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Abstract

The purpose of this work is to study the quasi-neutral limit of a viscous capillary model of plasma expressed as a so-called
Navier—Stokes—Poisson—Korteweg model. The existence of global weak solutions for a given Deby# Iergditained in a
periodic box domain Yora strip domain #x(0,1). The convergence whengoes to zero to solutions to the compressible
capillary Navier-Stokes equations, in the tors flirns out to be global in time in energy norm.
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Résumé

Le but de ce travail est d'étudier la limite quasi-neutre d'un modéle de plasma que 'on désignera comme le modéele de
Navier—Stokes—Poisson—Korteweg. L'existence de solutions globales faibles, pour une longueur de fidéleyest obtenue
dans un domaine périodiqué Bu un domaine de type bandé X (0, 1). La convergence quardtend vers O vers les solutions

des équations de Navier—Stokes capillaires compressibles, dans 1€ texst Alors globale en temps.
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1. Introduction

For the description of physical phenomena in plasmas and semiconductors, hydrodynamical models are widely
used, see [9]. In the inviscid situation, the Euler—Paissgstem has been extensively studied (see [6,7]). Local
in time existence and convergence results in the quasi-neutral limit in one space dimension have been obtaine
for instance in [4] by using pseudo-differential techniguehenever the hole density depends on the electrostatic
potential. They assume that thetial density is bounded and bounded away from zero by a positive constant. Re-
cently in [10], the quasi-neutral limit fsolutions of the nonstationary mutlimensional Euler—Poisson equations
has been also justified in a periodic domaihwhen the hole density for semiconductors or the ion density for
plasma is a given function. In particular, when the hole density is constant, the limit electron velocity and electro-
static potential satisfy the classical incompressible Euler equations. Similar upper and lower bounds on the initial
density are assumed.

We are interested here in the quasi-neutral limit for the 3D isothermal Navier—Stokes—Poisson system for a
nonmagnetic plasma consisting of two species of charged particles: simply chargedigustons with positive
charge and electronswith negative charge. We use a fluid description for ions, dengtiagdu respectively the
ions density and velocity. lons and electrons interact through the electrostatic pateBfiettrons are assumed to
be thermalized and follow a nondimensional Maxwell-Boltzmann distribysioa= exp¢ connecting the scaled
electron density, and potentiadp. Moreover, surface tension is taken into account through a Korteweg type model
of capillarity. Let us finally emphasizbat the initial density is not assumed to be bounded from below by a positive
constant.

In nondimensional form, the dynamics is described by the following Navier—Stokes—Poisson—Korteweg (NSPK)
system with Reynolds number?, Weber numbes and dimensionless Debye lengdth

3 (pu) + div(ou ® u) = =V p(p) — B2pVe + div(20vD(u) 4+ K) — au, @
Kij=%(A/>2— IVp|%)8i; — ad;pd;p, )

where p(p) denotes the pressur®,(u);; = (d;u; + d;u;)/2 the strain tensor, an& the capillarity tensor. Let
us observe that diK = ocpVAp, and that the contribution of capillary effects to energy will be proportional
to o|Vp|2/2 (see [1,2]). The dimensionless coefficightdefined as the ratio between the thermal velocity of
electrons and the ions velocity is assumed of order one. The presence of a positive damping ceeffacsestme
importance when dealing with the stability of solutions for small densities. It allows us to prove the existence of
global weak solutions of the systems (NSK) and (NSPK) as in [2]. Whsrallowed to be nonnegative, as in [1],
the classical definition of weak solutions has to be shgbhanged. We choose tesirictions for the momentum
equations which are somehow supported on the sets of pogitiBasically, the idea is to consider test functions
of the form pg in the momentum equations, whesds smooth in space and time. Indeed, in the complement of
the set of vanishing, the space of regularity of the density allows to recover the usual momentum equations. In
other words, this technical point reduces to multiplying the momentum equatiomsbgl consider the obtained
equation in the sense of distributions.

The pressure functiop will be related to the density by a general barotropic constitutive law

p=p(p), peCl0,00), p(0)=0. (5)

Let us stress that the pressure does not need to be monotasidrirparticular, nuclear plasmas of protons and
electrons can be considered (see [5] and [8] for physical motivations).

We are mainly interested in the formal limit— O of the above system, where@so andv remain constant.
By letting A go to zero in (3) we get first the limit relatiof= log o, which by using (1), (2) and (4) formally yields
the following limit system
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d (pu) + div(pu ® u) = -V (p(p) + :sze(,o)) +div(20vD(u) + K) — au, @)
Kij:%(APZ— IVpI?)8i; — o d;pd;p, (8)

wherep,. (p) := p is the (isothermal) pressure of the electronic gas.

Our aim is to justify the formal convergence of solutions to the Navier—Stokes—Poisson—Korteweg system (1)—
(4) to solutions of the limit Navier—Stokes—Korteweg system (6)—(8) also called (NSK). We are only able to prove
the convergence on weak solutions defined as in [1] that means multiplying the momentum equati@ve byf
a > 0. To our knowledge, this is the first asymptotic result with a possibly vanishing density. As we shall see, the
convergence ofexpg; );-o to p is strong inL2((0, T) x £2) for all positiveT with a rate of convergence at least
of ordera.

In the last section, we discuss the difficultidsdealing with boundaries looking at a strip domain= T2 x
(0, 1) with boundary conditions for the potential o8 % {0} and T x {1}. A mathematical proof of convergence
is far from being given.

2. Weak formulation and main existence results

This section is devoted to the detailed mathematical setting of the problem. The geometry of the domain, the
boundary and initial conditions are given as well as tbéirition of weak solutions considered throughout the
following sections. The existence of global weak solutions is derived from an estimate using the particular expres-
sion of the viscous tensor in which the dynamic viscogityaries as a linear function of the density= pv. It
has been used in [1] in the case of Korteweg type fluid models in two or three dimensions, and in [2] in the study
of the viscous shallow water model, which writes as a 2D compressible barotropic Navier—Stokes equations with
degenerate viscosity tensor. Damping effects expressed as linear or nonlinear functiovawhlly arise in the
derivation of the Shallow Water model from the bottéimtion boundary conditions ithe underlying free surface
3D Navier—Stokes model. Such friction forces allowotgercome the degeneracy of the momentum equations in
which every other term is multiplied by the densijtyAs a result, friction forces are considered in (1)—(4) for the
same purpose as in the Shallow Water model.

The three dimensional space domain is assurndzbteither a box with periodic boundary conditior’s @r a
strip £2 = T2 x (0, 1), which means that periodic boungiaconditions are considered i, y) variables. On the
boundaryd 2 = T? x {z = 0} U T2 x {z = 1}, we assume that

u-n=20, (D(u) - n)tan=0, opp=0, onas

Plz=1= o1, }z=0 = ¢o, 9)
for some prescribed constant potentiglsand¢o. The notationfian on the boundarg 2 denotes for any vector
field f the tangential parfian= f — (f - n)n, n denoting the outward normal ¥2. As usual in such nonhomo-

geneous boundary conditions, werbduce a lifting potentiab given by (z) = z¢1 + (1 — z)¢o.
The initial state of the system will be given by the initial dengigyand momentunm:

P|t=0 = 00, pUl|;=0 = Mo, (10)

where we agree thaig=0o0n {x € £2 / po(x) = 0}.
We now give a precise formulation of our results. Formally multiplying (2)bintegrating by parts, making
use of the continuity equation (1) and of the Poisson equation (3) yields the energy inequality
dE (1)
dr

+/(a|u|2+2puD(u):D(u))(z,x)dxgo, (11)
2



4 D. Bresch et al. / Ann. I. H. Poincaré — AN 22 (2005) 1-9

where

1. 2 oo 2, WP T2 @2 2 end L B2
E(f)Z/(EPM +P(,0)+§|V,0| +T|V(¢—¢)| +B°F(p—¢)expp + B p¢)(t,x)dx, (12)
2
where
0 v
P(p):p/%ds and F(I//):/'Cer dr = (¢ — 1) expy. (13)
1 1

In particular, as soon as the initial data satigf{0)) < oo, one has the global estimate SUPL (1) < E(0), which
provides globah priori bounds for solutions of the above system. We are now able to state the definition of weak
solutions

Definition 2.1. Let @ > 0 andpg, mg such thatt (0) < +oco. We shall say thatp, u) is a global weak solution of
(NSKP) ifforall T > 0,

e P(p) and F(¢) belong toL>(0, T; L1(£2)); /pu, Vp, andV¢ belong toL>(0, T; L2(£2)); finally, « and
J/PD(u) belong toL?(0, T; L2(£2)),

e (1) holds in the sense of distributions,

e forallve (C®((0, T) x £2))3, compactly supported ifd, T') x 2, one has

T
/mo - povo dx +//(p2u -0V + pu ® pu: D) — ,02u -vdivu
2 0 Q
—apu-v—+ E(p)dive — ,BZpZqu -v—2vpD(u):pD)
—vpDu):vQ® Vp —op?Apdive — 20p(v - V,o)A,o) dx dr =0, (14)
where

E(s):/tP’(r)dt,
1
o finally, for all v € C*°((0, T) x £2) compactly supported ifD, ) x £2, one has

T
/ /(A2V¢ -V + 1 expp — pyr) dx dr = 0. (15)
0 Q

Similarly, energy—based analysis can be achieved for the limit system (NSK). Indeed, the energy of (NSK) is
obtained by multiplying Eg. (7) by and integrating by parts. Then, the energy estimate (11) still hald$ being
replaced byE (¢), where

— 1
E(t) = /(Epwz + P(p) + B2plogp + %sz) (t,x) dx. (16)
2

Weak solutions can be defined similarly as in Definition 2.1 where the conditions involving the pogeatial
ignored.

The global existence of weak solutions for the limit system (NSK) in the sense of Definition 2.1 was obtained in
[1] without damping(e = 0). When the damping is positive, the velocityy makes sense by itself independently
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of the densityp sinceu belongs taL.2(0, T'; (L2(52))3), so that existence of global weak solutions can be obtained

in the classical sense of weak solutions (without multiplying the momentum equation by the density asitisin 2.1)
(see [2] for details). The main idea introduced in [2] and [1] is to look for a Lyapunov functional that provides
additionala priori bounds. More precisely, such a functional is formally obtained by multiplying the momentum
equations (7) by logp and deriving an evolution equation on,/p from the mass conservation equation (6).

The particular structure of the viscosity tensor — which is degenerate with respect to the density — allows to get the
following estimate

1
/(8vp’(p)|Vﬁ|2+2vo|V2p|2) dx—i—%/(—Zvalogp—i— §|u+2vV|ng|2) dx
2 2

1d
:EE/p|u|2dx+/2vqu:’Vudxé/vaD(u):D(u)dx, a7
2 2 2

which gives parabolic estimates on the dengity L2(0, T'; H2(£2)) by using the energy estimate (11) and allows
to pass to the limit in the quadratic termsV¥ip when proving the existence of solutions.

Theorem 2.2.Assume that the initial datgog, mo) are taken in such a way tha (0) < +oo and that the initial
densitypg satisfies

Vpo€e L), and —log_poe L(£2). (18)

Then, there exists two global weak solution$N&K) in the sens€.1such that in additiorp € L2(0, T; H2(£2)),
VP € (L™, T; L3(£2))3

Let us recall that such an extagoriori bound holds because the boundafy has no curvature. If the boundary
has some nonzero curvature, some boundary integratetidisappear in the calculan when multiplying the
momentum equation by p/p and we are not able to control them. For more details on difficulties associated with
boundary conditions, we refer to [1] and [2].

In the case of (NSKP) model, the procedure to derive the Lyapunov functional can be easily adapted. As a mattel
of fact, the presence of the extra tee$2p V¢ in the right hand side of the momentum equations generates on the
left hand side of (17)

\Y
/ oV - ~L dx (19)
0
2
which for given parametex is estimated by

[V @) w2l Vo | 12gaye:

uniformly controlled in time in view of energy estimates (11). The compactness of the predycts a conse-
quence of the strong compactnesgah L2((0, T) x £2) and of the weakKL?((0, T) x £2))° compactness & ¢.
It follows that global existence of weak solutions for a giveis an easy corollary of the results of [1,2].

Theorem 2.3.Assume that the initial datgog, mg) are taken in such a way tha(0) < +oo and that the initial
densitypg satisfies
Vpo € (L3(2))3, and —log_poe L1 (). (20)

Then, there exists two global weak solutionéN&PK) in the sens€.1such that in additiop € L2(0, T; H3(£2)),
VP € (L*®(O, T; L3(£2)))3.
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Let us recall that log is defined orR;} by log_(s) = logmin(1, s).

We now wish to study the behavior of weak solutions to (NSPK) when the renormalized Debyeldpgtis
to zero. The problem is the control of the tep® ¢ whenp tends to 0. We are able now to prove the convergence
of solutions in the sense 2.1 of (NSPK) to weak solutions of (NSK). Definition 2.1 is a technical mathematical
restriction on the set where the density vanishes, the physical meaning being fully preserved: as a matter of fact
the relevance of the compressible fluid equations in the close neighborhpod@®}) is questionable.

3. Convergence in the quasineutral limit in a torus

We now consider a sequence of global weak soluti@nsu; , ¢,) of (NSPK) in the sense of Definition 2.1 and
intend to prove a convergence result in suitable energy norms to global weak solutions of (NSK).

The multiplication of the momentum equations pyn Definition 2.2 of weak solutions allows to control the
nonlinear products in regions whepg is close to 0, which in fact correspond to regions whgréends to—oo.
In previous works related to the asymptotic analysis of the inviscid Euler—Poisson equations, this kind of problem
is avoided since the convergence is only local in timd e initial density is assumed to be bounded from below
by a positive constant.

Here, we prove the following result

Theorem 3.1.Let(p,, u,, ¢,.),>0 be a sequence of global weak solutiongeEPK) in the sense of Definitiop. 1,
uniformly bounded in energy norgk; (0) < C, ||V /poll(12(e)3 < C and |/log_ poll 1 < C for some positive
constantC) with p; in L2(0, T; H?(£2)) and /p, in L>(0, T; L?(52)) uniformly with respect ta.. There exists
a subsequenag;,, u;, ¢, ) and a global weak solutiofp, ) of (NSK) in the sense of Definitio.1 such that

5. — expg,. — 0 in L2((0, T) x £2), (21)
P2V, — pVp in (D'((0,T) x 2))°, (22)
p.— p inL?0,T; H'(2)) fors <2, (23)
paur — pu in (L2(0, T; L2(£2)))°, (24)
Vpruy — /pu in (L>(0,T; LZ(Q)))3 weak, (25)
SOV, — JpVu in (L2(0, T; L%(£2)))° weak (26)

Proof. Uniform bounds are provided by estimate (11) as soon as the initial edgr@y is uniformly bounded
in A. All the convergences except the first two ones have bemregrin [1] and are preserved in the present analysis
since they derive from uniform estimates with respedat.tdhe difficulty in [1] was to prove the strong convergence
of2 oy, in (L2(0, T; L2(£2)))3. Here the novelty is to show that we are able to pass to the limit in the quantity
PV Py

’ A natural idea is to look for additional bounds by corsidg the estimates obtaithdy multiplying the mo-
mentum equations by log p,.. Integrating by parts, the term involving the electrostatic force writes as

/ V(]SA . V,O)L dx.
2
Thus, using the equation satisfied by the electrostatic potential, we get

01 — EXPPy

/V¢A'V,OAdx=)»2/|A¢A|2dx+/|V¢A|26Xp¢kd)€=/ -
2 2 22

2

2
dx +4/\Vexp(¢k/2)|2dx.
2
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It follows that (p;, — expg;)/A is uniformly bounded inL2(0, T; L2(2)) and thatV exp(¢; /2) is uniformly
bounded in(L2(0, T'; L2(£2)))3. The uniform bounds op; andx;, allows us to pass to the limitin all the nonlinear
products, as in [1], except in the terms associated with electrostatic forces. In particular, we shall psedmat
verges strongly to some limjt in L2(0, T; H*($2)) for all s < 2. The nonlinear term in the momentum equations
that remains to study i,sfvm. The goal is to prove that this product convergeg%yp in (D’((0, T) x £2))3 asi
goesto O.

Stepl: convergence fop, close to0. Lete > 0 andG a nondecreasing function dd between 0 and 1 such
thatG(s) =1if s > 1 and O ifs < 1/2. DenotingH, (s) = G(s /&), we have

(1— He(p))p2Vey = (1— H. (m))m“%ex‘mwm + (1= He(p2) o2V expes. 27)

The first term of the right hand side of (27) is boundedirf ((0, T) x £2))2 uniformly by ce, by estimating the
three factors of the product respectivelyliff (0, 7) x §2), L2((0, T) x £2) andL?((0, T) x £2). The second term
of (27) may be written as

V((1— He(p2)) pr expgy) — expgi (1 — He(0n) — He(02)p3) Vi (28)

We recall thaip, — expg; tends strongly to zero i2((0, T) x §2) asi goes to 0, so that the first term of (28) is
the gradient of a function uniformly controlled i?((0, T') x £2) by ce. The second term of (28) may be written
under the form

(5. — expd) (1 — He(on) — H(p3)p2) Vi — pa(1— He (1) + H.(02) 1)V pi. (29)

The first term of (29) is estimated k& in L1((0, T) x £2), therefore controlled by for » small enough (the first
factor is bounded by in L2((0, T) x £2), the second one in®((0, T) x £2) since|p; H'(p;)| < ¢, and the last
term is bounded i.2((0, T) x £2) recalling thatp,, is uniformly bounded in.®°(0, T'; H1(£2)). The second part
of (29) if bounded byCe in L2((0, T) x £2) in view of similar and in fact simpler arguments.

As a result, we succeed in controlling(®’ ((0, T) x £2))3 by ce (for » small enough) the term

(1= He(02)) 07V 2.

Step2: convergence fop, away from0. Givene > 0 and Asmall enough, it remains to study the convergence
of the term

He (02) 07 Véhn.,
that we decompose, introducing the quanfity= (o, — expg,)/A, by
He(p2) P2V = H (1) 02V €Xpy. + He (02) 01, Z: AV ;.. (30)

(a) Study of the first partl; (py) 0.V expg, of (30).
This term can be rewritten under the form

He(01) 2.V €xpey. =V (H () px. €Xps.) — expey (05 H.(02) + He (01))V py.

Since the first term is the gradient of the product of two factors converging strongR(i0, 7) x £2) and that the
second term is the product of two factors converging stronghAic(0, T') x £2), we get the convergence

He(02) 0.V €xpgy, — He(p)pVp in (D'((0,T) x £2))° asr — 0.

Notice also thatl — H.(p))pVp is smaller thare in (L2((0, T) x £2))3 uniformly in 1.
(b) Study of the second paH(p;) 01 Z; 1V, of (30).
The goal is to prove that this term is smallfn((0, T) x £2). It can be rewritten as

He(02) 02 Z3AN §y = Kni(Z:) Zo He (p2) oo AV 5. + (1 — Kar(Z)) He (1) pr Z3 AV ¢y, (31)
whereM > 1 and Ky (s) = 1— G(s/M) is an additional truncation function.
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Study of the ternK 3, (Z;) He (0,.) 03 Z) AV ;..
In order to control the first term of (31), we write
Km(Z)Zy He (p2) pa AV ¢y = Ky (Z3) 25, He (03) pa 1y, > RAV 3,
+ Km(Z3) ZyHe (03) 0210, <RAV @;.. (32)

The first part converges to zero wh&ntends to infinity. Indeedk »(Z,)Z;. is bounded inL2((0, T) x £2)
uniformly in M andx, AV, is bounded in(L2(0, T; H1(£2)))3 and therefore inL2(0, T; L5(£2)))3. It
remains to estimatg, 1, > & in L>°(0, T; L3(£2)) as follows

1 C
||10)\(t1 ')1P)L(fs')>RHL3(_Q) < E Hp)\(ts )Hiﬁ(g) < E”p)‘”i”o(o,T;Hl(.Q))’

so that for large enougR, the first term of (32) is smaller thanuniformly in M anda in L1((0, T) x £2).
We now have to control the second part of (32)heing now given, the factors involving, can be estimated
in L®((0, T) x £2) norm. Since. V¢, is uniformly bounded ifL2((0, T) x £2))3 and in(L2(0, T; L8(£2)))3,
itis also bounded iL*(0, T'; L3(£2)))%. Then it suffices to estimatk; (Z5)Z; in L*3(0, T'; L3/?(52)) and
choose suitable constamt. We use the fact that for ajf € L2((0, T) x £2) such thatf > M with M large
enough

_2 2
I fllLro.ryx2) < cm” )/r”f”L/zr((O,T)x.Q)

forall » < 2. This gives

| Knu(Z2)2s <CMT3,

H L43(0,T;L32())

Thus the second term is smaller thaim L1((0, T) x £2) for sufficiently largeM, uniformly in A.
Study of the ternH, (p)) pp (1 — Ky (Z3)) Z; ANV ¢y,
The constan is now fixed. We recall that ifZ;| < M, i.e.

|on — expoa| < MA,
then forx small enough
lox — eXpoar| < e/2.
If in addition p, > ¢, then
expe, > &/2.
ThusH, (p,)(1 — Ky (Z3)) Z;, exp(— /2) is bounded inL>°((0, T) x £2) by M \/2/¢ and we can write
He(p2)pr(1— Kn(Z3)) ZiAV s = 2He (p2) p1 (1 — Kn(Z5)) Z;. €Xp(— 5./ 2)AV exp(¢hs/2).

Then sincep; is bounded inL2((0, T) x 2), Vexp(¢;/2) is bounded in(L2((0, T) x £2))% and (1 —
Ky (Z)))Z) exp(—¢,/2) is bounded inL*°((0, T) x £2), the second part of the right hand side of (31) is
smaller tharCx in L1((0, T) x £2).

This concludes the proof of the asymptotic analysis whesn 0. O

4. Some remarks for the strip domain case

In the case of a strip domain of the form ¥ (0, 1) with boundary conditions on the top and bottom as specified
in (9), global existence results have been derived in Theorem 2.3 for fixed parameter
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The question of the quasineutral limit— 0 in the presence of boundary data has been addressed in [3] in the
stationary case for a given density sequence bounded away from zero unifoémlipithat case, the convergence
is obtained by introducing a boundary layer profile of typical size the neighborhood of the boundary.

In the present case whan = T2 x (0, 1), the idea would be to adapt the proof related the periodic framework
and to introduce boundary layers as in [3]. Startingrfrimitial data uniformly bounded in energy space such
that the bounds (20) are also uniforminadditional bounds seem to be necessary to prove the convergence of
0.V, 1o Vp in the sense of distributiong,being a weak limit o, . Multiplying in a similar way the momentum
equations by log p,, yields the identity

\Y
/PAVQSA-%dx=/,0x8n¢xd0—/mAmdx:/pxantﬁxdG+/()»2|A¢A|2+|V¢A|29XP¢A)dx.
2 00 2 00 2

Unfortunately, very little is known about thetea boundary term: the trace of the dengifyis uniformly estimated
in L0, T; HY2(3£2)), but we are not able to control uniformly the normal derivative of the potegjjah
L0, T; H~Y2(32)), even assuming that the extra bounds in the periodic case hold.

An other way to try to control the extra term coming fraiV ¢, consists in integrating by parts in the opposite
sense to get

/V%-V,Oxdx:—/tﬁxApde-
2

2

This would give the additional boundsdgf, was bounded uniformly iiL.2(0, T'; L2(£2)). But no information is
available onp, in regions wher@;, tends to—oo. In other words, our proof failsdzause of the lack of information
on sets where; is close to 0.

As a consequence, the justification of the asymptotic behavior in this case therefore seems to be a very chal
lenging mathematical problem.
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