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Abstract

In this paper we consider the following problem

N+2

—Au+u=uN-21% in 2,

u>0 in £, (0.2)
fu—=0 on o,

wheres2 is a smooth bounded domain®¥ andN > 3.

We prove the existence of a one-spike solution to (0.1) wkiencentrates arouraltopologically non triial critical point
of the mean curvature of the boundary with positive value. Under some symmetry assumpZomamely if$2 is even with
respect taV — 1 variables and @ 352 is a point with positive mean curvature, we prove existence of solutions to (0.1) which
resemble the form of a super-position of spikes centered at 0.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé
Dans cet article nous considérons le probléme suivant :
N2t
—Au+u=unN-2 danss$2,

u>0 dans £2, (0.2)
fu—=0 Ur o,

ol 2 est un domaine borné régulier daRd’ et N > 3. Nous prouvons I'existence d’'une solution 1-transitoire au pro-
bleme (0.2), qui se concentre autour d’un point critique topologiquement non trivial de la courbure moyenne, ou celle-ci est
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strictement positive. Sous certaines hypothéses de symétrie sots prouvons I'existence de solutions de (0.2) qui ressem-
blent & une superposition des transitoires centrées en un certain point du bord.
© 2005 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

Let £2 be a bounded domain &Y, N > 3, with smooth boundar§s2. The boundary value problem

—d?Au+u=uf ing,
u>0 in 2, (1.2)

d
5, =0 onos2,

wherep > 1 andd > 0, has deserved a lot of attention in recent ged#tris a model for different problems in
applied science which exhibtoncentration phenomeria their solutions. It arises for instance as stedow
systemassociated to activator-inhibitor systems in mathéeabtheory of biological pattern formation such as the
Gierer—Meinhardt model and in certain models of chemistaee references in [24]. In such models, and related
ones, itis particularly meaningful the presence of solutions exhibiting peaks of concentration, namely one or several
local maxima around which the solution remains strictly positive, while being very small away from them.

The works [24—-26] have dealt with precise analysis oftleagrgy solutions to this problem in the subcritical

case,  p < %—Jjg namely solutions which minimize the Rayleigh quotient

_ 42 VUt [ luP?

2
(Jo lulPy 751

for smalld. From those works, it became known that fbsufficiently small, a minimizer, of Q has a unique
local maximum pointc; which is located on the boundary. Besidé&(x;) — max.cy; H (x) where H denotes
mean curvature of 2 and

uqg(x) Nw((x —xd)/d), (1.3)

wherew denotes the (unique) radially symmetric solution of

O(u) . ueHY2)\ {0}, (1.2)

Aw—w+w’=0 inRY (1.4)
w >0, lim w(x)=0.
|x|——+o00

This solution decays exponentially weh implies indeed the presence of a very sharp, bounded spike for the
solution around:;. See also [9] for a short proof of these facts.

Solutions other than least energy with similar quéiabehavior around one or several points of the boundary
or inside the domain have been found by several authors, see [7,11,14,18,15,19,21,34] and their references. |
particular, it is known from [34] that such a spike stidin exists around any non-degenerate critical poirfféf).

Phenomena of this type occlas well in the critical casp = %—Jjg however several important differences are

present. For instance, since compactness of the embeddity 6f) into L?+1(£2) is lost, existence of minimizers

of Q(u) becomes non-obvious (and in general not true for large recently established in [23]). It is the case
however, as shown in [1,32], that such a minimizer does existisf sufficiently small. However the asymptotic
profile (1.3) is lost. In fact, as a consequence of Pohozaev’s identity, no solution to (1.;4);1‘0%%% exists.

The profile and asymptotic behavior of this least energy solution has been analyzed in [4,27,30]. Again only one
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local maximum pointy; located around a point of maximum mean curvaturé @f exists. However, unlike the
subcritical case now its maximum vald€; = u,(xz) — +00. Let w(x) be thestandard bubblén RV,

1 \'7% N-2
w(x):aN<r|x|2> ., ay=(N(N-2) 2 (1.5)
which solves
Aw+w? =0 inRV. (1.6)

The asymptotic profile af, is now, at leading order

g (x) ~ (Ma/an) w((Mg/an) T (x = x2)).

Observe that the right hand side of the above expression also solves (1.6). The energy dgvid ndbw well
approximated by

5 Jan [Vwl?
(& fi Il 751
Construction of solutions with this type btibbling behavioaround one or more critical points of mean curvature
has been achieved for instance in [2,3,13,16,29,33]. An important difference with the subcritical case is that now
mean curvature is required to be positive at these critical points. In fact, non-negativity of curvature is actually
necessary for existence [5,30,17]. Ratein [17], behavior of solutions witlenergy values (1.7) have been thor-
oughly characterized, improving previous results in [5]. In particular blow-up points for such solutions are shown
to besimple in the sense that an appropriate constant multiple@f) bounds globally from above the scaled
solution around its maximum point. This type of estiesafor bubbling for other elliptic problems at the critical
exponent are found in [20,22].

Very little is known for problem (1.1) when the powglis supercritical, namely > %—f% Sobolev embedding
no longer holds, so that variational construction of solutions becomes difficult. In this paper we want to investigate
this case for powers close to critical, where now we let the paramidierfixed, with no loss of generality= 1.
Ouir first result establishes existence of boundary bubbling solutions wlaaproaches critical from the super-
critical side, namelyp = x—fg + ¢ with small ¢ > 0. Given a non-degenerate critical point of mean curvature
(or, more generally, a situation of topglically non-trivial critical point) withpositive critical value a solution
exhibiting boundary bubbling around such a pointsas> 0 exists. Thus we deal with the semilinear elliptic
problem

d2Q(ug) ~ (1.7)

—Au+u= u%“ in 2,

u>0 in £, (1.8)

3

5 =0 onoas2,
wheree > 0. Let H (x) denote mean curvature 8f2. We explain next what we mean Igpologically non-trivial
critical point situationfor H (x), which includes as special cases, locahimia, maxima or non-degenerate critical
points.

LetD be a (relative) open subset@f2 with smooth boundary. We say thatlinks non-trivially inD at critical

level Hp if there exist closed subseBs Bg of D such thatB is connected an®g C B such that the following
conditions hold: if we set

r={®eC(B,D)/ ?|p,=Id}
then

SUpH(y) < Hp = inf supH (P (), (1.9)
y€eBy Pel’ yep
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and for ally € 3D such thatH (y) = Hp, there exists a vectat, tangent tadD at y such that
VH(y) -ty #0. (1.10)

Standard deformation arguments shitvat under these conditions a critical pojné D of H with H(y) = Hp
in fact exists. Itis easy to check that the above conditions hold if
inf H(x) < inf H(x), or supH(x)> inf H(x),
xeD xedD xeD x€dD
namely the case of (possibly degenejdbcal minimum or maximum points aff. They also hold ifD is any
small neighborhood of a non-generate critical point off. This notion of local linking was used in [11] to build
up boundary spikes in the subcritical case of (1.1). An alternative notion of non-trivial critical pdthtnafs used
in this context in [21].
Ouir first result is the following.

Theorem 1.Assume thalv > 4 and that there is an open, smooth subiBetf 32 where mean curvaturél (x)
non trivially links at critical levelHp. If additionally Hp > 0O, for all sufficiently smalk > 0 there is a solution
ue(x) of (1.8)of the following form,

N-2

) ( 1 ))\sz —"2% (14 o(D)
u = £
FEIN T a2y — ¢ 2

whereo(1) — 0 uniformly in £2,

A=ynHp,
yy > 0is a explicit constant, ang. is a point inD such that
H() = Hp, VH()—0,

ase — 0. The same statement holds true for dimensyoa 3, where now
1

1 2
) AZeT 3 Iogsl%(1+ o(1)).

1+ A2%e2|loge|?|y — &|?

us(y) 2053(

Recently in [6] it has been found thatM > 4, d is left fixed and one considers the expongrds a parameter
approaching the critical exponeindm below then single-bubbling solutions exist in certain cases. In particular,
they find existence of single-bubblelstions with maximunpoints located on the boundanear critical points
of mean curvature withegative value

The situation we deal with is more delicate becausbrefiking of Sobolev’'s embedding. This makes the ap-
proach of construction of solutions employed in [6] or in the above quoted references for tb&-e#%, d—0,
technically not-applicable. We also observe that an inverse phenomenon compared with bubbling in the latter situ-
ation arises: the blow-up rate actuatlgcreases as the value of curvattifg does. Blow-up is instead enhanced
forp = %—f% d — 0 as the critical value of curvature decreases to zero.

Our second result shows thatiper-critical bubblingexhibits a striking difference with the critical exponent:
blow-up does not need to mple In fact we are able to construct solutions with just one maximum point for
which multiple bubbling is pesent. For instance 2 is a ball, there exists a solution whose shape is that of
a tower, constituted by superposition of an arbitrary number of single-bubbles ofdiffelow-up orders. This
phenomenon actually takes place just provided fhé symmetric with respect to the fir&v — 1) variables, and
0 € 982 is a point with positive mean curvature.

Theorem 2.Assume thad € 92, H(0) > 0and N > 4. Moreover, assume that forany=1,..., N — 1,
if (y1,....yin...,yn) €2 then(yr,...,—yi,...,yn) € 2.
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Then, giverk > 1, there exists for all sufficiently small> 0 a solutionu, of (1.8)of the form

N-2
N-2

k N2
1
ug(y>=aNZ< ) i

N
= 1—|—)\i28_2+(l_l)N_’2|y|2

N

e "2 7 H1(14 o(1))

whereo(1) — 0 uniformly in 2. Here

2
__H(0) i1 (k=D)!v-2
=Tk |:VN,3N (k—l)!:| )

fori =1,...,k, where the positive constantg, 8y are explicit. The same statement holds trueXog 3 except
that now

A

k 1
1 2 1 . 1
us(y) =as < : ) r2e27'loge|Z (14 o(1)).
ey ; 14 A22e2-%loge|2|y2) llogel2( )

The solution predicted by this theorem is a superpositidgnfbbles with respective blow-up orders'z-—i+1
for N >4 ande?~|loge|? for N =3,i =1,..., k.

We would like to mention that existence of solutions to problem (1.8) which blow up at an interior point of the
domaing2 has been recently obtained in [31] in the case of dimendien3.

The proofs of Theorems 1 and 2 rely on a form of Lyapunov—Schmidt procedure which reduces the construction
of the searched solutions to a finite-dimensional variational problem, in a general scheme already followed in the
study of interior bubbling in [10,8]. In order to overcome the super-critical nature of the problem, we work out
this reduction in some ad-hoc weighte& spaces. Very useful for this purposspecially in tle description of
the multi-bubbling effect, ishte introduction of polar coordates around a reference point 92, and then a
transformation of the radial coordinate, a variatidrttee well-known Emden—Fowler transformation [12] after
which dilations are converted into translations in a one-dimensional variable. This language is especially useful in
the analysis of the linearized operator around a proper ansatz. Estimates for solutions of the associated linearize
operator in weighted norms, which would appear quite involved in original variables, take here natural forms. After
this analysis, the finite dimensional variational problem can be studied in a fairly direct way.

2. Initial approximations

Let us consider a numbgg, which we will conveniently choose later in the construction such that
lim B, = 1. (2.1)
e—0
Replacing in problem (1.8) by a suitable power o, timesu, we can then rewrite it as

N+2 ,

—Au+u=puv2"* ingQ,

u>0 in 2, (2.2)
u_0 onas.

v
In what follows, this is the problem we will deal with.
Let us denote, fop > 0 and¢ € RV,

N-2

m ==
S
e n2 4y —¢f?
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functions which constitute the set of all positive solutions of (1.6). As before, we denete o. In the case of
a single-bubble, Theorem 1, the solution we are looking for is approximately equal towith ¢ € 9£2 andu
a properly chosen, very small number. In the situation of Theoreqn=20 and we look for a solution close to
Zf.‘zl w0 Wherep; 11 < p; andpg <« 1. For later purposes, it is actually better to construct an initial approx-
imation of the solution, close to the above but corrected in such a way that it satisfies zero Neumann boundary
conditions. We consider, for a fixgde 952 andu > 0 the unique solutiom = w,  of the boundary value prob-
lem,
N+

_ . N=2
—Au+u_wu_§ in $2,

u=0 onasg.
We want to analyze the comparison of this function ang, for very small > 0. A first step in this direction is
the observation that

N+2 N-2
/wlj = CN;J,T(1+ 0(1)) asu — 0.

N

(2.3)

2

On the other hand, clearly

N+2
N-2

M,
N+2

Jow,?
uniformly on compact subsets 6f \ ¢. It follows that on each such a subset,

. N-2

Wue=cypu Z (1+01)G(x,¢)
whereG (x, ¢) denotes the (uniformly positive) Green’s function of the problem
{—AXG +G=6 forxe,

w
-0

36 =0 forx € 942,

with 8, the Dirac mass supportedatTo analyze the behavior af,, ; near¢, itis convenientto introduce a change
of variables that straightens the boundary arogindfter a rotation and translation of variables, we may assume
that¢ = 0 and that on a neighborhood of this point the domain can be described as the set of poits yn)

with y e R¥=1 andyy > g(y) whereg is a smooth function witlg(0') = 0 andVg(0') = 0'. We consider the
change of variableg = @ (z) defined as

/ / / /
y =z —znVg@), yn=g&)+zn.
Observe that locally around the origin, the domain is transformed into the half-spac®. Besides@’(0) = Id,
and the transformation preserves the normal direction to the boundary. Let us depetelliy) the local inverse

of @. Then for a function:(y) defined in a neighborhood of the origin §a, and the function(z) = u(®(z)) we
have the identity

Au(®(2)) = Av — a;jj (2)v;z; — bi(2)vy,
wheregq;;, b; are smooth functions with;; (0) = 0. Let us consider for a sufficiently small fixéd> O the regions
Bi (&) ={z/lzl <8, zv >0}, Us=@(B+(¥)) C £2.

SinceG(y, 0) ~ |y~ " in Us, we have that satisfies
N+2

_ N2
—Au—i—u—wﬂ’g inUs,

u=0u"7) on 2 N alks, (2.4)

) _
5, =0 onas2 NU;.
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Intermsv(z) = u(P(z)) this problem gets rewritten as

N+2
—AV+ajj (D) + bi(@Dvy Fv=w A (@(2) N B4(6),
v:O(y,NT_z) on|z| =34, (2.5)
v 0 onzy =0.

azy

To analyze problem (2.5) we carry out the change of coordiNdte = MNTQv(Mz) so that problem (2.5) now
reads

Ny2 .
—AX +aij(u2) Xzyz; + by (D) Xz, + pPX =wi-2(u P (uz)) in By (),

X =0(uN=?) onlz|=4/u, (2.6)
90X
Jon = 0 onzy =0.

We haveu 1 (uz) = z + 1O(|z|?) so that

w(p @ (u2)) = w@) + w'(z +1p0(|z|%))u0(Iz1?), 0<t<1.
Observe that

[w'(z + t10(121))| < Jw' (L= 8)lzl)| < Clzl*N
for all |z| large, hence

w(pn o (1n2)) — w(z) = no(jz1*~N),

_ N+2 N+2 1
w(p e (u2) V2 —w(2) V2 = pO(lz 7).
Writing X = w + h we then arrive to the equation far

—Ah + ajj(u2)hz,; + ubi(uhz + p?h = fin BL(8/w),

h=0u"-2) onjz| =4, (2.7)
oh
vl 0 onzy =0,

where| 7| < Au|z)*V. As aresult, we obtain:
h@)|<Cu+1z)>N ifN>4

and

1
h@)| < cullog( ——— ) +1] FnN=3
| (Z)’<C“[°g(u[|z|+1])+ } !

for a constant > 0 which is independent d&. Indeed, let us consider fo¥ > 4 the unique radial solution of

~Ahy, = ha(+00) = 0,

rN-147°

which is given by

e¢]

ds [ Nl
hor)= | F3 | 51 1
0

r
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Direct substitution shows that . (r), with C chosen large enough and independently @forks as an upper
barrier for (2.7). Similarly—C uh.(r) may be taken as a sub-solution, and the claimed asymptotic behavior follows.
For N = 3 we take instead the solution of

A= —— m(2)=1
*_r2+11 *I,L ]

which is given by

ds 12dt
s (r)_./ /t2+1

Again |h(z)| < Cuhy(r), and it then follows that

1
h <Cul|log— +1/{.
1) “[ 9+ ]
Thanks to the fact that the constahtabove is independent é6f we have that
_ . )
Xzw—Cu(l+1) " S[l-Clu+OHwzaw iflzl<>, N>4
"

for some positive constant, provideds is chosen small enough. Similar estimate holds trueMfes 3.
Now, going back to the original coordinates in problem (2.4), we obtaimvfgr 4 the asymptotic behavior in

ly — ¢l <é1,

2

-3

Bpue () =Wy e () + 120(wy e (M) V2 |y — ¢l <8,
For N = 3, one gets in the same region
1
Wy, () = wy, (y)+u20<|097)-
¢ g ly—¢l+p

Outside any ball centered at the origin, we recall that for &y 3, w,, ; (y) ~ /LNT_Z G(y,¢). The above expan-
sions in particular yield

&' wy e (1) < Wpe () < B'wp e () (2.8)

in entire§2, for certain positive constans, 8’.

Useful for later purposes is as well to understand derivatives with respect to the paramaers of these
functions. Concerning derivative in variable we are interested in derivative with respect to this variable con-
strained tod 2, namely directional derivatives in tangent direction9f@. Assume (0= 92 and that the tangent
space is preciselyy = 0. Then

AWy, ¢
aé‘i =0
solves the boundary value problem

4
N+2 ;
—AZ+7Z= N+2w/10 aylwﬂo n Q, (29)
V4
82 =0 onos2.
Observe that
N=2 Vi
dywuo=Cnp 2 ————=, Cy=—(N—2ay.

N-2
(W2 +1y1H) =t
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We also see that
N-2 N-2 1-N
Z~nZ 3,GO,»)=pn"z Oy ")
on compacts of2 away from 0. To analyze the behavior of this function within a small neighborhood of the
origin, we proceed exactly as in the previouslgsis, straightening the boundary. Call sflithe functionZ in

straightened variables, then perform now the change of var&tbe= 1V/2Z(uz) which leads to a problem of
the form

—AZ + aij(u2)Z bi(u2)Zsy + u2Z = 20 52w, (u~ Lo in B.(2
+aij(U2)Zyiz; + 1wbi(U2) 2y + 1 SSWN2wg (W@ (uz)) N B1(),

Z=0u"""h onjz| =2, (2.10)
0Z
Ton =0 onzy =0.

Observing that-Aw,, = %—f%wﬁ w;, and that (sincé## N) d;, w;, = 0, then setting = w,, + 4, h now satisfies

—Ah + aij (D)2 + wbi(U2D)he + pPh = fin B(8/ 1),

h=0uN-1 onjz| = £, (2.11)
oh
Ty = 0 onzy =0,

where| f| < Culz|~V. Again using barriers we obtain thei| < Cu(1+ |z))2~", and hence denoting by the
gradient on tangential direction @42, the approximation result we obtain is

By e = 1 rwy e + Owy ) (2.12)
for |y — ¢| < §. Outside this ball,

- N2
et =0 7). (2.13)

Finally we observe that estimates (2.12), (2.13) are also valid for differentiation with respect to the parameter
auwm{-

3. The ansatz

After the analysis of the previous section, our goal is to find a solution of problem (2.2) of the form
in the case of Theorem 1, and

k
u=>y Wu,0+e (3.2)
i=1

for Theorem 2, where is a lower order term. Before doing so, we make a slight transformation of problem (1.8).

In the construction we shall require accurate infornmratim invertibility properties of the linearized operator
associated to problem (1.8) arounésie approximations. Particularly for the case of the construction of the multi-
ple bubbling solution, it is convenient to make this analysis after the use of a transformation of the problem which
mods out its invariance under dilations.

We shall denote in what follows = %—f% Let ¢ be a point ind$2. We consider spherical coordinates=
y(p, ®) centered at given by

y—¢
ly—¢l

p=Ily—¢| and ©= (3.3)
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We define the transformation
2

p—1\r 1 _ 2
v(x,®) =T W) (x,0)= (T) e u( +e ¥-2@).

We denote byD the z-dependent subset 6f= R x SV~1 where the variablegx, 0) vary. After these changes of
variables, problem (2.2) becomes

Lo(v) — ¢ Be€vPTe =0 in D,
v>0 in D, (3.4)
(%)ng-v9+g%vx+vvx=0 ondD
with
2¢
p—1\r1
e =| =5~
and
p—1 2 /) p—1 2_( _Dx
Lo(v) = — —— Agv1v—v"+v+ —— e Py, (3.5)

Lo is the transformed operator associated-ta + 1. Here and in what follows,= % and A gv-1 denotes the
Laplace—Beltrami operator ost¥ 1. We observe then that

T(wyu,e)(x,0)=W(x —§),
where

N-2
AN \'F _
W(x) = (ﬁ) e (14 e w2y~ '7

andu = e 725 W is the unique solution of the problem

W' —W+WP=0 on(—oo,o0),
Ww’(0) =0, o
W>0, W(x)—0 asx— Foo.

Let us set
2
Veo =1(Wp ), y,:e*—N_gf'

Thenv = V¢ , solves the problem

Lo(v) =W(x —§)F in D,
-1 9 (3.7)
(55 Vv v + 820% + 0¥ =0 ondD.
Translating the analysis of the previous section to this new language we find that
Ver=Wk =& + 1l ¢ (3.8)
where, globally
aWx =&)< Ve (x,0) < BW(x —§) (3.9)

and the remainddil satisfies forN > 4 and allx large independently of

X %‘ 73
[z | < Ce v-2e V2W(x — g)%



M. del Pino et al. / Ann. I. H. Poincaré — AN 22 (2005) 45-82

so that forN > 4,

__2min{x.&}
[ | <Ce V-2 W(x —§).

For N = 3 we get

|MTg ¢ | < Cmin{x, £)e"2MMElw (x —g).

Leté&y, ..., & bek points inR such that
O<é1<bp<--- <

and set

k

Wix)=W(x —&), M=o Vi=Wi+I, V=YV,

i=1

55

(3.10)

(3.11)

(3.12)

We consider next the situation of Theorem 2, and the above transformation referred to thespd@inFinding a
solution of (1.8) of the form (3.2) corresponds to finding a solution of (3.4) of the foenV + ¢, with ¢ “small”

andV given by (3.12).

For later purposes, we shall establish a priori estimates for a problem of the form

Lo(v) =g In D,
(pT_l)Vev 2+ 8 0 =0 ondD.

x
Lemma 3.1.Assume thag above satisfies
lgCx. )| < W(x —£)1.

Then there is a unique bounded solution(8f13), which besides satisfies

(@) If ¢ > 1, then
lo(x, )| < CW(x —§).
(b) If0< g <1then
lv(x,0)| < CW(x — ).

Proof. Let us assume first that> 1. We consider the unique solutid¥, (x) of the equation in the line

W' —W+W9=0 onR,
W'(0) =0,
W=>0 W(kx)—0 asx— too.

Observe thaW, (x) < Ce~ I, Let us writeq =

N-2

. Itis easily seen that/, =7 (U,) where

Us(=a(l+y*°) 77, a=[(N-2(N-0)]*".

U, solves the problem iR

N+2-20

—AU =|y|"°U ¥-2

Notice also that
2—0 N-2
2

u

2—0
Upo(y)= 05( >
o MZ—O’ |y|2—a

(3.13)

(3.14)
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. . . . . N-2
solves the same equation for any> 0. In fact, for anyo the equation is invariant under the scalipng 2z x
U(u=1r). i

Let us now consider the functioiil, ¢, solution of the problem

-1 1 ~ .
—(—pz )ASN W — W”+W+<p2 )e P=DXW = W, (x —£)7 in D,

p—1 .
5 V@W v+ Wyt + Wt =0 onaD.

We claim thatW, < Ce"*~¢I, from where the corresponding assertion fowould automatically follow by
maximum principle. To establish the claim, we transform back the above equation to the original variable through

T(u) = W,.¢, S0 thatu = U, With ;2 = e=*Z°¢ is the solution of

N+2-20
—Autu=|y|°U,5? ing,

d
a—gzo onoas2.

(3.15)

Exactly as in the computations carried out in the previous section (corresponding @, we find thatﬁ,w ~

/,LNT_Z G (y, 0), uniformly, away fromy = 0. Moreover, the same analysis neat 0 can be carried out and we find
in particular

0/1. a()’)<CU,u o (y). (316)

This relation readily impliesv, s < Ce~~¢!, thus, we obtain < Ce™#~¢! as desired, and the proof of part (a)
is concluded.

Let us assume now thatQq < 1. The procedure in the proof of the estimate is similar to that in the previous
proof. Consider the equation

Lo(v) W(x — &)1 in D,
3.17
(—)ng v +3—”vx+vv =0 ondD, ( )
where now 0< ¢ < 1. In original variables this problem now reads
_ gl 22
a—Au+u_UM’0r p-1 in £2, (3.18)
5 =0 onoas2.

A direct computation shows that

2 _
/UZ Or—z—p—_l(l—q) ~ MqNTZ_

2
This and elliptic estimates yield that on any compact se2af{0} we haveu < C;ﬂ % The scaling

v(@) = 17 u(uz)
transforms the equation into

2
—Av+pPv= Uf,O(Z)IZI_Z_P_*l(l_q).
Exactly the same game of straightening can be played to finally findvihat< Kw(z), wherew is a radial
supersolution of

1 1

—Aw =
p2+252(01-g) 14 r4(N=2)
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in B(O, %) which satisfies
w(ﬁ) ~ M2 ),
n

With simple computations we find that there is indeed a supersolutionuith ~ r—"22(1-9 nearr = 0 while

w(r) ~ r~ 72449 for larger. Pulling this information back to Emden—Fowler variables, this means precisely
v< Ke 108 forx > £ andv < K79 forx < £ and the desired property follows. The proofis concluded.

We consider the ansatz= V + ¢. In terms of¢, problem (3.4) then becomes

L(¢)=N(¢) + R,
, 3.19
{(PTl)v9¢-u9+g—fUX+¢ux=o ondD, (3.19)
where
L(®) = Lo(p) + Bece(p + e)&*vPte—lgp, (3.20)
N (@) = Bece € [(V + )T — vPHe — (p o) VPHe1lg] (3.21)
and
k p
R = Bec, € VPTe (Z Wi) . (3.22)
i=1

Rather than solving problem (3.19) directly, we consider first the following intermediate problem: Given points
& =(&1,..., &), find a functionp such that for certain constants ..., ¢,

L) =N@) + R+ Y, ;v" 'z, inD,
(2 Vep v+ ¢'v + ¥ =0 onaD, (3.23)
Vi zZig=0 forali=1,....k.
HereZ;(x,0)=V/(x,0)fori=1,... k.
We will see that with these definitions, problem (3.23) is uniquely solvable if the pgisistisfy appropriate

constraints and is sufficiently small. In order to solve problem (3.23) it is necessary to understand first its linear
part. Thus we consider the following problem: givier C%%(D), find ¢ such that for certain real numbers

L) =h+Y* vz, in D,
(Z54) Ve 1 +¢/v* + 615 =0 onaD, (3.24)
[pVP 7 Zi¢ =0 ifi=1,.. .k

The main step in solving problem g8) consists of proving uniformlipounded solvability in proper functional
spaces for problem (3.24provided that pointg; are far apart and that theye small compared wit%. We will

devote Section 4 to establish this fact under the assumptions of Theorem 2 and Section 5 to solve corresponc
ingly (3.23). After this, the problem is reduced to adjusting the pdinits such a way that all constantsin (3.23)

are equal to zero. This problem will be solved variationally in Section 6, yielding the result of Theorems 2. Some
modifications of this approach will be needed in the proof of Theorem 1 in Section 7, where symmetry is not
assumed but only ong is present.
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4. The linear problem

In this section we assume the situation of Theorem 2, and carry out the transformation of the previous section
around¢ = 0. To set up a convenient functional-analytittisey for problem (3.24) we introduce the following
norms which depend on the given poitand a given numbey > 0. For a function/ defined onD we set

k -1
¥y = sup (Ze‘q"“&') [y (x.0)].

x.0eDp\i
Consistently, we also denote
I¥llo= sup [¥(x,6)].

(x,0)eD

For any vector spac¥ of functionsu(x, 0) defined onD, we shall denote by the subspace of functions i
which are even with respect to the firgt— 1 variables of. Problem (3.24) turns out to be solvable fohaving
this symmetry. The following result holds.

Lemma 4.1.There exist positive numbets, 8o, Ro, and C > 0 such that if the point® < & <& < -+ < &
satisfy
. )
Ro<é&, Ro< min (§41—&), &<—, (4.1)
1<i<k &

then for all0 < e <gg and all h € C?*“(D) with ||, < 400, problem(3.24) admits a unique solutiop =
T.(h) € C>*(D) N HY(D). Besides,

l¢llg <Clihlls ifg>1, 4.2)

¢llg <Cllhlly fO0<qg <1, 4.3)
and for anyg > 0,

leil < Clihllg- (4.4)

Proof. To prove this result we assume figst- 1 and establish the a priori estimate (4.2) for conveniently chosen
numberssg, 8o, Ro, C and any pointg; satisfying (4.1). This amounts to proving the following fact: Assume the
existence of a sequeneg — 0 and points G< &7 < &7 < --- < & with

; -1
§ > oo, | min (&g —&) > +oo, & =ole, (4.5)

such that for certain functiong, CSZ’“(D) andh, € CSO’“(B) with | |4, ||+« — O and scalars one has

Leygn=ho+ ¥ vz, in D,
(Ve V0 + ¢1* +¢* =0 onaD, (4.6)
IV Ziga =0 ifi=1. .k
Then
li¢nllz — O. (4.7)

We wiill establish first the weaker assertion
l¢nllo — O. (4.8)
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To do so, let us assume the opposite, so that with no loss of generality we madlse= 1. Let us see that
c! -0 asn— oo. (4.9)

In fact, testing the above equation agaidgt integrating by parts twice we get that

k
-1
Yt [vazi== [, [ Loz

1= D D
9Z; x
__/hllzj+\/L€nZ./'¢I‘l+\/¢ﬂ<W_Z./>v do
D D aD
=0(1), (4.10)

since the following estimate holds

Z;
‘/hllzj+/Lgnzl¢,1+/¢)1(—_z >dea
D D aD

Since [, Vi”’lZiZj = C§;,; + 0o(1), (4.10) defines a linear system in thgs which is “almost diagonal” as
approaches zero. Then (4.9) is proved.

Now let (x,, 6,) € D be such thad, (x,, 6,) = 1, so thaty, maximizes at this point. We claim that, fedarge
enough,

< Cllhy ”q + 0(1) ||¢n llo.

There existR > 0 such thatlx, —&'| < R for some =1, ..., k. (4.12)

We argue by contradiction and suppose that— &'| — 400 asn — +4oo for anyi =1,...,k. Then either
|%p| — 400 Or |xp| remains bounded. Se:t,,(x 0) = ¢p(x + x,,60). Assume thaix,| — +oo. Then we may
assume thap, — ¢ locally uniformly in S, where

Sy =Rx{0eSV1/oy>0
and¢ is a nontrivial, bounded solution of the equation

: (p )ZASN 190—¢ " +¢=0 inSy,

(4.12)
Vo -1f = onas,.

Let us consider the functiop defined orRY as
1\ 71
—_1\73 . »
w(y)=(p7> eo(x,0), |y|:e_pT"’ ezﬁ,

Sinceg satisfies (4.12) thett solves
{—Al// =0 inRY,
W =0  ondRY\ {0}

Extendingy to the whole spac&” by symmetry, the extended function, still denotechbyis harmonic inRN
with a possible singularity at the origin. Singds bounded, we also find that

lym|<Clyl™"z forally e RY.

The singularity at 0 can thus be remed and by the decay we conclude tiiat= 0 on RV, a contradiction.
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Assume now thatx,| is bounded. Then ellifc estimates give us that we cgass to the limit in (4.6) for
n — oo: ¢, — ¢ locally uniformly where this time is a nontrivial, bounded solution of the problem

~(A2 A9 — ¢ + ¢+ (L)% Vg =0 inD,

(Z7)Veo - +¢'v* +¢v* =0 ondD.

Thus, performing the same change of variables as before, we find a nontrivial sgiubibiie problem
-AYy+¢ =0 ing,

W0 ona \ {0}

with [ (y)| < C|ly|” 2 neary = 0. Hencey is regular at 0, and henag = 0, again a contradiction, which
shows the validity of (4.11).

Let us fix an index isuch that (4.11) holds. A consequence of (4.11), (4.6) and elliptic estimates is that the
sequence of functions, (x, 6) = ¢ (x +&/',0), convergeslocally uniformly i, to a nontrivial, bounded solution

¢ of the problem
_(pT_l)zAstlﬁl; —¢"+¢—pWPlp=0 inS,,

Voo -1’ =0 onas,,
[ WPIW'¢dxdo =0.
S

Again going back to original variables, and exterglby symmetry to entire space, we find a smooth function
which decays at infinity likgy|~(¥=2/2 and is a nontrivial solution of the problem

AY + pwP ly =0 inRV. (4.13)

LetussetZ,(y) =y - Vw(y) + (N — 2w(y) wherew(y) is given by (1.5). At this point we use the fact, inherited
by the corresponding property ¢f , thaty(y) is symmetric in all its variables. It follows from a result in e.g. [28]
thaty must be a multiple of.., which translates exactly into saying tlgais a constant multiple oV’ so that the
orthogonality condition yieldgr = 0 and we have obtained a contradiction. The proof of (4.8) is thus complete.
Our second step is to prove that

ll¢nllz — O.

We shall do this with the aid of barriers as follows. Assume thatO and consider, fof > 0 the unique bounded
solution of the problem

p—1)\? p—1)\? .
—(—) Asn-19s — @] + ¢ + (—2 ) e g, =) e Sl inD,

2 =

-1
<pT>V9¢S f + ¢V +¢v° =0 onaD.

Then from Lemma 3.1 we have

k
ps(x) <C Y el (4.14)
j=1

if 0 <s < 1, whereC is a positive number independent@fwhile if s > 1,

k
ps(x) <C Y el (4.15)
j=1
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Let us observe that, satisfies

p—1\? p—1\? ~
_(T) ASN1¢n_¢Z+¢n+(T> e_(p_l)x¢n=hn in D,

-1
<pT>V9¢,1 P + v +¢,v =0 onaD,

where
hn=—(p+e)&*VPreale, 4, + 3 vz,
Thus we get that

k
mnl < Cny Zeis‘X7§in|
i=1
wheres is any number less tham— 1, andn,, — 0. If p < 2, we obtain|¢,| < Cn,¢s. Bootstrapping the above
relation, we get thak, satisfies a bound of the above form for any 2(p — 1). After a finite number of steps we
will reach this bound for some > 1, and hencéyp, | < Cn, ¢1, which gives the desired estimate (4.2). The proof
of estimate (4.3) is almost the same. We observe also that after estimates (4.2) or (4.3) are known, estimate (4.4
follows with the same argument used to establish (4.9).
Let us now prove existence. We consider the space

H:{q&eHsl(D)|/Vi”_1zi¢=0f0ralli:1,...,k}
D

endowed with its natural inner product,

—1\2
6, ] = (%) /vewew/wwww.
D D

Problem (3.24) expressed in weak form is equivalent to that of finding & such that for alky € H
—1\2
[, ¥]= / [(p +e)e VIl 4 (%) e g h} v.
D

The a priori estimate found implies that far= 0 only the trivial solution is present. With the aid of Riesz’s
representation theorem, this equation gets rewritté# in operational form as one in which Fredholm'’s alternative
is applicable, and its unique solvability thus follows. This concludes the praof.

Let us study differentiability of the operat@r found in the above lemma in the variabkgs We shall use the
notationé = (&1, ..., &) and consider the Banach spagg of all continuous functiong for which ||y ||, < 400
and are symmetric with respectdg, ..., 6y_1, endowed with this norm. Then fgr < 1, T defines a correspon-
dencet — T € L(Cy,). This map is actually differentiable.

Corollary 4.1. Assumd4.1) and consider the map — T. This map is of class?z(CqS) for ¢ < 1. Moreover,
there is a constant > O such that
13¢Tll, <C and (82T, <C

uniformly on pointg satisfying condition§4.1).
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Proof. Fix h and let¢p = T (h). Let us consider differentiation with respect to the variahld_et us recall thap
satisfies the problem

L) =h+Yt vz in D,
(pT_l)Vetﬁ WPV L pr* =0 ondD,
[V Zi¢ =0 i=1.. .k

for some (uniquely determined) constantsLet us consider the constants defined as the solution of
Yo [y Vi Ziz;=0 Yi#l,

:Zj o) [V Tz =~ [ 05V 2
and the function

f==Y aiL(Z)) +ade (V] Z) = coPep + )€ 05, (VP 7). (4.17)
Let us define

Z=T(f)+ Zajzj.

J

(4.16)

A routine verification yields that indeetl = 9, ¢. Moreover)| f|l; < Cll¢llg + | j| < Clipll4, SO thatalsd Z ||, <
Cllk]l4. BesidesZ depends continuously on the parametesdr, for this norm.
Let us consider now the second derivatiyeds, ¢. Let g; be the unique solution to the system

S Bi [p VI ZkZi =0 Vk#1, ],
-1 -1
YiBifp v]." ZiZi=— [, agj(vjp Z)og ¢, (4.18)
-1 -1 -1 -1
YiBifp VT ZiZi = — [0, (VT Z00g ¢ — [ 05 (VT ZD0e ¢ — [ 9,05, (VT Z) g,
and let

g=—Y BiL(Z)— Bece(p + )€™ {0, VP L) + 0 05 VIT 1 + 0 VT )

i
+ 3,10 (VP Z1) + B 06, (VI Z7) + B i, 9, (VT Z)).
As before, one sees that
;00 = BiZi+T(Q)
and hencéiglly < C(Bil + 19l + IVPIlg) < Cli@lly which in particular implies thatog; g ¢ll4 < l|ll4. Thus

the claim is proved. O
5. The finite-dimensional reduction

We consider in this section again the situation of Theorem 2. We will make in what follows special choices of
the pointst;. Consider a large but fixed numbgf > 0 and assume that we have

1 .
(§i+1—f§,-)—logg‘<M, i=1... k-1, (5.1)

& —

1
Iog—’ <M ifN>A4, (5.2)
p—1 &
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[E1—EfI<M if N >4, (5.3)
and

e X =g, if N=3 (5.4)
At this point we make the precise choice of the numfiein (2.1). We choose

Be=e 09 if N4 Bo—eH ifN=3 (5.5)

We have the validity of the following result. We make it more precise in the kasd, since it will be of use in
the proof of Theorem 1.

Proposition 5.1.Assume that relation&.1)—(5.5)hold. Then there are constants> 0, « > 0 such that, for all
¢ > 0 small enough, there exists a unique solutipa: ¢ (&) € CSZ(D) to problem(3.23)which besides satisfies for
someo, o > 0,

Ipll+o < Ce. (5.6)
Moreover, for som@ < g < 1 andw > 0 it satisfies
1ta
lolly <Ce 2. (5.7)

o = 1 may be chosen in case that= 1. Moreover, for som@ < ¢ < 1 the mapt — ¢ (&) is of class C for the
Il - llg-norm and

lto
0:9lly < Ce 2, (5.8)

where againy = 1if k = 1.

Proof. Problem (3.23) can be rewritten as

k
L@)=N@ +R+Y VI 'z inD,
i=1

-1
(%)% 0 ¢V + vt =0, (5.9)
fvi”‘lz,-qszo foralli=1,...,k,
D
where
N@) = € [(V + )T —vPre — (p+eyvrtely), (5.10)
4
R=Y"Ri (5.11)

with
R1=(ce — 1)B€*VPTe Ry = B €5 [VPTe —yP], R3=V?[B.e" —1],

k p k p k
R4=V”—<ZW,-> , R5=<ZW,-> -> wl.
i=1 i=1 i=1
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We observe thak is symmetric with respect to the firat — 1 variables of). The operatolV respects as well this
symmetry. Problem (3.23) is equivalent to solving a fixed point probieis.a solution of (3.23) if and only if

¢=T(N(p)+ R)=A(¢).

We will show that the operatot defined above is a contraction mapping in a proper region. We begin by analyzing
the size ofR in different norms.

|Ro| < Ce€* VP logV| < CeVP™?

hence for any < p ||R2|l; < Ce. For Rz we have for any large,
|Ra| < Ce[|x — &1 + 1] VPHe < Celloge| VP,

hence
R3]l p—o < Ce|logel.

Observe that ik = 1, actually we gefl R3| ,—» < Ce. Let us consider nowR4 for N > 4. We find

mln X El

|Ra| < CVP~ 1ZW Wil < CcVP 1Ze*2 —x=&il,

i=1 i=1
thanks to estimate (3.10). 4> &1 this yields

|Ra| < CVPeZ/WN=2 < CoyP,

If x < £ we get|Ra| < CVP—lenz—h=6l |f 3£1 < x < & this expression implies

2
|Ra| < CVPe 30718 ypg},

If x < 351 we get
|Rq| < Ce~ 561y = cedoyito,
hence
| Rall1+0 < CeZ.
On the other hand, we also find tH&s| < CeV?~1, hence

Rallqg < Ce

for someq < 1. The same estimates turn out to be valid k= 3 thanks to the definition of; in (5.4) and
estimate (3.11). Now, let us consides. The following inequalities hold:

|Rs| < Ce™7 o v+
and

|Rs| < Ce277V7.
Combining all above estimates we finally find that for same 1

IRIl4 ésHTa, a >0, (5.12)
while for someo > 0

[Rl1+o <&% a>0. (5.13)
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We observe that in cage= 1, whereRs is not present we actually find
IRllg < Ce

for someg < 1.
Next we analyze relevant properties of the operatap).

1

N(@) = K. f di (V +1¢) 22,
0

with K. a bounded constant. Hence if, si,|1 < %IIVIIL we get, using the fact th§t « %

IN@@)| < KVPH22 <K VP12, (5.14)
and hence

IN@), < Cliglli. (5.15)
Moreover, inequality (5.14) implies as well that for sucth we also havenN (¢)| < K |¢|Min(r-2} which implies

IN@)], < Cllglg™?. (5.16)
Now,

1
% = K. e / di[(p —2)(V + 1)1 392 4 (Vv 4+ 19)7%2)].

0
If gl < 21V11, we get
IN

9
Let us fix positive numbers, o as in (5.13) and consider the set
Fr= {(b € Cs(D): 19ll1+0 < rgot}

with r a positive number to be fixed later. Observe thagfan such a regiony + ¢ > gV for some fixed positive
constantd. From Lemma 4.1, (5.15) and (5.13) we get

[A@ ] <CUIN@) + R 1,,) < Clre™ + &%) < re®

for all smalle, provided that is chosen large enough, but independerd.ofhus A maps¥, into itself for this
choice ofr. Moreover,A turns out to be a contraction mapping in this region, as it follows from relation (5.17).

Existence and uniquenessg#) with the desired property thus follows. Using (5.16) and (5.12), tadingrm
on both sides of the fixed point characterization we conclude as wel|¢Higt< e1t®)/2 a5 desired. Concerning
now differentiability of the functiom (¢), let us write

B, ¢)=¢ —T(N(@) + R);
we haveB(&, ¢) = 0. Now we write
dpB(E, §)0]1 =06 —T(005(N(#))) =6 + M (6).
It is not hard to check that the following estimate holds

<CVPTglE. (5.17)

|m©)], < Ce" el
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It follows that for smalle, the linear operatody B(£, ¢) is invertible inC,y, with uniformly bounded inverse. It
also depends continuously on its parameters. Let us differentiate with resgediohave

% BE, @) =—@T)(N@) +R) = T((N)(E, ¢) + %R)

where all the previous expressions depend continuously on their parameters. Hence the implicit function theoren
yields thatg (&) is aC? function intoC,s. Moreover, we have

¢ =— (05 B, $)) " [0: BE, D))
so that
lelly < CIN@) + Rllg + 3N €. )|, + 19 Rllg) < Ce 2

Observe that there is no danger in the differentiation of the opeMatbianks to the fact that alway| =o0(1) V.
Concerning the estimation éf R, it follows straightforwardly from its definition and the estimate on derivatives
of I1;, inherited from the differentiation ip; in its expression in the variables . This concludes the proof.O

6. The proof of Theorem 2

According to the previous results, our problem has been reduced to that of finding fasotshat the con-
stantsc; which appear in (3.4), for the solutiahgiven by Proposition 5.1 are all zero. Thus we need to solve the
system of equations

ci(¢)=0 foralli=1,... k. (6.1)

If (6.1) holds therny = V + ¢ will be a solution to (3.4) with the desired form. This system turns out to be equivalent
to a variational problem, related toetfiunctional associated to problem (3.4),

_1 p—1 2 > 1 ’ 2
Is(v)_E(T) /|V0U| +§/(U +v)
D D

1 cpptel , 1P -1 2 —(p—Dx. 2
D D

I, is in correspondence with the functional associated to problem (1.8) in natural way: Let us write

1 2., 2 1 / 1
e (1) 2/| | b lte u]
2 2

Then we have the identity
I.(v) =anJ:(u), v=T ), ay > 0.

We have the validity of the following fact.

Lemma 6.1.The functionV + ¢ is a solution to(3.4)if & = (&1, ..., &) is a critical point of the functional

Ze(§) =1 (V + ¢),
where¢ = ¢ (&) is given by Propositio®.1and I, is defined in(6.2).
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Proof. Assumes is a critical point ofZ,(¢). Then foreachi =1, ..., k we have

k
0=DI.(V +¢)[M} _ Zf yroiz, 2+
j=1

9&; 9&;
Now, the definitions oV and¢ readily yield
IV +4¢)
——==Z;+0(),
5, +0(1)

where @1) — 0 uniformly. This information implies that the above relations define an “almost diagonal” homoge-
neous linear system of equations for this, which implies the validity of (6.1), and the proof is completel

The following fact is crucial to actually find critical points &f.

Lemma 6.2.The following expansion holds
Ze(§) = I:(V) +0(¢e)
where the terno(e) is uniform in theC1-sense over all points satisfying constraifisl)—(5.5) for givenM > 0.

Proof. Taking into accountthat& DI.(V + ¢)[¢], a Taylor expansion gives
1

L(V+¢)—I.(V)= / tdt D*I.(V +1¢)[¢?]

1
_ / rdr( / [No(@) + R]é + / (p+o)[VPret (v + r¢>"+“]¢2). (6.3)
0

D
Since||¢|l« = O(s ) we get
Te(§) — I:(V) = O(e*1), (6.4)
uniformly on points satisfying (5.1)—(5.5). Differentiating now with respect tGthariables we get from (6.3) that

1
0 [Z.®) — L.(V) =/rdr</ (Ne(@®) + Ro))9]
0

D

+(p+s)/a§[((v +tp)Ptet = vl’+8—1)¢2]). (6.5)
D

Using the computations in the proof of Proposition %é get that the first integral in relation (6.5) can be
estimated by @1*%), so does the second; hence the proof of the lemma is complete.

The above results tell us that finding critical pointsZet¢) is essentiallyequivalent to finding critical points
of I.(V). To do so, it is convenient to make the following choices for the pdintsor N > 4 we set

f1=—
&11—& =—loge —logA;y1, i=1...,k-1 (6.6)

where theA;’s are positive parameters. For notational convenience, we alsb=seiA1, Ao, ..., Ax).

2
1(Ioge +log A1),
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For N = 3 we modify these expressions in the following way: We recall £t the unique positive number
such that 8%1&§ = ¢. Then we set

1
E1=¢&] — > log A1,
&11—& =—loge —logA;y1, i=1,....,k—1 (6.7)
The advantage of the above choices is the validity of the following expansion.

Proposition 6.1.Let N > 3. Fix a small numbeé > 0 and assume that

§<A; <8t foralli=1,... k. (6.8)
Then, with the choice.6)for N > 4 or (6.7) for N = 3 of the points;, there are positive numbers, i =
1,...,4, depending only o¥ such that the following expansion holds.

I. (V) =kay + W (A) + ae + €0:(A), (6.9)

k

2k
= 1a4logA1+Z[—a3A,~ + (k —i 4+ Daslog A;], (6.10)
i=2

Ui (A) =—a2H(0)A1 +

wherea, — 0 is a constant and the term.(A) — 0 uniformly in theC-sense on the set of;’s satisfying
constrainty6.8).

Proof. A fact we will see first of all is that if we sét/= Zle W; then
I(V) —1(W =o0(e)
in the C-sense. Se¥ = W+ 17, so that'7 = Y°_; 17;. Then
1
/ 1 7 2
IW=-I'"(V)[IT]+ > dt1"(V —tID[IT]*.
0
By definition of V we see that

') = /[W’ — (W4 Y)P*)IT = /[W’ — (W4 INP|IT + /[(W+ P — (W+ P11
D

D D

—p / (W4t sIHP 1% + ¢ / (W IT)P 58 log(WH IT) T
D D
with s € (0, 1). The properties we established on these quantifigsead to1’(V)[I1] = o(¢), where dg) is
uniform in theC!-sense in the tuple. Similarly we check thal”(V — tIT)[IT]? = o(¢). Corresponding size for
derivative with respect t§ follows again from our knowledge of asymptotics #igfiT andag /. In conclusion, the
proposition will be proven as long as we establish estimate (6.9)ui#placingV .
Now, let us observe that

1 1
Is(W=§/(W+W2—m/V\P+l
D

D
2
c Lt [ L / erwprert _T(P—1 / e (P~Lxwg,
p+1 p+e+1 2 2
D D D

Then the proof of the estimates (6.9) and (6.10) will follow from the following two lemmas.
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Lemma 6.3.Under the assumptions of Propositiéri, the following expansion holds
1 1 (=1 =l
- /(V\’/+ w2 — —— /W’“ =kay—azH(¢)e™ 2 L —a3) e li17Gl L o(e) for N >4,
2 p+1 ‘
D D i=1
k—1
= kay — azH ()€ 16 — a3y e 174l L o(e) for N =3,
i=1
whereay, ap, az are constants depending only @, o(e) is uniform in theCl-sense inA satisfying(6.8) and
¢=0.

Proof. Since forany, j =1,...,k,

/(W/W’—i—WW W”W)—/W/W ¥ (6.11)
oD
we have
1 1
= W 2__/W+l
5 [ ewe - —
D D

:i[}/[(wfﬁ W2)]dx — 1 /W.”“]

4 2 l 1 p+1 1

=1" D D

+Z/(Wi’w;+w,-wj)+ > /W;W,-+Z/W/W +—< /W”+l /V\I’“)
J=Ll...kp i#]

i<jp i=1p

_ _Z/Wp+1+ Z/W2”x+Z/W(W —|—W/)v

i=15p i<jsp
p+1
+1
p+1 [ZW” (Zwi) +(p+1)ZW,.”W,1
i=1 i<j
=TI+l +||| + 1V (6.12)

wherel, Il 11l andlV denote respectively the four integrals of the last term in the previous formula. The asymptotic
estimates of these integrals will give us the proof of the lemma.
We start with/. For anyd € S¥~1, we introduce new variables

6 = (sinnd’,cosy), 6 €SV7? 0<n<m. (6.13)
Let D’ be the subset af’ =R x [0, 7] x S¥~2 such that

/ W/ (x) dx d6 = / WP ) sin¥ L ndx dnde’'. (6.14)
We can write

/Wp+l(x)SInN Tndxdndo' = /Wp+1(x)SInN Tndxdndo’

Sy
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+< / - / >Wip+l(x)sinN_1ndxdnd9’ (6.15)
s.np"  S\\D’

whereS’, =S'N{n [0, 5]} andS’ =5\ 5.
A direct computation yields, far=1, ..., k,

+00
/ W/ (x)dxdnde’ = % / WPl (x)dx. (6.16)
s, —o0
Here and in what follows we denote by the surface measure of the sph&fe Now, going back to the original

variables in$2, we have that, sinc& has smooth boundary near= 0, there exist a small numbér> 0 and a
smooth functiory defined on a subset &1 such thaig(0) = 0 and

2NBO,8={y=0"yv-0 eR": yy>g0", Iyl <8} (6.17)

Without loss of generality, we may assume that the coatdi systems centered at 0 is chosen in such a way that
Vg(0) =0, g(y") > 0 locally around 0 and that the bilinear symmetric fogfh0)[y’, y'] defined onR¥—1 is
diagonal with eigenvalues;. In particular, the mean curvatufé of the boundary at 0 is then given #y(0) =
k
N];l Zj:l Kj-
Let

/- e —22lx o ’ T
As=1(x,n,0): x> — logs,e” 2 *cosny < g(e” 2 *sinpd’), 0<n < 5 (6.18)

2
p—1
wheres > 0 is the small number fixed in (6.17); for any=1, .. ., k, we have

fWi”“(x)sinN—lndxdnde/—/Wf’“(x)sin"’—lndxdnde’
D/

s}
=_ / WP ) sin¥ L ndx dndo’ + Iy (6.19)
As
where
— 5211095
|Is| < 2C / WP (x) dx = O(e~(PFDér) (6.20)
%o

foranyi =1,...,k. Fix nowi = 1. Sinceg(w) ~ |w|? for smallw, then (6.18) and (6.19) yield

/ Wlp+1(x) sifV" =1 ndxdndo’
As

= / WPt () sinV =ty dx dndo’
As—&1
+o00
1 +1 ,L_lx Vi 12 / 7177_15 *L_l‘f
=5 wPtl(x)em "z Y dx g (0)[0'12d0" Je  Z S+ o(e” Z 1)

—00 SN-2



M. del Pino et al. / Ann. I. H. Poincaré — AN 22 (2005) 45-82 71

N-1

(/Wp+1(x)e ‘T%)(ZK, /(9) d@)e Bre | oe i ény

Jj=1 SN-2

w

OO
_ N2_2< / WP“(x)e‘pTlxdx)H(O)e‘pTl&+0(e‘%51)- (6.21)
o

Summing up all the previous computations, from (6.14), (6.16), (6.19)—(6.21) it follows

kwN l/WP+1(x)d w</WP+l( )e 2 xdx) — £1§1+0(8) (622)

since one can easily check that

/Wf’Jrl(x)sinN_lndxdndQ/:0(6_%1&), forany; >2
As

Moreover, the estimate (6.22) holds uniformly with resped; teatisfying (6.6).
We now give the estimate df. Observe first that

/lev"da(x 0) = / w2v*sifV =2 pdo (x, n,6").

D’
Let $ be fixed as before andls be the set defined in (6.18). Thus we have
/qux = / W2yt sinV =2 115 = / W2v¥sin¥ =25 + o(e) (6.23)
A(D'NAS d(D'NAR)

since,
[Il5] < Ce %1 = 0(e).
We will first treat the cas&v > 4. We have
w2v*sinV =2y = / W(x)2v* (x + €1, 1,0 sinV 2y
A(D'NAS) AD'NAYg,
where forB c R x (0, 7) x S¥~2 and¢ € R we denote
={(x—&n.6)/(x.n.0)€B}.

Now, letting&; — oo we find

W ()20 (x + &1, 1, 0") sin¥ 2y

d(D'NAS),
= -5 2</W2(x)e ‘T"dx>( / g”(O)[e’]Zde’)e—Lrl&+o(e—Lrlfl)
SN—Z
HO [ [
—%( / Wz(x)e—”%wx)e—%lfl+o(8). (6.24)

—00



72 M. del Pino et al. / Ann. I. H. Poincaré — AN 22 (2005) 45-82

For N = 3, we find

W2v* sing = —27 H (0)&16 %1 + o(e).

A(D'NAS)
Now, a simple computation yields

/ W2(x)v*

oD

~1
—o(e "z &y forj>2.

From (6.23), (6.24) and (6.25) we can conclude that

+00
— H O p— p—
|| = N2 U(/ Wz(x)e‘—zlxczx>e—%&+o(e)
—00

2(N —2)

for N > 4 while for N = 3 we find

Il = —7 H(0)£16 %1 + 0(e).

Next, the choice of the points (6.6), (6.8) imply that

-1
1] < Ce? +o(e "z &1) = o(e).

Finally let us prove that

k
IV = —as Z e &8l 4 o(e).
i=1
Let us consider the numbers
1

n1=0, wm=zE-1+8&), 1=2,...

T2
and decomposk/ as
IV=—B+C1+C2
where

B=(p+1 Y [ w'w,dx,

1<I<kp,
j>l

where

Dy ={®.x)€D|xelw, w1}

k +1
c1=2/[wf’“—(wl+2m>p +(p+D Y W

I=1p, il

Mi+1 = +00,

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

andC> = B, + B — (1. Let us estimat&’;. Using the mean value theorem, the fact thatx) < Ce ¢! and

settingp = log 2 we get
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1l < céf(wl + Zwi)p_l(z Wi)z

Dy il il
K

< C e_(p_l)xe_z‘x_pldx

o\’\f

5+K
1
<ce / e (P=3% gy — O 7P) = 0(¢).
0

The constank above depends only ah Similar considerations on the terms constitutgyields C2 = o(e).
Let us now estimat®. First we observe that

k
B=(p+1) Z/ W/ Wi1dx + 0o(e).
I=1p,

Now, we have that
/Wlle—i-l = / WP )W (x — (&11— &)).
Dy D;—§
On the other hand, it is directly checked that
|W(x —&)— CNe—\E—X|| — o(e—PIE—X\)
as& — +o0, With Cy = (325)™~2/4. We conclude then that

k—1
IV=(p+1) Z e lmi—Slcywn_1 / e W (x)? dx + o(e).
=1 R

Collecting estimates (6.12), (6.22), (6.26), (6.28) and (6.29), estimate (6.11) follows. The fact that derivatives in
of the o(e) remainder respect its size uniformly on (6.8) follow from very similar computations, so that we omit
them. O

Lemma 6.4.Under the assumptions of Propositiéri, we have

1 T 1

k
—— = [ewttl= ¢ — i+0 6.30
o1 p+8+1/ ase a582§;+ (¢) (6.30)
D

D j=1

and

k 2
/ g (P—Dx (Z Wi) =o0(e), (6.31)
i=1

D

whereay, as are constants depending only &h ando(e) is uniform in theC1-sense inA satisfying(6.8).
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Proof. We can write

1 W+l _ 1 /eé‘xw+€+l
p+ 1 p+e+1
— /(esx 1)\N7+1 1 /esx (W+l _ \Nz+£+1) + ( 1 _ 1 > / eexw+s+1
p +1 p+1 p+1 p+e+1l
D D
= er —HWH 4 A, 6.32
o1 /( ) + (6.32)
First we have that
1 1
A, = _kngl<m / WPt (x)dx + -1 / WPt (x)logW (x) dx> +0(e).
R R

On the other hand, it holds

/ e —HWil=¢ / AW 4 0(e) = sy 1( / W”+l> (Z g,) + 0(e);

D R j=1

so we get (6.30). Finally, observe that fgr> 5,

/ e (P-Dryg — o~ (-Dér,, / &= DrW2(1) dx + o(e= P58y — o(e),
D R

For N =4 we have

o0
/ e~ (—Dryd — g=(r—Di1,, / e~ P=D¥ 23y dx + o(e=P-Dé)
D c—&1
= (1)3«5-'1(—2‘_(p_l)&—1 (1 + 0(1)) =0(¢),

and forN =3
o0
/ e~ (P—Dayg — g=%14, / e ¥ W2(x)dx + o %1) = %e*%1(1 +0(1)) = 0(e).
D c—&

Again we omit the proof of th€'1-smallness of the @)-term which involves similar computations. This concludes
the proof of the lemma. O

Proof of Theorem 2. Lemma 6.1 yields that we need to find a critical poinfZpf¢). We consider the change of
variable¢ = £(A) given by (6.6). Hence it is enough to find a critical point of
Ve (A) = e 1T, (5(4)).

From Lemma 6.2, which we recall, holds with théspterm in theC? sense uniformly on points satisfying
constraints (5.2)—(5.1), we obtain that

V¥ (A) = V¥ (§) +0o(1)
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where 1) — 0 uniformly on pointsA satisfying (6.8). It is easy to see that the critical patrit= (A1, ..., Ax)
of W is given by
oy — N—-2 ay X
YT LHO”
Since the critical pointA* is nondegenerate, it follows that the local degree(¥dg, 5., 0) is well defined
and it is non-zero. Her®, is an arbitrarily small neighborhood of the point in R¥. We conclude that, also
deg VZ,, B., 0) # 0 for all sufficiently smalk. Hence we may find critical pointd’ of ¥, with

Af =A% +0(), Iimoo(l) =0.
&—

Ai=k—j+D2 forallj>2.
as

Hence forg* = £(A*) we have that the function® = Y"5_; W(x — &) + ¢(£) is solution of problem (3.4). Itis
straightforward to check that this provides the solution predicted by the theomam.

7. The proof of Theorem 1

We assume now tha? is a general bounded domain and 2. We look for solutions to (3.4) of the form
v(x,0)=V(x)+¢(x,0)

whereV (x) = W(x — &) + I¢ ¢, for a proper choice of the numbgiin R* and the point € 352; hereg(x, 6) is
a lower order term.

We follow exactly the same approach as in the proof of Theorem %, fofl, except that now in the absence
of symmetries we will have to consider as well the effect of translations. Carrying out the Emden—Fowler transfor-
mation around the point, the problem is again rewritten in the form (3.19). Since no symmetry is now present,
the “intermediate problem” must involve more constraints. Let us consider then, following the previous notation,

L@)=N@) + R+ YN, v/ 2 inD,

(21 Vop 17 +¢'v¥ +gv* =0 onaD, (7.1)
fvf*12i¢=o foralli=1,...,N.
D

HereVi(x) = V(x — &), Zy(x) = W} (x), while fori =i,..., N — 1,

Zi =T (gwpz).

In other words if after a change of coordinates we assgmme0 and that the tangent spaced® at ¢ is the
hyperplanecy = 0, then explicitly,
3 ad
W = —w .
Wi, i w0

We make the same choice for the paramétas that given respectively in (6.6) and (6.7):

E=— (loge +log A), (7.2)
p—1
for N >4 and
1
E=¢&] — 5l0g 4, (7.3)

for N =3, wherez; was defined in (5.4) and is a positive parameter which we assume in what follows to satisfy
§ < A < 8~ for some small, fixed numbér> 0. We shall denote in what follows = ¢ ~1¢.
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Proposition 7.1.Assume that relation&.2)and(7.3)hold. Then there is a constaat> 0 such that, for all > 0
small enough, there exists a unique solutipa= ¢ (£, ¢) to problem(7.1) which besides satisfies the estimates
lgllr < Ce” for somex > 0, and for somé® < g < 1,

Igll, < Ce. (7.4)

Besides we have

134¢llq + 10544 < Ce. (7.5)

Proof. The proof mimics that of Proposition 5.1, we just needttaly the invertibility of tke linearized operator in
analogy to Lemma 4.1. We can follow step by step the arguments used to obtain this result, with the only exception
of the step where symmetry was used to discard the presence of a non-trivial decaying solution to problem (4.13)
A resultin [28] implies that such a solution must be a linear combination of the partial derivativégs pfOn the

other hand, the solution found is symmetric in the-variable, hence no component on the partial derivative in
that direction is present. But the orthogonality conditiafgch passed to the limit yield that this can only be the

zero function. The rest of the proof of the propositgoes through with no modifications. We recall thatfos 1

we had in fact|R|; < Ce. Actually the bound on second derivativein(or equivalently ing) is an iteration of

the scheme in which one derivative was controlled together with the result of Corollary 4.1. In fact, one has the
expression foBfmqb, namely

03,46 =—02B(A, Z) Lo d4B(A, 2),
where
B(A,Z)=Z — (0oT)(N(¢) + R) — T(M1+ M2(Z) + 04 R)
with
1
M1 = K1 / dr (V 4+ 19)P739 , v ¢?
0

and
1

Ma(Z) = K26 f dt{(p+e—2(V +1¢)P 392+ (V +19)P 722} Z
0

for some constant&; andK>.
The operatozB(A, Z) is invertible. Indeed, taking into account that terms l{ké + ¢)ﬁ73¢2 and (V +

q))i_zqs can be controlled in the propér ||,-norm thanks to the fact thép| = o(1)V as a direct consequence of
the estimatd/¢||1 < Ce*, for some o >0, we get

9zB(A, Z)[0]1=6 — T(M»9) with HT(MZQ)Hq <Ce”)0]ly.
Now, a direct computation yields
0AB(A, 2) = —(3,2\AT)(N(¢) + R) — (34T)((04(N () + R) + M1+ M2(Z) + 34R)
— T (34(M1+ M2(Z) + 9aR)).
Using again the fact thad| = o(1)V, we get that

2 2
||3AA¢||q<C8 . O
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It is important to understand the differentiable dependencg afso in the parameter. It is actually more
convenient to manage these quantities using original-expanded variables. For simplicity we assurge=a@ain
and that the tangent spacestoat this point isxy = 0. Let us write

P(x.0)=T(®)
and define
YO =u'T Py, ye,
where2,, = u~1£2, and
pn=e ifN>4, p=e%l fN=3

With some abuse of notation, we callthe transformation o¥’ to this scale. Recall thtis given by (7.2), (7.3),
hence with this transformation for instandgx — &) becomes converted into4 o. Again with abuse of notation,
we call for noww 4 o = w. Also, Zj becomes just ; = 37"; forj=1,....N—1,y-Vw+ (N —2wfor j=N.
Then problem (7.1) becomes converted into

N

L) =S+M@)+ Y djwl™Z; ing,,
j=1

w

=0 inds2,,
ov "

/wl’*lzjwzo forallj=1,...,N,

2,
where
L) =AY — p?y + (p+ )iy
with
S=wPTe —wP, M) =@+ )P — (p+e)wP Ty — gt

What has been proven in this new language is the following: For some & 1, we have the global estimate

N-2
Y| < Cely|” 2" T Duwi(y)
while we have as well, for some> 0,

Y] < Ce¥w(y).

The first estimate also holds true féxy anda2 .
Let us consider now tangential derivatives with respect’te: ©~1¢. To do this we consider first the linear
problem

N
L@ =h+Y djw’'Z; ing,,
j=1

9 .
W _0 inog,,
av

/w”flzﬂ//zo forall j=1,...,N.

2
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The estimate for the problem in theriElen—Fowler variables reads now as
1Vl < CllA e,

where

. _N-2_
Il =inf{K >0/ [y < Kly|~ 2 T9Dui(y)},

Wl = inf{K >0/ 1] < K|y| ™7 0=29 (3}
SetX = ag}l//. ThenX solves

N N
LX) =0 [(p+ &) 0" Ny + 9,h+ Y djdg [wP™ 1 Z;1+ Y ejwP™Z; in 2,

=1 =1
X

— =0 onds,,
ov ”

/wl’*lzsz—/a;i[wpflzj]w forall j=1,...

2, 2
Consider

n
Y=Y by
j=1

where for eacly

Observe that again this linear system is uniquely solvable for sufficiently sma@ten

N N
L(X —Y)=—L) + 3 [(p+ )0y + o, h + Zd,-a;, [w’=1z;1+ Zejwpflzj in £2,,
j=1 j=1
X
— =0 o0nods,,
ov

/wl’*lzszo forall j=1,...,N.
QM

Observe also that
N

L(Y)= Zbl(p + s)wl’—laq(},
=1

hencel|A . < C Zfil |b;] < C||¥||«. The conclusion we draw from the above expressions is that
IX =Y« < C[IAllex + ||3;]/.h||**]

and hence satisfies the same estimate. Using this fact in the nonlinear equation, and the implicit function theorem,
plus the fact that

Sl + 110z S s < Ce,
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we finally find

0¥ ll« < Ce
We can actually iterate the above procedure and get similar estimates for higher derivatives. In particular we find
10gs ¥ ll« + N9y ¥ lls < Ce

facts that will be useful in further analysis.

According to the previous results, our problem has been reduced to that of finding pataaretqroint; € 952
so that the constants which appear in (7.1), for the solutiah given by Proposition 7.1, are all zero. Thus we
need to solve the system of equations

di(¢,2)=0 foralli=1,...,N. (7.6)

If (7.6) holds therw = V + ¢ will be a solution to (3.4) with the desired form. Arguing as in the previous section
(Lemmas 6.1 and 6.2) we can prove that this system isvatgrit to a variational problem. More precisely, we
have.

Lemma 7.1.The functionV + ¢ is a solution to(3.4)if the pair (&, ¢) is a critical point of the function

Te(§,5) =1 (V + ¢),
where¢ = ¢ (&, ¢) is given by Propositiofi.1and I, is defined in6.2).

Proof. Itis useful to consider the functiona(V + ) expressed in the variables §p, . Let us set

J \v4 P+l+s

2,

Then the foIIowmg identity holds:
L. 5) =LV +o)=cnJ(W+ V)

wherew andtr are functions of the paitg, ¢) as defined before. With identical proof as before, but using this
representation in what concernsgoariables, we find that if we have a critical poiit ¢) of I, then a solution
of problem (3.4) has been found

Lemma 7.2.The following expansion holds
Ze(5,5) =1 (V) +0(e)

where the termo(e) is uniform in theC1-sense over all points satisfying constrafft2)—(5.1) for givenM > 0.
The same is true for second derivatiigsy andd ;.

Proof. Similarly as before, we have the representation

1
IV +¢) — I.(V) =/rdr D2J.(0 + )92

1
= [l [ty sty + [ rafor @)
0

2, 2,
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As before, now using thats||, and||v |+ are of size @), we obtain that this quantity is Ofy, and the same is
true concerning one and two derivatives with respeét(ia fact the old representation is good enough to conclude
this).

Differentiation with respect tg goes trough in similar way, except that what respect sizes is not derivatjve in
but derivative in;’. More precisely

U [Ie(V +¢) — I (V)] = e 00 [1(V + ¢) — I(V)] = 0(e) + £0; / SV,
2u

whereS =¢71S, y = ¢~1y. SinceS andy have respective normi$ and* uniformly bounded, and the same is
true for 8;/5 and 84/1/7 we can apply dominated convergence and pass to the limit in that integral. By definition
of S, itis easy to see that approximates a radially symmetric function. In the limittherefore becomes as well
radially symmetric. Since the derivative §nof a radial function is odd in that variable, we conclude that

/ 0059 — 0.
2,

The same is true for the other integral, since the equation satisfie)g/ﬁyidentifies a limit as well odd. The
conclusion we get is then that

d;/ / Sy = o(e)
2

as desired. The same procedure works if one first differentiatésand after ing, and the lemma has been
proven. O

After the above property has been established, of course we need corresponding estimates for the expansic
of I (V). In fact the following is true.

Proof of Theorem 1. Lemma 7.1 yields that we need to find a critical poinZgfg, ¢). We consider the change
of variable¢ = £(A) given by (7.2). Hence, from the expansion given in Proposition 6.1, we canZy(ges) as

I;(A, ) =L (5(A), §) = a1+ ¥ (A, §) +as +0(e)

where

V(A L) =—a2H({)A+ay

logA,
p—1 J

a. — 0 is a constant and o(d$ uniform with respect toA given by (7.2) and: € 352. Moreover, one can push
further the computations in Proposition 6.1 foe= 1, and get as well @)-smallness for derivative&fm and

8{2’/&. Consider a regio® as in the statement of the theorem, in which with no loss of generality we may assume
H >y > 0. Let us fix¢ € D, and consider the equation i

3
—TXA, L) =
ol (4.6)=0

which corresponds to

1

—axH
az (§)+a4p_1A
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whered; is of classC! and Va,:6: — 0 uniformly in the considered region for its arguments. It follows the
existence of a unigue solution of the above problem of the form
CN

H(¢)

where @1) — 0 ase — 0, uniformly in theC1-sense irt € D. We will have then found a critical point ar (A, )
if we do it for

F()=I}(AQ), ;) =b, —elenlogH({) + 0(1)]

whereb, is a constanty > 0 and 1) — 0 in C1(D)-sense as — 0. The linking structure (1.9)—(1.10) assumed

is invariant under smalf’? perturbations, so that it is inherited for this function. The existence of a critical point
¢ € D for F, thus follows. It is directly checked that this yields a solution to (1.8) with the desired properties. This
concludes the proof. O

A=A@Q) =

+0(1)
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