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Abstract

In this paper we give conditions on the positive functighunder which every bounded solutienof the elliptic equation
V- (¢2Vo) =0 in R" must be constant. The case wheronly depends on one or two variables is discussed at length. Moreover
the asymptotic behavior of possibly unbouddmlutions is charactex@d, improving in such a wag Liouville theorem due to
Berestycki, Caffarelli and Nirenberg.
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Résumé

Dans ce papier nous donnons des conditions sur la fonction pos?tiseus lesquelles toute solution de I'équation elliptique
V - (¢2Vo) =0 enR” doit &tre constante. Le cas ¢f ne dépend que d'une ou deux variables est analysé en détail. Ensuite,
le comportement asymptotique des solutions, éventuellenmmbornées est characterisé, en donnant ainsi une généralisation

d’'un théoréme de Liouville d0 & Berestycki, Caffarelli et Nirenberg.
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1. Introduction

We shall be concerned here with the elliptic equafion(¢2Veo) = 0 on the Euclidean spad®; the weight
function? is chosen to be?(x) > 0, x = (x1, X)) ERT > 1
The symbolVo denotes the gradient vecto~, . .., %) of the solutions = o (x), andV - (¢2Vo) stands for
X1 Xn

Z:‘l:l % ((ﬂzgji)-

As usual we will say that the equation isniformly ellipticif the functiong? is strictly positive and bounded,
that is 0< C < ¢? < C~1, for some constant’; on the other end the case in whigR decays to zero at infinity
will be referred to asdegenerate elliptic

Liouville-type resultswill be understood to mean, as usual, assertions to the effect that the only bounded
solutionso = o (x) of the equatiorV - (¢2Vo) =0 inR” are the constants.

Here we prove new Liouville theorems which are motivated by a famous symmetry question raised by E. De
Giorgi. It concerns the one-dimensional characfdbounded monotone solutions of semilinear elliptic problems
in the wholern-dimensional space.

The main purpose of this paper is to establish conditions on the wefghhder which a Liouville theorem
holds.

For instance in the uniformly elliptic case a Liouville theorem is known to hol®&rior anyn (De Giorgi—
Nash—Moser, see [7,17,18]).

Things considerably change when one does not assume uniform ellipticity.

Whenn = 2 a Liouville-type result is known to applyp general (positive and) bounded weights(see [9,11]).

On the other hand in higher dimensioms> 3, a counterexample, obtained in [2] by means of a probabilistic
approach, shows that a Liouville theorem does nati@ripholds true under the sole boundedness assumption on
the positive function?.

Thus whemm > 3 a Liouville theorem may hold true only under some additional assumptions on the weight
function . In this direction in [16] a Liouville theorem is given under certain integrability conditiong(see
[22,8]); more recently by means of a probabilistic approach a powerful result is given in [3]. Another direction
which has been widely investigated is the one of radial weight functions,ghus:= ¢(||x||) (see [11,14,13]
among others). Indeed whenando are sufficiently smooth, the equation under investigation takes the following
form: Ao + (2'%, Vo) =0, where(, ) denotes the standard scalar produdf A Liouville-type theorem is then

known to apply whefilower order terms” ZVT‘/’, vanish at a sufficiently fast rate &s|| — oo, more precisely when

2'% = O(||lx[~1) (see [11]). The @|x|~1)-decay condition, which cannot be inrgeal significantly relaxed (see

[14]), implies for example that a Liouville theorem applies to the radial weight funciiéas) = (1+ ||x %)%, for
anyu € R (see [13] for more general results in this setting). On the other hand, it should be remarked that this is a
quite heavy condition. For instance it does not apply to the case when “lower order terms” are constant.

In this paper a Liouville theorem is gved in the case of bounded weight functigrfgx) which only depend
on one or two variables, respectivq&?(x,,) andg?(x,_1, x,) (see Sections 2 and 3). Thus we consider here the
case of functiong?(x) which satisfy symmetry assumptions different from the radial symmetry. For instance the

weight functionp?(x,) := e~V does not satisfy the @, |~1)-decay condition on the “lower order terri¢",
moreover the integrability conditiorm the weight function given in [16Jo not hold either; yet a Liouville-type
result can be proved in this setting (see Theorem 2.1).

Moreover making use of the technique of differentialjnalities it is possible to state another type of Liouville
theorem, replacing the boundedness condition dny an assumption on the rate of divergence for.Asveighted
integrals, wherer now denotes more generally an arbitrary solution of the inequality (¢?Vo) > 0inR”. In
this direction in Section 5, we improve a Liouville-type result which played a key role in the proof of a conjecture
of De Giorgi (see (3) [6, p. 175]):
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Conjecture [6]. Let us consider a solutione C2(R") of
Au=u®—u (1.1)

such thatu| < 1, 9,u > 0 in the wholeR". Is it true that, for every. € R, the setdu = A} are hyperplanes, at least
if n <8?

Ghoussoub and Gui proved the conjecture in 1997 wher? (see [10] and [5]), Ambrosio and Cabré proved
it in 2000 whem is 3 (see [1]).

The proofs forn = 2 and 3 use some techniques in the linear thefeyeloped by Berestycki, Caffarelli and
Nirenberg in [5].

That is, for every coordinate;, i = 1,...,n — 1, consider the function; := 9;u/d,u, whered;u = du/dx;.

The goal is to show that, for everyo; is constant (then is constant along — 1 directions, hence is a function

of one variable only and the conjecture follows). This will be achieved using a Liouville-type result for the linear
degenerate elliptic equation satisfied &gy which turns out to be of the type we are interested in. Indeed using
the fact that;u andd,u satisfy the same linearized equatiaxy — (3u2 — 1)w = 0, one can easily show that
satisfiesV - (¢2Vo;) =0 in R", wherey := 9, u. This motivates the present work.

Some simple regularity results and bounds (see [1] for example) assut&thas bounded in the whol&",
thusgo; is bounded iR” (since by definition it equals t&u«); hence the assumption of Berestycki, Caffarelli and
Nirenberg Liouville theorem in [5] (which we recall in Remark 5.2) holds when?2. This is essentially the proof
of Ghoussoub and Gui (see [10] and [5]).

On the other hand the assumption in the Liouville theorem given in [1], which improves the one in [5] (we
recall it in Remark 5.2, for the convenience of the reader), could be verified when (and onlym&e3))due to
the (optimal) energy estimate given in [1]; thus proving the conjecture wheR.

Here in Theorem 5.1 we improve the Liouville-type results given in [1] and [5].

We notice that recently De Giorgi conjecture has been solved by Ovidiu Savindd@, by means of a different
approach (see [21]).

As a further motivation to the present work let us observe that the degenerate elliptic equations, whose weight
functions decay exponentially along somtieection, as we consider in Section 2, naturally arise in the proof of
the one-dimensional character or symmetry of boundedatone solutions to semilinear elliptic equations in the
whole spac@®”. Indeed the explicit one-dimensional solution of Eq. (1.1) (which is unique up to translations of the
independent variable) is given byx) = tanh(£2=<) (for somec € R anda € R" with ||| = 1 anda,, > 0); hence

V2
in order to prove the conjecture, following the above scheme, a useful tool would be a Liouville-type result which

applies to a degenerate elliptic equation whose weight funetian could bed,u = (a,l/«/i)(cosk(“fé“))*z.
This motivates the results in Section 2.

The structure of the paper is as follows. In Section 2 we prove a Liouville theorem concerning weight functions
which only depend on one variable. Section 3 is devoted to the proof of a Liouville-type result for weight functions
»? which only depend on two variables. A new maximum principle for subsolutions is then proved in Section 4,
under some assumptions on the weigRt which cannot be essentially sharpened. It generalizes a result of [3],
which by the end was proved through a probabilistic approach. As an application we show that the Liouville-type
result, given in Section 2, applies to solutiansvhich are not a priori bounded. Finally in Section 5 we improve
a Liouville-type result due to Berestycki, Caffarelli andréhberg. A classical counterexample shows that the
asymptotic rate under which the Liouville theorémlds cannot be any more essentially sharpened wher2;
some counterexamples are given/og 9 too.

In the following we usually sefix|| = (3/_;(x;)®)Y?, for any x € R, |x,| = max{—x,, x,}, Br = {x €
R”™: ||x|| < R} anddBg = {x € R": | x| = R}.
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2. A Liouvilletheorem for one-dimensional weights

Let us state the first Liouville-type result we obtainbrbiugh a gradient estimate following from the maximum
principle (see [19] for a general approach to the method).

Theorem 2.1. Lety be a positiveC® function,¢(x) := ¢(x,), such that

() p e L®@®),

(i) (@' (xn)-xp)T < Ko(xy) iNR, 3K >0.

Suppose that € L®(R") N C2(R") satisfies:
V. ((pz(xn)Vcr) =0 inR"

in the classical sens&n > 1. Theno is constant.

Theorem 2.1 holds for any > 1 the interesting case, due to the above introduction, being the:cag
Let us remark that under the above assumptions the operators under stlabatyainiformly ellipticones.

Remark 2.2. Let us notice that hypothesis (ii) in the theorem, when choog&ing 0 in it, simply stands for a
nonincreasing assumption @nas|x,| increases, with no asymptotic ratestrection. The possibility to choose a
positive K allows us to include the case of somewhere increasing weight functions.

Remark 2.3. Theorem 2.1 applies to equatidh- (e7«V 1+xiVe) =0 in R", for anya > 0. Let us observe that

the “lower order coeﬁicient’%‘f’/, corresponding to this choice ¢f(x,) := e 2V 2% does not decay to zero as
|xn| = 400.

Proof of the Theorem 2.1. Let us define the following — 1 new functions:
i (x) = %02 +£2(80)% foranyi=1,....n—1,
whered; = % Er(x):=E&(||x||/R), & being aC? function in[0, 1] such that 6< £ < 1,&' <0 and

1 sel0,3],
0 s>1,
andc is some constant iR ™, that will be fixed later on.

%‘(S)={

Claim. Ly; > 0in R* whereL := w—lzv C(@2V)=A+ %go/a,,.

Due to the fact thap is positive inR andy’ is bounded in each compact seffsincep € C1(R), it follows that
£l ¢ Lo (R). Thus a maximum principle on bounded domains holdd f¢see [12]), saying us thatr > 0:
maxy; < maxy; = — maxo? < —||o |12
Bp ' 9Bp ' R29Bp  R2'LT®RY:
On the other hand:

maxy; > maxy; > maxd;o)? > (3;0)%(x), Vx € Bxk.
Bg Br Bgr 2
2 2
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From above, one can easily infer that:

c
o (x)| < %HUHLOO(RH) Vx € B%

letting R — +o0, it follows that (9;0)(x) =0Vi =1,...,n — 1. It implies that the functiom, which a priori
depends om variables, indeed only depends.gn thatiso (x1, ..., x,) = o (x,). This is a symmetry result.
Coming back to our equation we easily find out that rowolves the following one-dimensional problem:

9 (9?(xn)3,0) =0 inR (2.1)
which equivalently implies:
C .
oo =——— INR
" (pz(xn)
for some constant'. Integrating both sides of the previous inequality, we get:

Xn

C
o(x,) =/ 20) ds +o(a),

fixed arbitrarilya € R. Making use of hypothesis (i) it follows that the previous functois bounded irR if and
only if C = 0; thus the only bounded solutioasof (2.1) are the constants. This proves the theorem.
Indeed ™ ¢=2(s) ds > (/@[ ®)) "1 (x» — a), which is obviously unbounded for amye R. O

Proof of the Claim. Let us calculatd.v;. SinceL®2 =2(® L& + |VP|?) it easily follows that:

Lyi = —5Lo® + L(IErdi01%) = 2|Vo|2+ 2(erdio L(ERD0) + |V (ERDi0) ). (2.2)
In any case:

L(ér0;j0) =&RrL(0;0) + (3;j0)LER + 2VERV ;0
sincei =1,...,n— 1, andy is ax,-weight, from the fact thato = 0 it is true thatL(9;0) = 9; (L(c)) =0 in the
weak sense ifR"”. From (2.2) it follows that:
QD( n)

@ (xn)

+2(|V$R| (3;0)% + V30262 + 26R0;0 VERV 0;0)
2(p,(xi’l) / Xn

<ﬂ(xn)g Rilx|l

+ 8£r0;0 VERV D0 + 2| VER|*(9;0)% + 2| Vo [PER

(@' () - x) ™ (30)°
@(xn) Rilx|l

Making use of hypothesis (i), singg, vanishes inB%, one can in the last term estimaﬂt% from above by%;

thus:

Lyi=—5 2 | Vo 2 4 26x(5) a)Z(AgR +2—" ER) + 46R 3,0 VERV D0

2c
= ﬁ|vG|2+2sR(a,~a>2AsR + 4€R(3;0)

+ 86rd;0 VER Vo + 2|V 0|23

2c
> ﬁIVGIZ + 2£R(3;0)% Abg — 4ER|E'|

c 9i0)2
Ly > <2¢ —c1—c2K — 8—3)% + (2— (88)2)|V8i0|2§1%’

wherec, c2, c3 are constants that only dependstofand its derivatives up to the second order), and we make use
of Young inequality in the third term. Choosiagmall and: big enough, the Claim follows from the nonnegativity
of the right hand side. O
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Remark 2.4. Theorem 2.1 more generally applies to weight functipfisvhich instead of being bounded are such
thatg~1 ¢ L?((a, +00)), Va € R; this is clear from the proof.

Remark 2.5. If condition (ii) holds only on{|x, | >> 1} the claim easily follows making use of a cylindrical, instead
of the previous radiaky (at least forR big enough):

(Y, (X
) =55 )5 (% ):

wheret is the same as before, and we denote (x/, x,) € "L x R, [|x'|| = (X1 (x1)?) Y2

3. A Liouvilletheorem for two-dimensional weights
Arguing as in Theorem 2.1 a second Liouville-type result can be stated.
Theorem 3.1. Lety be a positiveC! function,¢(x) := ¢ (x,—_1, x,,), such that

() ¢ € L¥(R?),
(i) (On-19-xp—1+ e - x)t < K@(xp—1,x,) in RZ: K > 0.

Suppose that € L®(R") N C2(R") satisfies:
V- (¢*(xn-1,%,)Vo) =0 inR"
in the classical sens&y > 2. Theno is constant.

Once again Theorem 3.1 holds for any: 2 the interesting case, due to the above introduction, being the case
n>3.

Its proof goes as the one of Theorem 2.1. Making use only of thexfir® functionsy;, i =1, ...,n —2 (which
are defined exactly as in the proof of @drem 2.1), one can now easily show thatwhich a priori depends on
n variables, indeed only depends on_1 andx,, that iso (x1, ..., x,) = o (x,—1, x,). This is a symmetry result.
Thuso is a bounded solution of the following two-dimensional problem

"9 do
Z a—((pz(xnl,xn)a—)zo in R2. (3.2)
i=n—1 i Xi

Since¢? is by assumption positive and bounded, Finn Litlevtype result (see [9,11]) states thatmust be
constant; this proves the theorem.

Remark 3.2. Let us notice that hypothesis (ii), when choosikig= 0 in it, simply stands for a nonincreasing
assumption om as the “radius’/(x,_1)2 + (x,)2 increases, with no asymptotic rate restriction.

Remark 3.3. It should be notice that the preceding proof cannostraightforward generalized for example to
three-dimensional weight functiop€(x,_», x,—1, x,). This is due to the fact that a Liouville theorem in dimension
n = 3 is not true under the sole boundedness assumption on the positive fupc(see [2]).

4. A maximum principlein unbounded domains

In this section we prove a new version of the nmaxim principle on unbounded domains for the degenerate
elliptic operators in divergence form under study. It makss of a result of the same kind (but for the uniformly
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elliptic case) contained in one of Berestycki, Caffarelli and Nirenberg’s papers, concerned with the study of quali-
tative properties of semilinear elliptigjgations in variousype of unbounded domains.
Let us first remind that result, denoted by Lemma 2.1 in [4]:

Theorem 4.1. Let D be a domair{open connected e R”, possibly unbounded. Assume tiiats disjoint from
the closure of an infinite open connected cone. Suppose there is a fupati@n(D) that is bounded above and
satisfies for some continuous functigni) < 0:

{Az+C(X)z>0 in D,
z<0 onaD.
Thenz <0in D.

We suppose thate Wlf;c"(D). Let us remark that the same result holds(if) is a measurable, not necessarily
continuous function irD, as in the Alexandroff-Bakelman—Pucci estimate.
For the degenerate elliptic case the following holds:

Theorem 4.2. Let D be a domair{open connected Sein R”, possibly unbounded. Assume tiiats disjoint from
the closure of an infinite open connected cone.¢ bt a positive function iD, ¢ € Wlf;c"(D), that satisfies the
following:

(i) € L>(D),
(i) Ap>0a.e.inD.

Suppose there is a functien such thao € C (D) and is bounded above . Suppose moreover thate C2(D)
satisfies:

{ —V - (¢?Vo)<0 inD,
o<0 onaD.
Theno <0in D.

Proof. Let us consider irD the auxiliary function
o) =¢ ).
Sincey is positive and bounded iP, the functionw is strictly positive inD. Moreover the function:

_ o(x)

h(x)=
satisfies inD the following problem:
{Ah—%h)O in D,
h<0 onaD.
Thanks to the hypothesis made in the theorem, it is truedpgt:= _Tf‘p is a measurable nonpositive function

a.e. inD, and that the functionh = go € C(D) N Wlf;c"(D), is bounded from above iP. From this we infer, by
Theorem 4.1, thali <0in D. Hences <0in D. O

w(x)

Corollary 4.3. Under the same hypothesis prand D, suppose there is a functien such thatpo € C(D) and is
bounded below iD. Suppose moreover thate C2(D) satisfies:

{ —V - (¢?Vo) >0 inD,
>0 onaD.
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Theno > 0in D.
Proof. It suffices to apply Theorem4.2tec. O

Let us note at the end that from the previous results one can easily prove now the following, already proved
in [3] (see Proposition 2.7), by means of a probabiliapgproach and under stronger assumptions on the wegight

2.n

Theorem 4.4. Letg be a positive function iD, ¢ € W,

(D). Suppose that

() ¢ 2e0>0a.e.inR"\ D,
(i) ¢ € L=(D),
(i) A¢p >0a.e.inD;

where D is any domair(open connected sein R”, possibly unbounded, such thatis disjoint from the closure
of an infinite open connected coneolE C2(D) is a solution ofV - (¢2Ve) = 0in R”" such thaipo € L®(R") N
C(D) theno € L*®(R").

Proof. Since by hypothesig > g9 > 0 a.e. outside), it easily follows thatr € L>*°(R" \ D). From this, making
use of Theorem 4.2 and Corollary 4.3, the claim easily follows.

Remark 4.5. The hypothesis made in Theorem 4.2 are in some sense sharp, as it is shown by the examples follow-
ing:

Example 1. Let us in fact consider the functian(x’, x,,) = € * on the domainD = {x € R": x,, > 1}. On this
domain the function can be easily seen to satisfy, in the classical sense, the following problem:

V. (e"Vo)=0.
In any case:

O=info <info =e™ L.

D oD

One can easily verify that in this cagéx,) = €/? does not belong t&.> (D). On the contrary all the remaining
hypotheses, made in Corollary 4.3, @randy are satisfied (see Fig. 1).

The previous example shows the sharpness of the boundedness (from above) condition tire other hand
the following one shows the sharpness of the one side boundedness conditierovar the seD.

o | A

Fig. 1.9 ¢ L®(D).
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A
[y c

1 X, ' X

Fig. 2.¢90 ¢ L*°(D).
Example 2. Let us consider now the functian(x’, x,) = € on the same domaib = {x € R": x,, > 1}. On this
domain the function can be easily seen to satisfy, in the classical sense, the following problem:
V. (e Vo) =0.
In any case:

+00 = SuUpo > SuUpo =e.
D aD

One can easily verify that in this caggx,) = e */2 so thatpo = €/2 is not bounded above i®. On the
contrary once again all the remainihgpotheses, included in Theorem 4.2,0andg are satisfied (see Fig. 2).
An easy application of the above maximum principle kad to improve in some cases Theorem 2.1 as follows.

Theorem 4.6. Letg(x) := ¢(x,) € C2(R) be a positive function such that

(i) ¢ € L(R),
(i) ¢”(x,) > 0for |x,| big enough,
(i) im x, - 100 @' (xn) =0.

Suppose thapo € L>®(R") ando € C?(R") satisfies:
V- (¢?(x)Vs) =0 inR"
in the classical sens&y > 1. Theno is constant.
Proof. As in Theorem 4.4 one can prove that L>*°(R" \ D) whereD = D1 U Dy and D1 = {x,, > 1}, Dy =
{x, <« —1}. Making use twice of Theorem 4.2 and Corollary 4.3 (onceDinand then inD5), it follows that

o € L*(R"). To this end condition (ii) is needed. On the other hand assumptions (ii) and (iii) here implies that in
D, ¢ does not increase 4s,| increases. Due to Remarks 2.2 and &&n Theorem 2.1 the thesis follows o

Remark 4.7. The above theorem implies that not only every bounded solutian of V - (e=2V Hxive) =0
in R", must be constant, to this end Theorem 2.1 will suffice (see Remark 2.3); yet the same holds true for every
solutione (x) which diverge at most likele! as|x,| — oo, still being bounded in the first — 1 variables.

5. Animprovement of a Berestycki—Caffarelli-NirenbergLiouville theorem

Here we deal with the asymptotic behavior of solutions of the corresponding second-order partial differential
inequalities im independent variables.
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To conveniently state our result, let us set

F@ny - T

o0
F= {F :R* — R*, F is nondecreasing and _
j=0
ThusF includes such functions as I+ ), log(1 + r) - log(1 + log(1 + r)).

Theorem 5.1. Lety € LS. (R") be a positive furtion. Suppose that € H} (R") satisfies

loc

oV (¢°Vo)=0 inR" (5.1)
in the distributional sense;, > 1. Let this condition holds:
1
limsu 7/( o)Ydx=C 5.2
Kosos REFR) | (5.2)
R

for some finite constant C, and sorfies F. Theno is constant.

Remark 5.2. When choosing”(R) = 1 in (5.2) we recover Proposition 2.1 of [1], which generalizesifor 3, the
decay assumption apo made in Berestycki, Caffarelli and Nirenberg Liouville property (see Theorem 1.8 in [5]),
showing that it is possible to carry out their proof ewsrder this less restrictive hypothesis. Let us recall one of its
consequences: any functiomssuch thatpo € L°°(R"), satisfying the differential inequality (5.1) when= 2 is
indeed constant (since the Euclidean measure of a ball of r&lgees likeR?, in the Euclidean plane). Thus in
particular Berestycki, Caffarelli and Nirenberg Liouvifdeoperty recovers Finn Liouvilkeype result (see [9,11]).

Corollary 5.3. Lety € L5 (R") be a positive furtion. Suppose that € Hl(l)c(R”) satisfies

oV - (¢?*Vo)=0 inR"

in the distributional sense;, > 1. For everyR > 1, assume that

/((pa)zdx < CR?logR
Bpg

for some constant C independent of R. Thda constant.

The proofs of the above results make use of the method of differential inequalities (see [15] for a general
approach to the method); hence they are different fronptbef of Berestycki, Caffarelli and Nirenberg Liouville
property, given in [5], which seems it cannot be improved to cover the present setting.

Remark 5.4. We discuss here a classical example (see [20]) bearing on the sharpness of the preceding resul
whenn = 2.
Let ¢ = 1. There exists at least a nonconstarstuch thato - Ao > 0 in R2, in the classical sense, for which

. 1 ,
limsup———— [ 0%dx=C
R—+o00 R(IOgR)

Br

for some finite constan®. Simply take

3 r2 4
o= | 1O9RO =D+ 37~ ggn "= FRo
logr r > Ro,
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wherer denotes as usuék ||, andRg is chosenRg > €%/4.

This shows that the previous theorem cannot be, in general appreciably improved:wh2nlIt holds for
R?log R, while it does not forR?(log R)2. On the other hand, in some special cases these rates can certainly be
improved.

Remark 5.5. An interesting open problem is either to prove or to give a counterexample to Theorem 5.1 when
F(R) = R"3,thusR2F (R) = R""1, and 4< n < 8; to this respect see [1].

Whenn > 9 a counterexample for this choice Bfcan be easily obtained as in [10]. We give here only a sketch
of its proof since it goes exactly as the one of Proposition 2.6 of [10].

Counterexample. Consider the bounded sign changing functiofx) := (1 + ||x||?) %x1 with « :=n/4 —
(vn—=1)/2,n > 7. The goal is to show that;(=2%) = 0, where we denote by (=24) := inf{(fp. [Vn|* +

Al 12 dx)/(fgn In12d)}; 7 € C3(R™). Indeed by means of the connection between Liouville property for opera-
tor V - (¢2Vo) and the spectrum of linear Schrédinger operators (see [5], see also [10]) this implies that there
exist a nonconstant functiom and a positive functioy such thatV - (¢2Vo) = 0 in R” and ¢o = u, thus

S5, (90)?dx = [ u?dx < CR**2V"~1.Since 2+ 2/n —1<n —Lifand only ifn > 9, the claim is proved.

In order to show thaLl(%‘”) =0, we consider the positive bounded functipix) := (1 + [|x|?)~#, where

B = %. By Proposition 2.3 and Lemma 2.1 in [1(1]1(’3—"’) =0and )g(‘f“) < 0. Since forn > 5 we have

— a1 < — 22 itfollows that: 0= 21(=5%) < 21(=4%) < 0; thus the claim is proved.

Remark 5.6. Let us recall on the other hand that euaterexample to Theorem 5.1 whél{R) = R"2, thus
R?F(R) = R", can be found in [2] for any > 3. Whenn > 7 a different counterexample to this case was previ-
ously given explicitly by Ghoussoub and Gui in [10] (see Proposition 2.8).

Proof of the Corollary 5.3. Let us choosé ' (r) =logr for r > 1, such arnF’ indeed belongs t&, then the claim
easily follows from the previous theorem

Proof of the Theorem 5.1. Let o satisfiess V - (92Vo) > 0, we then have

V- (09?Vo) = ¢?|Vo|>+ 0V - (¢°Vo) = ¢?|Vo |2 (5.3)
On the other hand,
1 1
2 2 20124 )2 24.\°
op“(Vo,v)ds < lo || Vo|ds < ¢“|Vo|“ds (po)“ds | , (5.4)
dBpr dBRr dBRr 0BR

wherev denotes the outer unit normal vector ®8z. Now let
D(R):/(p2|VU|2dx.
Br

Integrating (5.3) oveBg and using (5.4), we then have

1
D(R)<D’(R)%( f (goo)zds>2. (5.5)

3Bg
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If o # constant, then there exists soiRe> 0 such thatD(R) > 0 for all R > Rg and we may deduce from (5.5)
that

r2

2
1 1 fd/ 1 24\ "
D) D2 _/ d?(ﬁ) ak > (/( /(W) ds) dR) 60

r1 r1 JdBg

forall ro > r1 > Ro.
Claim. There holds
r2 -1 r2 1
(ro — r1)2</( / ((po)zds> dR) < (/( / ((po)zds> dR).
r1  0BR r1 9Bg
Proof of the Claim. By means of Schwarz inequality for arfy. R — R one has:

<fldR)2= (/rzf(R)%f(R)%dR)zg (ff(R)ldR)(/rzf(R) dR). (5.7)

r1

Then from (5.7), the Claim easily follows, choosifigR) = faBR(‘P")ZdS- O

It follows from (5.6), by means of the claim that

-1
(r2—V1)2< / (goa)zdx) <t !

SD(r1)  D(ra)
Bry\Bry

(5.8)

Now letr, = 2/+1* andry = 2/r* for somer* > Ro, for each 0< j < N — 1, from (5.8) it follows easily that

(2711r%)2 S U 20 ) o 1 1
T( / (po) dx) < (2r") ( / (po) dx) < D(er*) o D(2j+lr*)’

32j+lr* 201 \ Doy

summing overj we find, taking into account hypothesis (5.2)

1 1 1 1 =t g

Do)~ D) D@V~ iC ;0 T

(5.9)

Since F belongs toF, it is true thatF (2/t1*) < F(2/T0t1y if jq is such that* < 2/0, thus the sum in (5.9)
diverges asvV — +oo and this implies thab (»*) = 0 for all ¥* > Rp; thuso is constant. O

Remark 5.7. The key point is to study for such a degenerate elliptic inequality the question of the divergence of
I3, (¢o)? dx instead of that of 3, o2 dx, as was done on the contrary in Theorem C of [15]. The feature that makes
possible the treatment of degenerate elliptic inequalities by this method is the use, initiated by Finn of integrals
D(R) based on the actual quadratic form definedsByrather then Dirichlet type integrals, as is customary when
dealing with uniformly elliptic ones (see [9]). The same kind of integral of a solutias the one in the hypothesis,

was considered in [5].
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