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Abstract

The purpose of this work is to study the quasi-neutral limit of a viscous capillary model of plasma expressed as a s
Navier–Stokes–Poisson–Korteweg model. The existence of global weak solutions for a given Debye lengthλ is obtained in a
periodic box domain T3 or a strip domain T2 × (0,1). The convergence whenλ goes to zero to solutions to the compressi
capillary Navier–Stokes equations, in the torus T3, turns out to be global in time in energy norm.

Résumé

Le but de ce travail est d’étudier la limite quasi-neutre d’un modèle de plasma que l’on désignera comme le m
Navier–Stokes–Poisson–Korteweg. L’existence de solutions globales faibles, pour une longueur de Debyeλ fixée, est obtenue
dans un domaine périodique T3 ou un domaine de type bande T2 × (0,1). La convergence quandλ tend vers 0 vers les solution
des équations de Navier–Stokes capillaires compressibles, dans le tore T3, est alors globale en temps.

MSC:35Q30

Keywords:Navier–Stokes equations; Korteweg model; Weaksolutions; Quasi-neutral limit; Boundary layers

* Corresponding author.
E-mail addresses:didier.bresch@imag.fr (D. Bresch), benoit.desjardins@cea.fr (B. Desjardins), bernard.ducomet@cea.fr (B. Duc

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2004.02.001

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



2 D. Bresch et al. / Ann. I. H. Poincaré – AN 22 (2005) 1–9

e widely
ocal
obtained
tatic
t. Re-
ns
for
lectro-
e initial

m for a

to
d

odel
sitive

NSPK)

t
nal
of

nce of
],

ns
t of
ns. In
d

nd

.
s

1. Introduction

For the description of physical phenomena in plasmas and semiconductors, hydrodynamical models ar
used, see [9]. In the inviscid situation, the Euler–Poisson system has been extensively studied (see [6,7]). L
in time existence and convergence results in the quasi-neutral limit in one space dimension have been
for instance in [4] by using pseudo-differential techniques whenever the hole density depends on the electros
potential. They assume that the initial density is bounded and bounded away from zero by a positive constan
cently in [10], the quasi-neutral limit for solutions of the nonstationary multi-dimensional Euler–Poisson equatio
has been also justified in a periodic domain T3 when the hole density for semiconductors or the ion density
plasma is a given function. In particular, when the hole density is constant, the limit electron velocity and e
static potential satisfy the classical incompressible Euler equations. Similar upper and lower bounds on th
density are assumed.

We are interested here in the quasi-neutral limit for the 3D isothermal Navier–Stokes–Poisson syste
nonmagnetic plasma consisting of two species of charged particles: simply charged ionsi or protons with positive
charge and electronse with negative charge. We use a fluid description for ions, denotingρ andu respectively the
ions density and velocity. Ions and electrons interact through the electrostatic potentialφ. Electrons are assumed
be thermalized and follow a nondimensional Maxwell–Boltzmann distributionρe := expφ connecting the scale
electron densityρe and potentialφ. Moreover, surface tension is taken into account through a Korteweg type m
of capillarity. Let us finally emphasizethat the initial density is not assumed to be bounded from below by a po
constant.

In nondimensional form, the dynamics is described by the following Navier–Stokes–Poisson–Korteweg (
system with Reynolds numberν−1, Weber numberσ and dimensionless Debye lengthλ

∂tρ + div(ρu) = 0, (1)

∂t (ρu) + div(ρu ⊗ u) = −∇p(ρ) − β2ρ∇φ + div
(
2ρνD(u) + K

) − αu, (2)

−λ2	φ = ρ − expφ, (3)

Kij = σ

2

(
	ρ2 − |∇ρ|2)δij − σ∂iρ∂jρ, (4)

wherep(ρ) denotes the pressure,D(u)ij = (∂iuj + ∂j ui)/2 the strain tensor, andK the capillarity tensor. Le
us observe that divK = σρ∇	ρ, and that the contribution of capillary effects to energy will be proportio
to σ |∇ρ|2/2 (see [1,2]). The dimensionless coefficientβ , defined as the ratio between the thermal velocity
electrons and the ions velocity is assumed of order one. The presence of a positive damping coefficientα has some
importance when dealing with the stability of solutions for small densities. It allows us to prove the existe
global weak solutions of the systems (NSK) and (NSPK) as in [2]. Whenα is allowed to be nonnegative, as in [1
the classical definition of weak solutions has to be slightly changed. We choose test functions for the momentum
equations which are somehow supported on the sets of positiveρ. Basically, the idea is to consider test functio
of the formρϕ in the momentum equations, whereϕ is smooth in space and time. Indeed, in the complemen
the set of vanishingρ, the space of regularity of the density allows to recover the usual momentum equatio
other words, this technical point reduces to multiplying the momentum equations byρ and consider the obtaine
equation in the sense of distributions.

The pressure functionp will be related to the densityρ by a general barotropic constitutive law

p = p(ρ), p ∈ C1[0,∞), p(0) = 0. (5)

Let us stress that the pressure does not need to be monotonic inρ; in particular, nuclear plasmas of protons a
electrons can be considered (see [5] and [8] for physical motivations).

We are mainly interested in the formal limitλ → 0 of the above system, whereasβ , σ andν remain constant
By lettingλ go to zero in (3) we get first the limit relationφ = logρ, which by using (1), (2) and (4) formally yield
the following limit system
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∂tρ + div(ρu) = 0, (6)

∂t (ρu) + div(ρu ⊗ u) = −∇(
p(ρ) + β2pe(ρ)

) + div
(
2ρνD(u) + K

) − αu, (7)

Kij = σ

2

(
	ρ2 − |∇ρ|2)δij − σ∂iρ∂jρ, (8)

wherepe(ρ) := ρ is the (isothermal) pressure of the electronic gas.
Our aim is to justify the formal convergence of solutions to the Navier–Stokes–Poisson–Korteweg syst

(4) to solutions of the limit Navier–Stokes–Korteweg system (6)–(8) also called (NSK). We are only able to
the convergence on weak solutions defined as in [1] that means multiplying the momentum equations byρ even if
α > 0. To our knowledge, this is the first asymptotic result with a possibly vanishing density. As we shall s
convergence of(expφλ)λ>0 to ρ is strong inL2((0, T ) × Ω) for all positiveT with a rate of convergence at lea
of orderλ.

In the last section, we discuss the difficulties of dealing with boundaries looking at a strip domainΩ = T2 ×
(0,1) with boundary conditions for the potential on T2 × {0} and T2 × {1}. A mathematical proof of convergenc
is far from being given.

2. Weak formulation and main existence results

This section is devoted to the detailed mathematical setting of the problem. The geometry of the dom
boundary and initial conditions are given as well as the definition of weak solutions considered throughout
following sections. The existence of global weak solutions is derived from an estimate using the particular
sion of the viscous tensor in which the dynamic viscosityµ varies as a linear function of the density:µ = ρν. It
has been used in [1] in the case of Korteweg type fluid models in two or three dimensions, and in [2] in th
of the viscous shallow water model, which writes as a 2D compressible barotropic Navier–Stokes equatio
degenerate viscosity tensor. Damping effects expressed as linear or nonlinear functions ofu naturally arise in the
derivation of the Shallow Water model from the bottomfriction boundary conditions inthe underlying free surfac
3D Navier–Stokes model. Such friction forces allow toovercome the degeneracy of the momentum equation
which every other term is multiplied by the densityρ. As a result, friction forces are considered in (1)–(4) for
same purpose as in the Shallow Water model.

The three dimensional space domain is assumed to be either a box with periodic boundary conditions T3, or a
strip Ω = T2 × (0,1), which means that periodic boundary conditions are considered in(x, y) variables. On the
boundary∂Ω = T2 × {z = 0} ∪ T2 × {z = 1}, we assume that

u · n = 0, (D(u) · n)tan= 0, ∂nρ = 0, on∂Ω

φ|z=1 = φ1, φ|z=0 = φ0, (9)

for some prescribed constant potentialsφ1 andφ0. The notationftan on the boundary∂Ω denotes for any vecto
field f the tangential partftan= f − (f · n)n, n denoting the outward normal to∂Ω . As usual in such nonhomo
geneous boundary conditions, we introduce a lifting potential̃φ given byφ̃(z) = zφ1 + (1− z)φ0.

The initial state of the system will be given by the initial densityρ0 and momentumm0:

ρ|t=0 = ρ0, ρu|t=0 = m0, (10)

where we agree thatm0 = 0 on {x ∈ Ω /ρ0(x) = 0}.
We now give a precise formulation of our results. Formally multiplying (2) byu, integrating by parts, makin

use of the continuity equation (1) and of the Poisson equation (3) yields the energy inequality

dE(t)

dt
+

∫ (
α|u|2 + 2ρνD(u) :D(u)

)
(t, x)dx � 0, (11)
Ω



4 D. Bresch et al. / Ann. I. H. Poincaré – AN 22 (2005) 1–9

f weak

f

SK) is

l

ined in
tly
where

E(t) =
∫
Ω

(
1

2
ρ|u|2 + P(ρ) + σ

2
|∇ρ|2 + λ2β2

2

∣∣∇(φ − φ̃)
∣∣2 + β2F(φ − φ̃)expφ̃ + β2ρφ̃

)
(t, x)dx, (12)

where

P(ρ) = ρ

ρ∫
1

p(s)

s2 ds and F(ψ) =
ψ∫

1

τ eτ dτ = (ψ − 1)expψ. (13)

In particular, as soon as the initial data satisfyE(0) < +∞, one has the global estimate supt�0 E(t) � E(0), which
provides globala priori bounds for solutions of the above system. We are now able to state the definition o
solutions

Definition 2.1. Let α � 0 andρ0, m0 such thatE(0) < +∞. We shall say that(ρ,u) is a global weak solution o
(NSKP) if for all T > 0,

• P(ρ) andF(φ) belong toL∞(0, T ;L1(Ω));
√

ρu, ∇ρ, and∇φ belong toL∞(0, T ;L2(Ω)); finally, u and√
ρD(u) belong toL2(0, T ;L2(Ω)),

• (1) holds in the sense of distributions,
• for all v ∈ (C∞((0, T ) × Ω))3, compactly supported in[0, T ) × Ω , one has

∫
Ω

m0 · ρ0v0 dx +
T∫

0

∫
Ω

(
ρ2u · ∂tv + ρu ⊗ ρu :D(v) − ρ2u · v divu

− αρu · v + Ξ(ρ)divv − β2ρ2∇φ · v − 2νρD(u) :ρD(v)

− νρD(u) :v ⊗ ∇ρ − σρ2	ρ divv − 2σρ(v · ∇ρ)	ρ
)
dx dt = 0, (14)

where

Ξ(s) =
s∫

1

τP ′(τ )dτ,

• finally, for all ψ ∈ C∞((0, T ) × Ω) compactly supported in(0, T ) × Ω , one has

T∫
0

∫
Ω

(
λ2∇φ · ∇ψ + ψ expφ − ρψ

)
dx dt = 0. (15)

Similarly, energy–based analysis can be achieved for the limit system (NSK). Indeed, the energy of (N
obtained by multiplying Eq. (7) byu and integrating by parts. Then, the energy estimate (11) still holds,E(t) being
replaced byE(t), where

E(t) =
∫
Ω

(
1

2
ρ|u|2 + P(ρ) + β2ρ logρ + σ

2
|∇ρ|2

)
(t, x)dx. (16)

Weak solutions can be defined similarly as in Definition 2.1 where the conditions involving the potentiaφ are
ignored.

The global existence of weak solutions for the limit system (NSK) in the sense of Definition 2.1 was obta
[1] without damping(α = 0). When the dampingα is positive, the velocityu makes sense by itself independen
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of the densityρ sinceu belongs toL2(0, T ; (L2(Ω))3), so that existence of global weak solutions can be obta
in the classical sense of weak solutions (without multiplying the momentum equation by the density as it is
(see [2] for details). The main idea introduced in [2] and [1] is to look for a Lyapunov functional that pro
additionala priori bounds. More precisely, such a functional is formally obtained by multiplying the mome
equations (7) by∇ logρ and deriving an evolution equation on∇√

ρ from the mass conservation equation (
The particular structure of the viscosity tensor – which is degenerate with respect to the density – allows to
following estimate

∫
Ω

(
8νp′(ρ)|∇√

ρ|2 + 2νσ |∇2ρ|2)dx + d

dt

∫
Ω

(
−2να logρ + 1

2
|u + 2ν∇ logρ|2

)
dx

= 1

2

d

dt

∫
Ω

ρ|u|2 dx +
∫
Ω

2νρ∇u : t∇udx �
∫
Ω

2νρD(u) :D(u)dx, (17)

which gives parabolic estimates on the densityρ ∈ L2(0, T ;H 2(Ω)) by using the energy estimate (11) and allo
to pass to the limit in the quadratic terms in∇ρ when proving the existence of solutions.

Theorem 2.2.Assume that the initial data(ρ0,m0) are taken in such a way thatE(0) < +∞ and that the initial
densityρ0 satisfies

∇√
ρ0 ∈ L2(Ω), and − log− ρ0 ∈ L1(Ω). (18)

Then, there exists two global weak solutions to(NSK) in the sense2.1such that in additionρ ∈ L2(0, T ;H 2(Ω)),
∇√

ρ ∈ (L∞(0, T ;L2(Ω)))3.

Let us recall that such an extraa priori bound holds because the boundary∂Ω has no curvature. If the bounda
has some nonzero curvature, some boundary integrals donot disappear in the calculation when multiplying the
momentum equation by∇ρ/ρ and we are not able to control them. For more details on difficulties associated
boundary conditions, we refer to [1] and [2].

In the case of (NSKP) model, the procedure to derive the Lyapunov functional can be easily adapted. As
of fact, the presence of the extra term−β2ρ∇φ in the right hand side of the momentum equations generates o
left hand side of (17)∫

Ω

ρ∇φ · ∇ρ

ρ
dx (19)

which for given parameterλ is estimated by∥∥∇φ(t, ·)∥∥
(L2(Ω))3

∥∥∇ρ(t, ·)∥∥
(L2(Ω))3,

uniformly controlled in time in view of energy estimates (11). The compactness of the productρ∇φ is a conse-
quence of the strong compactness ofρ in L2((0, T ) × Ω) and of the weak(L2((0, T ) × Ω))3 compactness of∇φ.
It follows that global existence of weak solutions for a givenλ is an easy corollary of the results of [1,2].

Theorem 2.3.Assume that the initial data(ρ0,m0) are taken in such a way thatE(0) < +∞ and that the initial
densityρ0 satisfies

∇√
ρ0 ∈ (L2(Ω))3, and − log− ρ0 ∈ L1(Ω). (20)

Then, there exists two global weak solutions to(NSPK) in the sense2.1such that in additionρ ∈ L2(0, T ;H 2(Ω)),
∇√

ρ ∈ (L∞(0, T ;L2(Ω)))3.
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Let us recall that log− is defined onR+∗ by log−(s) = logmin(1, s).
We now wish to study the behavior of weak solutions to (NSPK) when the renormalized Debye lengthλ tends

to zero. The problem is the control of the termρ∇φ whenρ tends to 0. We are able now to prove the converge
of solutions in the sense 2.1 of (NSPK) to weak solutions of (NSK). Definition 2.1 is a technical mathem
restriction on the set where the density vanishes, the physical meaning being fully preserved: as a matte
the relevance of the compressible fluid equations in the close neighborhood ofρ−1({0}) is questionable.

3. Convergence in the quasineutral limit in a torus

We now consider a sequence of global weak solutions(ρλ,uλ,φλ) of (NSPK) in the sense of Definition 2.1 an
intend to prove a convergence result in suitable energy norms to global weak solutions of (NSK).

The multiplication of the momentum equations byρ in Definition 2.2 of weak solutions allows to control th
nonlinear products in regions whereρλ is close to 0, which in fact correspond to regions whereφλ tends to−∞.
In previous works related to the asymptotic analysis of the inviscid Euler–Poisson equations, this kind of p
is avoided since the convergence is only local in time and the initial density is assumed to be bounded from be
by a positive constant.

Here, we prove the following result

Theorem 3.1.Let (ρλ,uλ,φλ)λ>0 be a sequence of global weak solutions of(NSPK) in the sense of Definition2.1,
uniformly bounded in energy norm(Eλ(0) � C, ‖∇√

ρ0‖(L2(Ω))3 � C and ‖ log− ρ0‖L1 � C for some positive
constantC) with ρλ in L2(0, T ;H 2(Ω)) and

√
ρ

λ
in L∞(0, T ;L2(Ω)) uniformly with respect toλ. There exists

a subsequence(ρλ,uλ,φλ) and a global weak solution(ρ,u) of (NSK) in the sense of Definition2.1such that

ρλ − expφλ → 0 in L2((0, T ) × Ω
)
, (21)

ρ2
λ∇φλ → ρ∇ρ in

(
D′((0, T ) × Ω

))3
, (22)

ρλ → ρ in L2(0, T ;Hs(Ω)
)

for s < 2, (23)

ρλuλ → ρu in
(
L2(0, T ;L2(Ω)

))3
, (24)

√
ρλuλ → √

ρu in
(
L∞(

0, T ;L2(Ω)
))3

weak∗, (25)
√

ρλ∇uλ → √
ρ∇u in

(
L2(0, T ;L2(Ω)

))9
weak. (26)

Proof. Uniform bounds are provided by estimate (11) as soon as the initial energyEλ(0) is uniformly bounded
in λ. All the convergences except the first two ones have been proved in [1] and are preserved in the present anal
since they derive from uniform estimates with respect toλ. The difficulty in [1] was to prove the strong convergen
of ρλuλ in (L2(0, T ;L2(Ω)))3. Here the novelty is to show that we are able to pass to the limit in the qua
ρ2

λ∇φλ.
A natural idea is to look for additional bounds by considering the estimates obtained by multiplying the mo-

mentum equations by∇ logρλ. Integrating by parts, the term involving the electrostatic force writes as∫
Ω

∇φλ · ∇ρλ dx.

Thus, using the equation satisfied by the electrostatic potential, we get
∫

∇φλ · ∇ρλ dx = λ2
∫

|	φλ|2 dx +
∫

|∇φλ|2 expφλ dx =
∫ ∣∣∣∣ρλ − expφλ

λ

∣∣∣∣
2

dx + 4
∫ ∣∣∇ exp(φλ/2)

∣∣2 dx.
Ω Ω Ω Ω Ω
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It follows that (ρλ − expφλ)/λ is uniformly bounded inL2(0, T ;L2(Ω)) and that∇ exp(φλ/2) is uniformly
bounded in(L2(0, T ;L2(Ω)))3. The uniform bounds onρλ anduλ allows us to pass to the limit in all the nonline
products, as in [1], except in the terms associated with electrostatic forces. In particular, we shall use thatρλ con-
verges strongly to some limitρ in L2(0, T ;Hs(Ω)) for all s < 2. The nonlinear term in the momentum equatio
that remains to study isρ2

λ∇φλ. The goal is to prove that this product converges toρ∇ρ in (D′((0, T ) × Ω))3 asλ

goes to 0.
Step1: convergence forρλ close to0. Let ε > 0 andG a nondecreasing function onR between 0 and 1 suc

thatG(s) = 1 if s > 1 and 0 ifs < 1/2. DenotingHε(s) = G(s/ε), we have

(
1− Hε(ρλ)

)
ρ2

λ∇φλ = (
1− Hε(ρλ)

)
ρλ

ρλ − expφλ

λ
λ∇φλ + (

1− Hε(ρλ)
)
ρλ∇ expφλ. (27)

The first term of the right hand side of (27) is bounded in(L1((0, T ) × Ω))3 uniformly by cε, by estimating the
three factors of the product respectively inL∞((0, T )×Ω), L2((0, T )×Ω) andL2((0, T )×Ω). The second term
of (27) may be written as

∇((
1− Hε(ρλ)

)
ρλ expφλ

) − expφλ

(
1− Hε(ρλ) − H ′

ε(ρλ)ρλ

)∇ρλ. (28)

We recall thatρλ − expφλ tends strongly to zero inL2((0, T ) × Ω) asλ goes to 0, so that the first term of (28)
the gradient of a function uniformly controlled inL2((0, T ) × Ω) by cε. The second term of (28) may be writte
under the form

(ρλ − expφλ)
(
1− Hε(ρλ) − H ′

ε(ρλ)ρλ

)∇ρλ − ρλ

(
1− Hε(ρλ) + H ′

ε(ρλ)ρλ

)∇ρλ. (29)

The first term of (29) is estimated byCλ in L1((0, T ) × Ω), therefore controlled byε for λ small enough (the firs
factor is bounded bycλ in L2((0, T ) × Ω), the second one inL∞((0, T ) × Ω) since|ρλH

′(ρλ)| < c, and the last
term is bounded inL2((0, T ) × Ω) recalling thatρλ is uniformly bounded inL∞(0, T ;H 1(Ω)). The second par
of (29) if bounded byCε in L2((0, T ) × Ω) in view of similar and in fact simpler arguments.

As a result, we succeed in controlling in(D′((0, T ) × Ω))3 by cε (for λ small enough) the term(
1− Hε(ρλ)

)
ρ2

λ∇φλ.

Step2: convergence forρλ away from0. Givenε > 0 and λsmall enough, it remains to study the converge
of the term

Hε(ρλ)ρ
2
λ∇φλ,

that we decompose, introducing the quantityZλ = (ρλ − expφλ)/λ, by

Hε(ρλ)ρ
2
λ∇φλ = H(ρλ)ρλ∇ expφλ + Hε(ρλ)ρλZλλ∇φλ. (30)

(a)Study of the first partHε(ρλ)ρλ∇ expφλ of (30).
This term can be rewritten under the form

Hε(ρλ)ρλ∇ expφλ = ∇(
H(ρλ)ρλ expφλ

) − expφλ

(
ρλH

′
ε(ρλ) + Hε(ρλ)

)∇ρλ.

Since the first term is the gradient of the product of two factors converging strongly inL2((0, T ) × Ω) and that the
second term is the product of two factors converging strongly inL2((0, T ) × Ω), we get the convergence

Hε(ρλ)ρλ∇ expφλ → Hε(ρ)ρ∇ρ in
(
D′((0, T ) × Ω)

)3 asλ → 0.

Notice also that(1− Hε(ρ))ρ∇ρ is smaller thanε in (L2((0, T ) × Ω))3 uniformly in λ.
(b) Study of the second partHε(ρλ)ρλZλλ∇φλ of (30).
The goal is to prove that this term is small inD′((0, T ) × Ω). It can be rewritten as

Hε(ρλ)ρλZλλ∇φλ = KM(Zλ)ZλHε(ρλ)ρλλ∇φλ + (
1− KM(Zλ)

)
Hε(ρλ)ρλZλλ∇φλ, (31)

whereM > 1 and KM(s) = 1− G(s/M) is an additional truncation function.
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(b1) Study of the termKM(Zλ)Hε(ρλ)ρλZλλ∇φλ.
In order to control the first term of (31), we write

KM(Zλ)ZλHε(ρλ)ρλλ∇φλ = KM(Zλ)ZλHε(ρλ)ρλ1ρλ�Rλ∇φλ

+ KM(Zλ)ZλHε(ρλ)ρλ1ρλ<Rλ∇φλ. (32)

The first part converges to zero whenR tends to infinity. Indeed,KM(Zλ)Zλ is bounded inL2((0, T ) × Ω)

uniformly in M andλ, λ∇φλ is bounded in(L2(0, T ;H 1(Ω)))3 and therefore in(L2(0, T ;L6(Ω)))3. It
remains to estimateρλ1ρλ�R in L∞(0, T ;L3(Ω)) as follows

∥∥ρλ(t, ·)1ρλ(t,·)�R

∥∥
L3(Ω)

� 1

R

∥∥ρλ(t, ·)
∥∥2

L6(Ω)
� C

R
‖ρλ‖2

L∞(0,T ;H1(Ω))
,

so that for large enoughR, the first term of (32) is smaller thanε uniformly in M andλ in L1((0, T ) × Ω).
We now have to control the second part of (32).R being now given, the factors involvingρλ can be estimate
in L∞((0, T )×Ω) norm. Sinceλ∇φλ is uniformly bounded in(L2((0, T )×Ω))3 and in(L2(0, T ;L6(Ω)))3,
it is also bounded in(L4(0, T ;L3(Ω)))3. Then it suffices to estimateKM(Zλ)Zλ in L4/3(0, T ;L3/2(Ω)) and
choose suitable constantM. We use the fact that for allf ∈ L2((0, T ) × Ω) such thatf > M with M large
enough

‖f ‖Lr ((0,T )×Ω) � CM(r−2)/r‖f ‖2/r

L2((0,T )×Ω)

for all r < 2. This gives∥∥KM(Zλ)Zλ

∥∥
L4/3(0,T ;L3/2(Ω))

� CM−1/3.

Thus the second term is smaller thanε in L1((0, T ) × Ω) for sufficiently largeM, uniformly in λ.
(b2) Study of the termHε(ρλ)ρλ(1− KM(Zλ))Zλλ∇φλ.

The constantM is now fixed. We recall that if|Zλ| < M, i.e.

|ρλ − expφλ| < Mλ,

then forλ small enough

|ρλ − expφλ| < ε/2.

If in additionρλ � ε, then

expφλ > ε/2.

ThusHε(ρλ)(1− KM(Zλ))Zλ exp(−φλ/2) is bounded inL∞((0, T ) × Ω) by M
√

2/ε and we can write

Hε(ρλ)ρλ

(
1− KM(Zλ)

)
Zλλ∇φλ = 2Hε(ρλ)ρλ

(
1− KM(Zλ)

)
Zλ exp(−φλ/2)λ∇ exp(φλ/2).

Then sinceρλ is bounded inL2((0, T ) × Ω), ∇ exp(φλ/2) is bounded in(L2((0, T ) × Ω))3 and (1 −
KM(Zλ))Zλ exp(−φλ/2) is bounded inL∞((0, T ) × Ω), the second part of the right hand side of (31
smaller thanCλ in L1((0, T ) × Ω).

This concludes the proof of the asymptotic analysis whenλ → 0. �

4. Some remarks for the strip domain case

In the case of a strip domain of the form T2× (0,1) with boundary conditions on the top and bottom as spec
in (9), global existence results have been derived in Theorem 2.3 for fixed parameterλ.
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The question of the quasineutral limitλ → 0 in the presence of boundary data has been addressed in [3]
stationary case for a given density sequence bounded away from zero uniformly inλ. In that case, the convergen
is obtained by introducing a boundary layer profile of typical sizeλ in the neighborhood of the boundary.

In the present case whenΩ = T2 × (0,1), the idea would be to adapt the proof related the periodic framew
and to introduce boundary layers as in [3]. Starting from initial data uniformly bounded in energy space su
that the bounds (20) are also uniform inλ, additional bounds seem to be necessary to prove the converge
ρλ∇φλ to ∇ρ in the sense of distributions,ρ being a weak limit ofρλ. Multiplying in a similar way the momentum
equations by∇ logρλ yields the identity∫

Ω

ρλ∇φλ · ∇ρλ

ρλ

dx =
∫

∂Ω

ρλ∂nφλ dσ −
∫
Ω

ρλ	φλ dx =
∫

∂Ω

ρλ∂nφλ dσ +
∫
Ω

(
λ2|	φλ|2 + |∇φλ|2 expφλ

)
dx.

Unfortunately, very little is known about the extra boundary term: the trace of the densityρλ is uniformly estimated
in L∞(0, T ;H 1/2(∂Ω)), but we are not able to control uniformly the normal derivative of the potentialφλ in
L1(0, T ;H−1/2(∂Ω)), even assuming that the extra bounds in the periodic case hold.

An other way to try to control the extra term coming fromρλ∇φλ consists in integrating by parts in the oppos
sense to get∫

Ω

∇φλ · ∇ρλ dx = −
∫
Ω

φλ	ρλ dx.

This would give the additional bounds ifφλ was bounded uniformly inL2(0, T ;L2(Ω)). But no information is
available onφλ in regions whereφλ tends to−∞. In other words, our proof fails because of the lack of informatio
on sets whereρλ is close to 0.

As a consequence, the justification of the asymptotic behavior in this case therefore seems to be a v
lenging mathematical problem.

Acknowledgements

The first author wishes to thank the CEA at Bruyères le Châtel for its financial support.

References

[1] D. Bresch, B. Desjardins, C.K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Pa
Differential Equations 28 (3–4) (2003) 1009–1037.

[2] D. Bresch, B. Desjardins, Existence of global weak solutions for a2D viscous shallow water equations and convergence to the q
geostrophique model, Comm. Math. Phys. 238 (1–2) (2003) 211–223.

[3] H. Brezis, F. Golse, R. Sentis, Analyse asymptotique de l’équation de Poisson couplée à la relation de Boltzmann : quasi-neutralité
plasmas, C. R. Acad. Sci. Paris Sér. 1 321 (1995) 953–959.

[4] S. Cordier, E. Grenier, Quasineutral limit of an Euler–Poisson system arising from plasma physics,Comm. Partial Differential Equa
tions 25 (2000) 1099–1113.

[5] B. Ducomet, E. Feireisl, H. Petzeltová, I. Straškraba, Global in time weak solutions for compressible barotropic self gravitating flu
DCDS, 2004, submitted for publication.

[6] A. Jüngel, Quasi-hydrodynamic Semiconductor Physics, Birkhäuser, Basel, 2001.
[7] A. Jüngel, Y.-J. Peng, A hierarchy ofhydrodynamic models for plasmas, Ann. Inst. Henri Poincaré, Anal. Non Lin. 17 (2000) 83–11
[8] P.-L. Lions, Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998.
[9] P. Markowich, C.A. Ringhofer, C.A. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.

[10] Y.-J. Peng, Y.G. Wang, Convergence of compressible Euler–Poisson equations to incompressible type Euler equations, 2003, submitte
for publication.


