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Abstract

We study the problem of the existence and nonexistence of positive solutions to the superlinear second-order d
type elliptic equation with measurable coefficients−∇ · a · ∇u = up (∗), p > 1, in an unbounded cone-like domainG ⊂ R

N

(N � 3). We prove that the critical exponentp∗(a,G) = inf{p > 1: (∗) has a positive supersolution at infinity in G} for a
nontrivial cone-like domain is always in(1, N

N−2) and depends both on the geometry of the domainG and the coefficientsa of
the equation.

Résumé

Nous étudions le problème d’existence ou non existence de solutions positives d’équations elliptiques de type d
du second-ordre superlinéaires à coefficients mesurables−∇ · a · ∇u = up (∗), p > 1, sur un domaine coniqueG ⊂ R

N

(N � 3). Nous prouvons que l’exposant critiquep∗(a,G) = inf{p > 1: (∗) a une supersolution positive à l’infini dans G} pour
un domaine conique non–trivial est toujours dans(1, N

N−2), dépend à la fois de la géometrie du domaineG et des coefficients
a de l’équation.
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1. Introduction

We study the existence and nonexistence of positive solutions and supersolutions to the superlinear sec
divergence type elliptic equation

−∇ · a · ∇u = up in G. (1.1)

Here p > 1, G ⊂ R
N (N � 3) is an unbounded domain (i.e., connected open set) and−∇ · a · ∇ :=

−∑N
i,j=1

∂
∂xi

(aij (x) ∂
∂xj

) is a second order divergence type elliptic expression. We assume throughout t

per that the matrixa = (aij (x))Ni,j=1 is symmetric measurable and uniformly elliptic, i.e. there exists an ellipt
constantν = ν(a) > 0 such that

ν−1|ξ |2 �
N∑

i,j=1

aij (x)ξiξj � ν|ξ |2, for all ξ ∈ R
N and almost allx ∈ G. (1.2)

The qualitative theory of semilinear equations of type(1.1) in unbounded domains of different geometr
has been extensively studied becauseof various applications in mathematical physics and the rich mathematic
structure. One of the features of Eq. (1.1) in unbounded domains is the nonexistence of positive solutions fo
values of the exponentp. Such nonexistence phenomena have been known at least since the celebrated p
Gidas and Spruck [14], where it was proved that the equation

−�u = up (1.3)

has no positive classical solutions inR
N (N � 3) for 1� p < N+2

N−2 . Though this results is sharp (forp � N+2
N−2 there

are classical positive solutions), the critical exponentp∗ = N+2
N−2 is highly unstable with respect to any changes

the statement of the problem. In particular, for anyp ∈ ( N
N−2, N+2

N−2] one can produce a smooth potentialW(x)

squeezed between two positive constants such that equation−�u = W(x)up has a positive solution inRN ([34],
see also [11] for more delicate results). If one looks for supersolutions to (1.3) inR

N or studies (1.3) in exterio
domains then the value and the properties of the critical exponent change. The following result is well-know
e.g. [4,6]).If N � 3 and 1 < p � N

N−2 then there are no positive supersolutions to (1.3)outside a ball in R
N . The

value of the critical exponent p∗ = N
N−2 is sharp in the sense that (1.1) has (infinitely many) positive solutions

outside a ball for any p > p∗. This statement has been extended in different directions by many authors (see, e
[3,5,7,8,10,12,17–20,25,32,35,37,38]). In particular, in [17] it was shown that the critical exponentp∗ = N

N−2 is
stable with respect to the change of the Laplacian by a second-order uniformly elliptic divergence type o
with measurable coefficients, perturbed by a potential, for a sufficiently wide class of potentials (see also [18]
equations of type (1.3) in exterior domains in presence of first order terms).

In this paper we develop a new method of studying nonexistence of positive solutions to (1.1) in co
domains (as a model example of unbounded domains inR

N with nontrivial geometry). The method is based up
the maximum principle and asymptotic properties at infinity of the corresponding solutions to the homog
linear equation. This approach was first proposed in [17]. In the framework of our method we are able to e
the nonexistence results for (1.1) with measurable coefficients in the cone-like domains without any smoot
the boundary in the setting of the most general definition of weak supersolutions.

We say thatu is asolution (supersolution) to Eq. (1.1) ifu ∈ H 1
loc(G) and∫

∇u · a · ∇ϕ dx = (�)

∫
upϕ dx for all 0 � ϕ ∈ H 1

c (G),
G G
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c (G) stands for the set of compactly supported elements fromH 1

loc(G). By the weak Harnack inequalit
for supersolutions (see, e.g. [15, Theorem 8.18]) any nontrivial nonnegative supersolution to (1.1) is positiG.
We say that Eq. (1.1) has asolution (supersolution) at infinity if there exists a closed ball̄Bρ centered at the origin
with radiusρ > 0 such that (1.1) has a solution (supersolution) inG \ B̄ρ .

We define thecritical exponent to Eq. (1.1) by

p∗ = p∗(a,G) = inf
{
p > 1: (1.1) has a positive supersolution at infinity inG

}
.

In this paper we study the critical exponentp∗(a,G) in a class of cone-like domains

CΩ = {
(r,ω) ∈ R

N : ω ∈ Ω, r > 0
}
,

where(r,ω) are the polar coordinates inRN andΩ ⊆ SN−1 is a subdomain (a connected open subset) of
unit sphereSN−1 in R

N . The following proposition collects some properties of the critical exponent and po
supersolutions to (1.1) on cone-like domains.

Proposition 1.1. Let Ω ′ ⊂ Ω are subdomains of SN−1. Then

(i) 1 � p∗(a,CΩ ′) � p∗(a,CΩ) � N
N−2;

(ii) If p > p∗(a,CΩ) then (1.1)has a positive supersolution at infinity in CΩ ;
(iii) If p > p∗(a,CΩ) then (1.1)has a positive solution at infinity in CΩ .

Remark 1.2. Assertion (i) follows directly from the definition of the critical exponentp∗(a,G) and the fact tha
p∗(a,R

N) = N
N−2 , see [17]. Property (ii) simply means that the critical exponentp∗(a,G) divides the semiaxe

(1,+∞) into the nonexistence zone(1,p∗) and the existence zone(p∗,+∞). Existence (or nonexistence) of
positive solution at the critical valuep∗ itself is a separate issue. Property (iii) says that the existence of a po
supersolution at infinity implies the existence of a positive solution at infinity. More precisely, we prove that
has a supersolutionu > 0 in Cρ

Ω then for anyr > ρ it has a solutionw > 0 in Cr
Ω such thatw � u.

The value of the critical exponent for the equation−�u = up in CΩ with Ω ⊆ SN−1 satisfying mild regularity
assumptions was first established by Bandle and Levine [4] (see also [3]). They reduce the problem to
by averaging overΩ . The nonexistence of positive solutions without any smoothness assumptions onΩ has been
proved by Berestycki, Capuzzo-Dolcetta and Nirenberg [5] by means of a proper choice of a test function.

Let λ1 = λ1(Ω) � 0 be the principal eigenvalue of the Dirichlet Laplace–Beltrami operator−�ω in Ω . Let
α− = α−(Ω) < 0 be the negative root of the equation

α(α + N − 2) = λ1(Ω).

The result in [4,5] reads as follows.

Theorem 1.3. Let Ω ⊆ SN−1 be a domain. Then p∗(id,CΩ) = 1− 2
α− , and (1.1)has no positive supersolutions at

infinity in CΩ in the critical case p = p∗(id,CΩ).

Applicability of both ODE and test function techniques seems to be limited to the case of radially sym
matricesa = a(|x|), whereas the method of the present paper is suitable for studying Eq. (1.1) with a g
uniformly elliptic measurable matrixa. It is extendable as far as the maximum principle is valid and approp
asymptotic estimates are available (see the proof of Theorem 1.6 below). Advantages of this approac
transparency and flexibility. As a first demonstration of the method we give a new proof of Theorem 1.3
has its own virtue being considerably less technical then in [4,5]. As a consequence of Theorem 1.3 we d
following result, which says that in contrast to the case of exterior domains the value of the critical expone
fixed cone-like domain essentially depends on the coefficients of the matrixa of the equation.
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Theorem 1.4. Let Ω ⊂ SN−1 be a domain such that λ1(Ω) > 0. Then for any p ∈ (1, N
N−2) there exists a uniformly

elliptic matrix ap such that p∗(ap,CΩ) = p.

Remark 1.5. The matrixap can be constructed in such a way that (1.1) eitherhas or has no positive supersolution
at infinity in CΩ in the critical casep = p∗(ap,CΩ), see Remark 4.5 for details.

The main result of the paper asserts that Eq. (1.1) with arbitrary uniformly elliptic measurable matrixa on a
“nontrivial” cone-like domain always admits a “nontrivial” critical exponent.

Theorem 1.6. Let Ω ⊆ SN−1 be a domain and a be a uniformly elliptic matrix. Then p∗(a,CΩ) > 1. If the interior
of SN−1 \ Ω is nonempty then p∗(a,CΩ) < N

N−2 .

Remark 1.7. It is not difficult to see that in the caseN = 2 Eq. (1.1) has no positive solutions outside a ball
anyp > 1. However, whenCΩ is a “nontrivial” cone-like domain inR2, that isS1 \ Ω �= ∅, then all the results o
the paper remain true with minor modifications of some proofs.

The rest of the paper is organized as follows. In Section 2 we discuss the maximum and comparison p
in a form appropriate for our purposes and study some properties of linear equations in cone-like domains
sition 1.1 is proved in Section 3. Section 4 contains the proof of Theorems 1.3 and 1.4. The proof of Theo
as well as some further remarks are given in Section 5.

2. Background, framework and auxiliary facts

Let G ⊆ R
N be a domain inRN . Throughout the paper we assume thatN � 3. We writeG′ � G if G′ is a

bounded subdomain ofG such thatclG′ ⊂ G. By ‖ · ‖p we denote the standard norm in the Lebesgue spaceLp .
By c, c1, . . . we denote various positive constants whose exact value is irrelevant.

Let SN−1 = {x ∈ R
N : |x| = 1} andΩ ⊆ SN−1 be a subdomain ofSN−1. Here and thereafter, for 0� ρ < R �

+∞, we denote

C(ρ,R)
Ω := {

(r,ω) ∈ R
N : ω ∈ Ω, r ∈ (ρ,R)

}
, Cρ

Ω := C(ρ,+∞)
Ω .

Accordingly,CΩ = C0
Ω andCSN−1 = R

N \ {0}.

Maximum and comparison principles. Consider the linear equation

−∇ · a · ∇u − V u = f in G, (2.1)

wheref ∈ H 1
loc(G) and 0� V ∈ L1

loc(G) is a form-bounded potential, that is∫
G

V u2 dx � (1− ε)

∫
G

∇u · a · ∇udx for all 0 � u ∈ H 1
c (G) (2.2)

with someε ∈ (0,1). A solution (supersolution) to (2.1) is a functionu ∈ H 1
loc(G) such that∫

G

∇u · a · ∇ϕ dx −
∫
G

V uϕ dx = (�)〈f,ϕ〉 for all 0 � ϕ ∈ H 1
c (G),

where〈· , ·〉 denotes the duality betweenH−1
loc (G) andH 1

c (G). If u � 0 is a supersolution to

−∇ · a · ∇u − V u = 0 in G, (2.3)
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inequality

inf
G′ u � CW

mes(G′)

∫
G′

udx,

whereCW = CW(G,G′) > 0. In particular, every nontrivial supersolutionu � 0 to (2.3) is strictly positive, that i
u > 0 in G.

We define the spaceD1
0(G) as the completion ofC∞

c (G) with respect to the norm‖u‖D1
0(G) := ‖∇u‖2. The

spaceD1
0(G) is a Hilbert and Dirichlet space, with the dualD−1(G), see, e.g. [13]. This implies, amongst oth

things, thatD1
0(G) is invariant under the standard truncations, e.g.v ∈ D1

0(G) implies thatv+ = v ∨ 0 ∈ D1
0(G),

v− = −(v ∧ 0) ∈ D1
0(G). By the Sobolev inequalityD1

0(G) ⊂ L
2N

N−2 (G). The Hardy inequality∫
RN

|∇u|2 dx � (N − 2)2

4

∫
RN

|u|2
|x|2 dx for all u ∈ H 1

c (RN), (2.4)

implies thatD1
0(G) ⊂ L2(G, |x|−2 dx). Since the matrixa is uniformly elliptic and the potentialV is form

bounded, the quadratic form

Q(u) :=
∫
G

∇u · a · ∇udx −
∫
G

V u2 dx

defines an equivalent norm
√

Q(u) onD1
0(G). The following lemma is a standardconsequence of the Lax–Milgra

Theorem.

Lemma 2.1. Let f ∈ D−1(G). Then the problem

−∇ · a · ∇v − V v = f, v ∈ D1
0(G),

has a unique solution.

The following two lemmas provide the maximum and comparison principles for Eq. (2.1), in a form suita
our framework. We give the full proofs for completeness, though the arguments are mostly standard.

Lemma 2.2 (Weak Maximum Principle). Letv ∈ H 1
loc(G) be a supersolution to Eq. (2.3)such that v− ∈ D1

0(G).
Then v � 0 in G.

Proof. Let (ϕn) ⊂ C∞
c (G) be a sequence such that‖∇(v− − ϕn)‖2

2 → 0. For everyn ∈ N, setvn := 0∨ ϕn ∧ v−.
Since 0� vn � v− ∈ D1

0(G) and∫
G

∣∣∇(v− − vn)
∣∣2 dx =

∫
{0�ϕn�v−}

∣∣∇(v− − ϕn)
∣∣2 dx +

∫
{ϕn�0}

|∇v−|2 dx

�
∫
G

∣∣∇(v− − ϕn)
∣∣2 dx +

∫
{ϕn�0}

|∇v−|2 dx → 0,

by the Lebesgue dominated convergence, we conclude that‖∇(v− − vn)‖2
2 → 0 (cf. [13, Lemma 2.3.4]). Taking

(vn) as a sequence of test functions we obtain
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∫
G

∇v · a · ∇vn dx −
∫
G

V vvn dx

= −
∫
G

∇v− · a · ∇vn dx +
∫
G

V v−vn dx → −
∫
G

∇v− · a · ∇v− dx +
∫
G

V |v−|2 dx � 0.

Thus we conclude thatv− = 0. �
Lemma 2.3 (Weak Comparison Principle). Let0 � u ∈ H 1

loc(G), v ∈ D1
0(G) and

−∇ · a · ∇(u − v) − V (u − v) � 0 in G.

Then u � v in G.

Remark 2.4. Note that the assertion of Lemma 2.3 follows from Lemma 2.2 if one assumes in additio
u ∈ H 1(G).

Proof. Let (Gn)n∈N be an exhaustion ofG, i.e. an increasing sequence of bounded smooth domains suc
Gn � Gn+1 � G and

⋃
n∈N

Gn = G. Let v ∈ D1
0(G). Let f ∈ D−1(G) be defined by duality as

f := −∇ · a · ∇v − V v.

Let vn ∈ D1
0(Gn) be the unique weak solution to the linear problem

−∇ · a · ∇vn − V vn = f, vn ∈ D1
0(Gn).

Then

−∇ · a · ∇(u − vn) − V (u − vn) � 0 in Gn,

with

u − vn ∈ H 1(Gn), 0 � (u − vn)
− � v+

n ∈ D1
0(Gn).

Therefore(u− vn)
− ∈ D1

0(Gn). By Lemma 2.2 we conclude that(u− vn)
− = 0, that isvn � u. Let v̄n ∈ D1

0(G) be
defined as̄vn = vn on Gn, v̄n = 0 onG \ Gn. To complete the proof of the lemma it suffices to show thatv̄n → v

in D1
0(G). Indeed,

Q(v̄n) =
∫
G

∇v̄n · a · ∇v̄n −
∫
G

V |v̄n|2 = 〈f, vn〉 � c‖f ‖D−1(G)‖v̄n‖D1
0(G),

where〈· , ·〉 stands for the duality betweenD1
0(G) andD−1(G). Hence the sequence(v̄n) is bounded inD1

0(G).
Thus we can extract a subsequence, which we still denote by(v̄n), that converges weakly tov∗ ∈ D1

0(G). Now let
ϕ ∈ H 1

c (G). Then for alln ∈ N large enough, we have that Supp(ϕ) ⊂ Gn and∫
G

∇v̄n · a · ∇ϕ −
∫
G

V v̄nϕ =
∫
Gn

∇vn · a · ∇ϕ −
∫
Gn

V vnϕ = 〈f,ϕ〉.

By the weak continuity we conclude that∫
G

∇v∗ · a · ∇ϕ −
∫
G

V v∗ϕ = 〈f,ϕ〉.

Thereforev∗ ∈ D1
0(G) satisfies

−∇ · a · ∇v − V v = f, v ∈ D1
0(CΩ).
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Hencev∗ = v. Furthermore,

Q(v̄n − v) = 〈f, v̄n〉 − 2〈f, v〉 + 〈f, v〉.
Since〈f, v̄n〉 → 〈f, v〉 it follows that v̄n → v in D1

0(G). �
Minimal positive solution in cone like domains. Let Ω ⊆ SN−1 be a domain. Consider the equation

−∇ · a · ∇u − V u = 0 in CΩ, (2.5)

where 0� V ∈ L1
loc(C

ρ
Ω) is a form-bounded potential. We say thatv > 0 is aminimal positive solution to (2.5)

in Cρ
Ω if v is a solution to (2.5) inCρ

Ω and for any positive supersolutionu > 0 to (2.5) in CrΩ with r ∈ (0, ρ) there
existsc > 0 such that

u � cvψ in Cρ
Ω.

Note, that such definition of a minimal positive solution, adopted for the framework of cone-like domains
slightly different from the notion of the minimal positive solution at infinity introduced by Agmon [1] (see
[22–24,28,29]).

Below we construct a minimal positive solution to (2.5) inCρ
Ω . Let 0� ψ ∈ C∞

c (Ω) andθρ ∈ C∞[ρ,+∞) be
such thatθρ(ρ) = 1, 0� θρ � 1 and θρ = 0 for r � ρ + ε with someε > 0. Thusfψ := ∇ ·a ·∇(ψθρ) ∈ D−1(Cρ

Ω).
Let wψ be the unique solution to the problem

−∇ · a · ∇w − V w = fψ, w ∈ D1
0(Cρ

Ω), (2.6)

which is given by Lemma 2.1. Setvψ := wψ + ψθρ . Thenvψ is the solution to the problem

−∇ · a · ∇v − V v = 0, v − ψθρ ∈ D1
0(Cρ

Ω). (2.7)

By the weak Harnack inequalityvψ > 0 in Cρ
Ω . Notice thatvψ actually does not depend on the particular choic

the functionθρ (this easily follows, e.g., from Lemma 2.2).

Lemma 2.5. vψ is a minimal positive solution to Eq. (2.5) in Cρ
Ω .

Proof. ChooseΩ ′ � Ω such that Supp(ψ) � Ω ′. Let ε > 0 be such thatθρ = 0 for all r � ρ + ε. Let u > 0 be a
positive supersolution to (2.5) inCr

Ω with r ∈ (0, ρ). By the weak Harnack inequality there existsm = m(Ω ′, ε) > 0
such that

u > m in C(ρ,ρ+ε)

Ω ′ .

Choosec > 0 such thatcψ < m. Thenu − cψθρ � 0 in Cρ
Ω , cwψ ∈ D1

0(Cρ
Ω) and

(−∇ · a · ∇ − V )
(
(u − cψθρ) − cwψ

) = (−∇ · a · ∇ − V )u � 0 in Cρ
Ω.

By Lemma 2.3 we conclude thatu − cψθρ � cwψ , that isu � cvψ in Cρ
Ω . �

Remark 2.6. Let Γa(x, y) be the positive minimal Green function to the equation−∇ · a · ∇u = 0 in R
N . Then for

any domainΩ ⊆ SN−1 the functionΓa(x,0) is a positive solution to

−∇ · a · ∇u = 0 in CΩ. (2.8)

By Lemma 2.3 and the classical estimate [21] we conclude that any minimal positive solutionvψ to (2.8) inCρ
Ω

obeys the upper bound

vψ � c1Γa(x,0) � c2|x|2−N in Cρ
Ω. (2.9)
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Nonexistence Lemma. The next lemma (compare [17], [30, p. 156]) is the key tool in our proofs of nonexis
of positive solutions to nonlinear equation (1.1).

Lemma 2.7 (Nonexistence Lemma). Let 0 � V ∈ L1
loc(C

ρ
Ω) satisfy

|x|2V (x) → ∞ as x ∈ Cρ

Ω ′ and |x| → ∞ (2.10)

for a subdomain Ω ′ ⊆ Ω . Then the equation

−∇ · a · ∇u − V u = 0 in Cρ
Ω (2.11)

has no nontrivial nonnegative supersolutions.

The proof is based upon the following well-known result (see, e.g., [1, Theorem 3.3]).

Lemma 2.8. Let G ⊂ R
N be a bounded domain and λ1 = λ1(G) > 0 be the principal Dirichlet eigenvalue of

−∇ · a · ∇ in G. If µ > λ1 then the equation

−∇ · a · ∇u = µu in G (2.12)

has no positive supersolutions.

Proof of Lemma 2.7. Let λ1(C(ρ,2ρ)
Ω ) > 0 be the principal Dirichlet eigenvalue of−∇ ·a ·∇ onC(ρ,2ρ)

Ω . Rescaling

the equation−∇ · a · ∇v = λv from C(ρ,2ρ)
Ω to C(1,2)

Ω one sees that

c−1

ρ2
λ1(C(1,2)

Ω ) � λ1(C(ρ,2ρ)
Ω ) � c

ρ2
λ1(C(1,2)

Ω ),

wherec = c(a) > 0 depends on the ellipticity constant of the matrixa and does not depend onρ > 0.
Let u � 0 be a supersolution to (2.11). Then (2.10) implies that for someR � 1 one can findµ > 0 such that

V (x) � µ � cλ1(C(1,2)

Ω ′ )R−2 in C(R,2R)

Ω ′ . Henceu is a supersolution to

−∇ · a · ∇u = µu in C(R,2R)

Ω ′

with µ > λ1(C(R,2R)

Ω ′ ). By Lemma 2.8 we conclude thatu = 0 in C(R,2R)

Ω ′ . Therefore by the weak Harnack inequal
u = 0 in Cρ

Ω . �

3. Proof of Proposition 1.1

Property (i) is obvious. We need to prove (ii) and (iii).
(ii) Let p0 � p∗(a,Cρ

Ω) be such that Eq. (1.1) with exponentp0 has a positive supersolutionu > 0 in Cρ
Ω . Let

p > p0 andα = p−1
p0−1 > 1. Setv := u1/α . By the weak Harnack inequalityu > 0 in Cρ

Ω . Henceu−s ∈ L∞
loc(C

ρ
Ω) for

anys > 0. Therefore∇v = α−1u1/α−1∇u ∈ L2
loc(C

ρ
Ω), that isv ∈ H 1

loc(C
ρ
Ω).

Let 0� ϕ ∈ C∞
c (Cρ

Ω). Then∫
Cρ

Ω

∇vα · a · ∇ϕ dx = α

∫
Cρ

Ω

vα−1∇v · a · ∇ϕ dx

= α

∫
Cρ

∇v · a · ∇(vα−1ϕ) dx − α(α − 1)

∫
Cρ

∇v · a · ∇v(vα−2ϕ) dx
Ω Ω
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2.2].
� α

∫
Cρ

Ω

∇v · a · ∇(vα−1ϕ) dx.

Notice, thatvα−1 = u1−1/α ∈ H 1
loc(C

ρ
Ω) by the same argument as above. Thereforevα−1ϕ ∈ H 1

c (Cρ
Ω). We shall

prove that the set

Kv = {
vα−1ϕ, 0 � ϕ ∈ H 1

c (Cρ
Ω)

}
is dense in the cone of nonnegative functions inH 1

c (Cρ
Ω). Indeed, let 0� ψ ∈ H 1

c (Cρ
Ω). Let ψn ∈ C∞

0 (Cρ
Ω) be an

approximating sequence such that‖∇(ψn − ψ)‖2 → 0. Setϕn = v1−αψ+
n . It is clear that 0� ϕn ∈ Kv ⊂ H 1

c (Cρ
Ω)

and‖∇(vα−1ϕn − ψ)‖2 → 0.
Sincevα = u andu > 0 is a supersolution of (1.1), we obtain that

α

∫
Cρ

Ω

∇v · a · ∇(vα−1ϕ) dx �
∫
Cρ

Ω

vαp0ϕ dx =
∫
Cρ

Ω

vp(vα−1ϕ) dx

for any 0� ϕ ∈ H 1
c (Cρ

Ω). Thusα1/(1−p)v is a supersolution to Eq. (1.1) inCρ
Ω with exponentp > p0.

(iii) The existence of a (bounded) positive solution to Eq. (1.1) withp > N
N−2 in Bc

r for any r > 0 has been

proved in [17]. We shall consider the casep � N
N−2.

Let u > 0 be a supersolution to (1.1) with exponentp � N/(N − 2) in Cρ
Ω . Fix ψ ∈ C∞

c (Ω) andr > ρ. Let
vψ > 0 be a minimal positive solution in to−∇ · a · ∇v = 0 in Cr

Ω , as constructed in (2.6), (2.7). Thenu � cvψ in
Cr

Ω by Lemma 2.3. Without loss of generality we assume thatc = 1. Thusvψ > 0 is a subsolution to (1.1) inCr
Ω

andvψ � u in Cr
Ω . We are going to show that (1.1) has a positive solutionw in Cr

Ω such thatvψ � w � u in Cr
Ω .

Let (Gn)n∈N be an exhaustion ofCr
Ω . Consider the boundary value problem{−∇ · a · ∇w = wp in Gn,

w = vψ on∂Gn.
(3.1)

SinceGn � Cr
Ω is a smooth bounded domain andvψ ∈ C

0,γ

loc (Cr
Ω), the problem (3.1) is well-posed. Clearly,vψ � u

is still a pair of sub and supersolutions for (3.1). Notice that we do not assume thatu ∈ H 1(Gn) is bounded. How-
ever, sincep � N

N−2 < N+2
N−2, one can use anH 1-version of sub and supersolution method, see e.g. [9, Theorem

Thus there exists a weak solutionwn ∈ H 1(Gn) of (3.1) such thatvψ � wn � u in Gn.
Consider a sequence(wn)n>1 in G1. Choose a functionθ ∈ C∞

c (G2) such that 0� θ � 1 andθ = 1 on G1.
Usingθ2wn ∈ H 1

c (G2) as a test function we obtain∫
G2

w
p+1
n θ2 =

∫
G2

θ2∇wn · a · ∇wn dy + 2
∫
G2

θwn∇wn · a · ∇θ dy.

Thus, by standard computations

1

2

∫
G2

θ2∇wn · a · ∇wn dx � 2
∫
G2

w2
n∇θ · a · ∇θ dx +

∫
G2

θ2w
p+1
n dx

� 2c1
∥∥(∇θ)2

∥∥∞
∫
G2

u2 dx +
∫
G2

up+1 dx.

We conclude that(wn) is bounded inH 1(G1). By the constructionvψ � wn � u ∈ H 1(G1) for all n ∈ N. Therefore
(wn) has a subsequence, denoted by(wn1(k))k∈N, which converges to a functionw(1) ∈ H 1(G1) weakly inH 1(G1),
strongly in L2(G1) and almost everywhere inG1. Hence it is clear thatw(1) is a solution to (1.1) inG1 and
vψ � w(1) � u.
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Now we proceed by the standard diagonal argument (see, e.g., [26, Theorem 2.10]). At the second step, cons
a sequence(wn1(k))k∈N in G2 (assuming thatn1(1) > 2). In the same way as above we obtain a subsequ
(wn2(k))k∈N that converges to a functionw(2) ∈ H 1(G2), which is a solution to (1.1) inG2. Moreover,vψ �
w(2) � u in G2 andw(2) = w(1) in G1. Continuing this process, for each fixedm > 2 we construct a subsequen
(wnm(k))k∈N (with nm(1) > m) that converges weakly tow(m) ∈ H 1(Gm) which is a solution to (1.1) inGm and
such thatvψ � w(m) � u in Gm, w(m) = w(m−1) in Gm−1.

By the diagonal process(wnm(m))m∈N is a subsequence of(wnm(k))k∈N for everym ∈ N. Thus for each fixed
k ∈ N the sequence(wnm(m)) converges weakly tow(k) in H 1(Gk). Let w∗ be the weak limit of(wnm(m)) in
H 1

loc(Cr
Ω). Thenw∗ is a solution of (1.1) inCr

Ω such thatvψ � w∗ � u in Cr
Ω . �

Remark 3.1. The constructed solutionw∗ is actually locally Hölder continuous. Indeed, sincep � N
N−2 < N+2

N−2
we conclude by the Brezis–Kato estimate (see, e.g. [33, Lemma B.3]) thatw∗ ∈ Ls

loc(Cr
Ω) for any s < ∞. Then

−∇ · a · ∇w∗ = w
p∗ ∈ Ls

loc(Cr
Ω) for anys < ∞. Hence the standard elliptic estimates imply thatw∗ ∈ C

0,γ

loc (Cr
Ω).

4. Proof of Theorems 1.3 and 1.4

In this section we study positive supersolutions at infinity to the model equation

−�u = up in CΩ, (4.1)

wherep > 1 andΩ is a subdomain ofSN−1. Recall, thatλ1 denotes the principal eigenvalue of the Dirich
Laplace–Beltrami operator−�ω in Ω andα− stands for the negative root of the equationα(α + N − 2) = λ1.

Existence of positive supersolutions to (4.1) withp > p∗(id,CΩ) = 1 − 2/α− can be easily verified. Namel
by direct computations one can find supersolutions of the formu = cr2/(1−p)φ, where φ >0 is the principal
eigenfunction of−�ω onΩ (see also [4,3] for a direct proof of the existence of positive solutions). We are g
to prove absence of positive supersolutions to (4.1) inCρ

Ω for p ∈ (1,1− 2/α−). Notice that ifu > 0 is a solution

to (4.1) inCρ
Ω then, by the scaling properties of the Laplacian,ρ

2
p−1 u(ρx) is a solution to (4.1) inC1

Ω . So in what
follows we fixρ = 1.

Minimal solution estimate. Here we derive the sharp asymptotic at infinity of the minimal solutions to the e
tion

−�u − V (ω)

|x|2 u = 0 in CΩ (4.2)

with V ∈ L∞(Ω). Let −�ω be the Dirichlet Laplace–Beltrami operator inL2(Ω) and 0� V ∈ L∞(Ω). Let
(λ̃k)k∈N be the sequence of Dirichlet eigenvalues of−�ω − V , such thatλ̃1 < λ̃2 � λ̃3 � · · · . By (φ̃k)k∈N we
denote the corresponding orthonormal basis of eigenfunctions inL2(Ω), with φ̃1 > 0.

From now on we assume thatλ̃1 > −(N − 2)2/4. Then the roots of the quadratic equationα(α + N − 2) = λ̃k

are real for eachk ∈ N. By α̃k we denote the smallest root of the equation, i.e.,

α̃k := −N − 2

2
−

√
(N − 2)2

4
+ λ̃k.

Notice that sincẽλ1 > −(N −2)2/4 it follows from the Hardy inequality (2.4) that the potentialV (ω)|x|−2 is form
bounded.
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Lemma 4.1. Let ψ ∈ C∞
c (Ω). Then

vψ(x) =
∞∑

k=1

ψkr
α̃k φ̃k(ω), where ψk =

∫
Ω

ψ(ω)φ̃k(ω) dω, (4.3)

is a minimal positive solution to Eq. (4.2) in C1
Ω .

Proof. Setvk(x) := rα̃k φ̃k(ω). Then a direct computation gives that

−�vk − V (ω)

|x|2 vk = 0 in C1
Ω.

Recall that∇ = ν ∂
∂r

+ 1
r
∇ω, whereν = x

|x| ∈ R
N . Since∫

Ω

|∇ωφ̃k|2 dω −
∫
Ω

V (ω)|φ̃k|2 dω = λ̃k,

we obtain

ε‖∇vk‖2
L2 �

∫
Cρ

Ω

(
|∇vk |2 − V (ω)

|x|2 |vk|2
)

dx

=
∞∫

1

∫
Ω

(∣∣∣∣ ∂

∂r
rα̃k φ̃k(ω)

∣∣∣∣
2

+ |rα̃k∇ωφ̃k(ω)|2
r2

− V (ω)|rα̃k φ̃k|2
r2

)
rN−1 dωdr

=
∞∫

1

r2α̃k+N−3(α̃2
k + λ̃k) dr = α̃2

k + λ̃k

2− N − 2α̃k

= −α̃k,

whereε > 0 is the constant in (2.2). Now it is straightforward thatvk − φ̃kθ1 ∈ D1
0(C1

Ω), sovk solves the problem

−�v − V (ω)

|x|2 v = 0, v − φ̃kθ1 ∈ D1
0(C1

Ω).

Hence we have

ε‖∇vψ‖2
2 �

∫
C1

Ω

(
|∇vψ |2 − V (ω)

|x|2 |vψ |2
)

dx =
∞∑

k=1

ψ2
k (−α̃k)

� N − 2

2
‖ψ‖2

2 + ‖ψ‖2

(∫
Ω

(
|∇ωψ|2 − V (ω)ψ2 +

(
N − 2

2

)2

ψ2
)

dω

) 1
2

.

Hencevψ − ψθ1 ∈ D1
0(C1

Ω), sovψ solves the problem

−�v − V (ω)

|x|2 v = 0, v − ψθ1 ∈ D1
0(C1

Ω).

By the uniqueness we conclude thatvψ defined by (4.3) coincides with the minimal solutionvψ as constructed
in (2.6), (2.7). �
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Lemma 4.2. Let vψ > 0 be a minimal solution (4.3) to Eq. (4.2) in C1
Ω . Then for any Ω ′ � Ω and ρ > 1 there

exists c = c(Ω ′, ρ) > 0 such that

vψ(x) � crα̃1 in Cρ

Ω ′ . (4.4)

Proof. By (4.3) one can representvψ asvψ(x) = ψ1r
α̃1φ̃1(ω) + w(x), where

w(x) =
∞∑

k=2

ψ̃kr
α̃k φ̃k(ω).

Notice thatw(x) satisfies

−�w − V (ω)

|x|2 w = 0 in C1
Ω.

Thus by the standard elliptic estimate (see, e.g. [15, Theorem 8.17]) for anyΩ ′ � Ω andρ > 4
3 one has

sup
C(ρ,2ρ)

Ω′
|w|2 � cρ−N

∫
C

(
3ρ
4 ,

9ρ
8 )

Ω

|w|2 dx,

where the constantc > 0 does not depend onρ. Therefore

sup

C
(

3ρ
4 ,

9ρ
8 )

Ω′

|w|2 � cρ−N

9ρ
8∫

3ρ
4

rN−1
∫
Ω

|w|2 dωdr = cρ−N

9ρ
8∫

3ρ
4

rN−1
∞∑

k=2

ψ2
k r2α̃k dr

� c

9ρ
8∫

3ρ
4

r2α̃2−1 dr‖ψ − ψ1φ̃1‖2
2 = c1ρ

2α̃2.

So we conclude that

vψ(x) � ψ1r
α̃1φ1(ω) − crα̃2 in Cρ

Ω ′ .

Sinceα̃2 < α̃1 < 0 this implies (4.4). �
Remark 4.3. Related estimates were obtained by Murata [22, pp. 608–612] for the cone with a Lipschitz
sectionΩ ⊂ SN−1. Notice that ifΩ is a Lipschitz domain (or, more generally, a domain which satisfies
boundary Harnack principle), then the boundary Harnack principle allows one to prove that the functionv1 = rα̃1φ̃1
is a minimal positive solution to (4.2) inC1

Ω . The use of compactly supported functionψ (and hence, of full serie
expansion in (4.3)) in the construction of the minimal positive solutionvψ is required for comparison on con
with general nonsmooth cross-sectionsΩ .

Proof of Theorem 1.3. We distinguish the subcritical and critical cases.
Subcritical case 1 < p < 1 − 2/α−. Assume thatu > 0 is a supersolution to (4.1) inCr

Ω for somer ∈ (0,1).
Thenu > 0 is a supersolution to

−�u = 0 in Cr
Ω. (4.5)

By Lemma 2.5 we conclude thatu > cvψ in C1
Ω , wherevψ > 0 is a minimal positive solution (4.3) to Eq. (4.

in C1
Ω . Then by Lemma 4.2 for a subdomainΩ ′ � Ω one has

vψ � c|x|α− in C1 ′ . (4.6)
Ω
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Sou > 0 is a supersolution to

−�u − Wu = 0 in C1
Ω, (4.7)

whereW(x) := up−1(x) satisfies

W(x) � cp−1|x|α−(p−1) in C1
Ω ′ ,

with α−(p − 1) > −2. Now Lemma 2.7 leads to a contradiction.
Critical case p = 1 − 2/α−. Let u > 0 be a supersolution to (4.1) inCr

Ω with the critical exponentp∗ = 1 −
2/α−. Then arguing as in the previous case we conclude thatu is a supersolution to (4.7) withW(x) := up∗−1(x)

satisfying

W(x) � cp∗−1

|x|2 in C1
Ω ′

on a subdomainΩ ′ � Ω . Let χΩ ′(ω) be the characteristic function ofΩ ′. Thenu is a supersolution inC1
Ω to the

equation

−�v − εχΩ ′(ω)

|x|2 v = 0 in CΩ, (4.8)

for any ε ∈ [0, cp∗−1]. By the variational characterization of the principal Dirichlet eigenvalue one can fixε >

0 small enough in such a way thatλ̃1 = λ̃1(−�ω − εχΩ ′ ,Ω) > −(N − 2)2/4. Let wψ be a minimal positive
solution (4.3) to Eq. (4.8) inC1

Ω with such fixedε. Applying Lemma 4.2 to (4.8) we conclude that for a subdom
Ω ′′ � Ω one has

u � c1wψ � c2|x|α̃1 in C1
Ω ′′ ,

whereα̃1 > α−. Sou > 0 is a supersolution to

−�u − Wu = 0 in C1
Ω, (4.9)

whereW(x) := up∗−1(x) satisfies

W(x) � cp∗−1|x|α̃1(p
∗−1) in C1

Ω ′′

with α̃1(p
∗ − 1) > −2. This contradicts to Lemma 2.7.�

Remark 4.4. Strictly speaking, in the above proof the subcritical case 1< p < 1 − 2/α− is redundant, due to
Proposition 1.1(ii).

Let Ω ⊂ SN−1 be a domain such thatλ1 = λ1(Ω) > 0. Define the operatorLd by

Ld = − ∂2

∂r2 − N − 1

r

∂

∂r
− d(r)

λ1

1

r2�ω, (4.10)

whered(r) is measurable and squeezed between two positive constants. ThenLd is a divergence type uniforml
elliptic operator−∇ · ad · ∇ (see, e.g., [36]).

Proof of Theorem 1.4. Consider the operatorLd whered(r) ≡ α(α +N −2) with α < 2−N . Following the lines
of the proof of Theorem 1.3 we conclude thatp∗(ad,CΩ) = 1− 2/α. Clearly for any givenp ∈ (1, N

N−2), one can
chooseα such thatp∗(ad,CΩ) = p. �
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Remark 4.5. In the above proof Eq. (1.1) has no positive supersolutions at infinity inCΩ in the critical case
p = p∗(ad,CΩ). Next we give an example of Eq. (1.1) with a positive supersolution at infinity in the critical c

Let Ω ⊂ SN−1 be smooth andLd̃ be as in (4.10) with

d̃(r) = α(α + N − 2) + 2− N − 2α

log(r)
+ 2

log2(r)
,

whereα < 2− N . For large enoughR � 1 the operatorLd̃ = −∇ · ad̃ · ∇ is uniformly elliptic onCR
Ω . Let φ1 > 0

be the principal Dirichlet eigenfunction of−�ω, corresponding toλ1. Direct computation shows that the functio

vφ1 := rα

log(r)
φ1

is a solution to the equation

Ld̃v = 0 in CR
Ω. (4.11)

SinceΩ is smooth, the Hopf lemma implies thatvφ1 is a minimal positive solution to (4.11) inCR
Ω . Following the

lines of the proof of Theorem 1.3, subcritical case, we conclude thatp∗(ad̃ ,CΩ) = 1−2/α. On the other hand, on
can readily verify thatu = rαφ1 is a positive supersolution to (1.1) in the critical casep = 1− 2/α.

Note that the value of the critical exponent forLd̃ is the same asLd due to the fact that limr→∞(d̃(r)− d(r)) =
0. However the rate of convergence is not sufficient toguarantee the equivalence of the corresponding min
positive solutions (see, e.g. [2,27] for the related estimates of Green’s functions). This explains the natu
different behavior of the nonlinear equations (1.1) at the critical value ofp.

5. Proof of Theorem 1.6

First we show that for any domainΩ ⊆ SN−1 one hasp∗(a,CΩ) > 1. Then we prove the second part
Theorem 1.6, saying that if the complement ofΩ has nonempty interior thenp∗(a,CΩ) < N

N−2. We start with
establishing a lower bound on positive solutions of the equation

−∇ · a · ∇v = 0 in CΩ. (5.1)

Lemma 5.1. Let Ω ⊆ SN−1 be a domain and Ω ′ � Ω . Then there exists α = α(Ω ′) � 2 − N such that for any
ρ > 0 any positive solution v to Eq. (5.1) in Cρ

Ω has a polynomial lower bound

v � c|x|α in C2ρ

Ω ′ . (5.2)

Proof. Seta = 3/4, b = 7/4. Letr � 2ρ andmr = infC(ra,rb)

Ω′
v. By the strong Harnack inequalityv satisfies

inf
C(ra,rb)

Ω′
v � CS sup

C(ra,rb)

Ω′
v,

with the constantCS ∈ (0,1) dependent onΩ ′ and not onr, as a simple scaling argument shows. Then

mr � sup
C(ra,rb)

Ω′
v � sup

C(ra,2rb)

Ω′
v � C−1

S inf
C(ra,2rb)

Ω′
v � C−1

S inf
C(2ra,2rb)

Ω′
v = C−1

S m2r . (5.3)

Let rn = 2nρ andn ∈ N. Iterating (5.3) we obtainmrn � Cn−1
S m2ρ . Choosingn such thatarn � |x| < 2arn one can

see that

v � c|x|α in C2aρ

Ω ′ ,

whereα = log2 CS andc = c(ρ) = (aρ)−αC−1
S m2ρ . Taking into account (2.9) we conclude thatα � 2− N . �
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Remark 5.2. A similar argument was used before by Pinchover [28, Lemma 6.5]. Observe that in the sam
one can get a rough polynomial upper bound on positive solutions of (5.1).

The lower bound (5.2) allows us to prove nonexistence of positive solutions to (1.1) exactly by the sam
ment as was used in the proof of Theorem 1.3 in the subcritical case.

Proposition 5.3. Let Ω ⊆ SN−1 be a domain. Then p∗(a,CΩ) � 1 − 2/α where α � 2 − N is the exponent in the
lower bound (5.2).

Proof. Assume thatu � 0 is a supersolution to (1.1) inCρ
Ω with exponentp < 1 − 1/α. By Lemma 2.3 and (5.2

we conclude that for any subdomainΩ ′ ⊂ Ω there existsc = c(Ω) > 0 such that

u � c|x|α in C2ρ+2
Ω ′ .

Thereforeu is a supersolution to

−∇ · a · ∇u = V u in C2ρ+2
Ω ′ ,

whereV (x) := up−1(x) satisfies the inequality

V (x) � c′|x|α(p−1) in C2ρ+2
Ω ′

with α(p − 1) > −2. Then Lemma 2.7 implies thatu ≡ 0 in Cρ
Ω . Sinceα > 0 does not depend onρ, we conclude

thatp∗(a,CΩ) � 1− 1/α. �
Our next step is to obtain a polynomial upper bound on the minimal positive solutions to the equation

−∇ · a · ∇v − V v = 0 in CΩ,

with a special potentialV which will be specified later. In order to do this we need the notion of a Green bou
potential. LetΓa(x, y) be the positive minimal Green function to

−∇ · a · ∇v = 0 in R
N .

We say that a potential 0� V ∈ L1
loc(R

N) is Green bounded and writeV ∈ GB if

‖V ‖GB,a := sup
x∈RN

∫
RN

Γa(x, y)V (y) dy < ∞,

which is equivalent up to a constant factor to the condition supx∈RN

∫
RN |x −y|2−N |V (y)|dy < ∞, but we will use

below the numerical value of‖V ‖GB,a . One can see, e.g. by the Stein interpolation theorem, that ifV ∈ GB thenV

is form bounded in the sense of (2.2). We will use the following important property of Green bounded pot
which was proved in [16], see also [23,24,27,29].

Lemma 5.4. Let V ∈ GB and ‖V ‖GB,a < 1. Then there exists a solution w > 0 to the equation

−∇ · a · ∇w − V w = 0 in R
N, (5.4)

such that 0 < c < w < c−1 in R
N .

Using this result we first prove the required upper bound in the case of the “half–space” coneC+ = {xN > 0}
with the cross-sectionS+ = {|x| = 1, xN > 0}. For a given uniformly elliptic matrixa and a potentialV defined
onC+ we denote bȳa andV̄ the extensions ofa andV from C+ to R

N by reflection, so that̄a(· ,−xN) = ā(· , xN)

andV̄ (·,−xN) = V̄ (· , xN). Thus the matrix̄a is uniformly elliptic onR
N with the same ellipticity constant asa.
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Lemma 5.5. Let 0 � V ∈ L1
loc(C+) be a potential such that ‖V̄ ‖GB,ā < 1. Let vψ > 0 be a minimal positive solution

in C1+ to the equation

−∇ · a · ∇v − V v = 0 in C+,

as constructed in (2.6), (2.7). Then there exists γ ∈ (0,1) such that

0< vψ � c|x|2−N−γ in C1+. (5.5)

Proof. Let v̄ denote the extension ofvψ from C1+ to B̄c
1 by reflection, that is̄v(· , xN) = −vψ(· ,−xN). Thusv̄(x)

is a solution to the equation

−∇ · ā · ∇v̄ − V̄ v̄ = 0 in B̄c
1.

Let w be a solution to (5.4) given by Lemma 5.4. One can check by direct computation (see [17, Lemma 3.
v1 := v̄/w is a solution to the equation

−∇ · (w2ā) · ∇v1 = 0 in B̄c
1, (5.6)

where the matrixw2ā is clearly uniformly elliptic. LetΓ (x) := Γw2ā(x,0) be the positive minimal Green functio
to the equation−∇ · (w2ā) · ∇u = 0 in R

N . By the classical estimate [21] one has

c1|x|2−N � Γ (x) � c2|x|2−N in B̄c
1. (5.7)

Applying Lemma 2.3 tov1 andΓ onC1+ and by the construction ofv1 we conclude that

|v1(x)| � c3Γ (x) on B̄c
1. (5.8)

Applying the Kelvin transformationy = y(x) = x/|x|2 andx = x(y) = y/|y|2 to (5.6) we see that the functio
ṽ1(y) = v1(x(y))/Γ (x(y)), ṽ ∈ L∞(B1), solves the equation

−∇ · ã · ∇ṽ1 = 0 in B1,

where the matrix̃a(y) is uniformly elliptic onB1. It follows that ṽ1 ∈ H 1
loc(B1) (see, e.g., [31]). Then, by the D

Giorgi–Nash regularity result [15],̃v1 ∈ C0,γ (B1) for someγ ∈ (0,1). Notice that

ṽ1(y) = 0 in {y ∈ B1, yN = 0}
by the construction. Thereforẽv1(0) = 0, hence∣∣ṽ1(y)

∣∣ � c|y|γ in B1.

We conclude that

|v̄| � c3
∣∣v̄1(x)

∣∣ � c4|x|2−N−γ in B̄c
1,

as required. �
Lemma 5.6. Let Ω ⊂ SN−1 be a domain such that SN−1 \ Ω has nonempty interior. Let

Wε(x) := ε

(|x|2 log2 |x|) ∨ 1
.

Then there exists ε > 0 and β = β(ε) < 2− N such that any minimal positive solution vψ in C1
Ω to the equation

−∇ · a · ∇v − Wεv = 0 in CΩ

has the polynomial upper bound

vψ � c|x|β in C1
Ω. (5.9)
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Proof. If CΩ ⊆ C+ then (5.9) follows from (5.5) by Lemma 2.3. We shall consider the caseCΩ �⊆ C+.
Without loss of generality we can assume that(0, . . . ,0,−1) /∈ Ω . Setx̂ = (x1, . . . , xN−1) andσ = inf{|x̂|: x ∈

Ω,xN < 0}. Let Dσ = {x ∈ SN−1: |x̂| � σ,xN < 0} andD̂σ := SN−1 \ Dσ . ThenCΩ ⊆ C
D̂σ

. Extend the matrixa

by id from CΩ to C
D̂σ

. Let wψ be a minimal positive solution inC1
D̂σ

to the equation

−∇ · a · ∇w − Wεw = 0 in C
D̂σ

.

To complete the proof we need only to show thatwψ satisfies (5.9) inC1
D̂σ

. Then the same bound on minim

positive solutions inC1
Ω follows from Lemma 2.3.

Consider the transformation

y = y(x) = (
x1, . . . , xN−1, xN + k|x̂|),

wherek = √
σ−2 − 1. Theny :C

D̂σ
→ C+ is a bijection, the Jacobian ofy(x) is nondegenerate and has the

terminant equal to 1 everywhere. Moreover,|x| � |y(x)| � κ |x| for all x ∈ C
D̂σ

, whereκ = √
2+ k2. Therefore

ŵ(y) := wψ(x(y)) solves the equation

−∇ · â · ∇ŵ − Ŵεŵ = 0 in Cκ+,

with the uniformly elliptic matrixâ(y) := a(x(y)) andŴε(y) := Wε(x(y)). One can easily check by direct comp

tation that ¯̂Wε ∈ GB. Fix ε > 0 such that‖ ¯̂
Wε‖GB, ¯̂a < 1. Then by Lemma 5.5 we conclude thatŵ(y) satisfies (5.5)

Thereforewψ(x) obeys (5.9) withβ := 2− N − γ as required. �
Proposition 5.7. Let Ω ⊂ SN−1 be a domain such that SN−1\Ω has nonempty interior. Then p∗(a,CΩ) � 1−2/β ,
where β < 2− N is from the upper bound (5.9).

Proof. Fix p > p0 = 1− 2/β and setδ = p − p0. Let wψ > 0 be a minimal positive solution inC1
Ω to

−∇ · a · ∇w − Wεw = 0 in CΩ

whereε > 0 is from Lemma 5.6. Then by (5.9) for someτ̄ = τ̄ (δ) > 0 small enough the function̄τwψ satisfies

(τ̄wψ)p−1 � τ̄ p−1(c|x|β)p−1 � τ̄ p−1c1

|x|2+δ|β| � ε

|x|2 log2(|x| + 2)
= Wε(x) in C1

Ω.

Therefore

−∇ · a · ∇(τ̄wψ) = Wε(τ̄wψ) � (τ̄wψ)p−1(τ̄wψ) = (τ̄wψ)p in C1
Ω,

that is,τ̄wψ > 0 is a supersolution to (1.1) inC1
Ω . �

Concluding remarks. The proofs of Propositions 5.3 and 5.7 rely only on the polynomial lower and uppe
bounds (5.2) and (5.9). Namely, givenα � β < 2− N in (5.2) and (5.9) we conclude that

1− 2

α
� p∗(a,CΩ) � 1− 2

β
.

By the next example we show that the (optimal) constantsα andβ might be actually different.
Let Ω ⊂ SN−1 be smooth andLd be as in (4.10) with

d(r) = A(r)
(
A(r) + N − 2

) + R(r),

where
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A(r) = γ + δ
[
sin

(
k log log(r)

) + k cos
(
k log log(r)

)]
,

R(r) = kδ
[
cos

(
k log log(r)

) − k sin
(
k log log(r)

)]
log−1(r),

γ < 2 − N , δ > 0 andk > 0 such thatγ + δ
√

k2 + 1 < 2 − N . Thus for large enoughR � 1 the operatorLd =
−∇ ·ad ·∇ is uniformly elliptic onCR

Ω . Letφ1 > 0 be the principal Dirichlet eigenfunction of−�ω, corresponding
to λ1. Direct computation and the Hopf Lemma show that the function

vφ1 := rγ+δ sin(k log log(r))φ1

is a minimal positive solution to the equationLdv = 0 in CR
Ω . Clearly anyα andβ (α < β < 2 − N ) could be

represented asα = γ − δ andβ = γ + δ for an appropriate choice of parametersγ , δ andk. Therefore one canno
expect a sharp polynomial asymptotics of minimal solutions to the equation−∇ · a · ∇v = 0 in cone-like domains
without additional restrictions on the matrixa(x).

It is an interesting open problem to determine the value of the critical exponentp∗(a,CΩ) in the case of minima
solutions oscillating at infinity between two different polynomials.
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