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Abstract

In this paper we study the properties of any sequence (un)n�1 weakly converging to a nonnegative function u in W
1,p
0 (Ω),

p > 1, and satisfying a variational inequality of type −div(an(·,∇un)) � fn, where (an)n�1 is a suitable sequence of monotone

operators and (fn)n�1 is any strongly convergent sequence in the dual space W−1,p′
(Ω). We prove that the sequence (un −

(1 − ε)u)− strongly converges to 0 in W
1,p
0 (Ω) for any ε ∈ (0,1). We show by a counter-example that the result does not hold

true if ε = 0. A remarkable corollary of these strong ε-convergences is that the sequence (un)n�1 satisfies, up to a subsequence,
a kind of semi-strong convergence: (un)n�1 can be bounded from below by a sequence which converges to the same limit u but

strongly in W
1,p
0 (Ω). We also give an example of a nonnegative weakly convergent sequence which does not satisfy this semi-

strong convergence property and hence cannot satisfy any variational inequality of the previous type. Finally, in the linear case of a
sequence of highly-oscillating matrices, we improve the strong ε-convergences by replacing the arbitrary small constant ε > 0 by
a sequence (εn)n�1 converging to 0.
© 2006

Résumé

Dans cet article, on étudie les propriétés de toute suite (un)n�1 qui converge faiblement dans W
1,p
0 (Ω), p > 1, vers une

fonction positive u et qui satisfait une inégalité variationnelle du type −div(an(·,∇un)) � fn, où (an)n�1 est une suite convenable

d’opérateurs monotones et où (fn)n�1 est une suite fortement convergente dans l’espace dual W−1,p′
(Ω). On montre que, pour

tout ε ∈]0,1[, la suite (un − (1 − ε)u)− converge fortement vers 0 dans W
1,p
0 (Ω), et, à l’aide d’un contre-exemple, que cette

convergence n’est pas en général vraie lorsque ε = 0. Un corollaire remarquable de ces ε-convergences fortes est que la suite
(un)n�1 satisfait, à une sous-suite près, une sorte de semi-convergence forte : la suite (un)n�1 peut en effet être minorée par une

suite qui converge fortement dans W
1,p
0 (Ω) vers la même limite u. On explicite aussi un exemple d’une suite positive et faiblement

convergente qui ne vérifie pas la semi-convergence forte et qui par conséquent, n’est solution d’aucune inéquation variationnelle du
type précédent. Enfin, dans le cas linéaire d’une suite fortement oscillante de matrices, on améliore la ε-convergence en remplaçant
la constante arbitraire ε > 0 par une suite (εn)n�1 convergeant vers 0.
© 2006
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1. Introduction

In [2] we proved the following result:
For any pair of sequences (Bn,Cn)n�1 of equi-coercive and bounded matrix-valued functions defined in a bounded

open set Ω of R
d , for any pair of sequences (vn,wn)n�1 weakly converging to (v,w) in H 1

0 (Ω)2, and for any pair of
strongly convergent sequences (hn, gn)n�1 in H−1(Ω)2, such that for any n � 1,

−div(Bn∇vn) � gn and − div(Bn∇vn) � hn in D′(Ω), (1.1)

we have the semi-continuity property

∀ψ ∈ C∞(
Ω

)
, ψ � 0, lim inf

n→+∞

∫
Ω

ψBn∇vn · ∇wn �
∫
Ω

ψB∗∇v · ∇w, (1.2)

where B∗ is the H -limit (well-defined up to a subsequence) of the sequence (Bn)n�1 in the sense of the
H -convergence of Murat and Tartar [6].

One of the key-ingredient of the proof (1.2) is given by the following auxiliary result: Under the same assumptions
for the sequences (Cn)n�1 and (wn)n�1, if Tε , for ε > 0, is a smooth ε-approximation of the function (t 	→ t−) on R

such that

Tε(0) = 0 and ∀t ∈ R,

{ |Tε(t) − t−| � ε,

−1 � T ′
ε(t) � 0,

then we have the strong convergence

Tε(wn − w) −→ 0 in H 1
0 (Ω). (1.3)

Moreover, when Bn = B is independent of n the strong convergence (1.3) holds with Tε(t) = t−. But in general, the
sequence (wn − w)− does not strongly converge to 0 because of the oscillations of Bn like in the homogenization
theory (see Remark 3.6 of [2]). The proofs of (1.3) and (1.2) are rather technical and need a fine result of potential
theory.

The purpose of this study is to give another and simpler strong convergence of type (1.3) under the extra assumption
of nonnegativity of the limit and in a nonlinear framework. This new approach has a surprising consequence on the
behavior on the sequences satisfying a variational inequality such (1.1). The main result of the paper (see Theorem 2.1)
is the following:

For any sequence (an)n�1 of uniformly p-monotone, p > 1, and uniformly bounded Carathéodory functions

from Ω × R
d into R

d (see Section 2 for details), for any sequence (un)n�1 weakly converging to u � 0 in W
1,p

0 (Ω),

and for any strongly convergent sequence (fn)n�1 in W−1,p′
(Ω), p′ := p

p−1 > 1, such that for any n � 1,

−div
(
an(·,∇un)

)
� fn in D′(Ω), (1.4)

we have the semi-strong convergences

∀ε ∈ (0,1),
(
un − (1 − ε)u

)− −→ 0 strongly in W
1,p

0 (Ω). (1.5)

Contrary to (1.3) we do not consider in (1.5) an ε-approximation of (t 	→ t−). We keep this function but we have to
introduce the shift εu inside to obtain the strong convergence. The price to pay is to assume the nonnegativity of the
weak limit u.

A noteworthy corollary of (1.5) (see Corollary 2.4) is that there exist a subsequence (uθ(n))n�1 and a sequence

(vk)k�1 strongly converging to u in W
1,p

0 (Ω), such that

∀n � k, uθ(n) � vk a.e. in Ω. (1.6)
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Thanks to inequality (1.6) the qualifying “semi-strong” for convergence (1.5) takes its whole meaning.
The strong convergences (1.5) are in some sense optimal since we cannot take ε = 0 if an depends actually on n. We

give a counter-example (see Proposition 3.1) showing that the oscillations of an prevent from the strong convergence
of (un − u)−. The assumptions cannot be relaxed anymore. On the one hand, it is easy to check that the nonnegativity
of u is a consequence of (1.5). On the other hand, the variational inequality (1.4) is a crucial assumption to obtain (1.5)
and (1.6). Indeed, there exists a nonnegative sequence un weakly converging in W

1,p

0 (Ω) which does not satisfy (1.6)
and hence neither (1.5) (see Proposition 3.2). Such a sequence has the particular property to satisfy none variational
inequality of type (1.4). This counter-example is quite general since it holds true provided that p � d .

If it is not possible to take ε = 0 in the strong convergence (1.5), a natural question is to know if we can replace
the arbitrary small but fixed constant ε > 0 in (1.5) by a positive sequence (εn)n�1 converging to 0. We prove that
the answer is positive (see Theorem 4.1) in the case of any sequence of highly-oscillating matrices, i.e. an(x, ξ) =
A(x/τn)ξ , where A is a periodic matrix-valued function. In this linear framework we assume that the variational
inequality (1.4) holds true and that u belongs to W 2,d (Ω). Then, there exists a positive sequence εn, with τn 
 εn 
 1,
such that(

un − (1 − εn)u
)− −→ 0 strongly in W

1,p

0 (Ω). (1.7)

The paper is organized as follows: Section 2 is devoted to the results (1.5) and (1.6) and to their proof. In Section 3
we give two counter-examples showing the optimality of these results. In Section 4 we prove the strong convergence
(1.7) in the case of a sequence of highly-oscillating matrices.

2. Semi-strong convergence results

Let Ω be a bounded open set of R
d , d � 1, let p ∈ (1,+∞[ and p′ := p

p−1 . Let a be a fixed function from Ω ×R
d

into R
d which satisfies the following properties:

• a is a Carathéodory function, i.e.{
a.e. x ∈ Ω, a(x, ·) is continuous on R

d,

∀ξ ∈ R
d, a(·, ξ) is measurable on Ω;

• a is coercive, i.e. there exists a positive constant α and a nonnegative function γ in L1(Ω) such that

a.e. x ∈ Ω, ∀ξ ∈ R
d , a(x, ξ) · ξ � α|ξ |p − γ (x);

• a is strictly monotone, i.e.

a.e. x ∈ Ω, ∀ξ �= η ∈ R
d,

(
a(x, ξ) − a(x, η)

) · (ξ − η) > 0;
• a is bounded, i.e. there exists a positive constant β and a nonnegative function δ in Lp(Ω) such that

a.e. x ∈ Ω, ∀ξ ∈ R
d ,

∣∣a(x, ξ)
∣∣ � β

(|ξ | + δ(x)
)p−1

.

Let (an)n�1 be a sequence of functions from Ω × R
d into R

d which satisfies the following properties:

(i) for any n � 1, an is a Carathéodory function,
(ii) an is uniformly monotone with respect to a, i.e. for any n � 1,

a.e. x ∈ Ω, ∀ξ, η ∈ R
d ,

(
an(x, ξ) − an(x, η)

) · (ξ − η) �
(
a(x, ξ) − a(x, η)

) · (ξ − η);
(iii) an is uniformly bounded, i.e. there exists a positive constant β such that, for any n � 1,

a.e. x ∈ Ω, ∀ξ ∈ R
d ,

∣∣an(x, ξ)
∣∣ � β|ξ |p−1.

Under the previous assumptions we have the following result:

Theorem 2.1. Let (un)n�1 be a sequence in W
1,p

0 (Ω) such that

un ⇀ u weakly in W
1,p

(Ω). (2.1)
0



124 M. Briane et al. / Ann. I. H. Poincaré – AN 25 (2008) 121–133
Assume that there exists a strongly convergent sequence (fn)n�1 in W−1,p′
(Ω) such that

−div
(
an(·,∇un)

)
� fn in D′(Ω). (2.2)

Then, we have the implication

u � 0 a.e. in Ω �⇒

⎧⎪⎨⎪⎩
∀v ∈ W

1,p

0 (Ω),

0 � v � u a.e. in Ω and v < u e. in {u > 0},
(un − v)− → 0 strongly in W

1,p

0 (Ω)

(2.3)

(a.e. for almost everywhere and e. for everywhere).

Remark 2.2. It is easy to check that the function v := (1 − ε)u satisfies the requirements of (2.3) for any ε ∈ (0,1).
In this case, we obtain the equivalence

u � 0 a.e. in Ω ⇐⇒ ∀ε ∈ (0,1),
(
un − (1 − ε)u

)− → 0 strongly in W
1,p

0 (Ω). (2.4)

The implication (⇒) is an immediate consequence of (2.3) with v := (1 − ε)u. Conversely, assume that the right-hand
side of (2.4) holds true. Then, the sequence (un − (1 − ε)u)− weakly converges to εu− and strongly to 0 in W

1,p

0 (Ω).

Therefore, the uniqueness of the weak limit in W
1,p

0 (Ω) implies that u− = 0 a.e. in Ω , or equivalently, u � 0 a.e.
in Ω .

In the sequel, we will only focus on the strong convergence (2.4).

Remark 2.3. The variational inequality (2.2) implies the strong convergence of the negative part of the sequence
(un − u), up to an arbitrary small shift εu. In [2] we proved that the strong convergence holds with ε = 0, without
assuming the nonnegativity of u but assuming that an does not depend on n. In general, the sequence (un − u)−
does not strongly converge to zero in W

1,p

0 (Ω), even if u � 0 a.e. in Ω . This is due to the oscillations effects of the
sequence an (see Proposition 3.1 below). Moreover, inequality (2.2) cannot be relaxed (see Proposition 3.2 below).

The previous semi-strong convergence result allows us to obtain a strong approximation from below of the se-
quence un:

Corollary 2.4. Let (un)n�1 be a sequence in W
1,p

0 (Ω) which satisfies assumptions (2.1) with u � 0 a.e., and (2.2).

Then, there exist a subsequence (uθ(n))n�1 and a sequence (vk)k�1 strongly converging to u in W
1,p

0 (Ω), such that

∀n � k, uθ(n) � vk. (2.5)

Proof of Theorem 2.1. Assume that u � 0 a.e. in Ω . Let v be a function in W
1,p

0 (Ω) such that 0 � v � u a.e. in Ω

and v < u everywhere in {u > 0}. Set En := {un − v < 0}. By using successively the uniform monotonicity (ii) of an,
the variational inequality (2.2) and the strong convergence of fn to f in W−1,p′

(Ω), we have

0 � −
∫
Ω

(
a(x,∇un) − a(x,∇v)

) · ∇(un − v)− dx

=
∫
Ω

(
a(x,∇un) − a(x,∇v)

) · ∇(un − v)1En dx

�
∫
Ω

(
an(x,∇un) − an(x,∇v)

) · ∇(un − v)1En dx

= −
∫
Ω

(
an(x,∇un) − an(x,∇v)

) · ∇(un − v)− dx

�
∫

an(x,∇v) · ∇(un − v)− dx − 〈
fn, (un − v)−

〉
W−1,p′

(Ω),W
1,p
0 (Ω)
Ω
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=
∫
Ω

an(x,∇v) · ∇(un − v)− dx − 〈
f, (u − v)−

〉
W−1,p′

(Ω),W
1,p
0 (Ω)

+ o(1)

=
∫
Ω

an(x,∇v) · ∇(un − v)− dx + o(1) (since (u − v)− = 0 a.e. in Ω)

= −
∫
Ω

an(x,∇v) · ∇(un − v)1En dx + o(1). (2.6)

Moreover, using the boundedness (iii) of an, the boundedness of un in W
1,p

0 (Ω) and the Hölder inequality yield∣∣∣∣∫
Ω

an(x,∇v) · ∇(un − v)1En dx

∣∣∣∣ � c

(∫
Ω

|∇v|p1En dx

) 1
p′

. (2.7)

Since v � 0 a.e. in Ω , we have ∇v1En = ∇v1En∩{v>0} a.e. in Ω . Let E be the subset of Ω , of the x satisfying
the pointwise convergence un(x) → u(x) and the inequality v(x) � u(x). Up to a subsequence, still denoted n, the
set Ω \ E has a zero Lebesgue measure. Let x ∈ E. Assume by contradiction that there exists a subsequence n′ such
that x ∈ En′ ∩ {v > 0}, for any n′ � 1. Then, passing to the limit in the inequality un′(x) < v(x) yields u(x) � v(x),
and consequently, u(x) = v(x). Since v(x) > 0, we also have u(x) > 0 and thus v(x) < u(x) by the assumption on v,
which establishes a contradiction. So, any x ∈ E belongs to a finite number of sets En ∩ {v > 0}, n � 1. Therefore,
the sequence 1En∩{v>0} converges to 0 a.e. in Ω . The Lebesgue dominated convergence theorem thus implies that the
right-hand side of (2.7) tends to 0. This, combined with estimate (2.6), implies that∫

Ω

(
a(x,∇un) − a(x,∇v)

) · ∇(un − v)− dx −→
n→+∞ 0. (2.8)

Finally, following the first step of the proof of Theorem 2.19 in [2], we deduce from convergence (2.8) and the
properties of a, the strong convergence of (2.3). �
Proof of Corollary 2.4. By the strong convergences (2.4) of Remark 2.2, for each integer k � 1, the sequence ∇(un −
(1 − k−1)u) strongly converges to 0 in Lp(Ω)d . Therefore, there exists a subsequence θk(n) of n such that

∀n � 1,
∥∥∇(

uθk(n) − (
1 − k−1)u)−∥∥

Lp(Ω)
� 1

2n
.

We may also assume that θk+1(n) is a subsequence of θk(n), for any k � 1. Then, by considering the diagonal extrac-
tion θ(n) := θn(n), we obtain, for any n � k, the equality θn(n) = θk(nk) for some nk � n, hence the estimate∥∥∇(

uθ(n) − (
1 − k−1)u)−∥∥

Lp(Ω)
= ∥∥∇(

uθk(nk) − (
1 − k−1)u)−∥∥

Lp(Ω)
� 1

2nk
� 1

2n
. (2.9)

In particular, thanks to the Poincaré inequality, for any k � 1, the series
∑

n�k(uθ(n) − (1 − k−1)u)− converges

in W
1,p

0 (Ω). We can thus define, for each k � 1, the function

vk := (
1 − k−1)u −

∑
n�k

(
uθ(n) − (

1 − k−1)u)− ∈ W
1,p

0 (Ω).

On the one hand, by virtue of (2.9) we have

‖∇vk − ∇u‖Lp(Ω) � 1

k
‖∇u‖Lp(Ω) +

∑
n�k

1

2n
−→

k→+∞ 0,

which implies that the sequence vk strongly converges to u in W
1,p

0 (Ω). On the other hand, we have, for any n � k,

uθ(n) = (
1 − k−1)u + (

uθ(n) − (
1 − k−1)u)+ − (

uθ(n) − (
1 − k−1)u)−

�
(
1 − k−1)u − (

uθ(n) − (
1 − k−1)u)− � vk,

which yields (2.5) and concludes the proof. �
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3. Counter-examples

The first counter-example shows that in general one cannot take ε = 0 in the semi-strong convergence (2.4) of
Theorem 2.1.

Proposition 3.1. There exist a sequence (an)n�1 and a nonnegative sequence (un)n�1 which satisfy assumptions (2.1)

and (2.2), such that (un − u)− does not strongly converge to 0 in W
1,p

0 (Ω).

The second counter-example provides a nonnegative and weakly convergent sequence in W
1,p

0 (Ω), for which the
result of Corollary 2.4 and thus the one of Theorem 2.1, does not hold true.

Proposition 3.2. Assume that p � d . Then, there exists a nonnegative weakly convergent sequence in W
1,p

0 (Ω), such
that inequality (2.5) is satisfied by none of its subsequences.

Remark 3.3. For p > d , the situation is completely different. Indeed, let Ω be a smooth bounded open subset of R
d

and let (un)n�1 be a sequence which weakly converges to u in W 1,p(Ω). Then, by the Morrey embedding theorem
there exists a subsequence (uθ(n))n�1 which converges uniformly to u in Ω , and thus satisfying

δk := sup
n�k

‖uθ(n) − u‖L∞(Ω) −→
k→+∞ 0.

Therefore, the sequences (uθ(n))n�1 and (vk := u − δk)k�1 satisfy inequality (2.5) without any assumption of
type (2.2).

Proof of Proposition 3.1. The dimension is d := 1 and Ω := (0,1). For each integer n � 1, let ρn be the function
defined in (0,1) by

ρn(x) :=
{

1
2 if x ∈ [ k

n
, k

n
+ 1

2n
),

3
2 if x ∈ [ k

n
+ 1

2n
, k+1

n
)

for k ∈ {0, . . . , n − 1},

and let un be the solution of{−(
ρ−1

n u′
n

)′ = 1 in (0,1),

un(0) = un(1) = 0.

The sequence un clearly satisfies the assumptions (2.1) and (2.2) of Theorem 2.1 in the linear case. The weak limit of
un in H 1

0 ((0,1)) is u(x) := 1
2x(1 − x).

An easy but rather long computation yields for any x ∈ [p
n
,

p
n

+ 1
2n

], p ∈ {0, . . . , n − 1},

un(x) − u(x) = − p

8n2
+ 1

4

(
x − p

n

)(
x + p

n
− 1

)
+ 1

8n

x∫
0

ρn(t)dt.

Therefore, if x < 1
2 and x ∈ [p

n
+ 1

4n
,

p
n

+ 1
2n

], then x + p
n

− 1 < 2x − 1 < 0, hence

un(x) − u(x) � 1

16n
(2x − 1) + 3

16n
x = 1

16n
(5x − 1).

In particular, we have

{un − u < 0} ⊃
(

0,
1

5

)
∩

(
n−1⋃
k=0

[
k

n
+ 1

4n
,
k

n
+ 1

2n

])
,

which implies

lim inf
n→+∞

∣∣∣∣{un − u < 0} ∩
(

0,
1
)∣∣∣∣ � 1

. (3.1)

5 20
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On the other hand, we have(
u′

n(x) − u′(x)
)2 =

[(
ρn(x) − 1

)(1

2
− x

)
+ 1

8n
ρn(x)

]2

� 1

4

(
1

2
− x

)2

+ O

(
1

n

)
,

which combined with estimate (3.1) yields

lim inf
n→+∞

1/4∫
0

(
u′

n − u′)21{un−u<0} dx � 1

43
× 1

20
> 0.

Therefore, (un − u)− does not strongly converge to 0 in H 1
0 ((0,1)). �

Proof of Proposition 3.2. Let Y := (− 1
2 , 1

2 )d . Denote by Br the ball of radius r > 0, centered at the origin. Let

R ∈ (0, 1
2 ) and (Rn)n�1 be a sequence in (0,R) converging to 0. Let V̂n, for n � 1, be the unique solution in W

1,p
# (Y )

(the set of the Y -periodic functions in W
1,p

loc (Rd)) of⎧⎪⎨⎪⎩
div

(|∇V̂n|p−2∇V̂n

) = 0 in BR \ BRn,

V̂n = 1 in Y \ BR,

V̂n = 0 in BRn.

(3.2)

Let (εn)n�1 be a positive sequence converging to 0. We consider the εn-rescaled function defined by

v̂n(x) := V̂n

(
x

εn

)
, for x ∈ Ω. (3.3)

The function v̂n(x) was introduced in [3] (for p = 2) to obtain a capacitary effect in homogenization. The sequence
(v̂n)n�1 satisfies the following result:

Lemma 3.4. Assume that p � d and set

Rn :=
{

ε
p/(d−p)
n if p < d,

exp
(−ε

p/(1−p)
n

)
if p = d.

(3.4)

Then, we have

v̂n ⇀ 1 weakly in W 1,p(Ω). (3.5)

Set ωn := {v̂n = 0} ∩ Ω . Then, there exists a positive constant C such that the following estimate holds

∀v ∈ W
1,p

0 (Ω),

∣∣∣∣ 1

|BRn |
∫
ωn

v −
∫
Ω

v

∣∣∣∣ � C‖∇v‖Lp(Ω). (3.6)

Let us prove that the result of Proposition 3.2 is satisfied under the assumptions of Lemma 3.4. Let ϕ be a nonneg-
ative and nonzero function in C∞

c (Ω) and consider un := ϕv̂n for n � 1. The sequence un is nonnegative and by (3.5)

weakly converges to ϕ in W
1,p

0 (Ω). Assume by contradiction that there exists a subsequence, still denoted un, and a

sequence vk strongly converging to ϕ in W
1,p

0 (Ω), such that inequality (2.5) holds. Thanks to estimate (3.6) we have,
for any n � k,∣∣∣∣ 1

|BRn |
∫
ωn

vk −
∫
Ω

vk

∣∣∣∣ �
∣∣∣∣ 1

|BRn |
∫
ωn

ϕ −
∫
Ω

ϕ

∣∣∣∣ + C‖∇vk − ∇ϕ‖Lp(Ω).

Moreover, the regularity of ϕ and the asymptotic |ωn| ∼ |Ω||BRn | imply that

lim
n→+∞

1

|BRn |
∫

ϕ =
∫

ϕ,
ωn Ω
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which combined with the strong convergence of vk to ϕ in W
1,p

0 (Ω), gives∣∣∣∣ 1

|BRn |
∫
ωn

vk −
∫
Ω

vk

∣∣∣∣ � on(1) + ok(1), (3.7)

where on(1) (respectively ok(1)) denotes a sequence converging to 0 as n → +∞ (respectively k → +∞). Then, by
using inequality (2.5) and the fact that un = 0 in ωn, we deduce from (3.7) that∫

Ω

vk � 1

|BRn |
∫
ωn

un + on(1) + ok(1) = on(1) + ok(1). (3.8)

Therefore, passing successively to the limits n → +∞ and k → +∞ in (3.8), implies∫
Ω

ϕ � 0,

which yields the contradiction. �
Proof of Lemma 3.4. Proof of (3.5) The function V̂n defined by (3.2) is radial in the set BR \ BRn . More precisely,
we have, for any r ∈ (Rn,R),

V̂n(r) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + r

p−d
p−1 − R

p−d
p−1

R
p−d
p−1 − R

p−d
p−1
n

if p < d,

1 + ln r − lnR

lnR − lnRn

if p = d,

hence there exists a positive constant cd,p independent of n such that

∥∥∇V̂n(r)
∥∥p

Lp(Y )
=

⎧⎨⎩ cd,p

(
R

p−d
p−1
n − R

p−d
p−1

)1−p ∼ cd,pR
d−p
n if p < d,

cd,p(lnR − lnRn)
1−p ∼ cd,p| lnRn|1−p if p = d.

This estimate, combined with the choice (3.4) of Rn, implies that the sequence v̂n defined by (3.3) is bounded
in W 1,p(Ω). Moreover, since V̂n = 1 in the set Y \ BR , the weak limit of v̂n is 1, which yields (3.5).

Proof of (3.6). Denote by Sr the sphere centered at the origin and of radius r > 0. Let V ∈ C1(Y ) and let Ṽ be the
function defined in spherical coordinates by Ṽ (r, ξ) := V (y), where y = rξ with r > 0 and ξ ∈ S1. By starting from
the equality

Ṽ (R, ξ) − Ṽ (Rn, ξ) =
R∫

Rn

∂Ṽ

∂r
(r, ξ)dr

and by using the Hölder inequality, we obtain the inequality

∣∣Ṽ (R, ξ) − Ṽ (Rn, ξ)
∣∣ � αn

( R∫
Rn

∣∣∣∣∂Ṽ

∂r
(r, ξ)

∣∣∣∣prd−1 dr

) 1
p

,

where

αn :=

⎧⎪⎨⎪⎩
[

p − 1

p − d
(R

p−d
p−1 − R

p−d
p−1
n )

] 1
p′

if p < d,

[lnR − lnRn]
1
p′ if p = d.

(3.9)

Then, integrating the previous inequality with respect to ξ ∈ S1 and using the Hölder inequality with respect to the
integral in ξ , imply∣∣∣∣ −

∫
S

V − −
∫
S

V

∣∣∣∣ � cαn‖∇V ‖Lp(Y ), (3.10)
Rn R
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where −
∫

denotes the average-value and c is a positive constant. On the other hand, using a scaling of order Rn in the
Poincaré–Wirtinger type inequality∣∣∣∣−∫

BR

W − −
∫
SR

W

∣∣∣∣ � c‖∇W‖Lp(Y ), with W(y) := V (Rny),

implies that∣∣∣∣ −
∫
BRn

V − −
∫
SRn

V

∣∣∣∣ � cR

p−d
p

n ‖∇V ‖Lp(RnY ) � cR

p−d
p

n ‖∇V ‖Lp(Y ). (3.11)

The following Poincaré–Wirtinger type inequality also holds true:∣∣∣∣−∫
Y

V − −
∫
SR

V

∣∣∣∣ � c‖∇V ‖Lp(Y ). (3.12)

Then, combining estimate (3.10) with (3.11) and (3.12), we get∣∣∣∣ −
∫
BRn

V − −
∫
Y

V

∣∣∣∣ � c
(
αn + R

p−d
p

n + 1
)‖∇V ‖Lp(Y ), (3.13)

where c is a positive constant independent of the function V . Let v be a function in W
1,p

0 (Ω), extended by 0 in R
d \Ω .

Then, putting, for κ ∈ Z
d , the function V (y) := v(κ + εny) in estimate (3.13) and summing over κ ∈ Z

d , it follows∣∣∣∣ 1

|BRn |
∫
ωn

v −
∫
Ω

v

∣∣∣∣ � c
(
εnαn + εnR

p−d
p

n + εn

)‖∇v‖Lp(Ω). (3.14)

Moreover, by the definition (3.9) of αn and the choice (3.4) of Rn, the sequences εnαn and εnR

p−d
p

n are bounded.
Therefore, (3.14) yields estimate (3.7). �
4. The case of highly-oscillating linear operators

We restrict ourselves to a sequence of linear operators defined by highly-oscillating matrix-valued functions in a
bounded open set Ω of R

d , d � 1.
Let Y := (0,1)d , let A be a Y -periodic matrix-valued function on R

d and let α,β be two positive constants such
that

a.e. y ∈ R
d,∀ξ ∈ R

d , A(y)ξ · ξ � α|ξ |2 and A(y)−1ξ · ξ � β−1|ξ |2.
Let (τn)n�1 be a positive sequence converging to 0 and let (An)n�1 be the sequence of oscillating matrices defined
by

An(x) := A

(
x

τn

)
a.e. x ∈ Ω. (4.1)

Let (e1, . . . , ed) be the canonical basis of R
d . By [1] we know that An H -converges, in the sense of Murat and

Tartar [6], to the constant matrix A∗ defined by

A∗ei :=
∫
Y

A(y)
(
ei − ∇χi(y)

)
dy, for i ∈ {1, . . . , d}, (4.2)

where χi is the unique function in H 1
# (Y ), with zero average-value in Y , solution of

div(Aei − A∇χi) = 0 in D′(
R

d
)
. (4.3)
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Moreover, for any sequence un converging to u weakly in H 1
0 (Ω) such that div(An∇un) is compact in H−1(Ω), we

define the so-called corrector

ūn := u − τn

d∑
i=1

χi

(
x

τn

)
∂u

∂xi

. (4.4)

Indeed, if u is smooth enough the sequence ūn strongly converges to u in H 1
loc(Ω).

In this framework, Theorem 2.1 can be improved in the following way:

Theorem 4.1. Let Ω be a bounded open set of R
d , d � 1, with a Lipschitz boundary. Let (un)n�1 be a sequence

weakly converging to u in H 1
0 (Ω), such that

u � 0 a.e. in Ω and u ∈ W 2,d∨2(Ω), (4.5)

where d ∨ 2 denotes the maximum between d and 2. Assume that there exists a sequence (fn)n�1 strongly converging
in H−1(Ω), such that

−div(An∇un) � fn in D′(Ω). (4.6)

Then, there exists a positive sequence (εn)n�1 converging to 0 such that(
un − (1 − εn)u

)− −→ 0 strongly in H 1
0 (Ω). (4.7)

Proof of Theorem 4.1. First, we need to modify the corrector (4.4) by introducing truncatures and a cut-off function

ūn := u − τn

d∑
i=1

ψn(x)Tkn(χi)

(
x

τn

)
Tkn

(
∂u

∂xi

)
, (4.8)

where Tk , for k ∈ N, is the function defined by Tk(t) := max(−k,min(k, t)), for t ∈ R, (kn)n�1 is a sequence of
positive integers which tends to +∞, and (ψn)n�1 is a sequence of functions in C1

0(Ω) satisfying, for any n � 1,⎧⎨⎩
0 � ψn � 1 in Ω

ψn(x) = 1 if dist(x, ∂Ω) > ηn, where ηn → 0,

|∇ψn| � cη−1
n in Ω.

Such a sequence ψn exists since Ω is regular. So, the function ūn belongs to H 1
0 (Ω).

The proof is then divided in two steps:
First step: (un − ūn)

− strongly converges to 0 in H 1
0 (Ω).

We get rid of the cut-off function ψn by introducing the new function

ũn := u − τn

d∑
i=1

Tkn(χi)

(
x

τn

)
Tkn

(
∂u

∂xi

)
. (4.9)

We have

∇ũn − ∇ūn = τn

d∑
i=1

∇ψn(x)Tkn(χi)

(
x

τn

)
Tkn

(
∂u

∂xi

)
+

d∑
i=1

(
ψn(x) − 1

)∇Tkn(χi)

(
x

τn

)
Tkn

(
∂u

∂xi

)

+ τn

d∑
i=1

(
ψn(x) − 1

)
Tkn(χi)

(
x

τn

)
∇

[
Tkn

(
∂u

∂xi

)]
. (4.10)

Since χi ∈ W
1,p
# (Y ), for some p > 2, by the Meyers theorem [5], and since ∇u ∈ L

2p
p−2 (Ω)d by (4.5) and the Sobolev

embedding theorem, the first term of the right-hand side of (4.10) is O(τnη
−1
n ) in L2(Ω)-norm by the Hölder inequal-

ity. Similarly, by the Hölder inequality, the second term is O(η
γ
n ) in L2(Ω)-norm, for any γ <

p−2
2p

. Finally, since

∇2u ∈ Ld∨2(Ω)d×d by (4.5), the last term of (4.10) is O(τnkn) in L2(Ω)-norm. Then, choosing kn and δn such that

lim τn

(
kn + η−1

n

) = 0,

n→+∞
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yields

∇ũn − ∇ūn −→ 0 strongly in L2(Ω)d . (4.11)

We are thus led to study the sequence ∇ũn which satisfies

∇ũn − ∇u +
d∑

i=1

∇χi

(
x

τn

)
∂u

∂xi

=
d∑

i=1

∇(
χi − Tkn(χi)

)( x

τn

)
∂u

∂xi

+
d∑

i=1

∇Tkn(χi)

(
x

τn

)[
∂u

∂xi

− Tkn

(
∂u

∂xi

)]

− τn

d∑
i=1

Tkn(χi)

(
x

τn

)
∇

[
Tkn

(
∂u

∂xi

)]
. (4.12)

Since ∇χi ∈ L
p
# (Y )d , for some p > 2, and since ∇u ∈ L

2p
p−2 (Ω) by (4.5), the first term of the right-hand side of (4.12)

is bounded in L2(Ω)-norm by a constant times

‖∇χi1{|χi |>kn}‖Lp(Y ),

which converges to 0 by the Lebesgue dominated convergence theorem. Similarly, the second term is bounded
in L2(Ω)-norm by a constant times∥∥∥∥ ∂u

∂xi

1{|∂u/∂xi |>kn}
∥∥∥∥

L
2p

p−2 (Y )

,

which also converges to 0. Finally, since ∇2u ∈ Ld∨2(Ω)d×d by (4.5), the last term of (4.12) is O(τnkn) in L2(Ω)d -
norm. Therefore, by choosing kn such that

lim
n→+∞ τnk

2
n = 0

(the square will be necessary below), estimate (4.11) and equality (4.12) imply the convergence

∇ūn − ∇u +
d∑

i=1

∇χi

(
x

τn

)
∂u

∂xi

−→ 0 strongly in L2(Ω)d . (4.13)

Note that convergence (4.13), combined with the Hölder type inequality∥∥∥∥ d∑
i=1

∇χi

(
x

τn

)
∂u

∂xi

∥∥∥∥
L2(Ω)

� c

d∑
i=1

‖∇χi‖Lp(Y )‖∇u‖
L

2p
p−2 (Y )

,

and the inequality |ūn − u| � dτnk
2
n, imply that

ūn ⇀ u weakly in H 1
0 (Ω). (4.14)

On the other hand, following for example [4] (pages 26–27), by (4.3) and (4.2) there exists, for each i ∈ {1, . . . , d}, an
antisymmetric matrix-valued function Φi in H 1

# (Y )d×d such that

(Aei − A∇χi) − A∗ei = divΦi in D′(
R

d
)
.

Then, by the definition (4.1) of An, the definition (4.8) of ūn and the strong convergence (4.13), we have

An∇ūn − A∗∇u = τn

d∑
i=1

div

[
∂u

∂xi

Φi

(
x

τn

)]
− τn

d∑
i=1

Φi

(
x

τn

)
∇

(
∂u

∂xi

)
+ o(1), (4.15)

where o(1) denotes a strongly convergent sequence to 0 in L2(Ω)2. Since Φi is antisymmetric, the first term of

the right-hand side of (4.16) is divergence-free. Moreover, since ∇2u ∈ Ld∨2(Ω)d×d and Φi ∈ L
2d

d−2
# (Y )d×d by the

Sobolev embedding theorem, the second term is O(τnkn) in L2(Ω)-norm, hence

div(An∇ūn) −→ div(A∗∇u) strongly in H−1(Ω). (4.16)
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Now, let us conclude the first step. Using successively the assumption (4.6), the weak convergence (4.14) and the
strong one (4.16), we get∫

Ω

An∇(un − ūn)
− · ∇(un − ūn)

− dx = −
∫
Ω

An∇(un − ūn) · ∇(un − ūn)
− dx

�
∫
Ω

An∇ūn · ∇(un − ūn)
− dx − 〈

fn, (un − ūn)
−〉

H−1(Ω),H 1
0 (Ω)

=
∫
Ω

An∇ūn · ∇(un − ūn)
− dx + o(1)

=
∫
Ω

A∗∇u · ∇(un − ūn)
− dx + o(1) = o(1). (4.17)

This, combined with the equi-coerciveness of An, implies that ∇(un − ūn)
− strongly converges in L2(Ω)d , which,

together with (4.14), ends the first step.
Second step: Proof of (4.7).
Set

νn := ‖un − ūn‖H 1(Ω) and vn := un − ūn

τn + νn

. (4.18)

The sequence νn converges to 0 by the first step and vn is bounded in H 1
0 (Ω). Let us consider a positive sequence εn

such that

lim
n→+∞ εn = lim

n→+∞
νn

εn

= lim
n→+∞

τnk
2
n

εn

= 0. (4.19)

Such a sequence εn exists since νn and τnk
2
n converge to 0.

Now, let us study the set {un − (1 − εn)u < 0}. Since (t 	→ t−) is 1-Lipschitz, we have by the definition (4.8) of ūn

(un − u)− � (un − ūn)
− + |ūn − u| � (un − ūn)

− + dτnk
2
n,

hence

un − (1 − εn)u < 0 �⇒ −(un − u)− + εnu < 0

�⇒ −(un − ūn)
− − dτnk

2
n + εnu < 0.

This, combined with the definition (4.18) of vn, yields{
un − (1 − εn)u < 0

} ⊂ En :=
{
−

(
τn + νn

εn

)
vn − dτnk

2
n

εn

+ u < 0

}
. (4.20)

Finally, let us prove that (un − (1 − εn)u)− strongly converges to 0 in H 1
0 (Ω). On the one hand, proceeding as in

(4.17) yields

α
∥∥∇(

un − (1 − εn)u
)−∥∥2

L2(Ω)
� −

∫
Ω

An∇
(
un − (1 − εn)u

) · ∇(
un − (1 − εn)u

)−

� (εn − 1)

∫
Ω

An∇u · ∇(
un − (1 − εn)u

)
1{un−(1−εn)u<0} + o(1)

� c‖∇u1{un−(1−εn)u<0}‖L2(Ω),

hence, by taking into account inclusion (4.20),

α
∥∥∇(

un − (1 − εn)u
)−∥∥2

2 � c‖∇u1En‖L2(Ω). (4.21)

L (Ω)
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On the other hand, since u � 0 a.e. in Ω , we have ∇u1En = ∇u1En∩{u>0} a.e. in Ω . Moreover, in the definition
(4.20) of En the sequence vn converges a.e. in Ω (up to a subsequence) to some function in H 1

0 (Ω). Then, thanks
to (4.19), the sequence 1En∩{u>0} converges to 0 a.e. in Ω . Therefore, by the Lebesgue dominated convergence theo-
rem, the sequence ∇u1En strongly converges to 0 in L2(Ω)d . This, combined with estimate (4.21), yields the strong
convergence (4.7). �
References

[1] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, 1978.
[2] M. Briane, G. Mokobodzki, F. Murat, Variations on a strange semi-continuity result, J. Funct. Anal. 227 (1) (2005) 78–112.
[3] D. Cioranescu, F. Murat, Un terme étrange venu d’ailleurs, I & II, in: H. Brezis, J.-L. Lions (Eds.), Nonlinear Partial Differential Equations

and their Applications Collège de France Seminar, vols. II & III, in: Research Notes in Math., vols. 60 and 70, Pitman, London, 1982, pp. 98–
138 and 154–178; English translation: A strange term coming from nowhere, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical
Modelling of Composite Materials, in: Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1997,
pp. 44–93.

[4] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
[5] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa 17 (1963)

189–206.
[6] F. Murat, H -convergence, Séminaire d’Analyse Fonctionnelle et Numérique 1977–78, Université d’Alger, multicopied, 34 p.; English trans-

lation: F. Murat, L. Tartar, H -convergence, in: L. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composite Materials,
in: Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser, Boston, 1998, pp. 21–43.

Further reading

[1] G. Mokobodzki, Compacité dans les espaces de Dirichlet, in preparation.
[2] L. Tartar, Cours Peccot, Collège de France, 1977, partially written in [6].


