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Abstract

It is well known that the scalar field equation

�u − u + up = 0 in R
N, N � 3,

admits ground state solutions if and only if 1 < p < (N + 2)/(N − 2) and that for each fixed p in this range, there corresponds
a unique ground state (up to translation). In this article, we show that the maximum value of such ground states, ‖u‖∞, is an
increasing function of p for all 1 < p < (N + 2)/(N − 2). As a consequence of this result we derive a Liouville type theorem
ensuring that there exists neither a ground state solution to this equation, nor a positive solution of the Dirichlet problem in any
finite ball, with the maximum value less than eN/4. Our proof relies on some fine analyses on the first variation of ground states
with respect to the initial value and with respect to p. The delicacy of this study can be evidenced by the fact that, on any fixed
finite ball, the maximum value of positive solutions to the Dirichlet problem is never a monotone function of p, over the whole
range 1 < p < (N + 2)/(N − 2).
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1. Introduction

In this article we consider the scalar field equation

�u − u + up = 0 in R
N, N � 3, (1.1)

where u = u(x) ∈ R. This basic semi-linear elliptic partial differential equation arises in various context in physics,
as for example in the study of solitary waves for the Klein–Gordon equation and of standing waves for the non-
linear Schrödinger equation. It also appears in non-linear optics, laser propagation and cosmology, see references
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in [1]. From the mathematical point of view, this seemingly simple equation poses numerous fundamental questions
that have attracted the attention of many authors along the years. After serious advances in the understanding of the
structure of solutions to this equation, there are still many interesting and basic questions that remain open.

We are interested in ground states of (1.1), that is, in positive twice differentiable solutions of (1.1) defined in the
entire Euclidean space R

N that satisfy u(x) → 0 as |x| → ∞. It is well known that the scalar field equation admits a
ground state if and only if 1 < p < (N + 2)/(N − 2). The existence of a ground state was proved by Berestycki and
Lions in [1], while the non-existence outside of the range follows from the powerful Pohozaev identity [16].

Further information on ground states u of (1.1) was obtained by Gidas, Ni and Nirenberg in their celebrated
paper [7]. They proved that the function u(x) is necessarily radially symmetric and it has a unique critical point,
precisely at the center of symmetry, where u achieves its maximum value. If we assume that the center of symmetry
is the origin then u(x) = u(r), with r = |x|, and u is the unique solution to the initial value problem of the ordinary
differential equation

u′′ + N − 1

r
u′ − u + up = 0, u(0) = α > 0, u′(0) = 0, (1.2)

where ′ denotes derivative with respect to r and α = ‖u‖∞ is the maximum value of u.
At this point, the question of uniqueness of ground states for the field equation (1.1) is reduced to the study of all

possible solutions u = u(r,α) for (1.2), varying the initial value α. Still, this basic question took many years and the
efforts of many authors to be solved, among the main contributions we have the work of Coffman [3], McLeod and
Serrin [10], Peletier and Serrin [14,15], Ni and Nussbaum [13] and Ni [12], culminating with the work of Kwong [8].
At the heart of Kwong’s proof there is a fine analysis of the derivative of u with respect to α in combination with the
Sturm comparison theorem, all aiming to prove the monotonicity of the function R(α,p) with respect to α, where
R = R(α,p) denotes the first value of R such that u(R,α) = 0, if such an R exists. Actually what matters is a form
of such a monotonicity when R = ∞. See Theorem 1.3 for the precise statement of uniqueness and corresponding
properties.

Once the uniqueness of the ground state of (1.1) has been settled, we see that the maximum value of the solution
αp = u(0) defines a function of p in the range 1 < p < (N + 2)/(N − 2). It is natural to ask about the nature of this
function, in particular if it defines a one-to-one correspondence and, in this case, if this correspondence is monotone
increasing or monotone decreasing in p. It is our purpose in this article to give an answer to this question.

The main goal of this article is to prove the following monotonicity theorem:

Theorem 1.1. The maximum value αp of the ground state to the scalar field equation (1.1) is a strictly increasing
function of p for all 1 < p < (N + 2)/(N − 2).

Our proof relies on some fine analyses of the first variation of ground states with respect to the maximum value
α and with respect to p. The delicacy of this study can be evidenced by the fact that, on any fixed finite ball, the
maximum value of positive solutions to the Dirichlet problem is never a monotone function of p. More precisely, let
R > 0 and let BR = B(0,R) be the ball of radius R, and consider the boundary value problem

�u − u + up = 0 in BR, and u = 0 on ∂BR. (1.3)

This problem has a positive solution if and only if 1 < p < (N + 2)/(N − 2). Moreover, as in the case of R
N , the

solution is unique and radially symmetric and its maximum value αp(R) is achieved at the origin. In contrast with the
problem in R

N , we prove in Section 6 that for every R > 0, the function αp(R) is not monotone as a function of p

such that 1 < p < (N + 2)/(N − 2).
Using the monotonicity of αp , proved in Theorem 1.1, and analyzing further the asymptotic behavior of αp , as p

approaches the extremes of the interval (1, N+2
N−2 ), we obtain the following Liouville type theorem

Theorem 1.2. There is no positive solution to Eq. (1.1), nor to Eq. (1.3) in a finite ball, satisfying ‖u‖∞ � eN/4.

Out of our results there come several questions that we do not know how to answer now. First of all, we do not
know if the constant eN/4 given in Theorem 1.2 is optimal for non-existence of positive solutions to (1.1). Second, the
precise picture of the curve αp(R) versus p is poorly understood and its study becomes a challenging problem.



P.L. Felmer et al. / Ann. I. H. Poincaré – AN 25 (2008) 105–119 107
Finally, we should mention that the whole structure of the set of solutions to (1.1) and (1.3) is not well understood,
since a complete analysis of changing sign solutions is still missing, including uniqueness of solutions with a pre-
scribed number of zeros and the relation between the different parameters involved, that is, p,α,R and N . With this
work we expect to contribute to a better understanding of this problem providing answers to an open question and
continuing with the development of a methodology that serves as a tool to treat this and other related problems.

We complete this introduction with the statement of some known facts for future reference. The existence and
uniqueness of ground states or positive solutions of (1.3) can be obtained by the characterization of the solution set of
(1.2) which we summarize in

Theorem 1.3. For each given 1 < p < (N + 2)/(N − 2), there exists a finite number αp > 1 such that

(i) if 0 < α < αp , then u(r,α) is a positive, oscillatory function in (0,∞): It assumes an increasing sequence
of minimum values, and a decreasing sequence of maximum values, with both sequences approaching one at
infinity.

(ii) If α = αp , then u(r,α) is a ground state: It is positive in (0,∞) and for any ε ∈ (0,1),

lim sup
r→∞

u(r)e
√

1−εr = 0 and lim
r→∞

u′(r)
u(r)

= −1. (1.4)

(iii) If α > αp , then u(r,α) is a crossing function: It is positive in (0,R) and vanishes at R with u′(R) < 0 for some
finite R = R(α) > 0. Moreover, R(α) is a decreasing function of α with

lim
α↓αp

R(α) = ∞ and lim
α→∞R(α) = 0.

Remark 1.1. While the oscillatory solution of course changes monotonicity and concavity infinitely many times, the
ground state or crossing solution remains decreasing for all 0 < r < R and changes concavity exactly once, at some
rc > 0 where u > 1 and u changes from concave down to concave up as r increases across rc. This fact was proved
recently in the more general setting of Pucci’s operators in [6].

We conclude this introduction with some comments on the case when p is not included in Theorem 1.3. As it was
already mentioned, when p � (N + 2)/(N − 2), then there is no ground state, and no positive solutions of (1.3), as a
consequence of Pohozaev identity [16].

When 0 < p < 1, then the constant solution u ≡ 1 behaves like a repeller that pushes all solutions of (1.2) away:
If α > 1, then u(r,α) is an unbounded increasing function defined for all r � 0; if α < 1, then u(r,α) is a decreasing
function and vanishes at some finite r = R. Therefore, there can be no ground states of (1.1). However, one can show
that the Dirichlet problem (1.3) has exactly one solution for each finite ball. The analysis of these questions is much
simpler for this sub-linear non-linearity. The linear case p = 1 is completely a different story and will not be discussed
here.

This paper is organized as follows: In Section 2, we give a proof of a key lemma that not only leads to the uniqueness
of positive solutions, but also gives detailed characterization of the variation of u with respect to its maximum value.
In Sections 3 and 4, we shall discuss in details the properties of the first variation of u with respect to p. Those
properties will be used in Section 5 to complete the proof of Theorem 1.1. Finally, in Section 6 we prove Theorem 1.2
and we present the arguments revealing that the maximum value of the positive solutions of (1.3) is never a monotonic
function of p over the whole range 1 < p < (N + 2)/(N − 2), on whatever finite ball B in R

N .

2. A key lemma for the uniqueness

Historically, most technical complexities in establishing the uniqueness of ground states and positive solutions in
finite balls have been involved with the study of the variation

v(r) = ∂u(r;α,p)

∂α

which solves the second order linear equation
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v′′ + N − 1

r
v′ + f ′(u)v = 0, v(0) = 1, v′(0) = 0, (2.1)

where f ′(u) = −1 + pup−1. In the original work of Kwong [8] and the subsequent studies of McLeod [11], Kwong
and Zhang [9] and Chen, C.S. Lin [2], tremendous efforts have been devoted into showing that u and v do not vanish
simultaneously if u is a crossing solution, and v does not approach zero if u is a ground state. Several ingenious ideas
have been developed in their rather involved techniques, which are nevertheless not strong enough to determine how
many zeros the function v has when u remains positive.

In a fundamental paper Tang [19] proved that v vanishes exactly once when u � 0. We shall recall the result of
Tang, together with a self-contained proof. Moreover, we shall prove a new result which asserts that at the unique zero
of v, the solution u is larger than 1. In addition, we will establish the positivity of the important function

ζ(r) = rN
[
u′v′ + f (u)v

] + (N − 2)rN−1u′v. (2.2)

These results will play key roles in our study.

Lemma 2.1. Let 1 < p < (N + 2)/(N − 2). Suppose u is either a ground state of (1.1), or a positive solution of (1.3)
in a ball of radius R > 0. Then there exists a number τv > 0 such that

v(r) > 0 for 0 � r < τv, v(τv) = 0, and v(r) < 0 for τv < r < R, (2.3)

where we allow R = ∞ when u is a ground state. Furthermore, we have

(i) u(τv) > 1.
(ii) The ratio v(r)/u(r) is strict decreasing over (0,R).

(iii) The function ζ(r) is positive in (0,R) and

lim
r→R

ζ(r) > 0.

Consequently, v(R) < 0 when R < ∞, and v → −∞ as r → ∞ when R = ∞.

Proof. We first show that v must vanish before u reaches 1. Define r1 to be the unique number for which u(r1) = 1.
Suppose for contradiction that v > 0 for 0 < r < r1, then

u′′(r1)v
′(r1) − u′(r1)v

′′(r1) = −f (1)v′(r1) + f ′(1)u′(r1)v(r1)

= (p − 1)u′(r1)v(r1) < 0.

On the other hand, using the identity[
rn−1(u′′v′ − u′v′′)

]′ = rn−1f ′′(u)u′2v,

introduced by Tang in [20], we find that

rn−1
1

[
u′′(r1)v

′(r1) − u′(r1)v
′′(r1)

] = p(p − 1)

r1∫
0

rn−1up−2(r)u′2(r)v(r)dr > 0.

This gives a contradiction. Therefore, at the first zero of v, denoted by τv , we have u(τv) > 1, and (i) is proved.
We then show that the ratio v(r)/u(r) is strict decreasing over (0,R). For this purpose, we consider the Wronskian

of u and v

ξ(r) = rn−1(u′v − uv′). (2.4)

In our case f (u) = −u + up , we find that

ξ ′(r) = rn−1[uf ′(u) − f (u)
]
v = (p − 1)rn−1upv. (2.5)

This clearly implies that ξ(r) > 0 for all 0 < r < τv , over which v(r)/u(r) is thus strictly decreasing. If ξ(r) is not
always positive in the interval (0,R), then there would be a number τξ > τv such that
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ξ(r) > 0 for 0 < r < τξ , and ξ(τξ ) = 0. (2.6)

We should also have

v(τξ ) < 0 (2.7)

since at any possibly subsequent zero of v adjacent to τv , it would be true that ξ < 0 there. To continue, we recall the
important function defined by Tang in [19]

T (r) = g(u)ξ(r) − ζ(r), g(u) = 2f (u)

uf ′(u) − f (u)
= 2

p − 1

(
1 − u1−p

)
, (2.8)

where ζ was defined in (2.2). Because

ζ ′(r) = 2rn−1f (u)v, (2.9)

we obtain

T ′(r) = g′(u)u′(r)ξ(r) = 2u−pu′(r)ξ(r). (2.10)

Integration of T over (0, τξ ) gives

T (τξ ) = 2

τξ∫
0

u−pu′(r)ξ(r) < 0

by (2.6). Hence we find that

ζ(τξ ) = −T (τξ ) > 0. (2.11)

However, by the definition of ζ(r) we calculate

ζ(τξ ) = τn
ξ

[
u′v′ + f (u)v

] + (n − 2)τn−1
ξ u′v

= [
τn
ξ

(
u′v′u/v + f (u)u

) + (n − 2)τn−1
ξ u′u

]
v/u

= [
τn
ξ

(
u′2 + f (u)u

) + (n − 2)τn−1
ξ u′u

]
v/u

= Q(τξ )v(τξ )/u(τξ ),

where

Q(r) = rn
[
u′2 + uf (u)

] + (n − 2)rn−1uu′.

So by (2.7) and (2.11) we arrive at

Q(τξ ) < 0. (2.12)

We will show that this is impossible. Define

P(r) = rn
[
u′2 + 2F(u)

] + (n − 2)rn−1uu′, F (u) =
u∫

0

f (s)ds. (2.13)

The well-known Pohozaev identity gives

P ′(r) = rn−1[2nF(u) − (n − 2)uf (u)
] = 2rn−1(σup+1 − u2) (2.14)

where

σ = 2n − (n − 2)(p + 1)
> 0.
2(p + 1)
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Since P(R) > 0 when R < ∞, and P(r) → 0 as r → ∞ when u is a ground state which vanishes exponentially at
infinity, it is evident that P(r) increases from 0 to a finite number less than R, and then decreases thereafter. Therefore,
for all 0 < r < R, one has P(r) > 0 and

Q(r) = P(r) + rn
[
uf (u) − 2F(u)

]
>

p − 1

p + 1
rnup+1 > 0,

yielding a contradiction of (2.12). Hence we claim that ξ(r) is positive in (0,R) and part (ii) is proved.
Clearly, part (ii) also indicates that v can only vanish once within (0,R). Hence (2.3) is proved.
Finally, by (2.10) and positivity of ξ we conclude that T (r) < 0 for all r ∈ (0,R). Since g(u(r)) > 0 when r � r1,

it holds that ζ(r) > 0 for r � r1. Moreover, by (2.9) one has

ζ(r) > ζ(r1) > 0, r > r1,

implying that

ζ(r) > 0 in (0,R), and lim
r→R

ζ(r) > 0. (2.15)

When R < ∞, one sees immediately that v(R) < 0. For a ground state, it can be easily shown that, as r → ∞, either
v → 0 which contradicts (2.15), or v → −∞, which must be true. This establishes part (iii) and completes the proof
of the lemma. �
3. The first variation with respect to p

To understand how the maximum value of ground states changes as p varies, we consider another variation given
by

φ(r) = ∂u(r;α,p)

∂p
.

This function can be useful in characterizing the solutions of the initial value problem (1.2) when α is kept a constant
but p varies. The variation with respect to p was first used by Felmer and Quaas in [5], in the study of critical
exponents for the Pucci operator.

The function φ is the unique solution to the initial value problem of the ordinary differential equation

φ′′ + N − 1

r
φ′ − φ + pup−1φ + up logu = 0, φ(0) = φ′(0) = 0. (3.1)

In what follows in this section, we prove a series of lemmas to understand the behavior of the function φ which is
relevant for our analysis.

Lemma 3.1. If u(0) = α > 1, then φ is negative for small r > 0.

Proof. Using the L’Hospital’s rule we have

lim
r→0

φ′(r)
r

= φ′′(0).

Thus, taking limit of Eq. (3.1) gives

Nφ′′(0) + αp logα = 0.

For α > 1, we then have

φ′′(0) = − 1

N
αp logα < 0. (3.2)

Because φ(0) = φ′(0) = 0, this clearly implies that φ is negative for small r > 0. �
Denote the unique zero of the v function by τv , then we have
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Lemma 3.2. If u is a ground state, then φ(r) stays negative in (0, τv], and vanishes at most once over (τv,∞). In
other words, either φ(r) < 0 for all 0 < r < ∞, or there exists a number τφ > τv where φ vanishes and

φ(r) < 0 for 0 < r < τφ, φ(r) > 0 for r > τφ. (3.3)

Proof. Let u = u(r;α,p) be a ground state, and v, φ the associated variations defined as above. Introduce the Wron-
skian type function

ξv(r) = rN−1[v′(r)φ(r) − v(r)φ′(r)
]
. (3.4)

Apparently, ξv(0) = 0. Using Eqs. (2.1) and (3.1) we can also verify

ξ ′
v(r) = rN−1upv logu. (3.5)

More importantly, it can be shown that

ξv(r) > 0 for all r > 0. (3.6)

To prove (3.6), we need an important function

Tp(r) = ξv(r) − h
(
u(r)

)
ζ(r), (3.7)

where

h(u) = up logu

2(−u + up)
, for u > 0, u �= 1, (3.8)

h(1) = lim
u→1

h(u) = 1

2(p − 1)
,

and ζ(r) is defined in (2.2). We note that h(u) is continuously differentiable for u > 0, because, when u �= 1,

h′(u) = 1

2(−u + up)2

[(
pup−1 logu + up−1)(−u + up

) − up logu
(−1 + pup−1)]

= up

2(−u + up)2

[
up−1 − 1 − (p − 1) logu

]
,

and

lim
u→1

h′(u) = 1

4
.

Furthermore, since

up−1 − 1 − (p − 1) logu > 0 for all u > 0 and u �= 1,

we see that h(u) is a strictly increasing function of u > 0. Taken together, we have

h(u) > 0 and h′(u) > 0 for all u > 0. (3.9)

Combining (3.5), (2.9) and (2.15) we find that

T ′
p(r) = −h′(u)u′(r)ζ(r) > 0.

Therefore, we have, for all r > 0, Tp(r) > Tp(0) = 0. Hence

ξv(r) > h
(
u(r)

)
ζ(r) > 0.

This implies (3.6). Now, suppose for contradiction that φ vanishes somewhere in (0, τv]. Then there is a number
τφ ∈ (0, τv] such that φ is negative in (0, τφ), and equals zero at τφ . Thus it also holds that φ′(τφ) � 0. Since v is
either positive at τφ when τφ < τv , or zero if τφ = τv , we must have

ξv(τφ) = τN−1
φ

[
v′(τφ)φ(τφ) − v(τφ)φ′(τφ)

] = −τN−1
φ v(τφ)φ′(τφ) � 0.

This leads to a contradiction of (3.6). Therefore, the function φ(r) could only vanish after v becomes negative. Because
v stays negative in (τv,∞), a similar argument as above can show that φ cannot take a second zero, should it vanish
somewhere in (τv,∞). The proof is completed. �
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Lemma 3.3. If φ(r) has a zero in (0,∞), then limr→∞ φ(r) = ∞.

Proof. Let τφ > τv be the unique zero of φ as asserted in Lemma 3.2. Take an arbitrary number rc > τφ and put

−c = φ(rc)/v(rc) < 0.

Because φ(r)/v(r) is a decreasing function by (3.6), and v < 0 for all r > τv , we conclude that φ(r) > −cv(r) > 0
for large r . Furthermore, since v(r) → −∞ as r → ∞, there holds that limr→∞ φ(r) = ∞. �
4. Further properties of the first variation

In this section, we will derive some further properties for the φ function, which can be very helpful in dealing
with the delicate case when φ(r) stays negative for all 0 < r < ∞. For this purpose, we introduce, analogous to the ζ

function,

η(r) = rN
[
u′φ′ + f (u)φ

] + (N − 2)rN−1u′φ. (4.1)

Differentiation gives

η′(r) = 2rN−1f (u)φ − rNupu′ logu. (4.2)

If we write

η1(r) = φ

ru′ − h(u), (4.3)

then

η′(r) = 2rNf (u)u′η1(r). (4.4)

To easy our calculation later, we evaluate the derivative of φ/ru′ as follows:

d

dr

(
φ

ru′

)
= η(r)

rN+1u′2(r)
. (4.5)

This can be derived by differentiation and the definition of η, see (4.1):

d

dr

(
φ

ru′

)
= 1

r2u′2

[
ru′φ′ − φ(ru′)′

]

= 1

r2u′2

[
ru′φ′ + rf (u)φ + (N − 2)u′φ

]

= η(r)

rN+1u′2(r)
.

Lemma 4.1. η(0) = 0 and η(r) < 0 for small r > 0.

Proof. That η(0) = 0 is obvious. However, the evaluation of η for small r > 0 is non-trivial. We calculate

l = lim
r→0

η(r)

rN+4

= lim
r→0

2rNf (u(r))u′(r)η1(r)

(N + 4)rN+3
by (4.4)

= 2f (α)

N + 4
lim
r→0

u′(r)
r

η1(r)

r2

= f (α)u′′(0)

N + 4
lim
r→0

2η1(r)

r2
.

To continue, we first note that
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lim
r→0

φ(r)

ru′(r)
= lim

r→0

φ(r)

r2

r

u′(r)
= φ′′(0)

2u′′(0)
= h(α),

by (3.2) and the formula u′′(0) = −f (α)/N . Thus limr→0 η1(r) = 0, and so by the L’Hospital’s rule we obtain

lim
r→0

2η1(r)

r2
= lim

r→0

1

r

(
η(r)

rN+1u′2
− h′(u)u′(r)

)
by (4.3), (4.5)

= lim
r→0

η(r)

rN+4

r2

u′2(r)
− lim

r→0

h′(u)u′(r)
r

= l

u′′2(0)
− h′(α)u′′(0).

Therefore, we have

l = − N

N + 4
l − f 3(α)h′(α)

N2(N + 4)
,

and so, by substituting the expression of h′(α),

l = − f 3(α)h′(α)

2N2(N + 2)

= − αpf (α)

4N2(N + 2)

[
αp−1 − 1 − (p − 1) logα

]
< 0.

Thus η(r) is negative for small r > 0. �
Next, we show that η will remain negative at least until the ground state solution reaches one. More precisely, let

r1 be the unique number satisfying

u(r1) = 1.

Then we have

Lemma 4.2. η(r) < 0 for all 0 < r � r1.

Proof. We first prove the identity

φ(r)ζ(r) − ru′(r)ξv(r) = v(r)η(r) (4.6)

that relates the various functions used so far. This can be verified by the definitions of these functions in (2.2), (3.4),
and (4.1) that give rise to

φ(r)ζ(r) − ru′(r)ξv(r) = rNφ
[
u′v′ + f (u)v

] + (N − 2)rN−1u′vφ − rN(u′v′φ − u′vφ′)
= rNf (u)φv + (N − 2)rN−1u′φv + rNu′φ′v
= vη.

Next, we recall that both Tp(r) and ζ(r) are positive for all r > 0, see the proof of Lemma 3.2. Therefore,

h(u) = up logu

2f (u)
<

ξv(r)

ζ(r)
for all r > 0.

If 0 < r < r1, then u > 1 and f (u) > 0, implying further that

up logu <
2f (u)ξv(r)

ζ(r)
.

Now, by (4.2) and (4.6) we obtain, provided that 0 < r < r1,
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η′(r) = 2rN−1f (u)φ − rNupu′ logu

< 2rN−1f (u)φ − rNu′ 2f (u)ξv(r)

ζ(r)

= 2rN−1f (u)(φζ − ru′ξv)/ζ(r)

= 2rN−1f (u)vη(r)/ζ(r).

This implies that, at any possible zero of η within the interval (0, r1], it holds that η′ < 0. However, since η < 0 for
small r < 0, η must stay negative in the whole range (0, r1]. The proof is completed. �

By this lemma, we can easily prove

Lemma 4.3. If φ(r) < 0 in (0, r1], then φ′(r1) > 0.

Proof. By Lemma 4.2, we have η(r1) < 0. Since f (u(r1)) = f (1) = 0, there results

rN
1 u′(r1)φ

′(r1) + (N − 2)rN−1
1 u′(r1)φ(r1) < 0.

Because u′(r1) < 0, it holds that

φ′(r1) > −N − 2

r1
φ(r1) > 0.

This proves the lemma. �
5. Proof of Theorem 1.1

For a pair of numbers p and p̄ satisfying

1 < p < p̄ < (N + 2)/(N − 2), (5.1)

there correspond a pair of ground states, denoted by u and ū, respectively, of the scalar field equation. Let α and ᾱ be
the maximum value of these two ground states. The radial function u(r) is then the unique solution of the initial value
problem (1.2). Similarly, ū(r) is the unique solution of the initial value problem

u′′ + N − 1

r
u′ − u + up̄ = 0, u(0) = ᾱ, u′(0) = 0. (5.2)

We need to prove

α < ᾱ. (5.3)

To this end, we introduce the third function û(r), that solves

u′′ + N − 1

r
u′ − u + up̄ = 0, u(0) = α, u′(0) = 0. (5.4)

u(r) and û(r) have the same initial data, but solve different equations; whereas û(r) and ū have different initial data,
but solve the same equation. To prove (5.3), it suffices to show that û must be an oscillatory function over (0,∞), or
equivalently, û is neither a ground state itself nor a crossing solution, when p and p̄ are sufficiently close.

Because φ(r) < 0 for small r > 0, see Lemma 3.1, we can further assume that û(r) < u(r) when r > 0 is small.
There are two possibilities: either û and u meet at some large value of r , or û < u for all r > 0. These will be discussed
separately below. For the first case when u and û intersect, our discussion is relatively simpler and will be given first.
Next we will rely on some delicate analyses to rule out the second possibility that û < u for all r > 0.

Case I: The curves u(r) and û(r) intersect at some r > 0.
If û is an oscillatory function, then our proof is done. We thus assume that û(r), like u(r), is a decreasing function.

As above, we denote by r1 the unique number that makes the ground state u = 1. We let r∗ > r1 be the unique number
at which

pup−1(r∗) = 1. (5.5)
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If furthermore φ(r) has a zero τφ > 0, then by Lemma 3.3 we can thus pick up a large number

r̂ > r∗

such that

φ(r̂) > 0 and φ′(r̂) > 0.

Write w(r) = u(r) − û(r). Provided that p̄ > p is sufficiently close to p, one has

pûp−1(r̂) < 1, w(r̂) < 0 and w′(r̂) < 0. (5.6)

For any r > r̂ for which û > u, we have

w′′(r) + N − 1

r
w′(r) = −û(r) + ûp̄(r) + u(r) − up(r)

< −û(r) + ûp(r) + u(r) − up(r) since û(r) < 1 and p̄ > p

= −(û − u)

(
1 − ûp − up

û − u

)

= −(û − u)
(
1 − pu

p−1∗
)
,

where u∗ ∈ (u, û). Because u∗ < û(r) < û(r̂), from (5.6) it follows that

w′′(r) + N − 1

r
w′(r) < 0.

Let r∞ be the supremum of r for which û(r) > u(r) for all r ∈ (r̂, r∞). Then the function rN−1w′(r) is strictly
decreasing in (r̂, r∞), implying that

lim
r→r∞

rN−1w′(r) < r̂N−1w′(r̂) < 0. (5.7)

Now, if r∞ is a finite number, then necessarily w(r∞) = 0; since w(r) < 0 for r̂ < r < r∞, we have w′(r∞) � 0. This
contradicts (5.7). Thus r∞ = ∞, and so û(r) > u(r) for all r > r̂ . Evidently, û cannot be a crossing solution. We can
also demonstrate that û is not a ground state either, since otherwise, û has to decay exponentially as r → ∞, leading
to limr→∞ rN−1w′(r) = 0, and a contradiction of (5.7) again.

Next we consider the case when φ(r) < 0 for all r > 0. Denote by rp > 0 the r value where the curves u(r) and
û(r) first meet beyond the origin; in other words,

w(r) = u(r) − û(r) > 0 for 0 < r < rp, but w(rp) = 0. (5.8)

Then rp tends to infinite as p̄ → p. Therefore, we can assume that

rp > r∗.

By (5.8) w′(rp) � 0. If w′(rp) = 0, then

w′′(rp) = −û(rp) + ûp̄(rp) + u(rp) − up(rp) = up̄(rp) − up(rp) < 0,

since û(rp) = u(rp) < 1 and p̄ > p, which forces rp to be a maximum point of w, this is a contradiction. Therefore,
similar to (5.6) we have

pûp−1(rp) < 1, w(rp) = 0 and w′(rp) < 0. (5.9)

Moreover, the solution curves u(r) and û(r) intersect transversally at rp , and û > u for r slightly larger than rp . For
any r > rp for which û > u, a similar argument as above can show that

w′′(r) + N − 1

r
w′(r) < 0.

Thus by the same reasoning as above we can show that û can only be an oscillatory function again. This completes
the discussion of Case I.

Case II: u(r) > û(r) whenever r > 0 and û(r) > 0.
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Obviously, should this case occur, û would not be an oscillatory function. We need to prove that û is neither a
crossing solution, nor a ground state too. We note further that this case could only occur when the φ function stays
negative for all r > 0. Here we have to rely on a somewhat indirect approach based on ideas due to Peletier and
Serrin [14], subsequently developed by Cortázar, Elgueta and Felmer [4], Serrin and Tang [17] and Tang [18,19]. For
the decreasing functions u(r) and û(r), we let r(u) and s(u) denote their respective inverse functions. Thus r(u) and
s(u) are both defined and positive for u ∈ (0, α). Since

ur = 1

ru
, urr = − ruu

r3
u

,

the function r(u) satisfies the equation

ruu = N − 1

r
r2
u + f (u)r3

u. (5.10)

A similar equation holds for s(u). If 0 < uc < 1 is a critical point of r − s, then using Eq. (5.10) and the corresponding
equation of s(r) we obtain

(r − s)′′(uc) = (N − 1)r ′2(uc)

(
1

r(uc)
− 1

s(uc)

)
+ r ′3(uc)(u

p
c − u

p̄
c ) < 0, ′ = ∂

∂u

because r ′(uc) < 0, r(uc) > s(uc) > 0, uc < 1 and p̄ > p. Hence the difference function r − s cannot assume a
positive minimum value in 0 < u < 1.

By Lemma 4.3, we have

φ′(r1) = ∂2u

∂r∂p
(r1) > 0.

This gives

∂2r(1)

∂p∂u
= ∂

∂p

(
1

ur(r1)

)
= −urp(r1)

u2
r (r1)

= − φ′(r1)

u2
r (r1)

< 0.

Thus, provided that p̄ > p is sufficiently close to p, we can assume

s′(1) < r ′(1) < 0. (5.11)

Assume for contradiction that û(r) is a crossing solution that vanishes at some r > 0, where û′ is negative and finite.
Because u is a ground state, there results

lim
u↓0

[
r ′(u) − s′(u)

] = −∞.

Thus the difference r(u) − s(u) is decreasing for small u > 0, and is increasing near u = 1 by (5.11). Consequently,
r − s has to assume a positive minimum value within u ∈ (0,1), which contradicts the maximum principle just
established above.

Next we assume for contradiction that û is itself a ground state. Then û(r) < u(r) for all r > 0, and so r − s > 0
for all u ∈ (0, α). By (5.11) and the maximum principle it follows that r − s is strictly increasing in u ∈ (0,1). Thus

r(u) > s(u) > 0, and s ′(u) < r ′(u) < 0 for all 0 < u < 1. (5.12)

To derive a contradiction, we consider the function

B(u) = 1

r ′2(u)
− 1

s′2(u)
, B(u) > 0, (5.13)

and ideas of Serrin and Tang [17]. We first calculate

0 � lim
u↓0

sN−1(u)B(u) � lim
u↓0

rN−1(u)B(u)

� lim
rN−1(u)

′2
= lim

r→∞ rN−1u′2(r) = 0,

u↓0 r (u)
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since the ground state u decays exponentially at infinite. Therefore

lim
u↓0

sN−1(u)B(u) = 0. (5.14)

Next, we compute, for small u > 0,

1

2
B ′(u) = − r ′′(u)

r ′3(u)
+ s′′(u)

s′3(u)

= −N − 1

rr ′ + u − up + N − 1

ss′ − u + up̄

< −N − 1

rr ′ + N − 1

ss′ .

Now from Young’s inequality follows

− s(u)B ′(u)

s′(u)
< 2(N − 1)

(
s

rr ′s′ − 1

s′2

)

= 2(N − 1)

(
s

r
· 1

|r ′‖s′| − 1

s′2

)
< 2(N − 1)

(
1

|r ′‖s′| − 1

s′2

)

� (N − 1)

(
1

r ′2
+ 1

s′2
− 2

s′2

)
= (N − 1)

(
1

r ′2
− 1

s′2

)

= (N − 1)B(u).

Therefore, as s′(u) < 0, we obtain

s(u)B ′(u) + (N − 1)s′(u)B(u) < 0.

Hence the function sN−1(u)B(u) is decreasing for 0 < u < 1. By (5.14) we have that B(u) < 0 for small u > 0, which
is impossible in view of (5.13), completing Case II. Thus the monotonicity of ‖u‖∞ is established, finishing the proof
of Theorem 1.1.

6. Proof of Theorem 1.2 and properties in finite balls

In this section we prove the Liouville type theorem announced in the introduction. For this purpose we obtain the
asymptotic behavior of αp = ‖u‖∞ when p approaches 1 and (N + 2)/(N − 2). We also prove the non-monotonicity
of the maximum value for solutions of (1.3).

We start with the Pohozaev identity

P(r) = rNu′2(r) + 2rNF
(
u(r)

) + (N − 2)rN−1u(r)u′(r)

= 2

r∫
0

tN−1[σup+1(t) − u2(t)
]

dt, σ = 2N − (N − 2)(p + 1)

2(p + 1)
.

Because u decays exponentially at infinity, P(r) → 0 as r → ∞. It implies that

α
p−1
p >

1

σ
= 2(p + 1)

2N − (N − 2)(p + 1)
,

yielding at once that

lim αp = ∞.

p↑(N+2)/(N−2)
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On the other hand, using the monotonicity of αp proved in Theorem 1.1, we have for any 1 < p < (N + 2)/(N − 2),

αp > lim
p↓1

αp � lim
p↓1

σ−1/(p−1)

= lim
p↓1

(
2(p − 1) + 4

4 − (N − 2)(p − 1)

)1/(p−1)

= lim
q→∞

(
1 + N

4q + 2 − N

)q

q = 1

p − 1

= lim
q→∞

(
1 + 1

q̂

)nqq̂/(4q+2−N)

q̂ = 4q + 2 − N

N

= eN/4.

This yields the lower bound for αp and the Liouville type theorem for ground states of the scalar field equation. Finally,
since the maximum value of a positive solution to the Dirichlet boundary value problem in any finite ball is necessarily
larger than αp , the Liouville type theorem in finite balls also follows. This completes the proof of Theorem 1.2.

To end this section we establish the non-monotonicity in a ball of radius R > 0. We know that for each given
1 < p < (N + 2)/(N − 2), there corresponds exactly one positive solution of (1.3). Let αp(R) be the maximum value
of this solution then by the next lemma the non-monotonicity follows

Lemma 6.1.

lim
p→1+ αp(R) = lim

p→((N+2)/(N−2))−
αp(R) = ∞, ∀R > 0. (6.1)

Proof. First, it holds that

αp(R) > αp,

where αp is the maximum value of the ground state. By the fact that αp approaches infinity as p ↑ (N + 2)/(N − 2),
we find that

lim
p↑(N+2)/(N−2)

αp(R) = ∞. (6.2)

Second, we can prove

lim
p↓1

αp(R) = ∞. (6.3)

Indeed, for any finite β > 1, we can find pβ > 1 sufficiently close to one such that

max
0<u�β

∣∣f (u)
∣∣ = max

0<u�β

∣∣−u + up
∣∣ � N

R2
.

Hence for p = pβ , and 1 < α � β , the solution u(r,α) of the initial value problem (1.2) satisfies

∣∣rN−1u′(r)
∣∣ =

∣∣∣∣∣
r∫

0

sN−1f
(
u(s)

)
ds

∣∣∣∣∣ � rN

R2
.

This gives, for 0 < r < R,

∣∣u′(r)
∣∣ � r

R2
<

1

R

and so |u(R) − u(0)| < 1. Consequently, u(R) > 0, and αp(R) > β for p = pβ , from which (6.3) follows. �
Remark 6.1. The limits of (6.2) and (6.3) indicate that αp(R) is decreasing near p = 1 and increasing near p =
(N + 2)/(N − 2). Therefore there exists a critical exponent pR ∈ (1, (N + 2)/(N − 2)) at which the least maximum
value is achieved. We do not know if this is the only critical point of αp(R) as a function of p.
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