 := L̇1
k ∩

L̇1
max(1+γ+k,2−β). There exists a constantν0 := ν0(‖f ‖Ξ0, a, b, k) � 0 such that the global estimate(3.15)holds.

Assume moreoverα < 0, but justfin ∈ Ξ0. For anyτ > 0, there exists a constantντ := ντ (‖f ‖Ξ0, a, b, k) � 0 such
that the global estimates(3.16)hold.

Assume(α, γ ) �= (0,−1) andB ∈ L∞. Considerfin ∈ Ξ := Ξ0 ∩Lp with Ξ0 := L̇1
min(γ ,0) ∩ L̇1

max(1+γ,2−β) and
p � 2. Then, there exists a constantν0 := ν0(‖f ‖Ξ0, a, b) � 0 such that the global estimate(3.15)holds.

Proof of Lemma 4.3. First, fork � 0, we haveΛk(y, y ′) � −yα+k(y ′)β and thus

d

dt
Mk � Ck,1M1+γ+k − 1

2
Mα+kMβ � C1M

θ1
k − C2M

θ2
k , (4.9)

with θ1 ∈ [0,1), θ2 � 1, Ci > 0, where we have used the Holder inequalitiesM1+γ+k � M
1−θ1
k M

θ1
max(1+γ+k,λ),

Mk � M
1−θ1
1 M

θ1
α+k and the fact thatMβ andMmax(1+γ+k,λ) can be bounded using to Lemma 4.2. Estimates (3

and (3.16) withΞ = L̇1
k follow from (4.9) and Lemma 3.3.

We now prove theLp estimate. On the one hand, we have

〈
C(f ),f p−1〉 = ∞∫

0

∞∫
0

yα(y ′)βff ′((f ′′)p−1 − f p−1 − (f ′)p−1)dy dy ′

�
∞∫

0

∞∫
0

fyα(y ′)β
(

(f ′)p

p
+ (f ′′)p

p′

)
dy dy ′ − Mβ

∞∫
0

f pyα dy − Mα

∞∫
0

(f ′)p(y ′)β dy ′

� 1

p′

∞∫
0

∞∫
0

fyα(f ′)p
[
(y ′ − y)β1y ′>y − (y ′)β

]
dy dy ′ − Mβ

∞∫
0

f pyα dy

� −Mβ

∞∫
0

f pyα dy,

where we have used the Young inequality and the change of variables(y, y ′) → (y, y ′′ = y + y ′). On the other
hand, we have

〈Lf,f p−1〉 =
∞∫

fyγ

y∫
B(y ′/y)

[
(f ′)p−1 − y ′

y
f p

]
dy ′ dy
0 0
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� ‖B‖L∞Mγ

∞∫
0

f p−1 dy − ‖B‖L̇1
1

∞∫
0

f pyγ+1 dy.

Putting together these two bounds and noticing thatα � 0 � γ + 1 and that

∞∫
0

f p−1 dy �
( ∞∫

0

f dy

) 1
p−1

( ∞∫
0

f p dy

) p−2
p−1

(Holder’s inequality), we obtain

d

dt

∞∫
0

f p

p
dy = 〈

C(f ),f p−1〉 + 〈Lf,f p−1〉

� ‖B‖L∞Mγ M
1

p−1
0

( ∞∫
0

f p dy

)p−2
p−1

− min
(‖B‖L̇1

1
,Mβ

) ∞∫
0

f p dy.

Notice thatM0 andMγ have been bounded by above in the preceding step or in Lemma 4.2 (becauseB ∈ L∞

impliesB ∈ Ṁ1
min(γ ,0)) and thatMβ may be bounded by below in the following wayMβ � M

2−β
1 M

β−1
2 using the

Holder inequality and Lemma 4.2 in order to estimate (by above)M2. Finally, we conclude that (3.15) holds fo
Ξ = Lp thanks to the Gronwall’s Lemma 3.3.�
Remark 4.4.Lemma 4.3 extends to the coagulation–fragmentation model a uniformLp a priori bound which was
already known to be true for the coagulation equation [34,42].

Proof of Theorem 4.1. Point 2.Consider the truncated fragmentation kernel (3.22) and the truncated coagulati
kernel:

an(y, y ′) := (yn)α(y ′
n)

β + (y ′n)α(yn)
β, yn = min(y,n), yn = max(y,1/n),

we may easily proceed as in the proof of Theorem 3.1 and conclude to the existence of a unique solution to
Cauchy problem owning the properties as stated in Theorem 4.1 2. We refer again to [34,33,22,36] for more

Proof of Theorem 4.1. Point 1.Assume first (1.5), (1.6), (1.8), (4.2), (4.3) and let denote byS the semigroup asso
ciated to the coagulation–fragmentationequation. Then,S :Y → Y and, for well chosen constantsµk , S :Ak → Ak

where

Ak := {
f ∈ L1, M1(f ) = ρ, ‖f ‖L2 � µ0, ‖f ‖L̇1

2α
∩L̇1

k
� µk

} ∀k � max(γ + 1,2).

Next, for any integer� � 2 we defineZ� = ⋂
k=2,...,�Ak , so thatS :Z� → Z� and(Z�) is a decreasing sequen

of sets. Following step by step the proof of Theorem 3.1, we prove the existence of a stationary solutionFρ,� ∈Z�

to the coagulation–fragmentation equation, that isQ(Fρ,�) = 0 for any integer� � 2. By compactness, there exis
a subsequence(Fρ,�n ) of (Fρ,�) and a functionFρ of massρ, such thatFρ,�n ⇀ Fρ weakly in anyZm whenn

goes to∞, for any integerm � 2. We conclude thatFρ satisfies the properties stated in Theorem 4.1 thanks t
stability principle Theorem 2.7.

Suppose finally that we do not make the assumption (4.3). By regularisation, we may find a sequence(Bε) such
thatBε ∈ L∞ andBε ⇀ B weakly inṀ1

m. Using the preceding step, we infer that, for anyρ > 0 andε > 0, there
exists a stationary solutionFε

ρ ∈ Z∞ to the regularized coagulation–fragmentation equation, that isQε(F
ε
ρ ) = 0,

M1(F
ε
ρ ) = ρ. From Lemmas 4.2 and 4.3, the sequence(F ε

ρ ) is bounded inXk for anyk � 2 − β , and therefore
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there existsFρ ∈ X∞ and a subsequence(F ε′
ρ ) such thatFε′

ρ ⇀ Fρ weakly inXk for any integerk � 2. Again, we
conclude thatFρ is a weak stationary solution with massρ to the coagulation–fragmentation equation thank
the stability principle Theorem 2.7.�

5. Self-similarity for the coagulation equation

We consider in this section the coagulation equation

∂tf = C(f ), f (0, .) = fin, (5.1)

where the coagulation operator is given by (1.7) and the homogeneous coagulation frequency is given by (1.8)
make the additional assumption

β < 1. (5.2)

Our main result is the existence of mass preserving self-similar solutions to the coagulation equation
any given massρ > 0. Since the solutions to the coagulation equation (5.1) with subcritical coagulation frequenc
(1.8) are known to conserve the massM1(f ) of the solution for all time (see for instance [37,23]), we look fo
self-similar solutionf of the form (3.4) withg ∈ L̇1

1.
On the one hand,f satisfies (3.5) and (3.6). On the other hand, after the change of variablesy ′ → y∗ := tνy ′

and using the scaling propertya(τy, τy∗) = τλa(y, y∗), we obtain

C(f )(t, y) = t4ν

2

y∫
0

a(y ′, y − y ′)g
(
tν(y − y ′)

)
g(tνy ′) dy ′ − t4ν

∞∫
0

ag(tνy ′)g(tνy) dy ′

= t3ν

2

t νy∫
0

a(t−νy∗, y − t−νy∗)g(tνy − y∗)g∗ dy∗ − t3ν

∞∫
0

a(y, t−νy∗)g∗g(tνy) dy∗

= t3ν−λν

2

t νy∫
0

a(y∗, tνy − y∗)g(tνy − y∗)g∗ dy∗ − t3ν−λν

∞∫
0

a(tνy, y∗)g∗g(tνy) dy∗

= t3ν−λνC(g)(z),

where we have setz := ytν . If we choose 3ν− λν = 2ν − 1, or equivalently,

ν := − 1

1− λ
< 0, (5.3)

the self-similar profileg satisfies the homogeneous self-similar profile coagulation equation

Dg(z) + (1− λ)C(g)(z) = 0. (5.4)

A self-similar profile is therefore a stationary solution of the “self-similar coagulation” evolution equation

∂tg = Dg + (1− λ)C(g). (5.5)

Theorem 5.1.1. Supposeα = 0. Then, for anyρ > 0 there exists at least one self-similar profileFρ ∈ X∞, dual
weak solution of the coagulation equation(5.1), (1.8), (5.2)such thatM1(Fρ) = ρ, where

X∞ :=
⋂

Xk, Xk = Ṁ1
k ∩ Ṁ1

λ. (5.6)

k�2−β
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2. Supposeα < 0. Then, for anyρ > 0 there exists at least one self-similar profileFρ ∈ X∞, dual weak and
mild solution of the coagulation equation(5.1), (1.8), (5.2)such thatM1(Fρ) = ρ, where

X∞ :=
⋂

k�2−β

Xk, Xk := Ṁ1
k ∩ Ṁ1−k. (5.7)

3. For anyfin ∈ Y := L̇1
2α ∩ L̇1

max(2β,2−β), there exists a unique solutionf ∈ C([0, T ); L̇1
1) ∩ L∞(0, T ;Y ) to

the coagulation equation(5.1), (1.8), (5.2). Moreover, the associated function “in rescaled variables”g, defined
by (1.19), is a solution to the self-similar coagulation equation(5.5)and satisfies(

g(t)
)
t�1 is uniformly bounded inXk ∀k � 2− β. (5.8)

The main idea of the proof is to obtain Theorem 5.1 from Theorem 4.1 using a singular perturbation limi
precisely using aFokker–Planck like asymptoticof the coagulation–fragmentation model.

Proof of Theorem 5.1. Point 1.First notice that, by a simple homogeneity argument, a solutiong of the “evolution
self-similar coagulation” equation (5.5) satisfies the a priori bounds established in Lemmas 4.2 and 4.3 for
solution of the coagulation fragmentation equation (4.1) with fragmentation rateγ = −1. Namely, for anygin ∈
Ξ0 ∩ L̇1

k , k > 2− β , Ξ0 := L̇1
λ ∩ L̇1

2−β , and for anyτ � 0, there existsντ := ντ (‖gin‖Ξ0, a, k, τ ) such that

sup
t�0

∥∥g(t, .)
∥∥

Xk
� max

(
ν0,‖gin‖Xk

)
and sup

t�τ

∥∥g(t, .)
∥∥

Xk
� ντ for τ > 0. (5.9)

Let us introduce now the fragmentation kernelLε , associated to the kernelbε, defined by

bε(y, y ′) := y−1Bε(y
′/y), Bε(z) := 2ε−211−ε<z<1. (5.10)

A straightforward computation shows that, for allk ∈ R,

L∗
εy

k = (1− k)yk + ykO(ε), asε → 0. (5.11)

For anyε > 0, let then considerGε ∈ X∞ the stationary solution to the coagulation–fragmentation equation

∂tgε = C(gε) + Lεgε, (5.12)

such thatM1(Gε) = ρ. The existence ofGε has been established in Theorem 4.1. Due to the form of (5.11
easily see that the estimates (5.9) hold for(gε), uniformly with respect toε > 0. That implies (one has to com
back to how it has been established the existence ofGε in the proof of Theorem 4.1) that

(Gε) is bounded inXk for anyk � 2− β. (5.13)

By compactness, there exists a subsequence(Gεk ) and a measureG ∈ X∞ such thatM1(G) = ρ andGεk ⇀ G

weakly inXk for anyk � 2−β . On the one hand, thanks to Theorem 2.7 we may pass to the limit in the coagu
kernel and then, for anyφ ∈ C2

c ,〈
C(Gεk ),φ

〉 → 〈
C(G),φ

〉
whenk → ∞, (5.14)

where〈C(G),φ〉 stands for the dual formulation of the coagulation kernel which makes sense becauseG ∈ M1
λ ∩

M1
2−β .

On the other hand, for anyφ ∈ C2
c (0,∞), we have

〈LεGε,φ〉 = 〈Gε,L
∗
εφ〉, L∗

εφ =
y∫

0

bε(y, y ′)
(

φ′ − y ′

y
φ

)
dy ′.

By Taylor expansionφ(y ′) = φ(y) + (y ′ − y)φy(y) + (y ′ − y)2φyy(ζ )/2 for someζ = ζ(y, y ′) > 0, so that
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L∗
εφ =

y∫
0

bε(y, y ′)
y

[
(y − y ′)φ + (y ′ − y)yφy(y) + y

(y ′ − y)2

2
φyy(ζ )

]
dy ′

= φ(y)Sε(y) − yφy(y)Sε(y) + Tε

with

Sε(y) :=
y∫

0

bε(y, y ′)(1− y ′/y) dy ′ = yγ+1

1∫
0

Bε(σ)(1− σ) dσ = 1

and

Tε(y) :=
y∫

0

bε(y, y ′) (y
′ − y ′)2

2
φyy(ζ ) dy ′ � yγ+3‖φyy‖L∞

1∫
0

Bε(z)(1− z)2 dz =O(ε)yγ+3.

As a conclusion,

L∗
εφ → φ − yφy uniformly in (0,∞),

and therefore

〈LεkGεk ,φ〉 = 〈Gεk ,L
∗
εk

φ〉 → 〈G,φ − yφy〉 = 〈DG,φ〉. (5.15)

Using (5.14) and (5.15) we can pass to the limit in the stationary equation associated to Eq. (5.12), and w
thatG is a dual solution to the self-similar profile coagulation equation (5.4).

Proof of Theorem 5.1. Point 2.First notice that, for the coagulation equation (5.1), the a priori estimates ar

sup
t�0

‖f ‖L2 � ‖fin‖L2 and sup
t∈[0,T ]

‖f ‖L1
1∩Xk

� CT (5.16)

for a constantCT = CT (‖fin‖L1
k
, a, b, k) for anyT > 0 and anyk � λ. See [34,42] for the former and just cop

the proof of Lemma 4.2 for the last ones. A first consequence is that for any givenfin ∈ L∞ with compact suppor
included in(0,∞), one may build a solutionf ∈ C([0,∞);Y ) satisfying (5.16), see [36], which is unique than
to Theorem 2.9. A second consequence is that the solutiong in self-similar variables associated tof satisfies the
local analogy to the estimates (5.16). That is enough (because of the regularity ofg) to compute once again in
rigorous way the formal derivative of the estimates stated in Lemma 4.2. Thereforeg satisfies (5.8).

Now, for a givenfin ∈ Y , we approximate it by the sequence(f ε
in) defined byf ε

in := min(fin, ε−1)1[ε,ε−1]. The
associated solutionsf ε, gε ∈ C([0,∞);L1(Y )) satisfy the conclusion of Theorem 5.1 with uniform bound w
respect toε > 0 thanks to the previous step, and they are Cauchy sequences thanks to the uniqueness The
We conclude, passing to the limitε → 0. �
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Appendix A. From fragmentation mechanism to fragmentation operator

The aim of this section is to present a simple derivation of the fragmentation operator (1.4) from a more i
and precise description of the fragmentation mechanism. Let us then consider a system of many particles whic
only characterized by their sizes. We denote by{y} any particle of sizey ∈ (0,∞). A linear fragmentation reactio
is a microscopic event in which a single particle{y} breaks a part in a family of smaller particles in such a way
the total size is conserved. Schematically, it can be written as

{y} ν−→ {Y }, (A.1)

whereY = (yi)i∈N∗ is one of the possible sequence of daughter fragments which stem from{y} and satisfies

y1 � · · · � yi � yi+1 � · · · � 0 and y=
∞∑
i=1

yi, (A.2)

and ν = ν(y, dY ) is a measure onS↓(y), the set of all sequencesY such that (A.2) holds. It accounts for th
probability of getting a particular sequence of fragments{Y } as the result of the fragmentation of{y}.

At the (larger) mesoscopic level, the system of particles is described by the concentration densityf (t, y) � 0
of particles of sizey ∈ (0,∞) at time t . The evolution of the system which undergoes the only fragmenta
microscopic mechanism may then be written as

∂f

∂t
(t, y) = Lf (t, .)(y),

where(Lf )(y) is the infinitesimal fragmentation operator which accounts for the creation-annihilation of pa
of sizey due to fragmentation. The fragmentation operator splits into two terms

Lf = L+f −L−f,

where thegain term(L+f )(y) accounts for all fragmentation events which give rise to a particle of sizey ∈ (0,∞),
while theloss term(L−f )(y) counts all possible fragmentation of a particle of sizey ∈ (0,∞). Let us introduce
νi theith marginal measure ofν, which is defined by

∀φ ∈ Cb

(
(0,∞)

) ∞∫
0

φ(y ′) νi(y, dy ′) =
∫

S↓(y)

φ(yi) ν(y;dY ).

The meaning ofνi is the following. For anyy, y ′ ∈ (0,∞), νi(y;dy ′) stands for the rate of creation of a daugh
particle {y ′} as theith fragment (with decreasing order) of the particle{y} or, in other words,yi = y ′, where
Y = (yi)i�1 is the sequence of daughter fragments defined in (A.1)–(A.2).

The infinitesimal fragmentation operator is then given by

(Lf )(y) :=
∞∑

j=1

∞∫
0

f ′′νj (y
′′;dy) dy ′′ − f (y)

∫
S↓(y)

ν(y;dY ). (A.3)

We introduce nowb, the rate of creation of a particle{y ′} as a fragment of the particle{y} given by

b(y, dy ′) :=
∞∑

j=1

νj (y, dy ′).

Notice that
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ly
y

∫
S↓(y)

ν(y, dY ) =
∫

S↓(y)

( ∞∑
j=1

yj

)
ν(y, dY ) =

∞∑
j=1

∫
S↓(y)

yj ν(y, dY )

=
∞∑

j=1

∞∫
0

y ′ νj (y, dy ′) =
∞∫

0

y ′
( ∞∑

j=1

νj (y, dy ′)
)

=
∞∫

0

y ′b(y, dy ′),

from where we obtain

(Lf )(y) =
∞∫

0

f ′′b(y ′′;dy) dy ′′ − f (y)

∞∫
0

y ′

y
b(y, dy ′). (A.4)

Since we have the evident support condition suppb(y, .) ⊂ [0, y] for anyy > 0, we have thus obtained precise
the expression ofL given in (1.4).

On the other hand, for any test functionφ ∈ Cb((0,∞)), there holds
∞∫

0

φ(y)

∞∑
j=1

∞∫
0

f ′′ νj (y
′′;dy) dy ′′ =

∞∑
j=1

∞∫
0

∞∫
0

φ(y ′)f (y) νj (y;dy ′) dy

=
∞∑

j=1

∞∫
0

∫
S↓(y)

φ(yi) ν(y;dY )f (y) dy

and there also holds
∞∫

0

φ(y)f (y)

∫
S↓(y)

ν(y;dY ) dy =
∞∑

j=1

∞∫
0

∫
S↓(y)

yi

y
ν(y;dY )φ(y) f (y) dy.

We obtain therefore the following expression for the dual formulation of the fragmentation operator

〈Lf,φ〉 = 〈f,L∗φ〉,
with

L∗φ :=
∫

S↓(y)

∞∑
j=1

(
φ(yi) − yi

y
φ(y)

)
ν(y;dY ).

In particular, for a self-similar fragmentation rateν in the sense of [9], that isν(y, dY ) = τ (y)µ(dS) with
S = Y/y andτ (y) = yα , α ∈ R, or more precisely, such that:

∀φ ∈ Cb(R
N)

∫
S↓(y)

φ(Y )ν(y, dY ) = τ (y)

∫
S↓(1)

φ(yS)µ(dS),

we recover the fragmentation operator expression of [9,29]

L∗φ := τ (y)

∫
S↓(1)

∞∑
j=1

(
φ(ysi) − sj φ(y)

)
µ(dS).

Our final aim is to make a link between the general formalism presented here with the (most usual)binary
fragmentation mechanism. A binary fragmentation mechanism is describe by (A.1)–(A.2) where the measureν

satisfies

suppν(y, .) ⊂ S↓
(y)
2
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with S↓
2 (y) := {Y = (yk)k�1 ∈ S↓; yk = 0 ∀k � 3} ≈ {(y1, y2) ∈ R+, y1 + y2 = y}. For any test functionφ ∈

C([0, y]), there holds

y∫
0

ν1(y, y ′)φ′ dy ′ =
∫

S↓(y)

φ(y2) ν(y, dY ) =
∫

S↓(y)

φ(y2)1Y∈S↓
2
ν(y, dY )

=
∫

S↓(y)

φ(y − y1) ν(y, dY ) =
y∫

0

φ(y − y ′) ν2(y, y ′) dy ′

=
y∫

0

φ(y ′) ν2(y, y − y ′) dy ′.

This implies the main fundamental symmetry property

ν1(y, y ′) = ν2(y, y − y ′) ∀y ′ ∈ [0, y]. (A.5)

One can also show thatν is such that

suppν1(y, .) ⊂ [y/2, y], suppν2(y, .) ⊂ [0, y/2], and νk ≡ 0 ∀k � 3.

Let define, as before,

b(y, y ′) :=
∞∑

j=1

νj (y, y ′) = ν1(y, y ′) + ν2(y, y ′).

We observe that, thanks to (A.5)b enjoys the symmetry property

b(y, y − y ′) = ν1(y, y − y ′) + ν2(y, y − y ′) = ν2(y, y ′) + ν1(y, y ′) = b(y, y ′). (A.6)

We finally introduce

β(y, y ′) = b(y + y ′, y),

the rate of formation of a pair of particles of size(y ′, y) as the breakage result of a particle of sizey + y ′. We
deduce from (A.6) thatβ enjoys the symmetry property

β(y, y ′) = β(y ′, y). (A.7)

Puttingβ in (A.4), we find

(Lf )(y) =
∞∫

y

f ′′β(y, y ′′ − y) dy ′′ − f (y)

y∫
0

y ′

y
β(y ′, y − y ′) dy ′. (A.8)

Making the change of variablesy ′ → y − y ′ and using the symmetry property (A.7), we observe that
y∫

0

y ′

y
β(y ′, y − y ′) dy ′ =

y∫
0

y − y ′

y
β(y − y ′, y ′) dy ′,

from which we deduce
y∫

y ′

y
β(y ′, y − y ′) dy ′ = 1

2

y∫
β(y − y ′, y ′) dy ′. (A.9)
0 0



124 M. Escobedo et al. / Ann. I. H. Poincaré – AN 22 (2005) 99–125

mely

-

de

ion equa-

in

nn.

ns,

(2)

i-

hys. Rev.

93.

rnational

96)

7–

Differ-

.

, in:

ion
(3)

994)

95)
Gathering (A.8) and (A.9), we then recover the usual expression for the binary fragmentation operator, na

(Lf )(y) =
∞∫

y

f ′′β(y, y ′′ − y) dy ′′ − 1

2

y∫
0

β(y ′, y − y ′) dy ′ f (y).
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