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Abstract

In this paper we prove the optimality of the observability inequality for parabolic systems with potentials in even space dimen-
sions n � 2. This inequality (derived by E. Fernández-Cara and the third author in the context of the scalar heat equation with
potentials in any space dimension) asserts, roughly, that for small time, the total energy of solutions can be estimated from above

in terms of the energy localized in a subdomain with an observability constant of the order of exp(C‖a‖2/3∞ ), a being the potential
involved in the system. The problem of the optimality of the observability inequality remains open for scalar equations.

The optimality is a consequence of a construction due to V.Z. Meshkov of a complex-valued bounded potential q = q(x) in
R

2 and a nontrivial solution u of �u = q(x)u with the decay property |u(x)| � exp(−|x|4/3). Meshkov’s construction may be
generalized to any even dimension. We give an extension to odd dimensions, which gives a sharp decay rate up to some logarithmic
factor and yields a weaker optimality result in odd space-dimensions.

We address the same problem for the wave equation. In this case it is well known that, in space-dimension n = 1, observability

holds with a sharp constant of the order of exp(C‖a‖1/2∞ ). For systems in even space dimensions n � 2 we prove that the best

constant one can expect is of the order of exp(C‖a‖2/3∞ ) for any T > 0 and any observation domain. Based on Carleman inequalities,
we show that the positive counterpart is also true when T is large enough and the observation is made in a neighborhood of the
boundary. As in the context of the heat equation, the optimality of this estimate is open for scalar equations.

We address similar questions, for both equations, with potentials involving the first order term. We also discuss issues related
with the impact of the growth rates of the nonlinearities on the controllability of semilinear equations. Some other open problems
are raised.
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1. Introduction and main results

In this paper we discuss the optimality of some observability estimates for the heat and wave equations with
potentials that may be obtained by means of Carleman inequalities and that arise naturally in the context of control
theory. To better illustrate the problem under consideration, let us first analyze the case of the heat equation.

Let n � 1 and N � 1 be two integers, T > 0, Ω be a simply connected, bounded domain of R
n with smooth

boundary Γ . Put Q = (0, T ) × Ω and Σ = (0, T ) × Γ . Consider the heat equation with a potential a = a(t, x) in
L∞(Q;R

N×N):{
ϕt − �ϕ + aϕ = 0, in Q,

ϕ = 0, on Σ,

ϕ(0, x) = ϕ0(x), in Ω,

(1.1)

where ϕ takes values in R
N . Denote by ‖ · ‖∞ and | · | the (usual) norms on L∞(Q;R

N×N) and R
N , respectively. We

recall the following known result:

Theorem A. ([11]) Assume that ω is an open non-empty subset of Ω . Then, there exists a constant C = C(Ω,ω) > 0,
depending on Ω and ω but independent of T , the potential a = a(t, x) and the solution ϕ of (1.1), such that

∥∥ϕ(T )
∥∥2

(L2(Ω))N
� exp

(
C

(
1 + 1

T
+ T ‖a‖∞ + ‖a‖2/3∞

)) T∫
0

∫
ω

|ϕ|2 dx dt, (1.2)

for every solution ϕ of (1.1), potential a ∈ L∞(Q;R
N×N) and time T > 0.

Inequality (1.2), that we shall refer to as observability inequality for system (1.1), plays a key role for solving
control problems for linear and nonlinear heat processes (see [11] and [12]). This inequality was proved in [11] using
the Carleman inequality approach developed by A. Fursikov and O. Imanuvilov (see, for example, [13]) by paying
special attention to the dependence of the observability constants on the size of the potential a = a(t, x) entering in
the equation. Indeed, the inequality was only proven in the case N = 1, but the method of proof yields the same result
in the vectorial case N � 2.

The observability constant in this situation is, by definition, the best constant in the above observability inequality.
We shall denote it by C∗(T , a). According to (1.2) we can guarantee that the following upper bound holds:

C∗(T , a) � exp

(
C

(
1 + 1

T
+ T ‖a‖∞ + ‖a‖2/3∞

))
. (1.3)

In this paper we show that this estimate is sharp, in a sense that will be made precise. Similar questions will be
addressed for the wave equation as well.

Before going further it is convenient to observe that the estimate in (1.3) includes three different terms. More
precisely:

exp

(
C

(
1 + 1

T
+ T ‖a‖∞ + ‖a‖2/3∞

))
= C∗

1 (T , a)C∗
2 (T , a)C∗

3 (T , a), (1.4)

where

C∗
1 (T , a) = exp

(
C

(
1 + 1

T

))
, C∗

2 (T , a) = exp
(
CT ‖a‖∞

)
, C∗

3 (T , a) = exp
(
C‖a‖2/3∞

)
. (1.5)

The role that each of these constants plays in the observability inequality is of different nature:

• When a ≡ 0, i.e. in the absence of potential, the observability constant is simply C∗
1 (T , a). This constant blows-up

exponentially as T ↓ 0. This growth rate is easily seen to be optimal by inspection of the heat kernel and has been
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analyzed in more detail in [11] and [19] to see what the influence of the geometry of Ω and ω is. We refer also
to [22] for a discussion of the optimal growth rate in one space dimension. For large a, the constant C∗

1 is the

leading one in the region T � ‖a‖−2/3∞ .1

• The second constant C∗
2 (T , a) is very natural as it arises when applying Gronwall’s inequality to analyze the time

evolution of the L2-norm of solutions. For large a, this is the leading constant in the region T � ‖a‖−1/3∞ .
• The constant C∗

3 (T , a), which, actually, only depends on the potential a, is the most intriguing one. Indeed, the
2/3 exponent does not seem to arise naturally in the context of the heat equation since, taking into account that
the heat operator is of order one and two in the time and space variables respectively, one could rather expect
terms of the form exp(c‖a‖∞) and exp(c‖a‖1/2∞ ), as a simple ODE argument would indicate.

This paper is devoted to discuss the optimality of this third contribution, C∗
3 (T , a), in the observability constant.

Note that this contribution is only predominant in the region:

‖a‖−2/3∞ � T � ‖a‖−1/3∞ . (1.6)

Nevertheless, its study is of great importance in view of applications to nonlinear problems, as it is the largest constant
depending on a for small T and large a. In fact, it is the key constant in the main result in [12] that asserts that
some weakly blowing-up nonlinear heat processes may be controlled to zero under suitable growth conditions on the
nonlinearity. We shall return to this matter bellow.

In this paper we show that the estimate (1.3) is sharp in what concerns the dependence on the potential a, for times
of order less than ‖a‖−1/3∞ , in space dimension n � 2 for systems with at least two equations. More precisely, in even
dimension, the following holds:

Theorem 1.1. Assume that n � 2 is even and that N � 2. Let ω be any given nonempty open subset of Ω such
that Ω \ ω �= ∅. Then there exist two constants c > 0 and μ > 0, a family of potentials {aR}R>0 ⊂ L∞(Q;R

N×N)

satisfying

‖aR‖∞ −→
R→+∞ + ∞,

and a family of initial data {ϕ0
R}R>0 in (L2(Ω))N such that the corresponding solution ϕR of (1.1) satisfies

lim
R→∞

{
inf

T ∈Iμ

‖ϕR(T )‖2
(L2(Ω))N

exp(c‖aR‖2/3∞ )
∫ T

0

∫
ω

|ϕR|2 dx dt

}
= +∞, (1.7)

where Iμ � (0,μ‖aR‖−1/3∞ ].

Remark 1.1. As we shall see, the construction of Theorem 1.1 only requires potentials a = a(x) which are indepen-
dent of time.

According to (1.7) the inequality (1.2) is sharp in the sense that, for large potentials a, when the observation time
is of order smaller than ‖a‖−1/3∞ , the observability constant may not grow slower than an exponential factor of the
order of exp(c‖a‖2/3∞ ) for some c > 0. This sharpness of the constant for small time is particularly important in view
of the applications to semilinear equations (see Section 7). In Section 4 (see Theorem 4.1), we give a slightly weaker
extension to odd dimensions, for N � 8, and with a logarithmic correction. Getting exactly (1.7) for n odd is an open
problem.

Note that Theorems 1.1 and 4.1 do not exclude a possible improvement of the estimate for N < 8 in odd space
dimension, and for scalar equations in any space dimension. It will be clear from the proof of Theorem 1.1 that this
last issue is closely related to that of the optimal decay at infinity for solutions of scalar equations on R

n of the form
�u = q(x)u with bounded potential q , a problem that, to our knowledge, is not completely solved.

Theorem 1.1 is a consequence of the following known result:

1 This means that T � C‖a‖−1/3∞ for some generic constant C > 0. We shall use a similar notation later, for example for T � ‖a‖−1/3∞ .
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Theorem B. (Meshkov [18]) Assume that the space dimension is n = 2. Then, there exists a nonzero complex-valued
bounded potential q = q(x) and a nontrivial complex valued solution u = u(x) of

�u = qu, in R
2, (1.8)

with the property that∣∣u(x)
∣∣ � C exp

(−|x|4/3), ∀x ∈ R
2, (1.9)

for some positive constant C > 0.

Taking into account that the potential q and the solution u are complex valued, Eq. (1.8) can be viewed as an
elliptic system with real valued coefficients and two components (N = 2).

As we shall see, Theorem 1.1 holds from the construction by Meshkov by scaling and localization arguments. The
proof of Theorem 1.1 will be given in Section 4.

By separation of variables, Theorem B holds in any even dimension. The validity of this result in odd dimensions
is, to the knowledge of the authors, an open problem. Section 3 is devoted to this issue. We obtain a slightly weaker
version of Theorem B in 3 − d for C

4-valued solutions and with a potential q growing at infinity in a logarithmic
way. This construction is the main tool to prove Theorem 4.1 on the optimality of the observability constant in odd
space-dimensions.

Let us mention some variants of the preceding results. One may assume that the potential a is in L∞(0, T ;Lp(Ω;
R

N×N)), where n � p < +∞, but is not necessarily bounded. For such a, an analogue of the observability inequality
(1.2) is shown in Theorem 2.1. In this case, the constant C∗

3 has to be replaced by exp(C‖a‖α
L∞(0,T ;Lp(Ω;RN×N))

), for
some α depending on p. Surprisingly, Meshkov’s construction is not sufficient to show that this constant is sharp. We
shall also consider the case of convective potentials, that is first order operators of the form a1.∇ , where a1 is bounded.
The analogue of the observability inequality (1.2) is also stated in Theorem 2.1. In this case, in space-dimension
n = 2, we are able to show the optimality of this inequality, using an easy adaptation of Meshkov’s construction (see
Section 6).

We now consider the wave equation and, more precisely, a system of N � 1 wave equations of the form{
wtt − �w + aw = 0, in Q,

w = 0, on Σ,

w(0, x) = w0(x), wt (0, x) = w1(x), in Ω,

(1.10)

where the unknown function w takes value in R
N and a = a(t, x) is a matrix-valued potential as in (1.1).

Let ω be a nonempty open subset of Ω . As above, we shall study the observability constant D∗ = D∗(T , a),
defined, for fixed a ∈ L∞(Q;R

N×N) and T > 0, as the smallest (possibly infinite) positive constant such that the
following observability inequality holds:

∥∥w0
∥∥2

(L2(Ω))N
+ ∥∥w1

∥∥2
(H−1(Ω))N

� D∗(T , a)

T∫
0

∫
ω

|w|2 dx dt, (1.11)

for every solution of (1.10).
Concerning the dependence of D∗(T , a) on the potential a the following can be said:

• Unlike the heat case, the existence of (finite) D∗(T , a) is not guaranteed for all triple (Ω,T ,ω). In [5], Bardos,
Lebeau and Rauch have established (under strong smoothness assumptions) an essentially necessary and sufficient
condition for (1.11) to hold, the geometric control condition, which asserts that all rays of geometric optics in Ω

enter the subdomain ω in an uniform time T > 0. But the micro-local techniques used in their work do not seem
to give the explicit dependence of the constant D∗(T , a) on the potential a. In Section 2 we shall introduce a
stronger condition on (Ω,T ,ω) which yields the existence of D∗(T , a) for the multi-dimensional case. Indeed,
by means of Carleman estimates, we show in Theorem 2.2 that under this condition:

D∗(T , a) � exp
(
C(T )

(
1 + ‖a‖2/3∞

))
, (1.12)

with a positive constant C(T ) that depends only on (Ω,T ,ω).
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• Observability constant (1.12) is similar to that in [11] for the heat equation (see (1.3) above). Note however
that there is an important difference between C∗(T , a) for the heat equation and D∗(T , a) for the wave one.
Indeed, in (1.3), there is a term exp(CT ‖a‖∞), due to the use of Gronwall’s inequality. Because of this term, one
needs to choose T to be of the order (1.6) (thus small when a is large), to get an observability constant bounded
by exp(C‖a‖2/3). The situation is different for the wave equation. Indeed, as noted in [29], a modified energy
estimate gives an upper bound for the evolution of the energy of the order of exp(CT ‖a‖1/2∞ ). As we shall see,
this point is crucial to derive (1.12).

• In one space dimension, in [29], using sidewise energy estimates it was proved that

D∗(T , a) � C exp
(
C‖a‖1/2∞

)
. (1.13)

This is true whatever the number N of components of the system is and even for 1-d wave equations with BV -
coefficients in the principal part. But it may fail for equations with Hölder continuous coefficients (see [8]).
Estimate (1.13) is known to be sharp. It is even sharp for the scalar 1-d wave equations with constant potentials.

However, as we shall see, (1.13) is not satisfied in space dimensions n � 2. Indeed, our next main goal of this paper
is to show that estimate (1.12) is sharp in several space dimensions. We state the result in even space dimension. As
in the case of parabolic systems a similar, but weaker result holds in odd space-dimensions (Theorem 5.1).

Theorem 1.2. Assume that n � 2 is even and N � 2. Let ω be any given open nonempty subset of Ω such that
Ω \ω �= ∅. Then, for all T > 0 there exist a constant c > 0, a family of potentials {aR}R>0 ⊂ L∞(Q;R

N×N) satisfying

‖aR‖∞ −→
R→+∞ + ∞,

and a family of initial data {(w0
R,w1

R)}R>0 in (L2(Ω))N × (H−1(Ω))N such that the corresponding solution wR of
(1.10) satisfies

lim
R→∞

{‖w0
R‖2

(L2(Ω))N
+ ‖w1

R‖2
(H−1(Ω))N

exp(c‖aR‖2/3∞ )
∫ T

0

∫
ω

|wR|2 dx dt

}
= +∞. (1.14)

Remark 1.2. The potentials aR in Theorem 1.2 will be chosen to be time-invariant. Furthermore, as one shall see in
the proof of Theorem 1.2 in Section 5, we actually choose the initial velocity w1

R = 0.

As in the context of the heat equation, the proof of this result is based on the construction by Meshkov in Theo-
rem B. Theorem 1.2 shows that the estimate (1.12) is sharp for systems of wave equations in even dimensions. Hence,
in this case, when T is fixed, the observability constant D∗(T , a) has to grow, at least, at the order of exp(C‖a‖2/3∞ )

as ‖a‖∞ → ∞. The problem of the optimality of the estimate (1.12) for scalar equations is open. As in the parabolic
case, Theorem 3.2 yields a weaker version of Theorem 1.2 when n is odd, that we state in Section 5 (see Theorem 5.1).

The rest of this paper is organized as follows. In Section 2, we shall show sharp observability estimates for parabolic
and hyperbolic equations with both zero and, in some cases, first order potentials. We also consider the case of
boundary observability for the wave equation. In Section 3, we construct solutions on R

n of elliptic linear equations
with a maximal speed of decay at infinity. These constructions generalize that of Meshkov, as it includes first order
potentials, and odd n. They are the main tool of the three next sections, which are devoted to prove negative results.
In Sections 4 and 5 we prove respectively the optimality of the observability estimates for heat and wave equations
with zero order potentials, i.e., Theorems 1.1 and 1.2. In Section 6 we address the case of heat and wave equations
with convective potentials, and show the optimality of the observability estimates which depend exponentially on
the square of the L∞-norm of the convective potential. It is well-known that, in the context of both heat and wave
equations, the observability inequalities with explicit bounds in terms of the potentials are intimately related with the
optimal growth rates for the control of semilinear equations. This issue will be briefly discussed in Section 7. Finally,
in Section 8 we comment some closely related issues and open problems.
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2. Sharp observability estimates for hyperbolic and parabolic equations with potentials

This section is devoted to show sharp observability estimates for hyperbolic and parabolic equations with zero and
first order potentials. We shall consider elliptic operators with variable coefficients, which does not change the proof
with respect to the simpler case of Laplace’s operator, and gives the same dependence of the observability constant on
the potentials. As it was mentioned in the introduction, we also consider the case of zero order potentials which are in
Lp-spaces in the space variable, with n � p � ∞.

2.1. Statement of the results

In the sequel, we fix real valued functions bij ∈ C1(Ω) satisfying:

bij (x) = bji(x), ∀x ∈ Ω, i, j = 1,2, . . . , n, (2.1)

and
n∑

i,j=1

bij (x)ξiξj � β|ξ |2, ∀(x, ξ) ≡ (x, ξ1, . . . , ξn) ∈ Ω × R
n, (2.2)

for some constant β > 0.
We also consider R

N×N -valued functions a, ak
1 (k = 1, . . . , n) and a2 on Q satisfying:

(H1) a ∈ L∞(0, T ;Lp(Ω;R
N×N)) for some p ∈ [n,∞], and a1

1, . . . , an
1 , a2 ∈ L∞(Q;R

N×N).

Put

r0 � ‖a‖L∞(0,T ;Lp(Ω;RN×N )), r1 �
n∑

k=1

∥∥ak
1

∥∥∞, r2 � r1 + ‖a2‖∞. (2.3)

2.1.1. The parabolic system
We consider first the following parabolic system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕt −
n∑

i,j=1

(
bij (x)ϕxi

)
xj

= aϕ +
n∑

k=1

ak
1ϕxk

, in Q,

ϕ = 0, on Σ,

ϕ(0) = ϕ0, in Ω.

(2.4)

We have the following observability estimate for system (2.4).

Theorem 2.1. Let ω be an open nonempty subset of Ω and bij (·) ∈ C1(Ω) satisfy (2.1)–(2.2). Then, there exists a
constant C = C(Ω,ω) > 0 depending only on Ω and ω such that for any time T > 0, potentials a and ak

1 (k =
1, . . . , n) satisfying (H1), and initial data ϕ0 ∈ (L2(Ω))N , the corresponding solution ϕ ∈ C([0, T ]; (L2(Ω))N) of
(2.4) satisfies

∥∥ϕ(T )
∥∥2

(L2(Ω))N
� exp

{
C

[
1 + 1

T
+ T r0 + r

1
3/2−n/p

0 + (1 + T )r2
1

]} T∫
0

∫
ω

|ϕ|2 dx dt. (2.5)

By adapting an argument in Step 5 in the proof of Theorem 2.4 in Subsection 2.2 (for the hyperbolic system),
the proof of Theorem 2.1 is almost the same as that in [9, Theorem 2.3] and [11, Theorem 1.2]. Hence we omit the
details. Theorem 1.1 shows that, when (bij )n×n = I (the identity matrix), the exponent 2/3 in r

2/3
0 (for the special

case p = ∞ in the estimate (2.5)) is sharp. As we shall see in Section 6, the quadratic dependence on r1 is also sharp.

The problem of the optimality of the term in r
1

3/2−n/p is completely open when p < ∞.
0
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2.1.2. The hyperbolic system
Let us now consider the following hyperbolic system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wtt −
n∑

i,j=1

(
bij (x)wxi

)
xj

= aw +
n∑

k=1

ak
1wxk

+ a2wt, in Q,

w = 0, on Σ,

w(0) = w0, wt (0) = w1, in Ω,

(2.6)

where w = (w1, . . . ,wN)� is a RN -valued unknown. Under some assumption on the observation domain, we will
show boundary and interior observability inequalities for system (2.6), with an explicit dependence on the constants
r0 (and, in the case of boundary observability also r2). For this, we introduce the following condition.

(H2) There exists a function d(·) ∈ C2(Ω) satisfying the following:
(i) For some constant μ0 > 0,

n∑
i,j=1

{
n∑

i′,j ′=1

[
2bij ′(

bi′j dxi′
)
xj ′ − b

ij
xj ′ b

i′j ′
dxi′

]}
ξiξj � μ0

n∑
i,j=1

bij ξiξj , ∀(x, ξ) ∈ Ω × R
n; (2.7)

(ii) The function d(·) does not have any critical point in Ω , i.e.,

min
x∈Ω

∣∣∇d(x)
∣∣ > 0. (2.8)

Denote by ν = ν(x) = (ν1, ν2, . . . , νn) the unit outward normal vector of Ω at x ∈ Γ . For the function d(·) satis-
fying Condition (H2), we introduce the following set:

Γ0 �
{

x ∈ Γ

∣∣∣∣ n∑
i,j=1

bij νidxj
> 0

}
. (2.9)

Note that for the case of (bij )n×n = I , by choosing d(x) = |x − x0|2 with any fixed x0 ∈ Rn \ Ω , (H2) is satisfied
with μ0 = 4 and (2.7) holds with an equality. In this case, Γ0 in (2.9) is given by{

x ∈ Γ | (x − x0) · ν(x) > 0
}
,

which coincides with the subset of the boundary arising usually in the context of the multiplier method [17].
On the other hand, it is easy to check that, if d(·) ∈ C2(Ω) satisfies (2.7), then for any given constants α � 1 and

β ∈ R, the function

d̂ = d̂(x) � αd(x) + β (2.10)

still satisfies Condition (H2) with μ0 replaced by αμ0, the set Γ0 remaining unchanged. Hence, without loss of
generality, we may assume that⎧⎪⎨⎪⎩

(2.7) holds with μ0 � 4,

1

4

n∑
i,j=1

bij (x)dxi
(x)dxj

(x) � max
x∈Ω

d(x) � min
x∈Ω

d(x) > 0, ∀x ∈ Ω.
(2.11)

In what follows, put

R1 � max
x∈Ω

√
d(x), T0 � 2 inf

{
R1 | d(·) satisfies (2.11)

}
. (2.12)

For the interior observation, we introduce the following assumption:

(H3) There is a constant δ > 0 such that

ω =Oδ(Γ0) ∩ Ω, (2.13)

where Oδ(Γ0) = {x ∈ Rn | |x − x′| < δ for some x′ ∈ Γ0}.
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In other words, the observation subdomain ω is assumed to be a neighborhood of a subset of the boundary satisfying
the condition above for boundary observability.

In the rest of this section, we will use C = C(T ,Ω) to denote a generic positive constant which may vary from line
to line. Our observability estimates for system (2.6) are stated as follows.

Theorem 2.2. Let bij ∈ C1(Ω) satisfy (2.1)–(2.2). Assume that conditions (H2)–(H3) hold. Let T > T0, where T0 is
defined in (2.12). Then the following two assertions hold:

(i) boundary observability: There is a constant C > 0 such that for any potentials a, a1
1, . . . , an

1 and a2 satisfying (H1)
for some p ∈ [n,+∞], and initial data (w0,w1) ∈ (H 1

0 (Ω))N × (L2(Ω))N , the corresponding weak solution:

w ∈ C
([0, T ]; (H 1

0 (Ω)
)N )∩ C1([0, T ]; (L2(Ω)

)N )
of (2.6) satisfies∥∥w0

∥∥
(H 1

0 (Ω))N
+ ∥∥w1

∥∥
(L2(Ω))N

� exp
(
C
(
1 + r

1
3/2−n/p

0 + r2
2

))∥∥∥∥∂w

∂ν

∥∥∥∥
(L2((0,T )×Γ0))

N

. (2.14)

(ii) interior observability: If ak
1 ≡ 0 (k = 1, . . . , n) and a2 ≡ 0, then there is a constant C > 0 such that for any poten-

tial a satisfying (H1) and initial data (w0,w1) ∈ (L2(Ω))N × (H−1(Ω))N , the corresponding weak solution:

w ∈ C
([0, T ]; (L2(Ω)

)N )∩ C1([0, T ]; (H−1(Ω)
)N )

of (2.6) satisfies∥∥w0
∥∥

(L2(Ω))N
+ ∥∥w1

∥∥
(H−1(Ω))N

� exp
(
C
(
1 + r

1
3/2−n/p

0

))‖w‖(L2((0,T )×ω))N . (2.15)

Part (ii) of Theorem 2.2 is the internal observability inequality for the wave equation announced in (1.11). Note that
unlike the case of the heat equation (Theorem 2.1) and the boundary observability for the wave equation (part (i) of
Theorem 2.2), we do not give a generalization of this inequality to first order potentials. The proof of such a general-
ization would yield new technical difficulties, essentially due to the fact that in view of control-theoretic applications,
we treat the case of the adjoint system (with initial data in (L2(Ω) × H−1(Ω))N ), instead of the usual energy space
(with initial data in (H 1

0 (Ω) × L2(Ω))N ).

As in the parabolic case, Theorem 1.2 shows that the exponent 2/3 in the estimate r
2/3
0 (in (2.15) for the special

case p = ∞) is sharp. As we shall see in Section 6, the exponent 2 in the estimate r2
2 (in (2.14)) is sharp, too.

In the rest of this section, to simplify the presentation, we only consider the case N = 1. The proof in the case
N � 2 is exactly the same. The proof of Theorem 2.2 will be given in Subsection 2.3. For this, we need to show a
global Carleman estimate for hyperbolic operators, which is the object of the next subsection.

2.2. Global Carleman estimate for hyperbolic operators

Recall (2.12) for the definitions of R1 and T0. Let T > T0 be given. We may choose d such that

T > 2R1. (2.16)

By (2.16), one may choose a constant c ∈ (0,1) so that(
2R1

T

)2

< c <
2R1

T
. (2.17)

Put

φ = φ(t, x) � d(x) − c

(
t − T

2

)2

, (2.18)

with T and c satisfying respectively (2.16) and (2.17).
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Define a formal differential operator P by

Pu � utt −
n∑

i,j=1

(
bij (x)uxi

)
xj

. (2.19)

By [14, (5.15) in the proof of Theorem 5.1], we have the following Carleman estimate.

Theorem 2.3. Let bij ∈ C1(Ω) satisfy (2.1)–(2.2). Assume that condition (H2) holds and Γ0 is given by (2.9). Then
there exists a λ0 > 1 such that for all λ � λ0 and all u ∈ H 1

0 (Q) with Pu ∈ L2(Q), it holds:

λ

∫
Q

e2λφ
(
λ2u2 + u2

t + |∇u|2)dx dt � C

( ∫
Q

e2λφ |Pu|2 dx dt + λ

T∫
0

∫
Γ0

e2λφ

∣∣∣∣∂u

∂ν

∣∣∣∣2 dx dt

)
. (2.20)

In order to prove the interior observability result in Theorem 2.2, we also need the following:

Theorem 2.4. Let bij ∈ C1(Ω) satisfy (2.1)–(2.2), and a ∈ L∞(0, T ;Lp(Ω)) with p ∈ [n,∞]. Assume that conditions
(H2)–(H3) hold. Then there exists a λ0 > 1 such that for all λ � λ0, any u ∈ C([0, T ];L2(Ω)) satisfying u(0, x) =
u(T , x) = 0 for x ∈ Ω , Pu ∈ H−1(Q) and

(u,Pη)L2(Q) = 〈Pu,η〉H−1(Q),H 1
0 (Q), ∀η ∈ H 1

0 (Q) with Pη ∈ L2(Q), (2.21)

it holds

λ
∥∥eλφu

∥∥2
L2(Q)

� C

(∥∥eλφ(Pu − au)
∥∥2

H−1(Q)
+ 1

λ2(1−n/p)

∥∥eλφau
∥∥2

L2(0,T ;H−n/p(Ω))

+ λ2
∥∥eλφu

∥∥2
L2((0,T )×ω)

)
. (2.22)

Proof. We shall borrow some idea from [16], which consists in applying (2.21) to some special choice of η with
Pη = · · · + λe2λφu, which yields the desired term λ‖eλφu‖2

L2(Q)
and reduces the estimate (2.22) to an estimate on

‖η‖H 1
0 (Q).

In [14, (7.20) and (7.21) in the proof of Theorem 7.1], it is shown, using an optimization argument, that there is a
λ0 greater than 1 so that for any λ greater than λ0 and any u in C([0, T ];L2(Ω)) vanishing at t = 0 and t = T , there
exist (ž, ř) in H 1

0 (Q) × L2((0, T ) × Ω), such that:⎧⎨⎩ supp ř ⊂ (0, T ) × ω,

P ž = ř + λe2λφu, in Q,

ž = 0, on ∂Q,

(2.23)

and for some constant C > 0, independent of λ, it holds∫
Q

e−2λφ
(|∇ ž|2 + ž2

t + λ2ž2)dx dt + 1

λ2

T∫
0

∫
ω

e−2λφř2 dx dt � Cλ

∫
Q

e2λφu2 dx dt. (2.24)

Now, by (2.21) with η replaced by ž above, one gets(
u, ř + λ e2λφu

)
L2(Q)

= 〈Pu, ž〉H−1(Q),H 1
0 (Q).

Hence, noting supp ř ⊂ (0, T ) × ω:

λ
∥∥eλφu

∥∥2
L2(Q)

= 〈Pu, ž〉H−1(Q),H 1
0 (Q) − (u, ř)L2((0,T )×ω)

= 〈Pu − au, ž〉H−1(Q),H 1
0 (Q) + (au, ž)L2(Q) − (u, ř)L2((0,T )×ω)

�
∥∥eλφ(Pu − au)

∥∥ −1

∥∥e−λφž
∥∥

1 + ∥∥eλφau
∥∥

2 −n/p

∥∥e−λφž
∥∥

2 n/p

H (Q) H0 (Q) L (0,T ;H (Ω)) L (0,T ;H0 (Ω))
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+ ∥∥eλφu
∥∥

L2((0,T )×ω)

∥∥e−λφř
∥∥

L2((0,T )×ω)

� C
√
Q
[∥∥e−λφž

∥∥2
H 1

0 (Q)
+ λ2(1−n/p)

∥∥e−λφž
∥∥2

L2(0,T ;Hn/p
0 (Ω))

+ 1

λ2

∥∥e−λφř
∥∥2

L2((0,T )×ω)

]1/2

, (2.25)

where

Q �
∥∥eλφ(Pu − au)

∥∥2
H−1(Q)

+ 1

λ2(1−n/p)

∥∥eλφau
∥∥2

L2(0,T ;H−n/p(Ω))
+ λ2

∥∥eλφu
∥∥2

L2((0,T )×ω)

is the right-hand term of (2.22). On the other hand, for any f ∈ H 1(Rn), by Hölder’s inequality, one has

‖f ‖2
Hn/p(Rn)

=
∫
Rn

(
1 + |ξ |2)n/p∣∣f̂ (ξ)

∣∣2n/p∣∣f̂ (ξ)
∣∣2(1−n/p) dξ � ‖f ‖n/p

H 1(Rn)
‖f ‖1−n/p

L2(Rn)
.

This yields immediately:

‖g‖2
H

n/p
0 (Ω)

� C‖g‖n/p

H 1
0 (Ω)

‖g‖1−n/p

L2(Ω)
, ∀g ∈ H 1

0 (Ω), (2.26)

for some constant C > 0, independent of g. Hence, for any h ∈ L2(0, T ;H 1
0 (Ω)):

‖h‖
L2(0,T ;Hn/p

0 (Ω))
� C‖h‖n/p

L2(0,T ;H 1
0 (Ω))

‖h‖1−n/p

L2(Q)
. (2.27)

Now, by (2.27) and using Young’s inequality, it follows

λ2(1−n/p)
∥∥e−λφž

∥∥2
L2(0,T ;Hn/p

0 (Ω))
� Cλ2(1−n/p)

∥∥e−λφž
∥∥2n/p

L2(0,T ;H 1
0 (Ω))

∥∥e−λφž
∥∥2(1−n/p)

L2(Q)

� C
[∥∥e−λφž

∥∥2
L2(0,T ;H 1

0 (Ω))
+ λ2

∥∥e−λφž
∥∥2

L2(Q)

]
. (2.28)

Finally, using (2.24), (2.25) and (2.28), we arrive at the desired estimate (2.22). This completes the proof of Theo-
rem 2.4. �
2.3. Proof of sharp observability estimates for hyperbolic equations with potentials

We now prove Theorem 2.2. The main idea is to use the Carleman estimate in Theorems 2.3–2.4. The proof is
divided into several steps.

Step 1: Choice of a cutoff function. Note that our w satisfying (2.6) does not necessarily vanish at t = 0, T . There-
fore we need to introduce a suitable cutoff function. To this end, set (recall (2.11))

Ti � T/2 − εiT , T ′
i � T/2 + εiT , R0 � min

x∈Ω

√
d(x) (> 0), (2.29)

where i = 0,1; 0 < ε0 < ε1 < 1/2 will be given below.
From (2.17), (2.18) and the definition (2.12) of R1, it is easy to see that

φ(0, x) = φ(T , x) � R2
1 − cT 2/4 < 0, ∀x ∈ Ω. (2.30)

Therefore there exists an ε1 ∈ (0,1/2), close to 1/2, such that

φ(t, x) � R2
1/2 − cT 2/8 < 0, ∀(t, x) ∈ (

(0, T1) ∪ (T ′
1, T )

)× Ω, (2.31)

with T1 and T ′
1 given by (2.29). Further, by (2.18), we see that

φ(T /2, x) = d(x) � R2
0, ∀x ∈ Ω.

Hence, one can find an ε0 ∈ (0,1/2), close to 0, such that

φ(t, x) � R2/2, ∀(t, x) ∈ (T0, T
′) × Ω, (2.32)
0 0
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with T0 and T ′
0 given by (2.29). We now choose a nonnegative function ξ ∈ C∞

0 (0, T ) so that

ξ(t) ≡ 1 in (T1, T
′
1). (2.33)

We start to show the second assertion of Theorem 2.2, whose proof is more technical.
Step 2: An intermediate inequality. Assume that the assumptions of the second part of Theorem 2.2 hold. We first

shall apply Carleman inequality (2.22) to prove the following observability inequality:

∃λ1 > 0, ∀λ �
(
1 + r

1
3/2−n/p

0

)
λ1, λ

∫
Q

e2λφw2 dx dt � C

(
λ2

T∫
0

∫
ω

e2λφw2 dx dt + ‖w‖2
L2(J×Ω)

)
, (2.34)

where J � (0, T1) ∪ (T ′
1, T ). Note that in the right-hand side of (2.34) the square of the L2 norm of w on all Ω

appears, but only for time smaller than T1 or greater than T ′
1. To get read of these term, we will need to use, in the

next step, a modified energy method.
Recall that ξw vanishes at t = 0, T . Hence, by Theorem 2.4, for any λ � λ0, we have

λ

∫
Q

e2λφ(ξw)2 dx dt � C

[∥∥eλφ
(
P(ξw) − aξw

)∥∥2
H−1(Q)

+ 1

λ2(1−n/p)

∥∥eλφaξw
∥∥2

L2(0,T ;H−n/p(Ω))

+ λ2

T∫
0

∫
ω

e2λφw2 dx dt

]
. (2.35)

By Eq. (2.6), recalling ak
1 ≡ 0 (k = 1, . . . , n) and a2 ≡ 0, and noting (2.31) and (2.33), we have∥∥eλφ

(
P(ξw) − aξw

)∥∥
H−1(Q)

= ∥∥eλφ(2ξtwt + wξtt )
∥∥

H−1(Q)

= sup
|f |

H1
0 (Q)

=1

∫
Q

eλφ(2ξtwt + wξtt )f dx dt

= sup
|f |

H1
0 (Q)

=1

∫
Q

eλφw(−ξttf − 2ξtft − 2λφtξtf )dx dt

� Ce(R2
1/2−cT 2/8)λ(1 + λ)‖w‖L2(J×Ω). (2.36)

Recalling the definition of r0 in (2.3) and noting that the Sobolev embedding H
n/p

0 (Ω) ↪→ L
2p

p−2 (Ω), implies by

duality the embedding L
2p

p+2 (Ω) ↪→ H−n/p(Ω), we get:∥∥eλφaξw
∥∥

L2(0,T ;H−n/p(Ω))
�

∥∥eλφaξw
∥∥

L2(0,T ;L2p/(p+2)(Ω))

� Cr0
∥∥eλφw

∥∥
L2(Q)

, (2.37)

where at the second line we simply used Hölder’s inequality. Further, by (2.31) and (2.33), we have∫
Q

e2λφ(ξw)2 dx dt =
∫
Q

e2λφw2 dx dt −
∫
Q

e2λφ
(
1 − ξ2)w2 dx dt

�
∫
Q

e2λφw2 dx dt − Ce(R2
1−cT 2/4)λ‖w‖2

L2(J×Ω)
. (2.38)

Combining (2.35)–(2.38), we conclude that there is a constant C1 = C1(T ,Ω), independent of λ and r0, such that:

λ

∫
e2λφw2 dx dt � C1

[
r2

0

λ2(1−n/p)

∫
e2λφw2 dx dt + λ2

T∫ ∫
ω

e2λφw2 dx dt
Q Q 0
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+ e(R2
1−cT 2/4)λ

(
1 + λ2)‖w‖2

L2(J×Ω)

]
. (2.39)

Since R2
1 − cT 2/4 < 0, one may find a λ′

1 � λ0 such that e(R2
1−cT 2/4)λ(1 + λ2) < 1 for all λ � λ′

1. Take a λ1 � λ′
1 and

such that:

λ � r
1

3/2−n/p

0 λ1 �⇒ λ − C1
r2

0

λ2(1−n/p)
� λ

2
. (2.40)

For such a choice of λ1, the desired inequality (2.34) follows from (2.39).
Step 3: A modified energy method. From (2.32), we see that

∫
Q

e2λφw2 dx dt � eR2
0λ

T ′
0∫

T0

∫
Ω

w2 dx dt. (2.41)

Put

E(t) � 1

2

[∥∥w(t, ·)∥∥2
L2(Ω)

+ ∥∥wt(t, ·)
∥∥2

H−1(Ω)

]
. (2.42)

For any S0 ∈ (T0, T /2) and S′
0 ∈ (T /2, T ′

0), by means of the classical energy estimate, one has

S′
0∫

S0

E(t)dt � C(1 + r0)

T ′
0∫

T0

∫
Ω

w2 dx dt. (2.43)

We claim that, there is a constant C > 0 such that

E(t) � CeCr

1
2−n/p

0 E(s), ∀t, s ∈ [0, T ]. (2.44)

Note however that this does not follow from the usual energy method. Instead, we need to use the duality argument
and adopt a modified energy estimate introduced in [29]. For this, for any (z0, z1) ∈ H 1

0 (Ω) × L2(Ω), we introduce
the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩

ztt −
n∑

i,j=1

(
bij (x)zxi

)
xj

= az, in Q,

z = 0, on Σ,

z(T ) = z0, zt (T ) = z1, in Ω.

(2.45)

Denote a (modified) energy of system (2.45) by

E(t) = 1

2

∫
Ω

[∣∣zt (t, x)
∣∣2 +

n∑
i,j=1

bij (x)zxi
(t, x)zxj

(t, x) + r
2

2−n/p

0

∣∣z(t, x)
∣∣2]dx. (2.46)

Then, by (2.45) and recalling the definition of r0 in (2.3), it follows

dE(t)

dt
=

∫
Ω

azzt dx + r
2

2−n/p

0

∫
Ω

zzt dx. (2.47)

Put p1 = 2p
n−2 and p2 = 2p

p−n
. Noting that 1

p
+ 1

p1
+ 1

p2
+ 1

2 = 1 and 1
2(n/p)−1 + 1

2(1−n/p)−1 + 1
2 = 1, by Hölder’s

inequality and Sobolev’s embedding theorem, and recalling (2.46), we get∫
Ω

azzt dx �
∫
Ω

|a||z| n
p |z|1− n

p |zt |dx

� r0
∥∥∣∣z(t, ·)∣∣ n

p
∥∥

p

∥∥∣∣z(t, ·)∣∣1− n
p
∥∥

p

∥∥zt (t, ·)
∥∥

2
L 1 (Ω) L 2 (Ω) L (Ω)
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= r0
∥∥z(t, ·)∥∥ n

p

L
2n

n−2 (Ω)

∥∥z(t, ·)∥∥1− n
p

L2(Ω)

∥∥zt (t, ·)
∥∥

L2(Ω)

= r
1

2−n/p

0

∥∥z(t, ·)∥∥ n
p

L
2n

n−2 (Ω)︸ ︷︷ ︸
�E(t)

n
2p

(
r

1−n/p
2−n/p

0

∥∥z(t, ·)∥∥1− n
p

L2(Ω)

)︸ ︷︷ ︸
�E(t)

1
2 − n

2p

∥∥zt (t, ·)
∥∥

L2(Ω)︸ ︷︷ ︸
�E(t)1/2

� Cr
1

2−n/p

0 E(t). (2.48)

Similarly,

r
2

2−n/p

0

∫
Ω

zzt dx �
r

1
2−n/p

0

2

∫
Ω

(
r

2
2−n/p

0 z2 + z2
t

)
dx � Cr

1
2−n/p

0 E(t). (2.49)

Hence, combining (2.47)–(2.49), we conclude that

dE(t)

dt
� Cr

1
2−n/p

0 E(t).

By this and noting the time reversibility of system (2.45), we get

E(t) � CeCr

1
2−n/p

0 E(s), ∀t, s ∈ [0, T ].
Hence,

∥∥(z(t), zt (t)
)∥∥

H 1
0 (Ω)×L2(Ω)

� CeCr

1
2−n/p

0
∥∥(z(s), zt (s)

)∥∥
H 1

0 (Ω)×L2(Ω)
, ∀t, s ∈ [0, T ]. (2.50)

Now, taking the scalar product of the first equation of (2.6) by z, integrating it in (t, s) × Ω , recalling that by assump-
tion ak

1 ≡ 0 (k = 1, . . . , n) and a2 ≡ 0, and using (2.45) and integrations by parts, we get(
w(s), zt (s)

)
L2(Ω)

+ 〈
wt(s),−z(s)

〉
H−1(Ω),H 1

0 (Ω)

= (
w(t), zt (t)

)
L2(Ω)

+ 〈
wt(t),−z(t)

〉
H−1(Ω),H 1

0 (Ω)
, ∀t, s ∈ [0, T ]. (2.51)

Hence, by (2.42) and (2.51), and noting the last equation in (2.45), and using (2.50), we get (denoting by S the unit
sphere of the space H 1

0 (Ω) × L2(Ω))√
2E(T ) = sup

(z0,z1)∈S

[(
w(T ), z1

)
L2(Ω)

+ 〈
wt(T ),−z0

〉
H−1(Ω),H 1

0 (Ω)

]
= sup

(z0,z1)∈S

[(
w(t), zt (t)

)
L2(Ω)

+ 〈
wt(t),−z(t)

〉
H−1(Ω),H 1

0 (Ω)

]
� C

√
E(t) sup

(z0,z1)∈S

∥∥(z(t), zt (t)
)∥∥

H 1
0 (Ω)×L2(Ω)

� CeCr

1
2−n/p

0
√

E(t) sup
(z0,z1)∈S

∥∥(z(T ), zt (T )
)∥∥

H 1
0 (Ω)×L2(Ω)

= CeCr

1
2−n/p

0
√

E(t).

This fact, combined with the time reversibility of system (2.6), yields the desired estimate (2.44).
Step 4: We now return to the proof of the second assertion. By (2.44), we get

‖w‖2
2 � CE(0) eCr

1
2−n/p

0 , (2.52)

L (J×Ω)



14 T. Duyckaerts et al. / Ann. I. H. Poincaré – AN 25 (2008) 1–41
and

S′
0∫

S0

E(t)dt � 1

C
E(0) e−Cr

1
2−n/p

0 . (2.53)

Combining (2.53) with (2.41) and (2.43), we get:

λ

∫
Q

w2 dx dt � λ

C(1 + r0)
eR2

0λ−Cr

1
2−n/p

0 E(0). (2.54)

Inequality (2.34) together with (2.52) and (2.54) yields a constant C2 such that

λ �
(
1 + r

1
3/2−n/p

0

)
λ1

�⇒ [
λ eR2

0λ−C2r

1
2−n/p

0 − C2(1 + r0)e
C2r

1
2−n/p

0
]︸ ︷︷ ︸

α(λ,r0)

E(0) � C2λ
2(1 + r0) eC2λ

T∫
0

∫
ω

w2 dx dt. (2.55)

Assume that λ � (1 + r
1

3/2−n/p

0 )λ1. Taking, if necessary, a greater λ1 we have:

λ e
R2

0λ

2 � 1 + C2(1 + r0),
R2

0λ

2
� 2C2r

1
2−n/p

0 . (2.56)

(To obtain the second inequality we used that 1
2−n/p

< 1
3/2−n/p

.) Thus:

α(λ, r0) � eC2r

1
2−n/p

0 � 1. (2.57)

Then, from (2.55) and (2.57), we obtain:

∃λ1, λ �
(
1 + r

1
3/2−n/p

0

)
λ1 �⇒ E(0) � C2λ

2(1 + r0) eC2λ‖w‖2
L2((0,T )×ω)

, (2.58)

taking the preceding inequality at λ = (1 + r
1

3/2−n/p

0 )λ1 gives the desired observability inequality (2.15).
Step 5: Let us now show the first assertion. Again we will show an intermediate inequality:

∃λ1 > 0: ∀λ > λ1
(
1 + r

1
3/2−n/p

0 + r2
2

)
,

λ

∫
Q

e2λφ
(
w2

t + |∇w|2)dx dt � C

[
‖w‖2

H 1(J×Ω)
+ λ

T∫
0

∫
Γ0

e2λφ

∣∣∣∣∂w

∂ν

∣∣∣∣2 dx dt

]
. (2.59)

Clearly, ξw vanishes at t = 0, T . Therefore, by Theorem 2.3, we get

λ

∫
Q

e2λφ
[
λ2(ξw)2 + ∣∣(ξw)t

∣∣2 + ∣∣∇(ξw)
∣∣2]dx dt

� C

( ∫
Q

e2λφ
∣∣P(ξw)

∣∣2 dx dt + λ

T∫
0

∫
Γ0

e2λφ

∣∣∣∣∂w

∂ν

∣∣∣∣2 dx dt

)
, ∀λ � λ0. (2.60)

By Eq. (2.6), we get:∫
e2λφ

∣∣P(ξw)
∣∣2 dx dt =

∫
e2λφ

∣∣∣∣∣ξttw + 2ξtwt + ξ

(
aw +

n∑
k=1

ak
1wxk

+ a2wt

)∣∣∣∣∣
2

dx dt. (2.61)
Q Q
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Furthermore, recalling the definition of r0 in (2.3), and using successively Hölder’s and Sobolev’s inequalities, then
inequality (2.27):∥∥aeλφξw

∥∥
L2(Q)

� r0
∥∥eλφξw

∥∥
L2(0,T ;Ls(Ω))

, 1/s + 1/p = 1/2

� r0
∥∥eλφξw

∥∥
L2(0,T ;Hn/p

0 (Ω))

� r0
∥∥eλφξw

∥∥n/p

L2(0,T ;H 1
0 (Ω))

∥∥eλφξw
∥∥1−n/p

L2(Q)
.

Hence, using Young’s inequality we get, for any ε > 0:∥∥aeλφξw
∥∥2

L2(Q)
� ελ

∥∥eλφξw
∥∥2

L2(0,T ;H 1
0 (Ω))

+ Cεr
2p/(p−n)

0 λ−n/(p−n)
∥∥eλφξw

∥∥2
L2(Q)

, (2.62)

where Cε is a positive constant depending on ε. Further, by (2.31) and (2.33), we have∫
Q

e2λφ
[∣∣(ξw)t

∣∣2 + ∣∣∇(ξw)
∣∣2]dx dt

�
∫
Q

e2λφ
[
w2

t + |∇w|2]dx dt − Ce(R2
1−cT 2/4)λ

(‖w‖2
H 1((0,T1)×Ω)

+ ‖w‖2
H 1((T ′

1,T )×Ω)

)
. (2.63)

Combining (2.60)–(2.63), and taking ε > 0 small enough in (2.62) we get, for some large constant C3 > 0:

λ

∫
Q

e2λφ
[
λ2(ξw)2 + w2

t + |∇w|2]dx dt � C3

[
e(R2

1−cT 2/4)λ‖w‖2
H 1(J×Ω)

+ r
2p/(p−n)

0 λ−n/(p−n)
∥∥eλφξw

∥∥2
L2(Q)

+ r2
2

∫
Q

e2λφ
(
w2

t + |∇w|2)dx dt + λ

T∫
0

∫
Γ0

e2λφ

∣∣∣∣∂w

∂ν

∣∣∣∣2 dx dt

]
. (2.64)

Now, choosing λ1 > 0 large enough such that:

λ > λ1
(
1 + r

1
3/2−n/p

0 + r2
2

) �⇒ C3
(
r

2p
p−n

0 + r2
2

)
� λ

2
,

and noting that by (2.17), R2
1 − cT 2/4 < 0, we get (2.59).

As in Step 3, (2.59) and the modified energy method lead to the first assertion in Theorem 2.2. Since the preceding
case is more complex we omit the details. This completes the proof of Theorem 2.2. �
3. Super-exponentially decaying solutions to elliptic equations

In this section, we construct solutions u of equations on R
n, n � 2, of one of the following forms:

�u + qu = 0, (3.1)

or:

�u + q1 · ∇u = 0, (3.2)

where q and q1 admit some bounds at infinity, and such that u decays at infinity as fast as possible. When n = 1, if q

is bounded, the solution u of (3.1) may not decay faster than exponentially. In higher dimensions, an elementary but
optimal Carleman estimate due to Meshkov [18], shows that one cannot hope a decay at infinity faster than e−C|x|4/3

for all C > 0. In the same work is also given a surprising example on R
2 of complex-valued functions q and u

satisfying (3.1), with q bounded and u decaying like e−|x|4/3
(see Theorem B). The example of Meshkov gives by

separation of variables examples of solutions with the optimal rate of decay in any even dimension. In Theorem 3.1
we state this result and its counterpart in dimension 2 in the case of Eq. (3.2), where the convective potential q1 decays
like |x|−1/3 (which is sharp according to the Carleman estimate in [18]). For the sake of completeness we give a proof
of both results.
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The case of odd dimension is more complex and to our knowledge no results exist in this direction. In Theorem 3.2,
we give, for odd n, an example of a solution u of (3.1) on R

n decaying at the same super-exponential speed, but which
is C

4-valued, and with some q growing logarithmically at infinity. Once again, according to the Carleman inequality,
this construction is quasi-optimal. The existence of a solution u of (3.1) taking values in C and/or with a bounded q

remains open, as are similar questions concerning real-valued functions in all dimensions n � 2.
For x in Rn, we shall write r = |x|.

Theorem 3.1. Let n � 2 be even and c∗ > 0. There exists nontrivial functions:

u ∈ C∞(
R

n;C
)
, q ∈ C∞(

R
n;C

)∩ L∞(
R

n;C
)

such that (3.1) is satisfied on R
n, and, for some constant C:∣∣u(x)

∣∣ � C e−c∗r4/3
. (3.3)

Furthermore, when n = 2, and for the same function u, there exists:

q1 ∈ C∞(
R

2;C
2), with (r + 1)1/3q1 ∈ L∞(

R
2;C

2), (3.4)

such that Eq. (3.2) holds.

Theorem 3.2. Let n � 3 be odd and c∗ > 0. There exist nontrivial functions:

u ∈ C∞(
R

n;C
4), q ∈ C∞(

R
n;C

4×4),
fulfilling (3.1) and such that, for a constant C > 0:(

log(2 + r)
)−3

q ∈ L∞(
R

n
)
, (3.5)∣∣u(x)

∣∣ � C e−c∗r4/3
. (3.6)

Remark 3.1. Theorem 3.1 is optimal in the following sense. Fix a bounded function q on R
n. Then the only solution

of Eq. (3.1) on R
n satisfying:

∀c > 0,

∫
Rn

∣∣u(x)
∣∣ec|x|4/3

dx < +∞, (3.7)

is u = 0. Indeed this is a consequence of the following Carleman inequality by Meshkov [18, Lemma 1], which holds
for large τ , in any space dimension n:

∀v ∈ C∞
0

({r > 1}),
τ 3

∫
|v|2 exp

(
2τr4/3)r1−n dx + τ

∫
|∇v|2 exp

(
2τr4/3)r1/3−n dx � C

∫
|�v|2 exp

(
2τr4/3)r1−n dx. (3.8)

The same argument shows that if q1 satisfies the decay property (3.4), then the only solution u of (3.2) on Rn satisfying
(3.7) is u = 0. These results remain valid with vector-valued functions.

If q (scalar or matrix-valued) satisfies a logarithmic bound such as:

∃N > 0,
q

logN(2 + r)
∈ L∞(

R
n
)
,

one may write weaker uniqueness results for (3.2). For example:∫
Rn

∣∣u(x)
∣∣eε|x|ε+4/3

dx < +∞ for some ε > 0 �⇒ u = 0.

In this sense Theorem 3.2 is quasi-optimal.
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Remark 3.2. The construction of Theorem 3.1 may be adapted to potentials with polynomial bounds at infinity.
Precisely, if 2/3 < α � 2 and γ � (4−3α)/2, there exist a potential qα bounded by C|x|−γ and a solution u decaying
like e−|x|α such that Eq. (3.1) holds. By a variant of Carleman inequality (3.8), this decay is also optimal.

One may think this result would be of some help to test the optimality of the constant of the observability inequal-
ity for potentials a ∈ L∞(0, T ;Lp(Ω)), n � p < +∞ (see Theorems 2.1 and 2.2). Unfortunately this is not the case.
Indeed the arguments of Sections 4 and 5 applied on the potentials qα would only show that the constant of obser-

vation may not be better than CeC‖a‖2/3
L∞(0,T ;Lp(Ω)) , which is only interesting in the case p = ∞, that is in the case of

Theorem 3.1.
All the polynomially decaying potentials qα we are referring to are locally bounded. It seems likely that, to prove

the optimality of the observability constants given by Theorems 2.1 and 2.2 for potentials a in Lp spaces, one will
have to construct variants of the Meshkov function u with potentials q that are in Lp , but not locally bounded (see
also open problem 8.4).

Remark 3.3. The uniqueness result of Meshkov, and the constructions of this section are closely related to the issue
of uniqueness of solutions of equations such as (3.1) or (3.2) vanishing to some specified (finite or infinite) order at
a point or at a general submanifold of R

n. See the book of Zuily [31] and the constructions of counterexamples in
[2,3,15,26].

3.1. Construction in even dimension

In this part we prove Theorem 3.1. We first remark that in the case of Eq. (3.1), we may assume that n = 2. Indeed,
if there exists a function u and a potential q fulfilling the first part of Theorem 3.1 for n = 2, and if n = 2m is even,
we can define

ũ(x1, x2, . . . , x2m) � u(x1, x2)u(x3, x4) · · ·u(x2m−1, x2m).

It then follows that

�ũ + (
q(x1, x2) + q(x3, x4) + · · · + q(x2m−1, x2m)

)︸ ︷︷ ︸
q̃

ũ = 0.

The potential q̃ is bounded on R
n and ũ satisfies the decay property:∣∣ũ(x)

∣∣ � C exp
(−c∗r4/3), x ∈ R

n.

Note that this argument does not work in the case of convective equation (3.2), as it gives only a bounded q1.
We now assume that n = 2. Denote by θ = x

|x| the polar variable. We will construct a function u which is harmonic

in the neighborhood of any of its zero. Thus the existence of a function q , bounded and C∞ on R
2, and such that

Eq. (3.1) holds is equivalent to the existence of a constant C0 such that, on R
2:

|�u| � C0|u|. (3.9)

Indeed, if u satisfies (3.9), it suffices to take q to be −�u/u where u does not vanish, and 0 elsewhere, which
implies trivially equation (3.1). Likewise, the existence of a function w satisfying (3.4) and such that Eq. (3.2) holds
is equivalent to the existence of a constant C′

0 such that, on R
2:

|�u| � C′
0(r + 1)−1/3|∇u|. (3.10)

Furthermore, it suffices to show Theorem 3.1 for some c∗. One can then obtain the general case by dilatation of u.

3.1.1. Construction for large r

We first construct u on {r � ρ}, where ρ is large. As in the article of Meshkov [18], we shall construct u on
well-chosen rings {ρk � r � ρk+1}, k ∈ N.

Notation 3.1. In all the following, we shall write, for sequences of real numbers (Ak) and (Bk):

Ak = O(Bk),
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when there exist constants C and k0 such that:

∀k � k0, |Ak| � C|Bk|.
When Ak and Bk also depend on r ∈ I , I being an interval, the estimate is also assumed to be uniform with respect to
r in I .

We will also use the notation ≈ in the following sense:

Ak ≈ Bk ⇐⇒ (
Ak = O(Bk) and Bk = O(Ak)

)
.

Let ρ0 be a large enough real number, and define the sequence ρk by:

ρk+1 � ρk + 6ρ
1/3
k . (3.11)

Denote by ρkl � ρk + lρ
1/3
k , for l = 0, . . . ,6. This divides the interval [ρk,ρk+1] in 6 sub-intervals. Consider the

harmonic function:

uk � akr
−nk einkθ , ak > 0, nk ∈ N. (3.12)

The crucial point of the proof is a lemma which allows to pass from uk to −ūk+1 within the interval (ρk, ρk+1) with
a function solving (3.9). We first choose the values of nk and ak . Let:

nk � 2

[
ρ

4/3
k

2

]
, dk � nk+1 − nk

2
∈ N,

a0 � 1, ak+1 � akρ
2dk

k3 ,

(3.13)

where [y] stands for the integer part of y. The ak’s have been chosen so that |uk| and |uk+1| coincide when r = ρk3.
An easy calculation shows that for some positive constant δ, independent of k:

dk = δρ
2/3
k + O(1). (3.14)

Lemma 3.1. There exist a large integer k0, a constant C0 independent of k � k0, and:

u ∈ C∞({
x ∈ R

2 | ρk � |x| � ρk+1
})

such that:

u(r, θ) = uk(r, θ), ρk = ρk0 � r � ρk1,

u(r, θ) = −ūk+1(r, θ), ρk5 � r � ρk6 = ρk+1,
(3.15)∣∣u(r, θ)

∣∣ = O
(
akr

−nk
)
, ρk � r � ρk+1, (3.16)

and, for ρk � r � ρk+1:

|�u| � C0|u|, (3.17)

|�u| � C0r
−1/3|∇u|. (3.18)

The result remains valid when replacing (3.15) by:

u(r, θ) = −ūk(r, θ), ρk0 � r � ρk1,

u(r, θ) = uk+1(r, θ), ρk5 � r � ρk6.
(3.15′)

Proof. We will just do the proof in the first case (when (3.15) holds), the proof of the other case being the same almost
word by word.

A simple idea would be to let u = ξkuk − ξ̃kūk+1, where ξk and ξ̃k are smooth functions of r , ξk (resp. ξ̃k) is
equal to 1 (resp. 0) near ρk , 0 (resp. 1) near ρk+1. Indeed, with a suitable choice of the functions ξk and ξ̃k , such a u

solves (3.17) except in the neighborhood of its zeros. This is a nonnegligible difficulty, taking into account that, for
homotopy reasons, a continuous function u satisfying (3.15) has to vanish: when r increases, u passes continuously
from a continuous function of θ in S1 winding clockwise nk times around the origin to one winding counterclockwise
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nk+1 times, which is impossible without vanishing. Note that nk �= nk+1, so that the same argument would hold with
uk+1 (which winds clockwise nk+1 times around the origin) instead of −ūk+1 in (3.15).

One way to avoid this problem is to consider a C
2-valued function (see Remark 3.4). To treat the harder case of

a complex-valued function, we need to use a trick due to Meshkov [18] consisting in introducing an intermediate
function vk , close to −ūk+1, which is nonharmonic, but nevertheless solution of an inequality of the form (3.17) on
ρk � r � ρk+1.

Choice of an intermediate state between uk and −ūk+1. Consider a 2π -periodic function ϕk(θ) (which we shall
make explicit later) such that:∣∣ϕk(θ)

∣∣ = O
(
ρ

−2/3
k

)
,

∣∣ϕ′
k(θ)

∣∣ = O
(
ρ

2/3
k

)
,

∣∣ϕ′′
k (θ)

∣∣ = O
(
ρ2

k

)
. (3.19)

Let:

vk(r, θ) � −r4dkρ
−4dk

k3 eiϕk(θ)ūk+1(r, θ)eiϕk ūk+1. (3.20)

As −ūk+1(r, ·), the function vk(r, ·), when r is fixed, winds nk+1 times, counterclockwise, around the origin. But
unlike −ūk+1, it decreases slower than uk , so that it is more natural to replace uk by vk than by −ūk+1 as r is
increasing. For these reasons, vk is an appropriate intermediate state between uk and −ūk+1. The constant in (3.20)
has been chosen so that:

∀θ,
∣∣uk(ρk3, θ)

∣∣ = ∣∣uk+1(ρk3, θ)
∣∣ = ∣∣vk(ρk3, θ)

∣∣. (3.21)

Let g(r) � log(rdk /ρ
dk

k ). By (3.14), we have:

g′(r) = dk

r
= O

(
ρ

−1/3
k

)
.

Noting that g(ρk) = 0 and ρk+1 − ρk = O(ρ
1/3
k ), we get that g(r) = O(1) for r in the interval [ρk,ρk+1]. Thus:

rdk ≈ ρ
dk

k , ρk � r � ρk+1. (3.22)

The following lemma gathers some estimates on uk , vk and uk+1.

Lemma 3.2. We have:

uk ≈ vk ≈ uk+1, ρk � r � ρk+1. (3.23)

Furthermore, any of the three sequences wk = uk , vk or uk+1, satisfies, for ρk � r � ρk+1:

|∂rwk| =
(
r1/3 + O

(
r−1/3))|wk|,

∣∣∣∣1

r
∂θwk

∣∣∣∣ = (
r1/3 + O

(
r−1/3))|wk|. (3.24)

Finally there is a constant C1 such that:

|�vk| � C1|vk|, ρk � r � ρk+1, (3.25)

|�vk| � C1r
−1/3|∇vk|, ρk � r � ρk+1. (3.26)

Proof. The estimates (3.23) are a direct consequence of (3.22) and the definitions of uk and vk . By simple computa-
tions:

∂ruk = −nk

r
uk, ∂rvk = 2dk − nk

r
vk,

1

r
∂θuk = ink

r
uk,

1

r
∂θvk = −ink+1 + iϕ′

k(θ)

r
vk.

With the definition (3.13) of nk , and the bounds (3.19) on ϕk , we easily get (3.24). Furthermore:

�vk = −2ρ
−4dk

k3 ∇(
r4dk eiϕk

) · ∇ūk+1 − ρ
−4dk

k3 �
(
r4dk eiϕk

)
ūk+1. (3.27)

Keeping in mind the estimates (3.14) and (3.22), we get:

∇(
r4dk

) ≈ r4dkρ
−1/3

, �
(
r4dk

) = O
(
ρ

−2/3
r4dk

)
.
k k
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Fig. 1. Steps of the construction.

The bounds (3.19) on ϕk and its derivatives imply easily:

∇eiϕk = O
(
ρ

−1/3
k

)
, �

(
eiϕk

) = O(1).

Combining these estimates, one gets:∣∣∇(
r4dk eiϕk

)∣∣ = O
(
ρ

−1/3
k r4dk

)
, �

(
r4dk eiϕk

) = O
(
r4dk

)
.

Together with the estimates (3.23), (3.24), Eq. (3.27) yields (3.25) and (3.26). �
The construction of u takes three steps (see Fig. 1).
Step 1. Construction of u on [ρk0, ρk4].

Lemma 3.3. There exists u, C∞ on {ρk0 � r � ρk4}, satisfying (3.17) and (3.18) and such that:

u(r, θ) = uk(r, θ), ρk0 � r � ρk1, (3.28)

u(r, θ) = uk(r, θ) + vk(r, θ), ρk2 � r � ρk4. (3.29)

Proof. Let χ be a nondecreasing, C∞ function such that:

χ(s) = 0 if s � 1 and χ(s) = 1 if s � 2. (3.30)

Let:

χk � χ

(
r − ρk

ρ
1/3
k

)
,

so that χk(r) is 0 if r � ρk1 and 1 if r � ρk2, and that the derivatives of χk satisfy the estimates:∣∣χ(p)
k

∣∣ = O
(
ρ

−p/3
k

)
. (3.31)

Let:

u � uk + χkvk for ρk0 � r � ρk4. (3.32)

Obviously (3.28) and (3.29) are satisfied. To show that u satisfies (3.17) and (3.18) with C0 independent of k, we
divide [ρk0, ρk4] into two subintervals. When ρk0 � r � ρk2, we will simply use that uk satisfy (3.17) and (3.18), that
vk satisfy (3.25) and (3.26), and that |uk| is larger than c|vk|, c > 1, so that the sum u of the two is of the order of uk .
When ρk2 � r � ρk4, the two absolute values may coincide, and we will have to build an adequate phase ϕk so that
the function u is harmonic around its zeros. This is the most tricky and nontrivial part of Meshkov’s construction.

The region ρk0 � r � ρk2. Let:

g̃(r) � log
|vk| = log

ak+1r
−nk+1+4dkρ

−4dk

k3
−nk

.
|uk| akr
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Then:

g̃(r) = 2dk log r + C(k),

where C(k) is a constant which depends only on k. By the choice of the constants ak and ak+1 (see (3.21)), g̃(ρk3) = 0.
Furthermore g̃′(r) = 2dk

r
. Using (3.14) we get that if k is large enough, g̃′(r) is greater than δρ

−1/3
k , from which we

deduce the two following crucial comparison estimates:

|uk| � eδ|vk|, r � ρk2, (3.33)

|vk| � eδ|uk|, r � ρk4. (3.34)

The inequality (3.33) implies that when ρk0 � r � ρk2:

2|uk| � |u| � (
1 − e−δ

)|uk| � c|uk| � c|vk|, where c > 0. (3.35)

Furthermore:

�u = χk�vk + 2∇χk · ∇vk + (�χk)vk. (3.36)

According to (3.31), (3.35), (3.36), and the estimates of Lemma 3.2, the function u satisfies (3.17) when ρk0 � r � ρk2.
Furthermore, using again (3.35), and Lemma 3.2, we get:

∂ru = ∂ruk + χ ′
kvk + χk∂rvk,

|∂ru| � r1/3|uk| + O
(
r−1/3)(|uk| + |vk|

)
,

|∂ru| �
{

1

2
r1/3 + O

(
r−1/3)}|u|, ρk0 � r � ρk2,

which, with inequality (3.17), yields inequality (3.18).
The region ρk2 � r � ρk4. Notice that in this region, χk is equal to 1, so that:

u = uk + vk = akr
−nk einkθ

{
1 − ρ

−2dk

k3 r2dk e−i(2nk+2dk)θ+iϕk(θ)︸ ︷︷ ︸
wk

}
. (3.37)

Let:

Tk � π

nk + dk

, θjk � jTk, 0 � j � 2nk + 2dk − 1. (3.38)

The θjk’s are the solutions of the equation e−i(2nk+2dk)θ = 1, so that according to (3.37) (ϕk being small), the function
u vanishes near each θjk . In order to satisfy (3.17) and (3.18), u (thus vk) has to be harmonic near each θjk . The
function vk being equal, up to a multiplicative constant, to

vk = −ρ
−4dk

k3 r−nk+2dk e−inkθ−2idkθ+iϕk(θ),

it suffices to choose ϕk satisfying the following lemma:

Lemma 3.4. There exists a real-valued ϕk ∈ C∞(R), 2π -periodic and satisfying (3.19), such that for all j , there is a
constant cjk with:

ϕk(θ) = 4dkθ + cjk, θjk − Tk

4
� θ � θjk + Tk

4
. (3.39)

Proof. Consider a function fk on [0, Tk] (see Fig. 2) so that:

Tk∫
0

fk(s)ds = 0, (3.40)

fk(s) = 4dk, s ∈ [0, Tk/4] ∪ [3Tk/4, Tk], (3.41)∣∣fk(s)
∣∣ � Cρ

2/3
, |f ′| � Cρ2, C independent of k. (3.42)
k k k
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Fig. 2. The function fk .

Noting that dk is of the order ρ
2/3
k , and 1/Tk of the order ρ

4/3
k , such a function exists. We extend fk to R into a

Tk-periodic function, still denoted by fk . Let:

ϕk(θ) �
θ∫

0

fk(s)ds, (3.43)

which defines, taking into account (3.40), (3.42), and the fact that Tk is of the order ρ
−4/3
k , a Tk-periodic function

which satisfies the desired bounds (3.19). In particular ϕk is 2π -periodic. Furthermore:

θjk − Tk

4
� θ � θjk + Tk

4
�⇒ ϕk(θ) =

θjk∫
0

fk(s)ds +
θ∫

θjk

fk(s)ds,

so that according to (3.40) and (3.41), equality (3.39) holds. �
We go back to the proof of Lemma 3.3. To show (3.17), we distinguish two cases. Let θ be in [0,2π), and choose

j so that θ = θjk + τ , |τ | � Tk/2.

• First assume that |τ | � Tk/4. Note that (2nk + 2dk)θjk ∈ 2πZ. Thus the phase of the second term wk in (3.37) is,
by estimates (3.19):

−(2nk + 2dk)θ + ϕk(θ)︸ ︷︷ ︸
ϕ̃k(θ)

≡ −(2nk + 2dk)τ + O
(
ρ

−2/3
k

)+ 2πljk, ljk ∈ Z.

Furthermore, depending on the sign of τ :

−π � −(2nk + 2dk)τ � −π

2
or

π

2
� −(2nk + 2dk)τ � π.

This implies, for some constant C independent of k and θ :

Re
(
eiϕ̃k

)
� Cρ

−2/3
k .

Thus, for large k:

Re
(
1 − ρ

−2dk

k3 r2dk eiϕ̃k
)
� 1

2
.

Using formula (3.37), we get that if k is large enough:

2|u| � akr
−nk = |uk|. (3.44)



T. Duyckaerts et al. / Ann. I. H. Poincaré – AN 25 (2008) 1–41 23
With Lemma 3.2 and the fact that �u = �vk , we get inequality (3.17) with a C0 independent of k.
By a simple calculation:

∂ru = −nk

r
u + 2dk

r
vk,

so that, using successively (3.44) and (3.23):

|∂ru| � nk

r
|u| + O

(
r−1/3)|vk| �

{
r1/3 + O

(
r−1/3)}|u|,

which yields, together with (3.17), inequality (3.18).
• Now assume that |τ | � Tk/4. With (3.39), we have:

vk = −ρ
−4dk

k3 akr
−nk+2dk e−i(nk−2dk)θeicjk ,

so that u is harmonic and inequalities (3.17) and (3.18) are trivially satisfied. �
Step 2. Construction of u on [ρk4, ρk5].

Lemma 3.5. There exists u in C∞({ρk4 � r � ρk5}) satisfying (3.17) and (3.18), and so that:

u(r, θ) = uk(r, θ) + vk(r, θ), near ρk4, (3.45)

u(r, θ) = vk(r, θ), near ρk5. (3.46)

Proof. Let:

ψk � 1 − χ
(
2ρ−1

k (r − ρk4)
)
,

where χ is the function defined is Step 1, and satisfying (3.30). We have:

ψk(r) = 1 near ρk4, ψk(r) = 0 near ρk5,∣∣ψ(p)
k

∣∣ � ρ
−p/3
k . (3.47)

Let:

u � ψkuk + vk,

so that (3.45) and (3.46) are satisfied. Note also that the comparison estimate (3.34) implies that for some c > 0
independent of k:

2|vk| � |u| � c|vk| � c|uk|, ρk4 � r � ρk5. (3.48)

We have:

�u = (�ψk)uk + 2∇ψk · ∇uk + �vk. (3.49)

Using the estimates of Lemma 3.2 together with estimates (3.47), (3.48) and Eq. (3.49) one gets (3.17).
Inequality (3.18), as in the first case of Step 1, comes easily from the explicit computation of ∂ru, inequality (3.17)

and estimates (3.24), (3.47) and (3.48). �
Step 3. Construction of u on [ρk5, ρk6].

Lemma 3.6. There exists u ∈ C∞({ρk5 � r � ρk6}), satisfying (3.17) and (3.18) and so that:

u(r, θ) = vk(r, θ), near ρk5, (3.50)

u(r, θ) = −ūk+1(r, θ), near ρk6. (3.51)
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Proof. Consider the function ψ̃k defined by:

ψ̃k(r) � ψk

(
r − ρ

1/3
k

)
,

where ψk is the function of Lemma 3.5. The function ψ̃k is 1 near ρk5 and 0 near ρk6, and satisfies estimates (3.47).
Recall the definition (3.20) of vk and let:

u � ψ̃kvk − (1 − ψ̃k)ūk+1 = −ūk+1
{
1 − ψ̃k + ψ̃kr

4dkρ
−4dk

k3 eiϕk(θ)
}
.

According to (3.19), there is a constant C > 0 independent of k and θ such that:

Re eiϕk(θ) � 1 − Cρ
−4/3
k ,

so that for k large enough, and using (3.22):

Re
(
1 − ψ̃k + ψ̃kr

4dkρ
−4dk

k3 eiϕ̃k(θ)
)
� 1 − ψ̃k + c1ψ̃k � c1,

for some positive constant c1. Thus:

|u| � c1|uk+1|, ρk5 � r � ρk6. (3.52)

Furthermore:

�u = ψ̃k�vk + 2∇ψ̃k · ∇vk + (�ψ̃k)vk − 2∇ψ̃k · ∇uk+1 − (�ψ̃k)uk+1. (3.53)

Using Lemma 3.2 and the estimates (3.47) on ψ̃k together with Eq. (3.53), we get:

�u = O(uk+1), ρk5 � r � ρk6.

We conclude with (3.52) that u satisfies (3.17) on [ρk5, ρk6].
To finish Step 3, we have to show inequality (3.18). As in the preceding steps, it comes easily from inequality (3.17),

estimates (3.24) and the explicit computation of ∂ru. �
The construction of u on [ρk,ρk+1] is complete. According to Lemmas 3.3, 3.5 and 3.6, u satisfies (3.17) and (3.18).
It remains to check that on [ρk,ρk+1], u satisfies the bound (3.16). Indeed, by the definition of u at each step, it is

easy to deduce (3.16) from the same bound on functions uk , vk and uk+1. This bound is trivial for uk . But uk , vk and
uk+1 are of the same order (see (3.23)), hence (3.16). This concludes the proof of Lemma 3.1. �

If k is large enough for the preceding lemma to hold and r ∈ [ρk,ρk+1], we take u(r) to be the function constructed
in the lemma, satisfying (3.15) if k is odd and (3.15′) is k is even. In this way, the pieces of u stick up well together at
each ρk , and this defines a C∞ function u for r � ρ, where ρ = ρK is a large positive real number. According to the
uniform inequalities (3.17) and (3.18) satisfied by u on each [ρk,ρk+1], the function u is solution of (3.9) and (3.10).
It remains to check the decay of u at infinity, and to extend u to all R

2.

3.1.2. Decay of u at infinity
Take a point of R

2 with coordinates (r, θ) such that:

ρk � r � ρk+1. (3.54)

Let:

h � r − ρk

ρk

= O
(
ρ

−2/3
k

)
.

Estimate (3.16) yields a constant C, independent of k and r satisfying (3.54), such that:∣∣u(r, θ)
∣∣ � Cakr

−nk .

Thus:

log
∣∣u(r, θ)

∣∣ − log
∣∣u(ρk, θ)

∣∣ � −nk log r + nk logρk + O(1)

� −nk log(1 + h) + O(1) � −nkh + O(1),
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using the fact that nkh
2 is bounded independently of r and k. On the other hand, if m(r) � e− 3

4 r4/3
:

logm(r) − logm(ρk) = −3

4
r4/3 + 3

4
ρ

4/3
k

= −3

4

{
ρ

4/3
k

(
(1 + h)4/3 − 1

)} = −ρ
4/3
k h + O(1).

Thus, recalling that nk = 2[ρ4/3
k /2]:

log
∣∣u(r, θ)

∣∣ − log
∣∣u(ρk, θ)

∣∣ � logm(r) − logm(ρk) + O(1). (3.55)

The same argument yields, if K � j � k:

log
∣∣u(ρj , θ)

∣∣− log
∣∣u(ρj−1, θ)

∣∣ � logm(ρj ) − logm(ρj−1) + O(1). (3.56)

Adding inequality (3.55) and all inequalities (3.56), K � j � k, we get:

log
∣∣u(r, θ)

∣∣ � logm(r) + O(k).

It is classical that a sequence ρk defined by the induction relation (3.11) is of order k3/2. Hence:∣∣u(r, θ)
∣∣ � e−3/4r4/3+Cr2/3

.

Which gives (3.3) for any c∗ < 3/4.

3.1.3. Extension of u to all R
2

So far, we have constructed u on r � ρ, equal to ar−neinθ near ρ for some integer n and real a. Let ψ be a smooth,
nondecreasing, function equal to 1 for r � 2ρ/3 and 0 for r � ρ/3. Let:

u(r, θ) �
(
ψ(r)r−n + (

1 − ψ(r)
)
rn

)
aeinθ , r � ρ.

This extends u to a C∞ function on R
2, harmonic in a neighborhood of 0, and who does not vanish, which implies

trivially (3.9) for r � ρ. Similarly, ∇u does not vanish for r > 0 (because ∂θu does not) which gives (3.10) for r � ρ.
The construction is complete. �
3.2. Construction in odd dimension

In this part we prove Theorem 3.2. We first remark that we only need to do the construction for n = 3. Indeed if
Theorem 3.2 holds for n = 3, and n = m + 3 is an odd number larger than 3, one can define the function:

ũ(x1, x2, . . . , xm+3) � v(x1, . . . , xm)u(xm+1, xm+2, xm+3),

where v is the complex-valued function u defined on R
m given by Theorem 3.1, and u is the C

4-valued function
defined on R

3 given by Theorem 3.2. Note that ũ takes values in C
4. A straightforward computation shows that the

function ũ and potential q̃ are solutions of Eq. (3.1), where q̃ satisfies the bound (3.5) and ũ decays at the desired
speed (3.6).

We now turn to the proof of the case n = 3. One of the main ingredients of the preceding construction was the
sequence of eigenfunctions (einkθ )k of the Laplace operator on S1, which trivially satisfies the estimate (in the sense
given by Notation 3.1):

einkθ ≈ eink+1θ . (3.57)

The construction is difficult to adapt in dimension 3, since there is no sequence of spherical harmonics on S2 satisfy-
ing (3.57). To show Theorem 3.2, we write an abstract theorem showing that an estimate of the form (3.57), but with
polynomial loss in nk , is sufficient to construct a vector-valued, superexponentially decaying solution of an equation
of the form (3.1), with a potential q which only grows logarithmically.

Consider a smooth manifold M without boundary, and an operator:

R :C∞(M) −→ C∞(M).



26 T. Duyckaerts et al. / Ann. I. H. Poincaré – AN 25 (2008) 1–41
We define, for ρ � 0:

M̃ρ � (ρ,+∞) × M, P � ∂2

∂2
r

+ 1

r2
R.

The operator P acts on C∞(M̃0). Up to the conjugation by a power of r , and the addition of a zero-order potential,
this framework includes the Laplace operator on R

n, n � 2. Let p � 1. Assume that R admits a sequence of bounded
eigenfunctions (Φk)k�0:

Φk :M −→ R
p, RΦk � −λkΦk, λk > 0, (3.58)

‖Φk‖L∞(M) = 1, (3.59)

where the sequence (λk)k is increasing and tends to infinity. Define nk and ρk by:

nk(nk + 1) = λk, nk � 0,

ρk � n
3/4
k , dk � nk+1 − nk

2
.

(3.60)

Denote by | · | the Euclidean norm on Rp . Then the following holds:

Theorem 3.3. Assume (3.58), (3.59) and that there exist positive constants δ, C, N such that:

∀ω ∈ M,
1

CnN
k

� |Φk(ω)|
|Φk+1(ω)| � CnN

k , (3.61)

dk = δn
1/2
k + O(1). (3.62)

Let c∗ > 0. Then, if ρ is large enough:

∃u ∈ C∞(
M̃ρ;R

2p
)
, ∃C > 0, Pu = qu, (3.63)

q ∈ C∞(
M̃ρ;R

2p×2p
)
,

(
log(r + 2)

)−3
q ∈ L∞, (3.64)∣∣u(r,ω)

∣∣ � C e−c∗r4/3
. (3.65)

Remark 3.4. As will appear clearly in the proof, when the power N of nk is 0 in (3.61), the same result remains valid
with a bounded q . This would yield Theorem 3.1, with an easier proof, but a C

2-valued solution u.

Proof of Theorem 3.3. This construction is very similar, although much simpler because of the vectorial setting, than
the preceding one. Denote by

ρkj � ρk + j
ρk+1 − ρk

4
,

which divides (ρk, ρk+1) in 4 subintervals. Note that according to (3.62):

ρk+1 − ρk = 3

2
δρ

1/3
k + O

(
ρ

−1/3
k

)
. (3.66)

Consider the following solutions of the equation PE = 0:

Ek(r,ω) � akr
−nkΦk(ω), (3.67)

where the sequence ak is defined by:

a0 � 1, ak+1 � ρ
2dk

k ak,

so that akr
−nk and ak+1r

−nk+1 coincide when r = ρk . Consider the R
2p-valued functions Ek :

Ek(r,ω) �
(

Ek(r,ω)

0

)
if k is even, Ek(r,ω) �

(
0

Ek(r,ω)

)
if k is odd.

Then we have the following lemma, analogous to Lemma 3.1:
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Lemma 3.7. Let k be a large enough integer. There exist a constant C0 independent of k, and:

u ∈ C∞({ρk � r � ρk+1};R
2p

)
,

such that:

u(r,ω) = Ek(r,ω), ρk0 � r � ρk1,

u(r,ω) = Ek+1(r,ω), ρk3 � r � ρk4,
(3.68)∣∣u(r,ω)

∣∣ = O
(
akr

−nk
)
, ρk � r � ρk+1, (3.69)

and satisfying the inequality:

|Pu| � C0(log r)3|u|. (3.70)

Proof. Using that the logarithmic derivative of rdk /ρ
dk

k is bounded by ρ
−1/3
k , one gets, as in the proof of Theorem 3.1,

that for ρk � r � ρk+1:

rdk ≈ ρ
dk

k , (3.71)

akr
nk ≈ ak+1r

nk+1 . (3.72)

We divide the construction into several steps.
Step 1: Definition of u. Let χ be a C∞ nonincreasing function on R such that:

s � 0 �⇒ χ(s) = 0, s � 1 �⇒ χ(s) = 1,

0 < s � 1/2 �⇒ χ(s) = e−1/s .
(3.73)

Near s = 0, χ , χ ′ and χ ′′ are increasing functions of s. Let (see Fig. 3):

χ̃k(r) � χ
(
ρ

−1/3
k (ρk3 − r)

)
, χk(r) � χ

(
ρ

−1/3
k (r − ρk1)

)
.

We have:∣∣χ(p)
k

∣∣ = O
(
ρ

−p/3
k

)
,

∣∣χ̃ (p)
k

∣∣ = O
(
ρ

−p/3
k

)
. (3.74)

Assume for example that k is odd. Let:

u(r,ω) �
(

χk(r)Ek(r,ω)

χ̃k(r)Ek+1(r,ω)

)
,

so that (3.68) holds. The bound (3.69) is immediate from (3.59), (3.67) and (3.72). We have:

Pu =
(

(χ ′′
k + 2nk

r
χ ′

k)Ek

(χ̃k + 2nk+1
r

χ̃ ′
k)Ek+1

)
. (3.75)

Consider the first p components of Pu:

v �
(

χ ′′
k + 2

nk

r
χ ′

k

)
Ek. (3.76)

We will show that if k is large enough:∣∣v(r,ω)
∣∣ = O

(
(log r)3

∣∣u(r,ω)
∣∣), ρk � r � ρk+1, ω ∈ M. (3.77)

Fig. 3. Step functions for Theorem 3.3.
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Let s � ρ
−1/3
k (r − ρk1). We distinguish two regions.

Step 2: Pointwise bound on v for s /∈ (0, (logρk)
−3/2). Using the explicit form (3.73) of χ near 0, a straightforward

computation shows that, for 0 < s � 1/2:

χ ′
k(r) = ρ

−1/3
k χ ′(s) = ρ

−1/3
k s−2χk(r), (3.78)

χ ′′
k (r) = ρ

−2/3
k χ ′′(s) = ρ

−2/3
k

(−2s−3 + s−4)χk(r). (3.79)

This shows that if (logρk)
−3/2 � s � 1

2 :

nk

r

∣∣χ ′
k(r)

∣∣ = O
(
(logρk)

3χk(r)
)
,

∣∣χ ′′
k (r)

∣∣ = O
(
(logρk)

3χk(r)
)
.

Furthermore, these inequalities are trivial for s < 0 (where χk is identically). When s � 1/2 they are a direct conse-
quence of the estimates (3.74) on the derivatives of χk . Going back to the definition of v, we have:∣∣v(r,ω)

∣∣ � (log r)3χk(r)
∣∣Ek(r,ω)

∣∣, s � 0 or s � (logρk)
−3/2.

This shows inequality (3.77), outside of the region {s ∈ (0, (logρk)
−3/2)}.

Step 3: Pointwise bound on v for s ∈ (0, (logρk)
−3/2). We now assume that s ∈ (0, log(ρk)

−3/2). Then, using
formulas (3.78), (3.79) and the fact that χ ′ is increasing we get, if k is large:

nk

r

∣∣χ ′
k(s)

∣∣ = nk

r
ρ

−1/3
k

∣∣χ ′(s)
∣∣ � C

∣∣χ ′(log−3/2 ρk

)∣∣,
nk

r

∣∣χ ′
k(s)

∣∣ � C(logρk)
3e−(logρk)

3/2
.

(3.80)

Similarly:∣∣χ ′′
k (s)

∣∣ = ρ
−2/3
k

∣∣χ ′′(s)
∣∣ � ρ

−2/3
k

∣∣χ ′′(log−3/2 ρk

)∣∣
� ρ

−2/3
k (logρk)

6e−(logρk)
3/2

. (3.81)

By the definition (3.76) of v, together with (3.80), (3.81), we get:∣∣v(r,ω)
∣∣ � (logρk)

3e−(logρk)
3/2 ∣∣Ek(ω)

∣∣ � C(logρk)
3e−(logρk)

3/2
nN

k

∣∣Ek+1(ω)
∣∣.

For the second inequality, we used the assumption (3.61) on the sequence (Φk) together with (3.72). Noting that χ̃k

takes value 1 near ρk1, we get that (3.77) holds for large k.

End of the proof. By the same argument, one may show the property analogous to (3.77) for the last p components
of Pu, namely:(

χ̃k + 2
nk+1

r
χ̃ ′

k

)
Ek+1 = O

(
(log r)3u(r,ω)

)
, ρk � r � ρk+1, ω ∈ M.

Thus:

Pu = O
(
(logu)3u

)
, ρk � r � ρk+1,ω ∈ M,

which completes the proof of the lemma. �
The end of the proof of Theorem 3.3, which consists in sticking up the pieces of u defined by Lemma 3.7, and

checking the decay of u at infinity, is exactly the same as the one of Theorem 3.1, and therefore we omit it. �
Proof of Theorem 3.2. We shall use Theorem 3.3 with M = S2. For this we need to choose suitable spherical
harmonics. Let θ and φ be the spherical coordinates on the sphere S2, θ ∈ [0,π] being the polar coordinate and
φ ∈ [0,2π) the azimuthal one. Let l = 2j be an even integer and Fl be the C

2-valued spherical harmonic:

Fl(φ, θ) �
(

P 0
l (cos θ)

iφ 1

)
. (3.82)
e Pl (cos θ)
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Here and in the sequel, the P m
l are the associated Legendre polynomials:

P m
l (x) = (−1)m

2l l!
(
1 − x2)m/2 dl+m

dxl+m

(
x2 − 1

)l
. (3.83)

The functions P m
l are solutions to the equation:

(
1 − x2)d2P

dx2
− 2x

dP

dx
+

[
l(l + 1) − m2

1 − x2

]
P = 0, x ∈ (−1,1). (3.84)

It is standard (cf. [25,23]), that �S2Fl = −l(l + 1)Fl . To use Theorem 3.3 we need to give a pointwise estimate on Fl :

Lemma 3.8. The eigenfunctions Fl satisfy, for large l ∈ 2N:

1

Cl7/4
�

∣∣Fl(φ, θ)
∣∣ � Cl. (3.85)

Proof. Let:

g(x) � l(l + 1)
∣∣P 0

l (x)
∣∣2 + ∣∣P 1

l (x)
∣∣2.

Note that according to (3.83),

g(x) = l(l + 1)
∣∣P 0

l (x)
∣∣2 + (

1 − x2)∣∣∣∣dP 0
l

dx
(x)

∣∣∣∣2.
Using Eq. (3.84) with m = 0 we get:

g′(x) = 2x

∣∣∣∣dP 0
l

dx
(x)

∣∣∣∣2,
so that the minimum of g is in 0, and its maxima are in 1 and −1. Note that l being even, P 0

l is even and P 1
l is odd.

In particular:

g(0) = l(l + 1)
∣∣P 0

l (0)
∣∣2. (3.86)

Let αj � |P 0
2j (0)| = |P 0

l (0)|. According to formula (3.83),

P 0
2j (x) = 1

22j (2j)!
d2j

dx2j

(
x2 − 1

)2j
.

The coefficient of x2j in (x2 − 1)2j is (−1)j
( 2j

j

)
, so that we have:

αj = 1

22j (2j)! (2j)!
(

2j

j

)
= (2j)!

22j (j !)2
.

Stirling formula, yields:∣∣P 0
l (0)

∣∣ = ∣∣P 0
2j (0)

∣∣ = αj ∼ 1

2
√

πj
, as j → +∞. (3.87)

Furthermore, going back to the definition (3.83) of P l
m, we get |P 0

l (1)| = |P 0
l (−1)| = 1, so that:

g(1) = g(−1) = l(l + 1). (3.88)

Using (3.86), (3.87) and (3.88) we get:

1

Cl3/2
� l(l + 1)

∣∣P 0
l (x)

∣∣2 + ∣∣P 1
l (x)

∣∣2 � Cl(l + 1),

which shows (3.85) according to the definition (3.82) of Fl . �
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Choose a large odd number n0 and define the sequence (nk)k of odd integers, and the sequence (Φk)k of eigen-
functions of �S2 by:

nk+1 � nk + 2
[
n

1/2
k

]
, Φk(φ, θ) � ckFnk−1(φ, θ),

where ck is a normalizing constant such that (3.59) holds. Noting that (3.62) is fulfilled by the choice of (nk)k , and that
(3.85) implies (3.61), one can use Theorem 3.3 with R = �S2 . This yields a function ũ ∈ C∞({x ∈ R

3 | |x| � ρ};C
4),

solution of:

P ũ =
(

∂2

∂2
r

+ 1

r2
�S2

)
ũ = q̃ũ,

and so that q̃ and ũ decrease at the desired speed at infinity. Taking into account that �R3f = r−1P(rf ), the function
u � r−1ũ and potential q � q̃ satisfy all the assertions of Theorem 3.2. It remains to extend u to r � ρ, which is left
to the reader. �
4. Optimality of the observability constant for the heat equation with zero order potential

This section is addressed to the proof of Theorem 1.1 and its weaker counterpart in odd space dimensions:

Theorem 4.1. Assume that n � 3 is odd and that N � 8. Let ω be a nonempty open subset of Ω such that Ω \ ω �= ∅.
Then there exist two constants c > 0 and μ > 0, a family of potentials {aR}R>0 ⊂ L∞(Q;R

N×N) satisfying

‖aR‖∞ −→
R→+∞ + ∞,

and a family of initial data {ϕ0
R}R>0 in (L2(Ω))N such that the corresponding solution ϕR of (1.1) satisfies

lim
R→∞

{
inf

T ∈Jμ

‖ϕR(T )‖2
(L2(Ω))N

exp(c(log‖aR‖∞)−2‖aR‖2/3∞ )
∫ T

0

∫
ω

|ϕR|2 dx dt

}
= +∞, (4.1)

where Jμ � (0,μ(log‖aR‖∞)−2‖aR‖−1/3∞ ].

Theorem 4.1 would show the optimality of an observability constant a little smaller than C∗
3 (T , a) defined in (1.5).

This is due to the logarithmic loss in the construction of Theorem 3.2.
The proofs of Theorems 1.1 and 4.1 are very similar so that we do not need to distinguish between the two cases in

the main part of this section. First observe that we only need to show Theorem 1.1 in the case N = 2 and Theorem 4.1
in the case N = 8. Indeed, to get the other cases, it suffices to consider the solutions ϕR in which the first 2 components
(respectively 8 components in the case of odd dimensions) are as in the case N = 2 (respectively N = 8), the other
being identically zero. The matrix aR of the corresponding system can be built in a similar way by adding zero entries
to the 2 × 2 (respectively 8 × 8) matrix aR .

The proof is divided into several steps.
Step 1: Construction on R

n.
Consider the solution u and potential q given by Theorem 3.1 if n is even, and by Theorem 3.2 if n is odd. Recalling

that both u and q are complex-valued, by setting

uR(x) =
(

Reu(Rx)

Imu(Rx)

)
, aR(x) = −R2

(
Req(Rx) − Imq(Rx)

Imq(Rx) Req(Rx)

)
, (4.2)

we obtain a one-parameter family of potentials {aR}R>0 and solutions {uR}R>0 satisfying

�uR = aR(x)uR, in R
n, (4.3)

and (using Theorems 3.1–3.2 with c∗ = 1)∣∣uR(x)
∣∣ � C exp

(−R4/3|x|4/3), in R
n. (4.4)

Furthermore, for some constant C > 0, the potential aR is such that
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C−1R2 � ‖aR‖L∞(Rn;RN×N ) � CR2, if n is even, (4.5)

C−1R2 � ‖aR‖L∞(Rn;RN×N ) � CR2(logR)3, if n is odd. (4.6)

The functions {uR}R>0 may also be viewed as stationary solutions of the corresponding parabolic systems. Indeed,
set

ψR(t, x) = uR(x), x ∈ R
n, t > 0. (4.7)

Then, it satisfies

ψR,t − �ψR + aRψR = 0, x ∈ R
n, t > 0, (4.8)

and ∣∣ψR(x, t)
∣∣ � C exp

(−R4/3|x|4/3), x ∈ R
n, t > 0. (4.9)

Assume now that ω is an open bounded subset of R
n \ B , B being the unit ball in R

n. Then

T∫
0

∫
ω

|ψR|2 dx dt � T C

∫
ω

exp
(−2R4/3|x|4/3)dx, (4.10)

and, taking into account that |x| � 1 on ω,∫
ω

exp
(−2R4/3|x|4/3)dx = O

(
exp

(−2R4/3)). (4.11)

On the other hand, for some constant c > 0,∥∥ψR(T )
∥∥2

(L2(Rn))N
= ‖uR‖2

(L2(Rn))N
= 1

Rn
‖u‖2

(L2(Rn))N
= c

Rn
. (4.12)

In view of (4.5) and (4.10)–(4.12) it is easy to see that, if n is even, an estimate of the form (1.2) would be sharp in
the whole R

n in what concerns the dependence of the observability constant C∗
3 on the potential. The same conclusion

would hold for odd n, up to a logarithmic factor.
Step 2: Restriction to Ω .
Let us now consider the case of a bounded domain Ω and ω to be a nonempty open subset Ω such that Ω \ ω �= ∅.

Without loss of generality (by translation and scaling) we can assume that B ⊂ Ω\ω.
We can then view the functions {ψR}R>0 above as a family of solutions of the Dirichlet problem in Ω with non-

homogeneous Dirichlet boundary conditions:{
ψR,t − �ψR + aRψR = 0, in Q,

ψR = εR, on Σ,
(4.13)

where

εR = ψR|Γ = uR|Γ . (4.14)

Taking into account that both ω and Γ are contained in the complement of B , we deduce that, for a suitable C:∣∣ψR(t, x)
∣∣ � C exp

(−R4/3), x ∈ ω, 0 < t < T, (4.15)∣∣εR(t, x)
∣∣ � C exp

(−R4/3), x ∈ Γ, 0 < t < T . (4.16)

We can then correct these solutions to fulfill the Dirichlet homogeneous boundary condition. For this purpose, we
introduce the correcting terms{

ρR,t − �ρR + aRρR = 0, in Q,

ρR = εR, on Σ,

ρR(0, x) = 0, in Ω,

(4.17)

and then set

ϕR = ψR − ρR. (4.18)
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Clearly {ϕR}R>0 is a family of solutions to parabolic systems of the form (1.1) with potentials a = aR(x).
Let us show that ϕR is the family of solutions that fulfills (1.7). By the bounds (4.5) and (4.6) on aR , we have, for

some C > 0:

C−1R2 � ‖aR‖∞ � CR2, if n is even, (4.19)

C−1R2 � ‖aR‖∞ � CR2(logR)3, if n is odd. (4.20)

Furthermore, according to (4.10)–(4.11) and (4.12):

T∫
0

∫
ω

|ψR|2 dx dt � T

∫
ω

|uR|2 dx � CT exp
(−2R4/3), as R → ∞, (4.21)

∥∥ψR(T )
∥∥2

(L2(Ω))N
= 1

Rn
‖u‖2

(L2(RΩ))N
� c2

Rn
, for some constant c2 > 0. (4.22)

Let us now analyze the corrector term ρR . We decompose it as

ρR = σR + ξR, (4.23)

where{
σR,t − �σR = 0, in Q,

σR = εR, on Σ,

σR(0) = 0, in Ω.

(4.24)

By the maximum principle and (4.16) we know that

‖σR‖(L∞(Q))N � ‖εR‖(L∞(Σ))N � C exp
(−R4/3). (4.25)

On the other hand, the reminder ξR fulfills{
ξR,t − �ξR + aRξR = −aRσR, in Q,

ξR = 0, on Σ,

ξR(0) = 0, in Ω.

(4.26)

A standard energy estimate shows, together with (4.25), that∥∥ξR(t)
∥∥2

(L2(Ω))N
� C exp

(−2R4/3) exp
(
2t‖aR‖∞

)
, ∀t � 0. (4.27)

We now distinguish between the two cases: n even or n odd.
End of the proof when n is even.
Let T � μ‖aR‖−1/3∞ . According to (4.27), we have, for time t � T :∥∥ξR(t)

∥∥2
(L2(Ω))N

� C exp
(−2R4/3 + 2μ‖aR‖2/3∞

)
. (4.28)

Therefore, by choosing μ > 0 small enough we deduce, using estimate (4.19) on aR :∥∥ξR(t)
∥∥

(L2(Ω))N
� C exp

(
−1

2
R4/3

)
. (4.29)

Combining (4.25) and (4.29) we deduce that∥∥ρR(T )
∥∥

(L2(Ω))N
� C exp

(
−1

2
R4/3

)
. (4.30)

In view of (4.22) and (4.30) we conclude that∥∥ϕR(T )
∥∥2

(L2(Ω))N
� c2

2Rn
(4.31)

as R → ∞.
On the other hand, integrating (4.30) with respect to time we deduce that

T∫ ∫
|ρR|2 dx dt � CT exp

(
−1

2
R4/3

)
.

0 Ω
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Obviously this implies, in particular, that

T∫
0

∫
ω

|ρR|2 dx dt � C exp

(
−1

2
R4/3

)
. (4.32)

Combining (4.21) and (4.32) we get

T∫
0

∫
ω

|ϕR|2 dx dt � C exp

(
−1

2
R4/3

)
. (4.33)

Estimate (4.31) together with (4.33) and the bound (4.19) on aR , guarantees (1.7) for small c > 0, which concludes
the proof of Theorem 1.1.

End of the proof when n is odd.
Let T be such that:

T � μ
(
log‖aR‖∞

)−2‖aR‖−1/3∞ .

Note that this implies, with (4.6):

T � Cμ(logR)−2‖aR‖−1/3∞ . (4.34)

Consider a time t < T . By estimates (4.27) and (4.34) we have:∥∥ξR(t)
∥∥2

(L2(Ω))N
� C exp

(−2R4/3 + 2Cμ(logR)−2‖aR‖2/3∞
)
. (4.35)

Therefore, by choosing μ > 0 small enough we deduce, using estimate (4.20) on aR :∥∥ξR(t)
∥∥

(L2(Ω))N
� C exp

(
−1

2
R4/3

)
. (4.36)

Combining (4.25) and (4.36) we deduce that∥∥ρR(T )
∥∥

(L2(Ω))N
� C exp

(
−1

2
R4/3

)
. (4.37)

As in the even-dimensional case we have, with (4.22) and (4.37):∥∥ϕR(T )
∥∥2

(L2(Ω))N
� c2

2Rn
, (4.38)

as R → ∞.
On the other hand, integrating (4.37) with respect to time we get:

T∫
0

∫
ω

|ρR|2 dx dt � C exp

(
−1

2
R4/3

)
. (4.39)

Combining with (4.21) we get

T∫
0

∫
ω

|ϕR|2 dx dt � C exp

(
−1

2
R4/3

)
. (4.40)

Note that the bounds (4.20) on aR imply, for large R:(
log‖aR‖∞

)−2‖aR‖2/3 � CR4/3. (4.41)

Estimate (4.31) together with (4.40) and on (4.41), guarantees (4.1) for small c > 0. The proof of Theorem 4.1 is
completed. �
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5. Optimality of the observability constant for the wave equation with zero order potential

This section is devoted to prove Theorem 1.2. We start to write a slightly weaker counterpart of Theorem 1.2 in
odd dimension.

Theorem 5.1. Assume that n � 3 is odd and N � 8. Let ω be a given open nonempty subset of Ω such that Ω \ω �= ∅.
Then, for all T > 0 there exist a constant c > 0, a family of potentials {aR}R>0 ⊂ L∞(Q;R

N×N) satisfying

‖aR‖∞ −→
R→+∞ + ∞,

a family of initial data {(w0
R,w1

R)}R>0 ⊂ (L2(Ω))N × (H−1(Ω))N such that the corresponding solution wR of (1.10)
satisfies

lim
R→∞

{ ‖w0
R‖2

(L2(Ω))N
+ ‖w1

R‖2
(H−1(Ω))N

exp(c(log‖aR‖∞)−2‖aR‖2/3∞ )
∫ T

0

∫
ω

|wR|2 dx dt

}
= +∞. (5.1)

The proof of Theorem 5.1 is very similar to the one of Theorem 1.2 and we thus leave it to the reader. To prove
Theorem 1.2, we argue as in the previous section. As it was observed in that section, one may assume that N = 2.
Consider the solution u and potential q on R

n given by Theorem 3.1. The family {ψR}R>0 as in (4.7) and (4.2) can
be viewed as a family of stationary solutions of the Cauchy problem{

ψR,tt − �ψR + aRψR = 0, in R
n × (0, T ),

ψR(0) = uR, ψR,t (0) = 0, in R
n,

(5.2)

with potentials aR = aR(x) as in (4.2). They can also be viewed as solutions of the wave system in the domain Ω with
nonhomogeneous boundary conditions:⎧⎨⎩

ψR,tt − �ψR + aRψR = 0, in Q,

ψR = εR, on Σ,

ψR(0) = uR, ψR,t (0) = 0, in Ω,

(5.3)

where

εR(x) = uR(x), ∀x ∈ Γ. (5.4)

We can assume, without loss of generality, that both ω and Γ are contained in the exterior of the unit ball. Then,
(4.15) and (4.16) hold.

We correct the boundary conditions by introducing the weak solutions ρR = ρR(t, x) of⎧⎨⎩
ρR,tt − �ρR + aRρR = 0, in Q,

ρR = εR, on Σ,

ρR(0) = ρR,t (0) = 0, in Ω,

(5.5)

and then setting

wR = ψR − ρR. (5.6)

Clearly {wR}R>0 is a family of solutions to the hyperbolic systems of the form (1.10) with potentials a = aR of
size 1

c1
R2 � ‖aR‖∞ � c1R

2 for some constant c1 > 0.
Let us show that wR satisfies (1.14). We have

wR(0) = uR, wR,t (0) = 0, in Ω. (5.7)

Hence, for some constant c2 > 0∥∥wR(0)
∥∥2

(L2(Ω))N
+ ∥∥wR,t (0)

∥∥2
(H−1(Ω))N

= ‖uR‖2
(L2(Ω))N

= 1

Rn
‖u‖2

(L2(RΩ))N
� c2

Rn
, (5.8)

as R → ∞.
On the other hand, taking into account that ω ⊂ R

n\B and by (4.21), we deduce that
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T∫
0

∫
ω

|wR|2 dx dt � 2

T∫
0

∫
ω

|ψR|2 dx dt + 2

T∫
0

∫
ω

|ρR|2 dx dt

� 2C exp
(−2R4/3)+ 2

T∫
0

∫
ω

|ρR|2 dx dt. (5.9)

Consequently, in order to conclude that (1.14) holds, it is sufficient to get an upper bound of the form

T∫
0

∫
ω

|ρR|2 dx dt � C exp
(−c0R

4/3) (5.10)

for suitable constants C > 0 and c0 > 0.
The rest of the proof is devoted to proving (5.10).
The solution ρR of (5.5) is defined by transposition. More precisely, consider the adjoint problem{

θtt − �θ + aRθ = f, in Q,

θ = 0, on Σ,

θ(T ) = θt (T ) = 0, in Ω.

(5.11)

Then, multiplying the first equation in (5.5) by θ , integrating it in Q and using formal integration by parts we get∫
Q

f · ρR dx dt = −
∫
Σ

∂θ

∂ν
· εR dσ dt. (5.12)

Here, · means the usual scalar product in R
N . We adopt (5.12) as definition of solution ρR of (5.5) in the sense of

transposition.
It is well known that there exists C = C(R) such that

‖ρR‖(L∞(0,T ;L2(Ω)))N � C(R)‖εR‖(L2(Σ))N . (5.13)

This is a consequence, by duality, of the following hidden regularity property for solutions of (5.11):∥∥∥∥∂θ

∂ν

∥∥∥∥
(L2(Σ))N

� C(R)‖f ‖(L1(0,T ;L2(Ω)))N . (5.14)

It remains to show that (5.14) holds with a constant C(R) such that

C(R) � C exp
(
CR4/3). (5.15)

First of all, by an energy estimate, we observe that

‖θ‖(L∞(0,T ;H 1
0 (Ω)))N + ‖θt‖(L∞(0,T ;L2(Ω)))N � C exp(CR)‖f ‖(L1(0,T ;L2(Ω)))N . (5.16)

However, to prove this, we cannot simply apply the Gronwall inequality to the energy

E(t) = 1

2

[∥∥θ(t)
∥∥2

(H 1
0 (Ω))N

+ ∥∥θt (t)
∥∥2

(L2(Ω))N

]
. (5.17)

This would yield a constant in the inequality of the order of exp(CR2) since the norm ‖aR‖∞ of the potential is of
the order of R2. To improve this estimate and get a constant of the order of exp(CR) we have to work, rather, with the
modified energy

ER(t) = 1

2

[∥∥θ(t)
∥∥2

(H 1
0 (Ω))N

+ ∥∥θt (t)
∥∥2

(L2(Ω))N
+ R2

∥∥θ(t)
∥∥2

(L2(Ω))N

]
, (5.18)

as in [29]. We have:
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∣∣∣∣dER(t)

dt

∣∣∣∣ =
∣∣∣∣ ∫
Ω

f · θt dx −
∫
Ω

(aRθ) · θt dx

∣∣∣∣
�

∥∥f (t)
∥∥

(L2(Ω))N

∥∥θt (t)
∥∥

(L2(Ω))N
+ CR2

∥∥θ(t)
∥∥

(L2(Ω))N

∥∥θt (t)
∥∥

(L2(Ω))N

� CRER(t) + ∥∥f (t)
∥∥

(L2(Ω))N

√
ER(t). (5.19)

Solving this differential inequality and taking into account ER(T ) = 0 (because the data of θ at t = T vanish) we
easily get (5.16).

Once (5.16) is proved we can show (5.14) using the Rellich multiplier as in [17]. It follows that (5.14) holds with
a constant C(R) of the order of C exp(CR) which, clearly, fulfills (5.15).

This concludes the proof of Theorem 1.2. �
6. Equations with convective terms

In Section 4 and 5 we have discussed equations with potentials entering in the zero order term. In Theorem 3.1 we
have also considered an equation with a convective potential, of the form:

�u + q1 · ∇u = 0, x ∈ R
2,

with:

|u| � C exp
(−|x|4/3), |q1| � C

(
1 + |x|)−1/3

.

This allows extending the optimality construction of the previous sections to heat equations or systems with con-
vective potentials of the form:{

ϕt − �ϕ + a1 · ∇ϕ = 0, in Q,

ϕ = 0, on Σ.
(6.1)

In this case the observability inequality is known to hold with an observability constant of the order of exp(C‖a1‖2∞)

(see Theorem 2.1 of this paper, or Theorem 2.3 in [9]).
The construction in Theorem 3.1 allows arguing as above, by scaling and cut-off, and to show that this observability

estimate is sharp in what concerns the exponentially quadratic growth of the observability constant on the potential.
Let us briefly check why this is the case: We set,

uR(x) =
(

Reu(Rx)

Imu(Rx)

)
, bR(x) = −R

(
Req1(Rx) − Imq1(Rx)

Imq1(Rx) Req1(Rx)

)
. (6.2)

Then,

�uR = bR(x) · ∇uR, in R
2, (6.3)

and ∣∣uR(x)
∣∣ � C exp

(−c∗R4/3|x|4/3), in R
2. (6.4)

Moreover,∣∣bR(x)
∣∣ � CR

(
1 + R|x|)−1/3 � CR2/3, ∀x: |x| � 1. (6.5)

Combining (6.4) and (6.5) one easily observes that the observability constant must necessarily grow exponentially
on the square of the L∞-norm of the potential. The functions uR are defined on all R

2. By restriction arguments,
as in Step 2 of Section 4, one can prove the optimality of the known observability inequality for heat equation with
convective potentials on a bounded open subset Ω of R

2.
Note however that, in this case, due to the fact that the construction only holds in dimension 2, very little is known

about the sharpness of the estimates in other dimensions. Unfortunately, the argument of separation of variables
that allows to deduce, from any even n, n-dimensional examples from 2-dimensional examples does not work in
the convective case. Indeed, in this argument, we would lose the decay at infinity of q1 at the speed |x|−1/3 that
is necessary to show the sharpness of the estimate. Thus we do not know anything about the optimality in even
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dimension n � 4. As for odd space-dimension, adapting the proof of Theorem 3.2 to a convective potential one may
give a weaker, vectorial form of the optimality result in dimension n = 3. Again, we do not know anything about the
case of superior odd dimensions.

7. Connections with the controllability of semilinear equations

As we said in the introduction the problem of the explicit dependence of the observability constant on the size of
the potentials entering in the system is also closely related with the problem of controllability of semilinear equations.
Indeed, the controllability of semilinear equations is usually obtained by a fixed point argument. The growth condition
one needs to impose at infinity to the nonlinearity depends very much on the cost of controlling the linearized equation
perturbed by a potential, which is precisely given by the observability constant. Consequently the growth of the
observability constant on the potential and the growth condition on the nonlinearity for controllability to hold are
closely connected. In this section we briefly describe the problem of controllability of semilinear equations, and some
open problems related to the optimality results of the previous sections. We first address the semilinear heat equation
to later consider the wave equation.

7.1. The semilinear heat equation

Consider the semilinear heat equation{
yt − �y + f (y) = vχω, in Q,

y = 0, on Σ,

y(0, x) = y0(x), in Ω.

(7.1)

Here ω is an open non-empty subset ω of Ω , and we denote by χω the characteristic function of ω. To make the
problem nontrivial we also assume that Ω \ ω �= ∅ throughout this section.

We discuss the problem of null-controllability and more precisely whether for all T > 0 and y0 ∈ L2(Ω) there
exists a control v ∈ L2(Q) such that the solution y = y(t, x) of (7.1) satisfies

y(x,T ) ≡ 0, in Ω. (7.2)

In [12] the following result was proved:

Theorem C. ([12]) Assume that the nonlinearity f ∈ C1(R) is such that f (0) = 0 and

lim sup
|s|→∞

|f ′(s)|
log3/2(s)

= 0. (7.3)

Then, whatever the open nonempty subset ω of Ω is, and for all T > 0, system (7.2) is null-controllable.

In particular, Theorem C guarantees the possibility of controlling some blowing-up equations. Indeed, when f is
of the form

f (s) = −s logr
(
1 + |s|) (7.4)

with r > 1 solutions of (7.1), in the absence of control, i.e. with v ≡ 0, blow-up in finite time occurs. According to
Theorem C the process can be controlled, and, in particular, the blow-up be avoided when 1 < r � 3/2.

The growth condition in (7.3) is intimately related with the observability inequality (1.2). Indeed, the logarithmic
function in (7.3) is precisely the inverse of the exponential one in (1.2).

The proof in [12] relies on the by now classical argument of fixed point consisting on linearizing the equation and
estimating the cost of the control in terms of the size of the potential entering in the system.

Theorem C was proved for scalar semilinear heat equations, but the same technique applies with the same conclu-
sions for semilinear systems.

According to the results in Section 4 the estimate (1.2) cannot be improved, and the fixed point argument in [12]
may not lead to any improvement of the growth condition (7.3) for controllability.
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By the contrary, in [12] it was proved that there are some nonlinearities f satisfying

lim sup
|s|→∞

|f (s)|
s logr (1 + |s|) = 0 (7.5)

with a growth rate of the order for r > 2 for which controllability fails because the control may not avoid blow-up to
occur.

Whether controllability occurs for nonlinearities with a growth rate of the order of (7.5) with 3/2 � r � 2 is an
open problem. However, in the light of the optimality of the explicit observability estimate we can guarantee that the
method in [12] does not allow to cover the case r > 3/2.

Similar questions arise for nonlinearities depending on the gradient of the state considered in [9].

7.2. The semilinear wave equation

The problem of controllability of the semilinear wave equation and the existing results were recently discussed
in [28]. Let us recall the main known results.

Consider the semilinear wave equation:{
ytt − �y + f (y) = vχω, in Q,

y = 0, on Σ,

y(0, x) = y0(x), yt (0, x) = y0(x), in Ω.

(7.6)

In one space dimension (i.e., n = 1), roughly speaking, controllability is known to hold provided the nonlinearity
grows as∣∣f (s)

∣∣ � C|s| log2 |s|, as |s| → ∞ (7.7)

(see [28,29,7]). This result is sharp in the sense that blow-up is known to occur for some nonlinearities growing as
(7.4) with r > 2 and, due to the finite speed of propagation, controllability may not hold if blow-up occurs. According
to this, to some extent, the picture is complete in one space dimension.

In the multidimensional case, i.e., n > 1, less is known. Once again, due to blow-up, one cannot expect control-
lability to hold for nonlinearities of the form (7.4) with r > 2. But, in principle, one could expect the system to be
controllable for r � 2. However, in view of the optimality result of Theorem 1.2 on the growth of the observability
constant, one may not expect the fixed point methods in [29] to apply for r > 3/2. Thus the problem is completely
open for 3/2 < r � 2.

As we mentioned above, Theorem 2.2 suggests that controllability should hold for nonlinearities satisfying the
growth condition (7.3). However, even this is an open problem. Indeed, controllability is only known under the more
restrictive condition (see [14])

lim|s|→∞
|f (s)|

s log1/2 |s| = 0. (7.8)

This is so because of the lack of smoothing effect of the wave equation. Finite energy solutions belong to y ∈
C([0, T ];H 1

0 (Ω)) but fail to be bounded in dimensions n � 2 and this an obstacle to apply the fixed point argument
for nonlinearities (7.5) with r = 3/2. Note also that, by using instead the sharp observability internal observability
in part (ii) of Theorem 2.2, similar to [29] and [14], it is easy to show the exact controllability of system (7.6) with
nonlinearities (7.5) up to the exponent r < 3/2.

In view of this, in the application of the fixed point argument for control, one is not allowed to assume the potential
to be bounded and consequently one has to work with potentials in some L∞(0, T ;Ls(Ω)) with s < ∞ in which
case the observability constant has a faster growth, as we have seen in Theorem 2.2. Consequently, the controllability
of the semilinear hyperbolic equations requires a stronger growth condition (7.5) (with r < 3/2, compared with the
parabolic one in which r = 3/2 is allowed). Accordingly, the controllability for nonlinearities of the form (7.4) with
3/2 � r � 2 is an open problem in the multidimensional hyperbolic case.

8. Open problems

A lot of problems remain open in this field. Some of them could need important new ideas and developments.
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8.1. Meshkov’s construction for scalar equations

One of the very first open problems in this frame is whether for scalar multidimensional equations one may con-
struct solutions of (1.8) decaying super-exponentially. The results in [19], based on Carleman inequalities, show that
the decay rate exp(−C|x|4/3) is critical in the sense that all solutions that decay faster as |x| → ∞ do necessarily
vanish. But the construction we have recalled in Theorem A showing that there is a nontrivial solution decaying as
exp(−C|x|4/3) is only available for a system of two real equations. Whether such a construction can be adapted to
scalar equations is an interesting and very likely difficult open problem.

Obviously this is connected with the possibility of extending the optimality results in Theorems 1.1 and 1.2 to
scalar equations.

The construction in [26] of a nonzero real function vanishing to infinite order at 0 and satisfying a critical differen-
tial inequality may be a first step in this direction, at least in the case of convective potentials.

8.2. Meshkov’s construction in dimension n = 3

As we mentioned above the construction of Meshkov is valid for space dimension n = 2 and, by separation of
variables, can be easily extended to any even dimension. In Section 3, we gave a weaker version of this construction
in dimension 3, with a C

4-valued solution u and a potential q that is not bounded, but grows only logarithmically. This
could be adapted to get a bounded potential q on R

3, and a solution u decaying almost like e−|x|4/3
(that is, faster than

any e−|x|α with α < 4/3). The questions whether in odd dimensions, one can exactly get the optimal decay e−|x|4/3
, or

replace the C
4-valued solution u by a complex-valued function (as in the original construction of Meshkov) remains

open. Indeed it is not clear whether the distinction between even and odd space dimensions is purely technical or not.
Note that there is no distinction in what concerns the observability inequality.

The general question of the fastest speed of decay at infinity for eigenfunctions of the Laplace operator with a
potential, which includes open problems 8.1 and 8.2, does not seem to have been studied intensively. In [24], the
author uses Carleman-type inequalities to give some lower bound on the eigenfunctions. In [4] and [6], some lower
bounds are given, but with a strong positivity assumption on the potential. We refer to the book by Agmon [1] for a
study of the exponential decay of the eigenfunctions.

8.3. Sharp observability and time-dependent potentials

The constructions of Sections 4 and 5 are based on time-independent functions, so that both the heat and wave
equation are dealt with as perturbations of an elliptic equation. One possible way to improve the optimality results
would be to consider time-dependent variants of the Meshkov’s construction. Note that in [18], similar constructions
are done for evolution equations, but with the purpose of getting fast-decaying solutions of these equations for large
times, which is not what we need in our context.

8.4. Lr -potentials

In Section 2 an observability inequality is shown for potentials that are in L∞(0, T ;Lp(Ω)), n � p � ∞. In
Sections 4 and 5, we have shown that these estimates are sharp only in the case p = ∞. The question remains open
for finite p. As it was already noticed (see Remark 3.2), it is not sufficient to construct optimally decaying solutions
u of the elliptic equation (3.1) on R

n with a potential q in Lp(Rn) to solve this problem.

8.5. 1-d problems

The construction by Meshkov is impossible in one space dimension. In that case solutions of equations of the form
(1.8) may not decay in a super-exponential way.

On the other hand, for heat equations, the observability estimates one obtains in 1-d and several space dimensions
are the same. Accordingly whether the observability estimate (1.2) is sharp is an open problem.

As we mentioned in Section 7, in the context of the wave equation, using sidewise energy estimates one can obtain
a much better estimate with an observability constant of the order of exp(C‖a‖1/2∞ ). This estimate is sharp even for
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constant potentials as can be easily seen from the Fourier representation of solutions and the analysis of how the
spectral gap behaves as the constant potential tends to infinity (see [10]).

When the potentials under consideration only depend on x one can use well known transformations (see [19]
and [21]) from wave into heat processes to obtain estimates on the observability constant of the order of exp(C‖a‖1/2∞ ).

Whether the estimate (1.2) is sharp for 1-d heat equations with bounded potentials depending both on x and t is an
open problem.

8.6. Other equations

In this article we have addressed the heat and wave equations. But the same problems arise for other equations like
Schrödinger, plate and KdV equations. We refer to [30,27] and [20] for a discussion of observability estimates for
these models.
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