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Abstract

We discuss qualitative aspects of a continuum theory for thin films rigorously derived in [B. Schmidt, On the passage from atomic
to continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig].
The stored energy density is examined for convexity properties and limiting behavior under large and small strains. A study of
the dependence of the theory on relaxation parameters leads to the result that the scale of convergence used in [B. Schmidt,
On the passage from atomic to continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathematik in den
Naturwissenschaften, Leipzig] is the only scale for which a limiting theory that also accounts for atomic relaxation effects is
non-trivial.
© 2007

Résumé

Nous discutons des aspects qualitatifs d’une théorie de continuum pour des couches minces, dérivée rigoureusement dans
[B. Schmidt, On the passage from atomic to continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathe-
matik in den Naturwissenschaften, Leipzig]. La densité d’énergie emmagasinée est examinée pour des propriétés de convexité et
comportement en limite sous des distorsions grandes et petites. Une recherche de la dépendance de la théorie à l’égard des para-
mètres de relaxation mène au résultat que l’échelle de la convergence employée dans [B. Schmidt, On the passage from atomic to
continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig] est la
seule échelle pour laquelle une théorie limite qui inclut également des effets de la relaxation atomique est non-triviale.
© 2007

Keywords: Thin films; Discrete-to-continuum limits; Effective theories

E-mail address: bschmidt@aero.caltech.edu.

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter © 2007
doi:10.1016/j.anihpc.2006.09.001

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.



44 B. Schmidt / Ann. I. H. Poincaré – AN 25 (2008) 43–75
1. Introduction

The aim of this paper is to examine qualitative features of a macroscopic theory for thin films that was derived as an
effective continuum theory from atomic models in [21]. Deriving thin film limits from three-dimensional elasticity is
still an active area of research, see, e.g., [17–19,13,14,16] and, most recently, [15] where a whole hierarchy of different
scaling limits is discussed. For the more classical developments see, e.g., [20,8]. On the other hand, by now there are
also rigorous Γ -convergence results for the passage from discrete to continuum theory: for suitable pair interaction
models, especially in one dimension, see [4–6]; more complicated potentials under additional assumptions as, e.g.,
the Cauchy–Born rule are considered in [2,3].

In [12], starting from reference configurations

Lk = Z
3 ∩ [0, k] × [0, k] × [0, ν − 1]

for fixed ν ∈ N, the number of film layers, and k ∈ N, a limiting continuum theory for the energy of deformations
was proposed in the limit k → ∞ taking into account atomistic relaxation effects. In [21], this effective theory was
obtained rigorously as a variational limit of the elastic energy functional E(y(k)) of deformations y(k) :Lk → R

3.
This continuum theory was expressed in terms of the gradient of a map u : [0,1]2 → R

3 and ν − 1 director fields
bi : [0,1]2 → R

3, i = 1, . . . , ν − 1:

Theorem 1.1. (Cf. [21]) Under suitable assumptions on the energy function E, and for an appropriate definition of
convergence of deformations, there exists ϕ : R3×2 × (R3)ν−1 → R such that

E
(
y(k)

) “Γ ”→
∫

[0,1]2

ϕ
(∇u,b1, . . . , bν−1) as k → ∞.

It is worth mentioning that the scheme described in [21] can be applied not only to thin films but to general three-
dimensional bodies leading to a stored energy density ϕ only depending on the deformation gradient ∇u ∈ R

3×3, if
one assumes sufficiently fast decay of atomic interactions. The main technical difficulty in fact stems from the non-
local convergence of relative layer displacements to the family of vector fields (b1, . . . , bν−1) (cf. Definition 2.3). For
the qualitative aspects examined in the present paper we will however make use of the ‘thin film structure’ as we allow
atoms to explore regions perpendicular to the macroscopic film surface.

In Section 2, after introducing the model, we will recall the precise statements from [21]. Also we will collect some
preparatory material that was proved in [21] and will be needed in the sequel.

The following sections are devoted to studying this continuum theory, i.e. the macroscopic energy density ϕ qual-
itatively. First, cf. Section 3, we examine the dependence of ϕ on the relaxation parameter c0 (cf. Definition 2.3 and
Theorems 2.7, 2.8 and 2.9) and study the limiting cases c0 → ∞ and c0 → 0. Moreover, we will see that the physi-
cally motivated rate of convergence for which a continuum theory was derived in [21] is the only scale that leads to a
non-trivial limiting theory.

In the following two Sections 4 and 5, we derive the limiting behavior under large tensile and compressive strains,
and explore the convexity properties and symmetries of the limiting energy functional.

Finally, in Section 6, the scaling behavior of certain systems near O(2,3), i.e., (∇u)T∇u ≈ IdR2 , is examined.
We still find a non-trivial energy response to compressive strains in this regime. It is, however, weaker than cal-
culated without taking into account atomic relaxation effects. In order to prove this result we are led to study the
one-dimensional version, an atomic chain, in detail. The results of this paragraph might be of independent interest.

2. The passage from atomic to continuum theory

We give a brief account of the results obtained in [21] on the passage from atomic models to a continuum theory
for thin films. For details, motivations of the concepts, and proofs of the results of this section we refer to [21].
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Fig. 1.

2.1. The model

2.1.1. Kinematics
We consider a film of ν atomic layers whose reference configuration will be

Lk = L∩ (Sk × [0, h]),
where Sk := [0, k] × [0, k] for k ∈ N, h := ν − 1 is the height of the film and, for sake of simplicity, L = Z

3 (see
Fig. 1).

The deformations of this configuration will be denoted by

y = y(k) :Lk → R
3.

In order for y to be defined not only on the atomic positions, we will assume some interpolation between the atomic
positions: for a deformation y :Lk → R

3 let x̄ = x + (1/2,1/2) for x ∈ {0, . . . , k − 1}2 and set

y(x̄, i) = 1

4

∑
z∈Z

2,

|z−x̄|=1/
√

2

y(z, i), i = 0, . . . , ν − 1.

Now on each of the four triangles with corners (x̄, i), (z, i), (z′, i), where z, z′ ∈ Z
2 with |z − x̄| = 1/

√
2, |z − z′| = 1

interpolate linearly to obtain y(x, i) for x ∈ Sk . Interpolating in between the layers is not so subtle, for definiteness we
choose y to be linear on the segments [(x, i − 1), (x, i)]. By this particular choice we guarantee that (local) averages
depend only on atomic positions.

Our aim being to study the limit k → ∞, it is natural to introduce the rescaled functions ỹ defined on the common
domain S1 × [0, h]:

ỹ(k)(x) := 1

k
y(k)(kx1, kx2, x3).

Considering weak*-limiting points of ỹ as natural variables for a continuum theory, we are led to elements u of
W 1,∞([0,1]2;R

3) as limiting deformations. In our regime of thin films of fixed atomic height, we also introduce the
quantities

�iỹ(k)(xp) = ỹ(k)(x1, x2, i) − ỹ(k)(x1, x2,0), i = 1, . . . , ν − 1,

xp = (x1, x2), to measure the relative shift of the layers of our film. Also these have weak*-limits in L∞.
As in [21] we define:

Definition 2.1. Let u ∈ W 1,∞(S1;R
3) and b = (b1, . . . , bν−1) ∈ L∞(S1; (R3)ν−1). We say that (u,b) is admissible

(for given c0 > 0), i.e. (u,b) ∈A, if there exists c1 > 0 such that∣∣u(x) − u(z)
∣∣� c1|x − z| ∀x, z ∈ S1 (1)

(minimal strain hypothesis), and there exists b0 ∈ L∞ such that∥∥b0
∥∥∞,

∥∥bi − b0
∥∥∞ � c0, i = 1, . . . , ν − 1. (2)

The unrescaled version of u is denoted U , i.e. Ũ = u. An easy consequence of our interpolation is the following
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Lemma 2.2. Suppose u is admissible and y :Lk → R
3 some deformation with supx∈Lk

|y(x) − U(xp)| � c. Then y is
Lipschitz. For any (rescaled) Lipschitz interpolation y :Sk × [0, h] → R

3 (ỹ :S1 × [0, h] → R
3) there are constants

C1,C2,C3 > 0 such that,

(i) supx∈S1×[0,h] |ỹ(x)| � C2,
(ii) C1|x − z| − C3 � |y(x) − y(z)| � C2|x − z| ∀x, z ∈ Sk × [0, h].

We next define in what sense we understand deformations to converge to the limiting quantities u and b.

Definition 2.3. Let u ∈ W 1,∞(S1;R
3), b ∈ L∞(S1;R

3). Choose c0 > 0 a constant. We say that y(k) → (u,b)

(w.r.t. c0) if∥∥ỹ(k) − u
∥∥� c0/k and ∀i: k�iỹ(k) ∗

⇀ bi in L∞ as k → ∞.

Here and in the sequel we denote by ‖f ‖, respectively ‖f̃ ‖ in rescaled variables,

‖f ‖ := sup
x∈Lk

∣∣f (x)
∣∣, resp. ‖f̃ ‖ := sup

x∈Lk

∣∣f̃ (xp/k, x3)
∣∣.

As detailed in [21], this corresponds to a relaxation scheme where the individual atoms are allowed to move in a
region comparable to atomic dimensions.

2.1.2. Energy
The energy of a system of N atoms at positions y1, . . . , yN ∈ R

3 will be a function E : (R3)N → R only depending
on atomic positions. To study E we will endow the configuration space (R3)N with the norm∥∥(y1, . . . , yN)

∥∥= sup
1�i�N

|yi |2.

The elastic energy of a deformation y, i.e. the energy of the system (y(x): x ∈ Lk) respectively a subsystem
M= y(K), K ⊂ Lk , is denoted

E(y) = E
(
y(x): x ∈ Lk

)
resp. E(M) = E

(
y(x): x ∈K

)
.

We normalize E so that E(∅) = 0.
The main two assumptions on E are firstly the following splitting estimate.

Assumption 2.4. Suppose u is admissible. There exists a function ψ : [0,∞) → R such that

|ψ | � M and ψ(r) � Mr−q (3)

where M,q are constants, M > 0, q > 3, such that for disjoint sets M and N of atoms we have∣∣E(M∪N ) − E(M) − E(N )
∣∣� ∑

v∈M,w∈N
ψ
(|v − w|),

whenever ‖y − U‖∞ � C. (The function ψ may depend on C and on u through c1 and c2 where c1|x1 − x2| �
|u(x1) − u(x2)| � c2|x1 − x2|.)

Secondly, we need to assume some regularity of E:

Assumption 2.5. Let u be admissible. We assume that E is locally Lipschitz and in a C-neighborhood of U∣∣∣∣ ∂

∂yi

E(y)

∣∣∣∣� L

where L might depend on C and on U through c1, c2.
Furthermore, we assume E to be frame indifferent and only depending on the atomic positions, i.e. E remains

unchanged after renumbering of atoms and rigid motion of the configuration y(K).
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For some results we will have to impose an additional restriction:

Assumption 2.6. Assume that ψ and L of Assumption 2.4 resp. 2.5 depend only on C1 and C3 where y satisfies
|y(x) − y(z)| � C1|x − z| − C3.

2.2. Convergence theorems

Suppose E satisfies Assumptions 2.4 and 2.5, and a relaxation parameter c0 > 0 is chosen. The main result of [21]
is the following variational convergence result:

Theorem 2.7. There exists a macroscopic stored energy function ϕ such that (in the spirit of Γ -convergence, cf. [10]),

(i) if y(k) → (u,b), (u,b) admissible, then

lim inf
k→∞ E

(
y(k)

)
� E(u,b),

(ii) and for all admissible (u,b) there exists a sequence y(k) → (u,b) such that

lim
k→∞E

(
y(k)

)= E(u,b).

Here E(u,b) is the macroscopic energy

E(u,b) =
∫
S1

ϕ
(∇u,b1, . . . , bν−1). (4)

To compute ϕ by an associated cell problem, set

N̂ 0,1
k (A,b) =

{
y :Lk → R

3: ‖y − A‖ � c0 and
1

(k + 1)2

∑
x∈Z2∩Sk

�iy(x) = bi

}
. (5)

Theorem 2.8. The macroscopic energy density ϕ of Theorem 2.9 is given by

ϕ(A,b) = lim
k→∞ϕk(A,b) (6)

where for later use we have introduced the quantities

ϕk(A,b) = 1

νk2
inf

y∈N̂ 0,1
k (A,b)

E(y). (7)

This limit is uniform on compact subsets of Ahom and depends continuously on A,b.

Here, Ahom ⊂ R
3×2 × (R3)ν−1, the set of admissible (A,b), is defined by

Ahom :=
{(

A,b1, . . . , bν−1): rank(A) = 2,∃b0 ∈ R
3 s.t.

∣∣b0
∣∣, max

1�i�ν−1

∣∣bi − b0
∣∣� c0

}
for matrices A ∈ R

3×2 and vectors b1, . . . , bν−1.
We also mention the following quantitative version of Theorem 2.7:

Theorem 2.9. Suppose l = l(k) is such that l(k) → 0 and kl(k) → ∞ as k → ∞. Let

W l
k(u,b) := {

y: ‖ỹ − u‖ � c0/k,
∥∥k�iỹ − bi

∥∥
W−1,∞ � l

}
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where ‖f ‖W−1,∞ := sup
{∫

f · χ : χ ∈ W
1,1
0 , ‖χ‖

W
1,1
0

= ‖∇χ‖L1 = 1
}
. Then

lim
k→∞

1

νk2
inf

y∈W l
k(u,b)

E(y) =
∫
S1

ϕ
(∇u(x),b

)
dx.

In fact, Theorems 2.7 and 2.8 also apply to the more general case where E is of the form

E(y) = 1

2

∑
i �=j

W
(|yi − yj |

)+ E0(y) (8)

where E0 satisfies the usual assumptions, but W(r) becomes infinitely large as r tends to zero. (In particular, the
Lennard–Jones potential is covered by these energy functions.)

Theorem 2.10. For any r0 > 0 assume that W is Lipschitz on [r0,∞) and there exists M = M(r0) ∈ R such that for
(a.e.) r � r0∣∣W(r)

∣∣� Mr−q,
∣∣W ′(r)

∣∣� Mr−q+1,

for r � r0. Then Theorem 2.7 extends to energy functions of the form (8) where, as in Theorem 2.8, ϕ :Ahom →
(−∞,∞] is given by (6), continuous as a function with values in R ∪ {∞}.

As another extension we note that the above results also apply to suitable systems of distinguishable particle
systems with finite range interaction. Let a > 0. To each xi ∈Lk we assign a neighborhood

Uxi
= {

xj ∈ L: |xj − xi | � a
}= {

xi
1, . . . , x

i
ra

}
where the enumeration of elements of Uxi

shall be such that xi
1 = xi and if (xi1)3 = (xi2)3, then

x
i1
j − xi1 = x

i2
j − xi2 for j = 1, . . . , ra.

Let Sa
k = [a, k − a]2 and suppose the energy of a deformation y is given by

Efr(y) =
∑

xi∈L∩(Sa
k ×[0,h])

fxi

(
y
(
xi

2

)− y
(
xi

1

)
, . . . , y

(
xi
ra

)− y
(
xi

1

))+O(k), (9)

where fxi
: R3(ra−1) → R are given functions representing the energy of the interactions between the i-th atom at its

position y(xi) = y(xi
1) and its neighboring atoms in their positions y(xi

2), . . . , y(xi
ra

). (The term O(k) is introduced
to compensate for boundary effects, since Uxi

is not contained in Sk × [0, h] for xi in a boundary layer of constant
width.) We need the following periodicity assumption: there exist fixed p1,p2 ∈ N such that

f(x1+p1,x2,x3) = fx = f(x1,x2+p2,x3) (10)

for x = (x1, x2, x3) ∈ (Z+)2 × {0, . . . , ν − 1}.

Proposition 2.11. Suppose Efr is defined as in (9) and (10) holds. Assume that the fxi
are locally Lipschitz. Then the

limit ϕfr of Theorem 2.8 exists and we have

lim
k→∞

1

νk2
inf

y∈W l
k(u,b)

Efr(y) =
∫
S1

ϕfr
(∇u(x),b(x)

)
dx

as l → 0 and kl → ∞.

Remark. For such systems we do not need to suppose that u satisfies a minimal strain hypothesis. Thus, ϕ is defined
on all of R

3×2 × (R3)ν−1.
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Fig. 2.

2.3. Technical results

We now collect some of the technical results obtained in [21] that will be useful in the following sections.
Consider deformations y :kΩ × [0, h] → R

3 for Ω ⊂ [0,1]2.

Lemma 2.12. Let y be a deformation satisfying |ỹ −u| � c/k and K ⊂ L∩ (kΩ ×[0, h]). Then there is a constant C

(not depending on K) such that if K =K1 ∪K2 for disjoint K1 and K2, then∣∣E(y(x): x ∈K
)− E

(
y(x): x ∈ K1

)∣∣� C#K2.

Suppose Q = [0, a)2, a � 1, is partitioned by squares U1, . . . ,Ur of side-length l where c0/k � l � a plus some
rest R with |R| =O(a · l′), l′ � a, as in Fig. 2. (Then r ∼ (a/ l)2.)

Set M := {y(x): x ∈L∩ (kQ × [0, h])}, Mi := {y(x): x ∈ L∩ (kUi × [0, h])}.

Lemma 2.13. Suppose y :kQ × [0, h] → R
3 satisfies |ỹ − u| � c/k for some admissible u. Then there exists C > 0

such that∣∣∣∣∣E(M) −
r∑

i=1

E(Mi )

∣∣∣∣∣� C

(
ka2

l
+ k2al′

)
.

Remark. In both of the previous lemmas, C will only depend on C1 and C3 provided Assumption 2.6 is satisfied.
To measure local spatial averages, we define the measure ρ = ρ(k) =∑

x∈Z2 δx/k where δx/k is the Dirac measure
at x/k. Also set (after extending bi boundedly outside S1 (constantly if bi is constant))

b̄i (x) = −
∫

x+[−1/2k,1/2k]2

bi(z)dz. (11)

Let b0 as in (2) be given. For later use we introduce the deformations v = v(k), defined by (interpolation of)

v(x1, x2, i) =
{

u(x1, x2) − 1
k
b̄0(x1, x2) for i = 0,

u(x1, x2) + 1
k
(b̄i (x1, x2) − b̄0(x1, x2)) for 1 � i � ν − 1

(12)

for (x1, x2) ∈ 1
k
Z

2 ∩ S1. Clearly, v(k) → (u,b). Its un-rescaled version will be denoted V , i.e. Ṽ = v.

Lemma 2.14. Suppose y is a deformation with

‖y − U‖ � c0 + δ1 and

∣∣∣∣ −
∫

[0,1]2

(
k�iỹ − b̄i

)
dρ

∣∣∣∣� δ2,

δ1, δ2 � 1. Then there exists y′ :Lk → R
3 with

‖y′ − U‖ � c0, −
∫

2

k�iỹ′ dρ = b̄i ,
[0,1]
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and ∣∣E(y) − E(y′)
∣∣� C

(
δ

1/5
1 + δ

1/5
2

)
k2.

(This combines Lemmas 3.11 and 3.13 in [21].)
Instead of bi , it is sometimes more convenient to work with the quantities Bi defined by choosing b̄0 minimizing

max
{

max
1�i�ν−1

∣∣b̄i − b̄0
∣∣, ∣∣b̄0

∣∣} (� c0)

and setting

Bi := b̄i−1 − b̄0 for i = 2, . . . , ν, B1 := −b̄0. (13)

3. The dependence of ϕ on the relaxation scheme

Our notion of convergence y(k) → (u,b) of atomic deformations to macroscopic variables u,b depends on the
constant c0 (cf. Definition 2.3). (To keep track of this dependence, we will sometimes add c0 as an additional sub-
script as e.g. in N̂ 0,1

k,c0
, ϕk,c0 .) Our first task is to analyze this dependence of our continuum theory on the relaxation

parameter c0. It will turn out that we cannot relax sending c0 to infinity. This is due to the (physically reasonable)
decay assumptions on atomic interactions. Moreover, c0/k will prove to be the only scale which both accounts for
atomistic relaxation effects and yields a non-trivial continuum theory. We start by proving the following regularity
result.

Proposition 3.1. Fix (A,b) ∈Ahom. The mapping c0 �→ ϕc0(A,b) is decreasing and continuous.

Proof. Suppose c0 > c′
0. By Theorem 2.8, ϕc0(A,b) � ϕc′

0
(A,b). Conversely, given y ∈ N̂ 0,1

k,c0
(A,b), by Lemma 2.14

we find a deformation y′ ∈ N̂ 0,1
k,c′

0
(A,b) with E(y′) � E(y) + C(c0 − c′

0)
1/5k2 provided (A,b) is admissible for c′

0

and |c0 − c′
0| � 1. Therefore ϕc′

0
(A,b) � ϕc0(A,b) + C(c0 − c′

0)
1/5. �

3.1. The limit c0 → ∞

Suppose E is an admissible pair potential with purely attractive pair interaction W � 0, W �≡ 0. Considering
deformations with larger and larger periodic cells where every atom is mapped to a single point, we see that for all
admissible A, b,

lim
c0→∞ϕc0(A,b) = −∞.

In this paragraph we will show that the limit c0 → ∞ in general will be trivial if Assumption 2.6 is satisfied.

Theorem 3.2. Suppose E satisfies Assumptions 2.4, 2.5, and 2.6. Define ϕ∞ := limc0→∞ ϕc0 . (This limit exists point-
wise in [−∞,∞) by Proposition 3.1.) Then ϕ∞(A,b) = ϕ∞(A′,b′) for all matrices A,A′ of rank two and all
vectors b,b′ ∈ (R3)ν−1. (Every such matrix resp. vector is admissible if c0 is large enough.)

Proof. Suppose first that A′ = A. By VA,b we denote the un-rescaled version of v (cf. (12)) corresponding to u = A

and b0 set to zero. For b such that the projection of each bi onto graph(A) has norm less than 2|A|,∣∣VA,b(x) − VA,b(x′)
∣∣= ∣∣A(xp − x′

p) + bx3 − bx′
3
∣∣

�
∣∣A(xp − x′

p)
∣∣− 4|A|

� C1|x − x′| − C3,

C1,C3 independent of b. From Assumption 2.6 and Lemma 2.12 we then find a constant C such that for those b,
E(VA,b) � Ck2. On the other hand, if for two vectors b1, b2 and some i ∈ {1, . . . , ν − 1},

b
j = b

j
, for j �= i, and bi = bi + Az, z ∈ Z

2,
2 1 2 1
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Fig. 3.

then E(VA,b1) = E(VA,b2) +O(|z|k). So for all b we obtain limk→∞ 1
νk2 E(VA,b) � C, whence ϕ∞(A, ·) is an upper

bounded function on R
3(ν−1) with values in [−∞,∞). Since it is convex (by Proposition 5.3 all ϕc0(A, ·) are convex),

it must be constant.
For the remaining part it suffices to show that

ϕ∞(A′,b) � ϕ∞(A,b).

We proceed similarly as in the proof of Proposition 3.16 of the existence of ϕ under homogeneous conditions in [21].
Fix c0 and δ > 0. Choosing k0 large enough we find by Theorem 2.8 y ∈ N̂ 0,1

k0,c0
(A,b) with

1

νk2
0

E(y) � ϕc0(A,b) + δ

2
. (14)

We construct a deformation y′ :Lk → R
3, k � k0, by patching together appropriately translated copies of y: let

U1, . . . ,Us be translates of [0, k0 + 1)2 as in Fig. 3.
Let z1, . . . , zs denote the lower left corners of these sets, set f i = A′zi and define

y′(x1, x2, x3) = y
(
x1 − zi

1, x2 − zi
2, x3

)+ f i

for x ∈ L∩ (Ui × [0, h]). Then

‖y′ − A′‖ = sup
x∈Lk0

∣∣y′(x) − A′xp

∣∣� sup
x∈Lk0

∣∣y(x)
∣∣+ sup

xp∈Sk0

|A′xp| =: c̃0.

So c̃0 depends on k0 (and A,A′) but is independent of k. Since

−
∫

[0,1]2

(
k�iỹ′ − bi

)
dρ = −

∫
⋃

Uj

(
k�iỹ′ − bi

)
dρ +O

(
k2

0

k

)

= 1

sk2
0

s∑
j=1

∫
Uj

(
k�iỹ′ − bi

)
dρ +O

(
k2

0

k

)

=O
(

k2
0

k

)
(note |k�iỹ′| � 2c̃0), by Lemma 2.14 we find a deformation

ŷ ∈ N̂ 0,1
k,c̃0

(A′,b) (15)

such that∣∣∣∣ 1

νk2
E(y′) − 1

νk2
E(ŷ)

∣∣∣∣� C(c̃0)

(
k2

0

k

)1/5

. (16)

Using Lemma 2.13 and translational invariance, we would now like to split the energy to find that∣∣∣∣ 1

νk2
E
(
y′(x): x ∈ Lk

)− 1

νk2
E
(
y(x): x ∈Lk0

)∣∣∣∣� C

(
1

k
+ k0

k

)
. (17)
0 0
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Fig. 4.

If this is possible, we find that by (17), (15), (16) and (14) for k � k0 � 1

ϕk,c̃0(A
′,b) � 1

νk2
E
(
ŷ(x): x ∈Lk

)
� 1

νk2
0

E
(
y(x): x ∈Lk0

)+ δ

2

� ϕc0(A,b) + δ.

Letting first k → ∞, we deduce from Proposition 3.1

ϕ∞(A′,b) � ϕc0(A,b) + δ.

Since δ was arbitrary, we finally get sending c0 → ∞
ϕ∞(A′,b) � ϕ∞(A,b).

It remains to justify the application of Lemma 2.13. The problem is that c̃0 depends on k0. (For nearest neighbor
models as discussed in Proposition 2.11, this splitting in (17) will in general not be possible: for y′ as described above
neglecting the bonds between sets y(Ui × [0, h]) could result in neglecting an essential part of the energy.) By the
remark after Lemma 2.13, however, this will be possible if we can replace y′ by some y′′ such that still ‖y′′ −A‖ � c̃0
depends only on k0 and y′′ consists of translates of y(Lk0), but in addition satisfies a far-field minimal strain hypothesis
with constants C1,C3 independent of k0, i.e.∣∣y′′(x1) − y′′(x2)

∣∣� C1|x1 − x2| − C3. (18)

We re-enumerate the squares U1, . . . ,Us as depicted in Fig. 4. (r ∈ N to be specified later.) Depending on A,A′, k
(and c0, c̃0) we choose a unit vector e ∈ R

3 perpendicular to the graph of A′ and numbers 0 < a1 < · · · < ar2 (to be
specified later), and define

y′′(x1, x2, x3) = y′(x1, x2, x3) + aj e

if x ∈ L∩ Ui,j × [0, h], j ∈ {1, . . . , r2}.
We will now find C1,C3 independent of k0 such that (18) holds. Since still, on each of the sets Ui,j × [0, h], y′′ is

a translated copy of y, we may replace y′ by y′′. Applying (17) then finishes the proof.
If x1 and x2 lie in the same Ui,j × [0, h], this is clear from Lemma 2.2 since y ∈ N̂ 0,1

k0,c0
(A,b).

Now suppose this is not the case, but still |x1 −x2|∞ < (r −1)(k0 +1). Then x1 ∈ Ui1,j1 ×[0, h], x2 ∈ Ui2,j2 ×[0, h]
with j1 �= j2. But then∣∣y′′(x1) − y′′(x2)

∣∣� |aj1 − aj2 | −
∣∣y′(x1) − y′(x2)

∣∣
� |aj1 − aj2 | −

∣∣f i1,j1 − f i2,j2
∣∣− ∣∣y(x1 − (zi1,j1 ,0)

)− y
(
x2 − (zi2,j2 ,0)

)∣∣
� |aj − aj | − ∣∣f i1,j1 − f i2,j2

∣∣− 2c0 − ∣∣A((x1)p − zi1,j1
)− A

(
(x2)p − zi2,j2

)∣∣

1 2
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� |aj1 − aj2 | − C′rk0 − 2c0 − Ck0

� 2rk0 for |aj1 − aj2 | sufficiently large

� |x1 − x2|.
So we assume that |aj1 − aj2 |, j1, j2 ∈ {1, . . . , r2}, are large enough to justify the above calculation.

Finally, let x1 ∈ Ui1,j1 × [0, h], x2 ∈ Ui1,j2 × [0, h] and |x1 − x2|∞ � (r − 1)(k0 + 1). Since e is perpendicular to
the graph of A′ and y′ lies in a c̃0-neighborhood of that graph, we find that for r not too small∣∣y′′(x1) − y′′(x2)

∣∣= ∣∣(aj1 − aj2)e + y′(x1) − y′(x2)
∣∣

�
∣∣(aj1 − aj2)e + A′(x1 − x2)

∣∣− ∣∣y′(x1) − A′x1
∣∣− ∣∣y′(x2) − A′x2

∣∣
� |A′x1 − A′x2| − 2c̃0

�
∣∣y′(x1) − y′(x2)

∣∣− 4c̃0

�
∣∣f i1,j1 − f i2,j2

∣∣− ∣∣y(x1 − zi2,j1
)− y

(
x2 − zi2,j2

)∣∣− 4c̃0

�
∣∣f i1,j1 − f i2,j2

∣∣− 2c0 − 2|A|k0 − 4c̃0

� c
∣∣zi1,j1 − zi2,j2

∣∣− 2c0 − 2|A|k0 − 4c̃0

� c

2

∣∣zi1,j1 − zi2,j2
∣∣

� c

6
|x1 − x2|,

where c = min|x|=1 |A′x|. The last but one inequality follows from the fact that for i1 �= i2

c

2

∣∣zi1,j1 − zi2,j2
∣∣� c(r − 1)k0

4
� 2c0 + 2|A|k0 + 4c̃0

for |x1 − x2|∞ > (r − 1)k0 if we choose r sufficiently big.
Setting ˜̃c0 = c̃0 + max1�j�r2 |aj e| we furthermore have ‖y′′ −A′‖ � ˜̃c0. So by possibly enlarging c̃0 to ˜̃c0, we can

indeed split the energy to obtain (17), and the proof is finished. �
For systems that do not satisfy Assumption 2.6, ϕ∞ may be non-trivial (for an example see Proposition 4.5 in [21]).

In Section 5.1 we will prove that ϕ∞ is quasiconvex with respect to the first variable and convex with respect to the
second.

3.2. The limit c0 → 0

In our definition of convergence y(k) → (u,b), it does not make sense to consider the limiting case of very restricted
relaxation, i.e. c0 → 0, unless all bi are zero. Instead of asking ‖ỹ − u‖ in Definition 2.3 to be less than c0/k one
could demand that

‖ỹ − v‖ � c0/k (19)

where v is as in (12) corresponding to u,b with b0 set to zero. (Condition (2) is not needed for this definition of
convergence.) This alternative set-up leads to analogous results in the passage to continuum theory, as shown in [21].

It is not hard to calculate the limit

ϕ0(A,b) := lim
c0→0

ϕc0(A,b)

which exists in (−∞,∞] since c0 �→ ϕc0(A,b) is decreasing.

Proposition 3.3. Let VA,b be as in (12) for constant ∇u = A and b. Then

ϕ0(A,b) = lim
k→∞

1

νk2
E
(
VA,b(x): x ∈ Lk

)
.

In particular, the limit on the right-hand side exists (in R under the usual Assumptions 2.4 and 2.5, in (−∞,∞] for
energies of the form (8)).
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Proof. Suppose first E is of the form (8) and there are i �= j ∈ {0, . . . , ν − 1} such that bi ∈ bj + AZ
2. Then, if

‖y − VA,b‖ � r ,

E(y) � k2

4
inf

0<s�r
W(s) − Ck2 → ∞

as r → 0. For the remaining cases note that E(VA,b) is bounded by Lemma 2.12 and, if ‖y − VA,b‖ � r ,∣∣E(y) − E(VA,b)
∣∣� Lνk2r.

Therefore,

lim sup
k→∞

sup
y∈N̂ 0,1

k (A,b)

∣∣∣∣ 1

νk2
E(y) − 1

νk2
E(VA,b)

∣∣∣∣� Lc0.

Now letting c0 → 0 proves the claim. �
Example. For admissible pair potentials (i.e. W satisfies the conditions of Theorem 2.10)

Epp(y) = 1

2

∑
i �=j

W
(|yi − yj |

)
, (20)

we get

ϕ0(A,b) = lim
k→∞

1

2νk2

∑
x,z∈Lk

x �=z

W
(∣∣VA,b(x) − VA,b(z)

∣∣).
Restricting this sum to those x such that dist(xp, ∂[0, k]2) > l where 1 � l � k yields an error term of order

O(kl/k2) = o(1). Then summing over all z ∈ Z
2 × {0,1, . . . , ν − 1}, z �= x, instead of Lk \ {x} gives another error

term of order O(l2−q) = o(1). This sum now being independent of xp , we obtain

ϕ0(A,b) = 1

2ν

ν−1∑
i=0

∑
z∈L∩(R2×[0,h])

z �=(0,0,i)

W
(∣∣VA,b(z) − VA,b(0,0, i)

∣∣)

= 1

2ν

ν−1∑
i,j=0

∑
zp∈Z

2

(zp,j) �=(0,0,i)

W
(∣∣Azp + bj − bi

∣∣).
The corresponding macroscopic energy functional is given by

E(u,b) =
∫
S1

1

2ν

ν−1∑
i,j=0

∑
z∈Z

2

(z,j)�=(0,0,i)

W
(∣∣∇u(x)z + bj (x) − bi(x)

∣∣)dx.

This expression can be seen as a thin-film version with directors b1, . . . , bν−1 of a formula derived in [3].

3.3. Triviality for slowly converging deformations

By our definition of convergence, the effective continuum theory depends on the scale l1 = c0/k measuring the rate
of uniform convergence of ỹ(k) to u. This paragraph serves to prove that in fact only the physically motivated choice
l1(k) = const./k yields non-trivial results. Physically this amounts to the fact that thin film configurations are expected
to be only locally energy minimizing: admitting for fracture, i.e., large interatomic distances, the film could locally
(3d-) crystallize. Physically reasonable decay assumptions on atomic interactions will then lead to trivial macroscopic
limits.
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It is easy to see that for l1 � 1/k we reproduce the limit obtained in Proposition 3.3. So suppose now l1 = l1(k) �
1/k. (Then all b ∈ L∞(S1; (R3)ν−1) will be admissible.) In analogy to W l

k (cf. Theorem 2.9) we define

W l1,l2
k (u,b) := {

y: ‖ỹ − u‖ � l1,
∥∥k�iỹ − bi

∥∥
W−1,∞ � l2

}
.

Theorem 3.4. Suppose E satisfies Assumptions 2.4, 2.5, and 2.6. Assume l1(k), l2(k) satisfy kl1(k), kl2(k) → ∞.
Then for all admissible u (cf. (1)) and all b the limit

E = E(u,b) = lim
k→∞

1

νk2
inf

y∈W l1,l2
k (u,b)

E(y)

exists in [−∞,∞) and is the same for all (u,b).

Proof. Let

E(u,b) := lim inf
k→∞

1

νk2
inf

y∈W l1,l2
k (u,b)

E(y).

Suppose that b,b′ ∈ L∞(S1; (R3)ν−1) and u, u′ are admissible. The proof follows along the lines of the proof of
Theorem 3.2, we indicate the necessary modifications. Choosing a suitable large k0, we find y ∈W l1,l2

k0−1(u,b) with

1

ν(k0 − 1)2
E(y) � E(u,b) + δ/3

(resp. � −1/δ for E(u,b) = −∞). In addition to the sets Ui = zi +[0, k0 +1)2 consider the subsets Ûi = zi +[0, k0)
2,

and construct y′ similar as in the proof of Theorem 3.2 by

y′(x1, x2, x3) = y
(
x1 − zi

1, x2 − zi
2, x3

)+ U ′(zi
)

on Lk ∩ (Ûi × [0, h]),
where U ′ denotes the unrescaled version of u′. On the remaining (2k0 + 1)ν atoms of Ui × [0, h] we define y′
appropriately such that

−
∫

Ui/k

k�iỹ′ dρ(k) = 1

(k0 + 1)2

∑
xp∈Z2∩Ui

y′(xp, i) − y′(xp,0) = −
∫

Ui/k

b̄′i dρ(k).

We may assume that for x, x′ ∈ Lk with xp ∈ Ui \ Ûi and x′
p ∈ Ui , |y(x) − y(x′)| � |xp − x′

p| and that ‖y′ − U ′‖ is
bounded in terms of k0 independently of k.

Considering local spatial averages, we still find ŷ ∈ W l1,l2
k (u′,b′) such that for k0 fixed∣∣∣∣ 1

νk2
E(y′) − 1

νk2
E(ŷ)

∣∣∣∣→ 0 as k → ∞.

(To prove this, one may choose a scale l3 such that 1/k � l3 � l2 and apply Lemmas 3.13 and 3.14 in [21] resp.
Lemmas 2.2.12 and 2.213 in [22] with constants depending on k0.)

In order to show that the energy splits, again we possibly have to replace y′ by y′′. For the construction of y′′ we
can only guarantee that∣∣y′′(x1) − y′′(x2)

∣∣� C1|x1 − x2| − C3

with C1,C3 independent of k0 and k for x1 and x2 that do not lie in the same Ui,j ∩ Ûi . But Lemma 2.13 still works
in this more general case. r now might not be a fixed number, but still it only depends on k0, the same being true for
a1, . . . , ar2 . Also note that for the same reason and by translational invariance∣∣E(y′(x): x ∈ L∩ (Ui × [0, h]))− E(y)

∣∣� Ck0.

Finally sending k to infinity gives
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lim sup
k→∞

inf
ŷ∈W l1,l2

k (u′,b′)
E(ŷ) � 1

νk2
0

E(y) + δ

3

� (k0 − 1)2

k2
0

(
E(u,b) + δ

3

)
+ δ

3

� E(u,b) + δ

if k0, only depending on (u,b) and δ, is sufficiently large.
Now first setting u′ = u, b′ = b, this proves that in fact

E(u,b) = lim
k→∞ inf

y∈W l1,l2
k (u,b)

E(y).

Secondly, the argument shows that E(u′,b′) � E(u,b). Reversing the roles of b and b′ respectively u and u′, we
obtain

E(u,b) = E(u′,b′). �
4. Extremal strains

In this section, we examine ϕ(A,b) for A with very large (cf. Section 4.1) or small (cf. Section 4.2) singular values.
Physically, the limit A → ∞ is of limited relevance since (in view of the L∞-constraint) we do not allow for fracture
in our model. However, it is mathematically not difficult, so we include this discussion for the sake of completeness.
The limit A → 0 is more interesting. Our relaxed atomic to continuum limit leads to an intermediate energy regime
between purely continuum membrane theory, for which all short maps yield zero energy, and pointwise discrete to
continuum limits that assume the Cauchy–Born rule.

4.1. Strongly tensile deformations

Again in this paragraph we suppose that Assumption 2.6 is satisfied.
For a system y of ν atoms at positions y0, . . . , yν−1 ∈ R

3 we define E by

E(y) =
{

E(y) for y ∈ Bc0 ,

∞ else,

where Bc0 = {y ∈ (R3)ν : |yi | � c0} is the ball of radius c0 centered at 0 in configuration space. E∗∗ denotes the
convex envelope of E.

Proposition 4.1. The large strain limit limA→∞ ϕ(A,b) exists, and

lim
A→∞ϕ(A,b) = 1

ν
min
a∈R3

E∗∗(a, b1 + a, . . . , bν−1 + a
)
.

Here, A → ∞ means that both singular values s1(A) and s2(A) of A tend to infinity.

Proof. Let y ∈ N̂ 0,1
k (A,b) and yxp = (y(xp,0), . . . , y(xp, ν − 1)), �yxp = (y(xp,1) − y(xp,0), . . . , y(xp, ν − 1) −

y(xp,0)). By Assumption 2.4,∣∣∣∣E(y) −
∑

xp∈Z2∩Sk

E(yxp )

∣∣∣∣� 1

2

∑
x,z∈Lk : xp �=zp

ψ
(∣∣y(x) − y(z)

∣∣).
By definition of N̂ 0,1

k , if c1 � s1(A), then∣∣y(x) − y(z)
∣∣� c1|xp − zp| − 2c0

which is � c1
2 |xp − zp| for c1 large, xp �= zp .

If the singular values of A tend to infinity, we may choose c1 as large as we want and find that
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∣∣∣∣E(y) −
∑
xp

E(yxp )

∣∣∣∣� M

2

∑
x,z: xp �=zp

∣∣y(x) − y(z)
∣∣−q

� M

2

(
c1

2

)−q ∑
x,z: xp �=zp

|xp − zp|−q

=
(

2q−1Mν2
∑

xp �=zp

|xp − zp|−q

)
c
−q

1

� Ck2c
−q

1 ,

so ∣∣∣∣ 1

k2
E(y) − 1

k2

∑
xp

E(yxp )

∣∣∣∣→ 0

as c1 → ∞.
We thus have to minimize 1

k2

∑
xp

E(yxp ) subject to y ∈ N̂ 0,1
k (A,b). By frame indifference this is the same as

minimizing

1

k2

∑
xp

E(yxp ) subject to yxp ∈ Bc0 and
1

(k + 1)2

∑
xp

�yxp = b.

Now the claim is an elementary consequence of Carathéodory’s theorem (cf. [9] Corollary 2.9, p. 42). �
Remarks.

(i) If in Definition 2.3 we request that ‖ỹ −vA,b‖ � c0/k instead of ‖ỹ −A‖ � c0/k as in (19), the result is analogous
if we replace Bc0 by Bc0(b) = {y ∈ (R3)ν : |yi − bi | � c0} (b0 := 0). Then, while holding c0 fixed, we may send
(A,b) → ∞ in the following sense. Let A → ∞ as above. If e is a unit normal to graph(A), suppose that
|〈bi − bj , e〉| → ∞ for i �= j ∈ {0, . . . , ν − 1}. Clearly, this leads to

lim
A,b→∞ϕ(A,b) = 0.

(ii) It is necessary to require that Assumption 2.6 be satisfied. If ϕnn is the continuum energy density for an interaction
potential given by harmonic springs between nearest neighbors in the reference configuration (see Proposition 4.5
in [21]), then we clearly have

lim
A→∞ϕ(A,b) = lim

A,b→∞ϕ(A,b) = ∞.

4.2. Strongly compressive deformations

In this paragraph we consider the limiting behavior of the macroscopic energy for strongly compressive strains, in
particular, if the energy diverges or remains bounded in this regime. If the energy of two particles at distance r scales
like r−α as r → 0, it turns out that α = 3 – not α = 2 as expected from taking pointwise limits – is a critical exponent
for typical values of A and b. This is due to our allowance for atomic relaxation.

Recall the definition of B1, . . . ,Bν from (13). We consider pair potentials with interaction function W as in (20)
satisfying the conditions of Theorem 2.10. The main result of this paragraph is the following

Theorem 4.2. Define Sp = √
ATA ∈ R

2×2 measuring the strain of the (constant) deformation A ∈ R
3×2.

(i) Assume that r3W(r) → ∞ as r → 0. Then

lim
det(Sp)→0
|Sp |�C<∞

ϕ(A,b) = ∞.
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(ii) For each β < 3 there are examples of pair potentials with pair-interaction W(r) ∼ r−β → ∞ as r → 0 such that

lim sup
det(Sp)→0
|Sp |�C<∞

ϕ(A,b) < ∞

for b such that |Bi | < c0.

We first prove two preparatory lemmas, the first is a refined version of the far field minimal strain property (cf.
Lemma 2.2). For A ∈ R

3×2, in addition to Sp let

S′ :=
⎛⎝ (Sp)11 (Sp)12 0

(Sp)21 (Sp)22 0

0 0 1

⎞⎠ , S :=
⎛⎝ (Sp)11 (Sp)12

(Sp)21 (Sp)22

0 0

⎞⎠ , A′ :=
⎛⎝A11 A12 e1

A21 A22 e2

A31 A32 e3

⎞⎠ ,

where e is the unit vector perpendicular to graph(A) such that det(A′) > 0. By the singular value decomposition there
is an orthogonal matrix R ∈ SO(3) such that

A = RS, A′ = RS′.
We will investigate the limit det(Sp) → 0 while the singular values of A, i.e. the eigenvalues of Sp , remain bounded,

which we will assume for the rest of this paragraph.

Lemma 4.3. Suppose ‖y − A‖ � c0 and x, x′ ∈ Lk are such that |y(x) − y(x′)| � a > 0. Then for c such that
1−c
c

a � 2c0 + 2h:∣∣y(x) − y(x′)
∣∣� c|S ′x − S′x′|.

Proof. Clear, if |S′x − S′x′| � a/c. If |S′x − S′x′| � a/c, then∣∣y(x) − y(x′)
∣∣� |A′x − A′x′| − ∣∣y(x) − Axp

∣∣− ∣∣Ax′
p − y(x′)

∣∣− |Axp − A′x| − |A′x′ − Ax′
p|

= |S′x − S′x′| − ∣∣y(x) − Axp

∣∣− ∣∣Ax′
p − y(x′)

∣∣− |Sxp − S′x| − |S′x′ − Sx′
p|

� |S′x − S′x′| − 2c0 − |x3| − |x′
3|

� c|S′x − S′x′| + (1 − c)
a

c
− 2c0 − 2h

� c|S ′x − S′x′|. �
In the second lemma we estimate the number of atoms that are close to other atoms.

Lemma 4.4. Suppose there are N atoms at positions y1, . . . , yN in a bounded region U ⊂ R
3. Let Uρ , ρ > 0, be the

ρ-neighborhood of U . Then

#
{
(yi, yj ): i �= j, |yi − yj | � ρ

}
� N − 6

πρ3
|Uρ |.

Proof. We place one atom after the other into U . If an atom has distance larger than ρ from all the previous atoms, it
shall belong to M⊂ {y1, . . . , yN }. Now since atoms in M have pairwise distances greater than ρ, we find that

#M4π

3

(
ρ

2

)3

� |Uρ |.
It follows that

#
{
(yi, yj ): i �= j, |yi − yj | � ρ

}
� N − #M� N − 6

πρ3
|Uρ |. �

Proof of Theorem 4.2. (i) If y ∈ N̂ 0,1
k (A,b), then all the atoms lie in the c0-neighborhood of A([0, k]2). The volume

of the r0-neighborhood of this set is 2(c0 + r0)det(Sp)k2 +O(k). By Lemma 4.4 we have
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#
{
(yi, yj ): i �= j, |yi − yj | � r0

}
� νk2 − 6

πr3
0

(
2(c0 + r0)det(Sp)k2 +O(k)

)
� k2

2
,

provided r3
0 � det(Sp) as det(Sp) → 0, and therefore (fix a > 0 such that W is positive on (0, a] and suppose that

r0 � a)

Epp(y) = 1

2

∑
i �=j

W
(|yi − yj |

)
� 1

2

∑
i �=j

|yi−yj |�r0

W
(|yi − yj |

)+ 1

2

∑
i �=j

|yi−yj |>a

W
(|yi − yj |

)

� k2

4
inf

0�ρ�r0
W(ρ) − Ck2

det(Sp)

(see below). Now since W(r) � r−3, we also have inf0<ρ�r W(r) � r−3, and we may choose r0 → 0 as det(Sp) → 0
such that

inf
0�ρ�r0

W(ρ) � 1

det(Sp)
� r−3

0 .

Then indeed Epp(y) � γ k2 for γ = γ (A) independent of y and k with γ (A) → ∞ as det(Sp) → 0. This proves

lim
det(Sp)→0

inf
y∈N̂ 0,1

k (A,b)

1

νk2
Epp(y) = ∞.

It remains to show that∣∣∣∣ ∑
|y(x)−y(x′)|�a

W
(∣∣y(x) − y(x′)

∣∣)∣∣∣∣� Ck2

det(Sp)
.

This follows from Lemma 4.3: the left hand side can be estimated by∑
|y(x)−y(x′)|�a

|S′x−S′x′|�a

|W |(∣∣y(x) − y(x′)
∣∣)+

∑
|y(x)−y(x′)|�a

|S′x−S′x′|>a

|W |(∣∣y(x) − y(x′)
∣∣)

�
∑

|y(x)−y(x′)|�a

|S′x−S′x′|�a

Ma−q +
∑

|y(x)−y(x′)|�a

|S′x−S′x′|>a

M
∣∣y(x) − y(x′)

∣∣−q

� ν(k + 1)2Ma−q#
{
x ∈ Z

3: |S′x| � a
}+ Mc−q

∑
|S′x−S′x′|�a

|S′x − S′x′|−q

� Cνk2

det(S′)
+ Cνk2

∑
|S′x|�a

|S′x|−q

� Ck2

det(S′)
+ Ck2

∫
|S′x|�a

|S′x|−q dx

= Ck2

det(S′)
+ Ck2

∫
|z|�a

|z|−q dz

det(S′)

= Ck2

.

det(Sp)
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Fig. 5.

This finishes the proof of the first part of Theorem 4.2.
(ii) As before, e denotes a unit vector perpendicular to the graph of A. By convexity in b (cf. Proposition 5.3) and

maxi |Bi | := c3 < c0 we may assume that〈
bi, e

〉 �=〈bj , e
〉

for i �= j and choose constants c, l > 0 small such that

min
i �=j

∣∣〈bi − bj , e
〉∣∣� c and c0 �

√
2l2 +

(
c

2

)2

+ c3. (21)

Consider (k + 1)2 points zij = A(i, j,0) at positions A({0, . . . , k}2). Since the singular values of Sp are bounded,
for each of these points there is another one closer than d to it for d sufficiently large. Now partition the graph of A

by disjoint translates of a square of side-length l such that every such point is covered. The number of those points in
such a square Q is bounded by C/det(Sp).

On the other hand, if A = RS, each set Qe = {z ∈ R
3: ∃λ ∈ [0, c/2]: z − λe ∈ Q} contains at least Cr−3 points

of the lattice rRZ
3 if r is small. Choosing r such that r3 = c̃ det(Sp), c̃ sufficiently small, we can move the original

points zij within the sets Qe onto distinct lattice points z′
ij of rRZ

3 such that |zij − z′
ij | �

√
2l2 + (c/2)2.

Now define a deformation y by

y(x1, x2, x3) = z′
x1x2

+ Bx3+1.

By (21) and |Bi | � c3, y lies in N̂ 0,1
k (A,b). y satisfies a minimal distance hypothesis with r : |y(x) − y(x ′)| � r for

x �= x′. If x3 = x′
3, this follows from the definition of y. If x3 �= x′

3 this follows from∣∣y(x) − y(x′)
∣∣� ∣∣〈y(x) − y(x′), e

〉∣∣
= ∣∣〈z′

x1x2
+ Bx3+1 − z′

x′
1x

′
2
− Bx′

3+1, e
〉∣∣

�
∣∣〈Bx3+1 − Bx′

3+1, e
〉∣∣− ∣∣〈z′

x1x2
− z′

x′
1x

′
2
, e
〉∣∣

�
∣∣〈bx3 − bx′

3, e
〉∣∣− c

2

� c

2
by (21) and the construction of y.

Now suppose W is admissible and as in Fig. 5, i.e. |W(r)| � Cr−α , with α < 3, for r � a, and W(r) � 0 for r � a,
moreover, W(r) � −1 for a � r � b, 0 < a < b given. Then for x fixed∑

x′ �=x

W
(∣∣y(x) − y(x′)

∣∣)�
∑

|y(x)−y(x′)|�a

W
(∣∣y(x) − y(x′)

∣∣)+
∑

a<|y(x)−y(x′)|�b

W
(∣∣y(x) − y(x′)

∣∣)
� C

∑
′

∣∣y(x) − y(x′)
∣∣−α +

∑
′

(−1)
|y(x)−y(x )|�a a<|y(x)−y(x )|�b
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� C
∑

x′∈Z3: 0<|rx′|�a

|rx′|−α − #
{
x′: a <

∣∣y(x) − y(x′)
∣∣� b

}
= Cr−α

∑
0<|x′|�a/r

|x′|−α − #
{
x′: a <

∣∣y(x) − y(x′)
∣∣� b

}
� Cr−αrα−3 − #

{
x′: a <

∣∣y(x) − y(x′)
∣∣� b

}
.

Now since the singular values of Sp are bounded, the number of atoms that lie in {z: a < |z − y(x)| � b} is bounded
below by C(b − a)/det(Sp) if b − a is not too small, and we find that

#
{
x′: a <

∣∣y(x) − y(x′)
∣∣� b

}
� C

(b − c0)
2 − (a + c0)

2

det(Sp)
� C

b − a

det(Sp)
.

Together with the above estimate and our choice r3 = c̃ det(Sp), this shows that∑
x′ �=x

W
(∣∣y(x) − y(x′)

∣∣)� Cr−3 − C̃r−3(b − a).

So if b − a is chosen sufficiently large, this energy is negative. Now sum over all x to deduce that also the overall
energy is negative. �
Remarks.

(i) It is not hard to see that if (cf. (2)) b0 is uniquely determined and there are Bi (cf. (13)) with |Bi | = c0, then α = 2
is the critical exponent for limdet(Sp)→0 ϕ(A,b).

(ii) Part (i) of Theorem 4.2 applies to more general energies E of the form

E(y) = Epp(y) + E0(y),

where Epp is an admissible pair potential with interaction function W as in (8) satisfying the conditions of Theo-
rem 4.2(i) and E0 � −Ck2 independent of c1.

5. Qualitative properties of ϕ

In this short section we discuss convexity and symmetry properties of ϕ. The proofs of the following results are
rather elementary.

5.1. Convexity properties

By frame indifference of the model, convexity of ϕ in A is in general not to be expected (cf. [7], p. 170, also recall
Theorem 4.2(i)). First, we show that under the usual assumptions even rank-one convexity fails in general. This is due
to the restrictions made in the relaxation process. Convexity in b depends on the ‘right’ definition of convergence.
Finally, for systems as in (9) where the c0-relaxed energy density may be non-trivial, we show quasiconvexity resp.
convexity of ϕ∞ in the first resp. second component.

5.1.1. Loss of rank-one convexity
First recall the notion of rank-one convexity:

Definition 5.1. Suppose f :Ω → R, where Ω ⊂ R
m×n is a set of m × n-matrices. We say that f is rank-one convex

on Ω if

λ �→ f
(
λA + (1 − λ)B

)
, λ ∈ [0,1],

is convex whenever λA + (1 − λ)B ∈ Ω for all λ ∈ [0,1] and rank(A − B) = 1.

The following result shows that ϕ will typically not be globally rank-one convex. Fix b and consider ϕ(·,b) :Ab :=
{A ∈ R

3×2: rank(A) = 2} → R.
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Proposition 5.2. Suppose ϕ(·,b) is rank-one convex and Assumption 2.6 is satisfied. Then for all A ∈ Ab

ϕ(A,b) � lim
A→∞ϕ(A,b).

Here, limA→∞ ϕ(A,b) is the large strain limit discussed in Proposition 4.1.

Proof. First note that ϕ is in fact bounded on each Ab(c1) := {A ∈ R
3×2: s1(A) � c1}, c1 > 0, by Lemma 2.12 and

Assumption 2.6. Let δ > 0. Set

f (λ1, λ2) := ϕ(A · Λ,b), Λ :=
(

λ1 0

0 λ2

)
for λ1, λ2 � 1. Note that

inf
x �=0

〈AΛx,AΛx〉
〈x, x〉 = inf

x �=0

〈Ax,Ax〉
〈Λ−1x,Λ−1x〉 � min

{
λ2

1, λ
2
2

}
inf
x �=0

〈Ax,Ax〉
〈x, x〉 .

From Proposition 4.1 we infer that for λ1, λ2 sufficiently large f (λ1, λ2) � E∗∗(b) − δ. Fix such λ1, λ2. By con-
vexity of λ �→ f (λ1, λ) on [1,∞) we deduce that f (λ1,1) � E∗∗(b)− δ. Now convexity of λ �→ f (λ,1) implies that
f (1,1) � E∗∗(b) − δ. �
5.1.2. Convexity in b

Discussing convexity in b, have to we insist on y(k) → (u,b) being defined as usual, i.e. not as proposed in (19) in

terms of v instead of u. Then k�iỹ
∗
⇀ b is weak*-convergence without explicit constraints with respect to b. So by

lower semicontinuity of Γ -limits we obtain:

Proposition 5.3. For A fixed, the map b �→ ϕ(A,b) is convex.

A direct proof is straightforward:

Proof. ϕ(A, ·) is continuous. Suppose b = 1
2 (b1 + b2). Divide S1 into four equal squares Q11,Q12,Q21,Q22 and

choose y
(k)
ij ∈ N̂ 0,1/2

k,Qij
(A,bj ) satisfying

1

ν(k/2)2
E
(
y

(k)
ij

)
� ϕ(A,bj ) + o(1), i, j = 1,2,

by Theorem 2.8 and frame indifference. Defining y(k) by

y(k)(x) = y
(k)
ij (x) for x ∈L∩ (kQij × [0, h]),

it is easily seen that y ∈ N̂ 0,1(A,b) and

ϕ

(
A,

b1 + b2

2

)
� lim inf

k→∞ E
(
y(k)(x): x ∈Lk

)
� 1

2

(
ϕ(A,b1) + ϕ(A,b2)

)
, �

which concludes the proof.

Remark. Defining convergence as in (19), it is not clear (and for c0 small enough false) that y constructed in the
previous proof satisfies ‖y − vA,b‖ � c0. Consider the example from Paragraph 3.2. For ν = 2 and A = Id

ϕ0(A,b) = 1

2ν

1∑
i,j=0

∑
z∈Z

2

(z,j)�=(0,0,i)

W
(∣∣Az + bj − bi

∣∣)

= 1

2

( ∑
2

W
(|Az|)+

∑
2

W
(∣∣Az + b1

∣∣)).
z∈Z \{0} z∈Z
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Now if W : [0,∞) → R satisfies W(0) > 0 and W(r) = 0 for r � 1, then ϕ0(Id2,3,0) > 0, while

ϕ0
(
Id2,3, (0,0,±1)

)= 0.

Hence ϕ0 is not convex in b. Since ϕ0 = limc0→0 ϕc0 , convexity also fails for values of c0 bigger than 0.

5.1.3. Quasiconvexity of ϕ∞
For energy functions that do not satisfy Assumption 2.6 the limit c0 → ∞ can be non-trivial. In the following

proposition we examine this limit for convexity properties. As in Theorem 3.2 we define ϕ∞ = limc0→∞ ϕc0 . If
Assumption 2.6 holds, the following is trivial by Theorem 3.2. We therefore treat only finite range energies given
by (9). For such energies, ϕ∞ is defined on all of R

3×2 × R
3(ν−1), cf. [21].

Recall the definition of quasiconvexity (cf., e.g., [1], p. 350):

Definition 5.4. A continuous function f : Rm×n → R is said to be quasiconvex if

−
∫
Ω

f (F + ∇ζ )dx � f (F )

for every bounded open subset Ω ⊂ R
n, ζ ∈ C∞

c (Ω;R
m), and all F ∈ R

m×n.

Proposition 5.5. Suppose that E is of the form (9). Then ϕ∞ is quasiconvex with respect to the first variable and
convex with respect to the second.

Remark. This reflects the fact that the full (unconstrained) Γ -limit is lower semicontinuous.

The proof is very similar to the proof of Theorem 3.2. We indicate the modifications.

Sketch of the Proof. Convexity in b is clear since by Proposition 5.3 all ϕc0 , c0 > 0, are convex. Let f ∈ C∞
c (S1;R

3)

and set u := A + f . We need to show that

ϕ∞(A,b) �
∫
S1

ϕ∞(A + ∇f,b)dx.

Let δ > 0 and c0 be given. By Theorem 2.7, for arbitrarily large k0 we find a deformation y :Lk0 → R
3 with

‖ỹ − u‖ � c0/k0 and | −
∫

[0,1]2(k0�
iỹ − bi)dρ| as small as we wish such that

1

νk2
0

E(y) �
∫
S1

ϕc0(∇u,b) + δ

3
.

Using Lemma 2.14, we may even assume that −
∫

[0,1]2(k0�
iỹ − bi)dρ = 0.

Proceeding as in Theorem 3.2 we construct a deformation y′ :Lk → R
3 for k � k0 by patching together appropri-

ately translated copies of y so that

sup
x∈Lk

∣∣y′(x) − Axp

∣∣= sup
x∈Lk0

∣∣y(x) − Axp

∣∣.
The crucial point to observe is that since y ∈ N̂ 0,1

k0,c0
(u,b) and u satisfies the same boundary conditions as A, in

contrast to Theorem 3.2 the energy splitting works without further assumptions. First, since we are dealing with
systems of finite range interaction, the energy error stems only from neglecting interactions between the boundary
layers of the regions that were patched together. Second, since u satisfies the same boundary conditions as A, this
error is negligible.

So again we find y′ ∈ N̂ 0,1
k,c̃0

(A,b) (c̃0 depending on f, k0) with

1

νk2
E(y′) � 1

νk2
E(y) + δ

3
0
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if k0 and k are large enough. Taking the limit k → ∞, it follows that

ϕ∞(A,b) � ϕc̃0(A,b) �
∫
S1

ϕc0(∇u,b) + δ.

Now sending c0 → ∞ the claim follows from monotone convergence and the arbitrariness of δ. �
5.2. Symmetry

In this paragraph we discuss general symmetry properties of ϕ and indicate – for ν = 1 or 2 – their implications
for a linearized theory.

By frame indifference of E,

ϕ
(
A,b1, . . . , bν−1)= ϕ

(
RA,Rb1, . . . ,Rbν−1) (22)

for all R ∈ SO(3). So to evaluate ϕ(A,b), we may only look at matrices

A =
⎛⎝a11 a12

a12 a22

0 0

⎞⎠ (23)

whose last row is 0 and whose top part is symmetric. Moreover, for systems of indistinguishable particles we have

Proposition 5.6. ϕ satisfies the following symmetry properties:

(i) If σ is a permutation of {1, . . . , ν − 1}, then

ϕ
(
A,b1, . . . , bν−1)= ϕ

(
A,bσ(1), . . . , bσ(ν−1)

)
.

(ii) For 1 � j � ν − 1

ϕ
(
A,b1, . . . , bν−1)= ϕ

(
A,b1 − bj , . . . , bj−1 − bj ,−bj , bj+1 − bj , . . . , bν−1 − bj

)
.

(iii) If ν � 2, then for all R ∈ O(3)

ϕ
(
A,b1, . . . , bν−1)= ϕ

(
RA,Rb1, . . . ,Rbν−1).

(iv) If R =
(

0 −1
1 0

)
, then

ϕ
(
A,b1, . . . , bν−1)= ϕ

(
AR,b1, . . . , bν−1).

(v) If P =
(

0 1

1 0

)
, then

ϕ
(
A,b1, . . . , bν−1)= ϕ

(
AP,b1, . . . , bν−1).

Proof. Without loss of generality we may switch to the reference configuration

L∩ ([−k/2, k/2
]2 × [0, h]).

Then (xp, x3) �→ (Pxp, x3) and (xp, x3) �→ (Rxp, x3) are lattice restoring, so (iv) and (v) follow. Also (i) is clear
since this only amounts to a renumbering of the film layers, the 0-layer held fixed. Interchanging the 0th and the j th
layer gives (ii). Finally, (iii) is trivial for ν = 1, and for ν = 2 it follows from (22) since by (ii) and (iv)

ϕ
(
A,b1)= ϕ

(
AR2, b1)= ϕ

(
AR2,−b1)= ϕ

(−A,−b1). �
Remarks.

(i) Note that the reflection P and R, rotation about 90◦, span the set of symmetry operations of [−1/2,1/2]2.
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(ii) If ν � 1, then (i) and (ii) are trivial. For ν = 2, (ii) states that

ϕ
(
A,b1)= ϕ

(
A,−b1).

(iii) The above statements only hold for systems of indistinguishable atoms. For situations as in (9) we cannot permute
the bi or rotate the lattice.

Suppose now our reference configuration is a natural state. By the results in Section 6 and Proposition 5.3 we
cannot expect that there is a unique quadratic form approximating ϕ for small strains. (An example of a macroscopic
energy density ϕ which is zero on contractions is given in Proposition 4.5 of [21].) However (as e.g. in Proposition 4.5
of [21]), for purely tensile deformations, i.e. s1(A) � 1, |bi − bj | � 1 for i �= j , there can be a symmetric quadratic
form Q such that for A (of the form (23)) and bi with

A ≈ Id2,3 =
(1 0

0 1
0 0

)
, bi − bi−1 ≈ e3 =

(0
0
1

)
the energy can be written as

E(A,b) ≈ Q
(
A − Id2,3, b

1 − e3, b
2 − b1 − e3, . . . , b

ν−1 − bν−2 − e3
)
.

Then Q is a symmetric form on R
3 × (R3)ν−1 = R

3ν leading to (9ν2 + 3ν)/2 elastic constants.
In the following we examine the cases ν = 1 and ν = 2 to show how symmetry reduces this number. We only treat

the case ν = 2 and comment on the much easier case ν = 1 thereafter. Here, (9ν2 + 3ν)/2 = 21.
Set b := b1 and let Q be given by

Q(ε, ε) = qij εiεj ,

where 1 + ε1 = a11, 1 + ε2 = a22, ε3 = a12, ε4 = b1, ε5 = b2 and 1 + ε6 = b3.

Proposition 5.7. Under these hypotheses

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 q12 q13 q14 q15 q16

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

q61 q62 q63 q64 q65 q66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 q12 0 0 0 q16

q12 q11 0 0 0 q16

0 0 q33 0 0 0

0 0 0 q44 0 0

0 0 0 0 q44 0

q16 q16 0 0 0 q66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, there are only six elastic constants.

Sketch of the Proof. First note that by symmetry of Q

qij = qji . (24)

Define

S =
⎛⎝1 0 0

0 1 0

0 0 −1

⎞⎠ , P̃ =
⎛⎝0 1 0

1 0 0

0 0 1

⎞⎠ and R̃ =
⎛⎝ 0 1 0

−1 0 0

0 0 1

⎞⎠ .

From (iii) and (ii) of Proposition 5.6 we get that ϕ(A,b) = ϕ(SA,Sb) = ϕ(SA,−Sb) which implies

q4j = q5j = 0 for j = 1,2,3,6. (25)

Next from (iii) and (v) of Proposition 5.6 we deduce ϕ(A,b) = ϕ(P̃AP, P̃ b) and hence

q11 = q22, q44 = q55, q13 = q23, q16 = q26. (26)

Finally by (22) and (iv) of Proposition 5.6 we have ϕ(A,b) = ϕ(R̃AR, R̃b) which leads to

q13 = −q23, q45 = q36 = 0. (27)
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Summarizing (24)–(27) yields the result. �
If ν = 1, (9ν2 + 3ν)/2 = 6, a similar reasoning shows that

Q =
⎛⎝q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞⎠=
⎛⎝q11 q12 0

q12 q11 0

0 0 q33

⎞⎠ .

In particular, there remain three elastic constants.

Remark. In general we cannot expect to have less than six resp. three elastic constants. This can be seen considering
suitable mass-spring models which also contain explicit angular depending terms (similar as in Section 6.2). One has
to allow for bond strengths of interactions within the x1–x2-plane that differ from the out-of-plane interactions. The
requirements of Proposition 2.11 are satisfied, and all the assertions of Proposition 5.6 apply.

6. Small strains

In this section, we study the response of our continuum theory to deformations that are locally close to rigid
motions. For a simple mass-spring model with nearest neighbor interaction discussed in [21], we could give an explicit
formula for ϕ which turned out to give zero energy response under contractive boundary conditions due to microscopic
‘crumpling’. This model, however, lacks some physically desirable features, in particular it has no shear resistance.
We will examine more realistic models which also include next-nearest neighbor interactions or angular-dependent
terms. In particular, we find that ϕ shows resistance to compressive deformations which may, however, be weaker than
to tensile strains. Again the crucial parameter is c0. Still, the relevant scaling of energy with respect to dist(A,O(2,3))

turns out to be quadratic. At first we study a one-dimensional atomic chain in detail, which might be of independent
interest modeling a polymer chain in a confined region. Using these results we also obtain estimates for thin films.

6.1. Energy scaling of an atomic chain

Consider L + 1 atoms at y0, . . . , yL ∈ R
3 whose energy is given by

E(y) =
L∑

i=1

W1
(|yi − yi−1|

)+
L−1∑
i=1

W2(φi),

where φi ∈ (−π,π] denotes the angle between yi+1 − yi and yi − yi−1. Assume that W1 is locally bounded,
W2 bounded and symmetric, W1(1) = 0 = W2(0), and there are α1, α2 > 0 and ρ > 0 such that

W1(r) �
{

α1(r − 1)2 for |r − 1| � ρ,

α2 for |r − 1| � ρ,
W2(φ) �

{
α1φ

2 for |φ| � ρ,

α2 for ρ � |φ| � π.

For given a > 0, we would like to examine

ϕ(a) := lim
L→∞

1

L
inf

NL(a)
E(y), NL(a) = {

y:
∣∣yi − (ia,0,0)

∣∣� c0
}
. (28)

(NL(a) is a one-dimensional version of N̂ 0,1
k .) In particular, we are interested in the energy scaling for deformations

near the zero-energy state yk = (k,0,0), i.e. a ≈ 1.

Lemma 6.1. For each a > 0 the limit in (28) exists.

Proof. This is just an easy one-dimensional special case of Theorem 2.8. We include a proof for the sake of complete-
ness. First note that since W1, restricted to [0,2c0 + a], and W2 are bounded, say by C > 0, we have |E(y)/L| � 2C,
so

ϕ(a) := lim inf
1

inf E

L→∞ L y∈NL(a)
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exists in R. For ε > 0 choose L0 such that

1

L0
inf

y∈NL0 (a)
E(y) � ϕ(a) + ε and

1

L
inf

y∈NL(a)
E(y) � ϕ(a) − ε ∀L � L0.

Then choose y0 ∈ NL0(a) such that

1

L0
E
(
y0)� ϕ(a) + 2ε.

We may assume that y0
0 = (0,0,0) and y0

L0
= (L0a,0,0) if L0 is large enough. For L � L0 we can break the atomic

chain into pieces of length L0 plus a remaining part of length smaller than L0 and define y by (0 � r < L0)

ykL0+r = (kL0a,0,0) + y0
r .

Clearly, y is in NL(a), and, by translational invariance,

E(y0, . . . , yL) � �L/L0�E
(
y0

0 , . . . , y0
L0

)+ 2CL0 + 2C�L/L0�.
So dividing by L and choosing L0 large enough, this shows that for L sufficiently large indeed

ϕ(a) − ε � 1

L
E(y0, . . . , yL) � ϕ(a) + 3ε. �

The main result for our one-dimensional model problem is the following

Proposition 6.2. There exist δ, c > 0 such that for all 1 − δ � a � 1 + δ

ϕ(a) � c(1 − a)2.

If in addition there exists α3 � α1 such that W1(r) � α3(r − 1)2 if |r − 1| � δ, and W2(0) = 0, then there are C,c > 0
such that

c(a − 1)2 � ϕ(a) � C(a − 1)2.

So the energy scales quadratically with the distance of a to 1. However, we will see that even for quadratic energy
wells ϕ will not be C2 at a = 1.

Before we come to the rather technical proof of the lower bound in Proposition 6.2, note that it is easy to get upper
bounds for ϕ(a):

Lemma 6.3. Suppose there exists α3 � α1 such that W1(r) � α3(r − 1)2 if |r − 1| � ρ, and W2(0) = 0. Then for
|a − 1| � ρ

ϕ(a) � α3(a − 1)2.

Proof. Just insert the Cauchy–Born state yk = (ka,0,0) and let L → ∞. �
We will now prove lower bounds for ϕ. Suppose first 1 � a � 2. Noting that imposing the additional constraint that

y0 = 0 and yL = La only leads to negligible energy errors (of order O(1/L)) we define EL by

EL(a) = inf
{
E(y):

∣∣yi − (ia,0,0)
∣∣� c0 and y0 = 0, yL = (La,0,0)

}
.

But if |yi − (ia,0,0)| � c0, then |yi+1 − yi | � a + 2c0 � 2(c0 + 1), so we have

EL(a) � inf

{
L∑

i=1

f (zi): z1, . . . , zL ∈ R
3 and z1 + · · · + zL = (La,0,0)

}
,

where f : R3 → R ∪ {∞} is given by

f (z) =
{

W1(|z|) for |z| � 2c0 + 2,
∞ for |z| > 2c0 + 2.
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Now clearly there exists α4 > 0 such that

f ∗∗(z) �

⎧⎨⎩
0 for |z| � 1,

α4(|z| − 1)2 for 1 < |z| � 2c0 + 2,

∞ for |z| > 2c0 + 2.

It follows that

ϕ(a) = lim
L→∞

1

L
EL(a) � lim

L→∞f ∗∗(a,0,0) � α4(a − 1)2. (29)

This establishes the desired lower bound for tensile deformations a � 1.
Suppose now a < 1. Since the inter-atomic distances |yi − yi−1| remain bounded, by rescaling E we may assume

that

W1(r) � (r − 1)2, W2(φ) � φ2.

Lemma 6.4. If y is any deformation with E(y) � L−3, then

|yL − y0|2 � L2(1 − 3L−2). (30)

Proof. Suppose E(y) � δ. Then

L∑
i=1

(|yi − yi−1| − 1
)2 � δ,

L−1∑
i=1

φ2
i � δ

and hence by Cauchy–Schwarz

L∑
i=1

∣∣|yi − yi−1| − 1
∣∣� √

L
√

δ,

L−1∑
i=1

|φi | �
√

L − 1
√

δ.

Noting that the absolute value of the angle between yi − yi−1 and yj − yj−1 is bounded by
∑L−1

k=1 |φk| we find that
for δL � 1

|yL − y0|2 =
∣∣∣∣∣

L∑
i=1

yi − yi−1

∣∣∣∣∣
2

=
∑

1�i�L
1�j�L

〈yi − yi−1, yj − yj−1〉

�
∑

1�i�L
1�j�L

|yi − yi−1||yj − yj−1| cos
(√

Lδ
)

=
( ∑

1�i�L

|yi − yi−1|
)2

cos
(√

Lδ
)

�
(
L − √

Lδ
)2

(1 − Lδ).

Now choosing δ = δ(L) = L−3, the claim follows. �
If y satisfies |yi − (ia,0,0)| � c0 for i = 0, . . . ,L, then La − 2c0 � (yL)1 − (y0)1 � La + 2c0. So, for |a − a′| �

2c0/L, we define EL depending on two parameters a, a′ by

NL(a, a′) := {
y ∈ NL(a): (yL)1 − (y0)1 = La′}

and

EL(a, a′) = inf ′ E(y).

NL(a,a )
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Also, let m = �
√

3 + 4c2
0 + 1� and define a0, a1, . . . and L0,L1, . . . by

1 − an = 4−1−n and Ln = 4m√
1 − an

= 23+nm.

Lemma 6.5. There exists c > 0 such that for all k ∈ N,

1

kLn

EkLn(a, a′) � c(1 − a′)2 ∀a′ ∈
[

3

4
, an

]
, |a − a′| � 2c0

kLn

.

Proof. The lemma is proven by induction on n. The case n = 0 follows directly from the following claim which will
be proven later.

Claim. There exists C > 0 such that, for all k ∈ N,

1

kL0
EkL0(a, a′) � C ∀a′ ∈

[
1

2
, a0

]
, |a − a′| � 2c0

kL0
.

Suppose the lemma is proven for n and choose c = min{(4m)−4,C}.

Ln = 4m√
1 − an

= m√
1 − an+2

� m√
1 − a′

for a′ � an+2 implies

L2
n(1 − a′) > 3 + (2c0)

2,

and thus

(Lna
′)2 + (2c0)

2 < L2
n

(
1 − 3L−2

n

)
.

But if y ∈NLn(a, a′), then |yLn − y0|2 � (Lna
′)2 + (2c0)

2, so (30) cannot hold. It follows from Lemma 6.4 that

1

Ln

E(y) � L−4
n ∀y ∈NLn(a, a′), 0 < a′ � an+2. (31)

Now let 3/4 � a′ � an+1, |a−a′| � 2c0/(kLn+1). Considering the first components of the atoms y0, yLn, . . . , y2kLn

for deformations y ∈NkLn+1 (note that Ln+1/Ln = 2) we deduce

EkLn+1(a, a′) �
2k∑
i=1

ELn(a, xi),

where x1 + · · · + x2k = 2ka′ and xi > 1/2, because

Lnxi � Lna − 2c0 � Lna
′ − Ln

2c0

kLn+1
− 2c0 � 3Ln

4
− 3c0 >

Ln

2
.

So if f : R → R ∪ {∞} is defined by

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ for x � 1/2,

c(1 − x)2 for 1/2 < x � an,

L−4
n for an < x � an+2,

0 for an+2 < x,

we have by (31), the above claim (note that C � c(1/2)2) and induction hypothesis,

1

kLn+1
EkLn+1(a, a′) � 1

2k

2k∑
i=1

1

Ln

ELn(a, xi) � 1

2k

2k∑
i=1

f (xi) � f ∗∗(a′).
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Fig. 6.

Now, since

L−4
n = (4m)−4(1 − an)

2 � c(1 − an)
2, 1 − an = 16(1 − an+2) and − 2c(1 − an) < −16

15
c(1 − an),

f ∗∗ is given by

f ∗∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ for x � 1/2,

c(1 − x)2 for 1/2 < x � an,
c(1−an)

15 (16(1 − x) − (1 − an)) for an < x � an+2,

0 for an+2 < x

(see Fig. 6). So for a′ � an we are done. But also for a′ ∈ [an, an+1]

f ∗∗(a′) = c(1 − an)

15

(
16(1 − a′) − (1 − an)

)
� c(1 − a′)2.

(Set 1 − a′ = λ(1 − an), then this is equivalent to 1
15 (16λ − 1) � λ2 which in turn is equivalent to λ ∈ [1/15,1]. This

is guaranteed by a′ ∈ [an, an+1].)
The claim at the beginning of the proof can now be shown by analogous arguments: y ∈NL0(a, a′) implies

1

L0
E(y0, . . . , yL0) � δ(L0)

L0
= L−4

0 for 0 � a′ � a1.

For 1/2 � a′ � a0 gain considering the first components of the atomic sites y0, yL0, . . . , ykL0 , x1 + . . . + xk = ka′,
xi > 0, we deduce

1

kL0
EkL0(a, a′) � 1

k

k∑
i=1

1

L0
EL0(a, xi) � 1

k

k∑
i=1

f (xi) � f ∗∗(a′) � C > 0,

where now f : R → R ∪ {∞} is defined by

f (x) =
⎧⎨⎩

∞ for x � 0,

L−4
0 for 0 < x � a1,

0 for a1 < x.

�

After these preparations the proof of Proposition 6.2 is straightforward:

Proof of Proposition 6.2. The upper bound is immediate from Lemma 6.3. The lower bound for a � 1 was estab-
lished in (29). The additional constraint in N (a, a′) is negligible, so the lower bound for a < 1 follows by choosing
n such that a = a′ � an and letting k → ∞ in Lemma 6.5 noting that, by Lemma 6.1, it suffices to consider a subse-
quence in (28). �
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Fig. 7.

The following examples show that even for quadratic energy wells

W1(r) = α1(r − 1)2 resp. W2(φ) = α2φ
2, (32)

ϕ will not be C2 at a = 1.

Examples. 1. Let W1,W2 be as in (32). If a � 1, then, as in the derivation of (29), we see that the Cauchy–Born state
yk = (ka,0,0) is asymptotically optimal, leading to

ϕ(a) = α1(a − 1)2.

For 0 < a < 1 consider the spiral deformation yk = (ka, c0 cos(kψ), c0 sin(kψ)), k = 1, . . . ,L with |ψ | � 1. Then
|yk+1 − yk|2 and φk are independent of k. An elementary calculation shows that φ2

k = c2
0ψ

4/a2 + O(ψ6). Choosing
ψ such that c2

0ψ
2/(2a) = κ(1 − a) and minimizing the corresponding energy with respect to κ we find ψmin with

energy

Emin = α1α2

α2 + α1c
2
0/4

(1 − a)2 +O
(
(1 − a)3)

(see Fig. 7). This is by a c0-dependent factor smaller than the Cauchy–Born minimizer yk = (ka,0,0) which has mean
energy α1(1 − a)2.

Also this shows that the minimal energy is not twice differentiable in a at a = 1 since for a � 1 the Cauchy–Born
state is optimal. Note that for c0 → ∞ this expression converges to 0 reflecting the fact that without this constraint we
would expect pure bending energies for a < 1 that occur only at lower energy scales.

2. To extend this observation to thin films, we also study the following two dimensional deformation (E as in the
preceding example). Consider a piece of a circle in the x1-x3-plane with radius R (large):

γ �→ (
R sin(γ ),0,R

(
1 − cos(γ )

)− d
)

for 0 � γ � γmax, γmax given by R(1 − cos(γmax)) = d . We place atoms on this curve starting at γ = 0 with distances
1 between neighboring atoms:

yk = (
R sin(kΦ/L),0,R

(
1 − cos(kΦ/L)

)− d
)
, k = 0, . . . ,L, (33)

where 2R sin(Φ/2L) = 1 and Φ � γmax, Φ + Φ/L > γmax. Now, for given a < 1 (near 1), we choose R so big that

sin(γmax) = aγmax.

An elementary analysis proves that for d < c0 and a sufficiently close to 1, y ∈ NL(a) and Φ/L = 3(1 − a)/d +
O((1 − a)2). For later use we mention that (in powers of (1 − a))

Φ ≈ γmax ≈ √
6 (1 − a)1/2, R ≈ 3d(1 − a)−1, L ≈

√
2d√
3

(1 − a)−1/2.

The mean energy of y is thus

1
E(y) = α2

(
Φ
)2

= 9α2
2

(1 − a)2 +O
(
(1 − a)3).
L L d
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Now patching together appropriately translated and reflected copies of this configuration leads to y in NL(a) with
arbitrarily large L and mean energy ≈ (9α2/d

2)(1 − a)2. Finally, set y′ = āy ∈ NL(aā) for ā � 1 near 1 and, for
given x � 1 near 1 minimize E(y′) subject to aā = x. It follows that

ϕ(x) � 9α1α2

d2α1 + 9α2
(1 − x)2 +O

(
(1 − x)3).

Again, this is preferable to the Cauchy–Born energy α1(1 − x)2.

Remark. In terms of scaling with c0 the lower and upper bound for ϕ(a) derived in the preceding examples re-
spectively in Proposition 6.2 do not match: the factors of (1 − a)2 scale like c−2

0 respectively c ∼ m−4 ∼ c−4
0 (cf.

Lemma 6.5). In fact, the lower bound can be improved as we shall now detail.

Fix c0 and let k ∈ N. Suppose y ∈ NkL,kc0(a) and consider the corresponding k-step chain Y = (Y0, . . . , YL)

defined by Yj = ykj . For the corresponding angles we obtain

|Φj | �
k(j+1)−1∑

i=k(j−1)+1

|φi |.

To estimate |Yj − Yj−1|, let Φ̄j =∑kj−1
i=k(j−1)+1 |φi |. Then, if Φ̄ � 1, similar as on page 68, we obtain

|Yj − Yj−1| =
∣∣∣∣∣

kj∑
i=k(j−1)+1

(yi − yi−1)

∣∣∣∣∣�
kj∑

i=k(j−1)+1

|yi − yi−1|
(
1 − Φ̄2

j

)
.

On the other hand, clearly |Yj − Yj−1| �∑kj

i=k(j−1)+1 |yi − yi−1|, so setting γ k :=∑kj

i=k(j−1)+1 |yi − yi−1|,(|Yj − Yj−1| − k
)2 � max

{
(γ k − k)2,

(
γ k − k − γ kΦ̄2

j

)2}
� 2(γ k − k)2 + 2

(
γ kΦ̄2

j

)2
� 10(γ k − k)2 + 2(2kΦ̄j )

2.

(If γ � 2, this is clear. If γ � 2, it follows from 10(γ − 1)2 � 2(γ − 1)2 + 2γ 2 and Φ̄2
j � 1. If Φ̄j � 1, we get such

an estimate even easier:(|Yj − Yj−1| − k
)2 � 2

(
(2c0 + a)k

)2 + 2k2 � Ck2Φ̄2
j .

Now let y′ := Y/k. Then clearly y′ ∈ NL,c0(a). Without loss of generality we may assume there exists α3 as in
Lemma 6.3. By Cauchy–Schwarz,

EL(y′) � α3

L∑
j=1

(|y′
j − y′

j−1| − 1
)2 + α3

L−1∑
j=1

Φ2
j

= α3

k2

L∑
j=1

(|Yj − Yj−1| − k
)2 + α3

L−1∑
j=1

Φ2
j

� α3

L∑
j=1

(
10(γ − 1)2 + CΦ̄2

j

)+ α3

L−1∑
j=1

Φ2
j

� α3

L∑
j=1

(
10

k2
k

kj∑
i=k(j−1)+1

(|yi − yi−1| − 1
)2)+ α3

L−1∑
j=1

(
Ck

k(j+1)−1∑
i=k(j−1)+1

|φi |2
)

� C

(
1

k

Lk∑(|yi − yi−1| − 1
)2 + k

Lk∑
|φi |2

)
.

i=1 i=1
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It follows that

1

L
EL(y′) � Ck2

Lk
ELk(y)

and since y ∈ NkL,kc0(a) was arbitrary, letting L → ∞ in fact

ϕkc0(a) � c(c0)k
−2ϕc0(a).

This proves that also the lower bound scales like c−2
0 . �

6.1.1. Application: a polymer chain in a confined region
The atomic chain described above can serve as a model of a polymer confined to a tubular region about itself, e.g.

by neighboring chains. The above considerations suggest that its energy, at least for small strains a, can be described
by a Hamiltonian

H(a) =
{

α1(1 − a)2 for a � 1,

α2(1 − a)2 for a � 1,

where 0 < α1 < α2. The corresponding Boltzmann distribution of statistical mechanics is

dPβ(a) = 1

Zβ

e−βH(a) da,

β = 1/kT > 0, where k is Boltzmann’s constant and T temperature. For large β , i.e. sufficiently low temperature, we
may take this as an approximation for all a.

It is elementary to see that the partition function Zβ is given by

Zβ = 1

2

√
π

β

(√
1

α1
+
√

1

α2

)
.

The mean of this distribution, i.e. the preferred elongation of the atomic chain, can also be calculated explicitly:∫
a dPβ(a) = 1 − 1√

πβ

(√
1

α1
−
√

1

α2

)
.

Since α2 > α1, this is strictly less than 1 and increasing in β , reflecting thermal contraction as expected for polymers
(cf. [23]).

6.2. Energy scaling near O(2,3)

Taking into account only next neighbor interactions leads to zero energy response to compressions, as noted earlier
(see Proposition 4.5 of [21]). Using the results of the previous paragraph, we will now examine the energy scaling
near the zero energy set O(2,3) of a thin film. To simplify the discussion, we consider two related models of nearest
and next nearest neighbor interaction resp. nearest neighbor and angular interaction. We also add an additional energy
penalty for two atoms getting too close to each other, as is physically not unreasonable.

Suppose W1,W
′
1 : [0,∞) → R, W2 : R → R are continuous, W2 is 2π -periodic, W1(1) = W ′

1(
√

2) = W2(0) = 0,
and there is an α > 0 such that

W1(r) � α(r − 1)2, W ′
1(r) � α

(
r − √

2
)2

, W2(φ) � αφ2

for r in a neighborhood of 1 resp.
√

2 and φ in a neighborhood of 0.
Let δ > 0, and define the energy function Ean by

Ean(y) = 1

2

∑
|xi−xj |=1

W1
(|yi − yj |

)+ δ

2

∑
|xi−xj |=2

χ[0,r0)

(|yi − yj |
)

+ 1 ∑ |yi − yk||yj − yk|W2

(
|θikj | − π

)
(34)
2 2
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where the third sum runs over all k and all i, j such that xi − xk and xj − xk are perpendicular and of norm 1. The
next-nearest neighbor interaction is given by

Ennn(y) = 1

2

∑
|xi−xj |=1

W1
(|yi − yj |

)+ 1

2

∑
|xi−xj |=√

2

W ′
1

(|yi − yj |
)+ δ

2

∑
|xi−xj |=2

χ[0,r0)

(|yi − yj |
)
. (35)

Proposition 6.6. Both Ean and Ennn are admissible energy functions leading to continuum stored energy functions
ϕan resp. ϕnnn. For ν � 2 there exist δ, c > 0 such that for dist(A,O(2,3)) � δ,

ϕan(A,b), ϕnnn(A,b) � cdist2
(
A,O(2,3)

)
.

Clearly, Ean and Ennn are admissible energy functions (see Proposition 2.11). It remains to prove the lower bound
on ϕ in terms of dist2(A,O(2,3)). To give a detailed proof is cumbersome, we mention the main ideas.

Sketch of the Proof. The film contains various atomic chains. For ν � 2, the film energy can be bounded from below,
e.g., by the energies of the chains y(j, x2, x3), j = 0, . . . , k, where these chain energies also contain angular terms as
in the previous paragraph due to the angular resp. next nearest neighbor part in E. Similarly this holds for the diagonal
chains. Since the deviation of A from O(2,3) for A in the vicinity of O(2,3) can be estimated by the deviation of
|A(1,0)| and |A(0,1)| from 1 and the deviation of |A(1,1)| and |A(1,−1)| from

√
2, applying Proposition 6.2 gives

the result. �
Remarks.

(i) Proposition 6.6 is false for ν = 1, i.e. films consisting of only one single layer. (This can be seen by considering
folded configurations.)

(ii) Define ϕ̄(A) := infb ϕ(A,b). For ν � 2 this result implies that ϕ̄ (defined on R
3×2, cf. the remark below Propo-

sition 2.11) is not rank-one convex. This is because ϕ vanishes on O(2,3), but not on its rank-one convex hull
{A ∈ R

3×2: s2(A) � 1} (see [11], page 50, Corollary 2.3.2).

In the rest of this Section we will see that ϕ̄ is not twice differentiable at A = Id. For the sake of simplicity we
assume that c0 is not too small.

Recall the construction (33) for the atomic chain. Let R, L and Φ be the same as in (33). Set R(x3) = R+ ν−1
2 −x3.

We define a film deformation patching together appropriately cylindrical configurations

y(x1, x2, x3) = (
R(x3) sin(x1Φ/L), x2,R(x3)

(
1 − cos(x1Φ/L)

)− d
)
,

for x ∈ {0, . . . ,L} × {0, . . . , k} × {0, . . . , ν − 1}. The nearest neighbor, next nearest neighbor lengths and bond angles
in the x3-layer resp. between the x3- and (x3 + 1)-layer are approximately

1 + 1

R

(
ν − 1

2
− x3

)
,

√
2 + 1√

2R

(
ν − 1

2
− x3

)
− 1

2
√

2

Φ

L
, ±π

2
± Φ

2L
,

respectively. Since Φ/L ≈ R−1 ≈ 3(1 − a)/d , this implies that, similar as in (33), for A = (ae1, e2), a � 1 near 1,

ϕ̄(A) � const.

c2
0

(1 − a)2,

provided there exists β > 0 such that, in a neighborhood of 1 resp.
√

2 resp. 0,

W1(r) � β(r − 1)2, W ′
1(r) � β

(
r − √

2
)2

, W2(φ) � βφ2.

For a � 1, however, it is not hard to prove that ϕ̄(A) � α1(1 − a)2. (This can be seen considering the one dimensional
atomic chains i �→ y(i, x2, x3).) �
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