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Abstract

In this paper we study the properties of any sequence (un),>1 weakly converging to a nonnegative function u in W(}‘p (£2),
p > 1, and satisfying a variational inequality of type —div(an (-, Vup)) = fu, where (an), > is a suitable sequence of monotone

operators and (fn),>1 is any strongly convergent sequence in the dual space W_l’l’,(.Q). We prove that the sequence (u; —

(1 — e)u)™ strongly converges to 0 in W(;’p (£2) for any ¢ € (0, 1). We show by a counter-example that the result does not hold
true if € = 0. A remarkable corollary of these strong e-convergences is that the sequence (1), > satisfies, up to a subsequence,
a kind of semi-strong convergence: (i), >1 can be bounded from below by a sequence which converges to the same limit « but

strongly in W(}’p (£2). We also give an example of a nonnegative weakly convergent sequence which does not satisfy this semi-
strong convergence property and hence cannot satisfy any variational inequality of the previous type. Finally, in the linear case of a
sequence of highly-oscillating matrices, we improve the strong e-convergences by replacing the arbitrary small constant ¢ > 0 by
a sequence (&n),>1 converging to 0.

© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans cet article, on étudie les propriétés de toute suite (un),>1 qui converge faiblement dans W(} "P(82), p > 1, vers une
fonction positive u et qui satisfait une inégalité variationnelle du type —div(an (-, Vun)) > fn, Ol (an),>1 est une suite convenable

. N _ /
d’opérateurs monotones et ou ( fy est une suite fortement convergente dans I’espace dual W17’ (£2). On montre que, pour
P! Jndn>1 g P que, p

. _ 1 T ,
tout ¢ €]0, 1[, la suite (u, — (1 — &)u)™ converge fortement vers O dans Wo’p(.Q), et, a ’aide d’un contre-exemple, que cette
convergence n’est pas en général vraie lorsque ¢ = 0. Un corollaire remarquable de ces e-convergences fortes est que la suite
(un)y>1 satisfait, & une sous-suite pres, une sorte de semi-convergence forte : la suite (#,), > peut en effet Etre minorée par une

suite qui converge fortement dans W(; P (£2) vers la méme limite . On explicite aussi un exemple d’une suite positive et faiblement
convergente qui ne vérifie pas la semi-convergence forte et qui par conséquent, n’est solution d’aucune inéquation variationnelle du
type précédent. Enfin, dans le cas linéaire d’une suite fortement oscillante de matrices, on améliore la e-convergence en remplagant
la constante arbitraire & > 0 par une suite (¢,),>1 convergeant vers 0.
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1. Introduction

In [2] we proved the following result:

For any pair of sequences (B, Cy,),>1 of equi-coercive and bounded matrix-valued functions defined in a bounded
open set £2 of R?, for any pair of sequences (v,, wy)n>1 weakly converging to (v, w) in HO1 (£2)2, and for any pair of
strongly convergent sequences (A, gx)n>1 in H ~1(£2)?, such that for any n > 1,

—div(B,Vv,) > g, and —div(B,Vv,) =h, inD(), (1.1)

we have the semi-continuity property

Y € C®(R), ¥ >0, liminf/anan~an >/wB*Vv-Vw, (1.2)
n—+400
2 2

where B* is the H-limit (well-defined up to a subsequence) of the sequence (B,),>1 in the sense of the
H -convergence of Murat and Tartar [6].

One of the key-ingredient of the proof (1.2) is given by the following auxiliary result: Under the same assumptions
for the sequences (Cy),>1 and (wy),>1, if Tg, for £ > 0, is a smooth g-approximation of the function (f = ¢#7) on R
such that
|Te(r) — 17| <e,

T,(0)=0 and VreR, {—1<T;(z)<0,

then we have the strong convergence
Te(w, —w) — 0 in H}(2). (1.3)

Moreover, when B, = B is independent of n the strong convergence (1.3) holds with 7 (f) = ¢~. But in general, the
sequence (w, — w)~ does not strongly converge to 0 because of the oscillations of B, like in the homogenization
theory (see Remark 3.6 of [2]). The proofs of (1.3) and (1.2) are rather technical and need a fine result of potential
theory.

The purpose of this study is to give another and simpler strong convergence of type (1.3) under the extra assumption
of nonnegativity of the limit and in a nonlinear framework. This new approach has a surprising consequence on the
behavior on the sequences satisfying a variational inequality such (1.1). The main result of the paper (see Theorem 2.1)
is the following:

For any sequence (a,),>1 of uniformly p-monotone, p > 1, and uniformly bounded Carathéodory functions

from 2 x R? into R? (see Section 2 for details), for any sequence (u,),>1 weakly converging to u 2> 0 in W(; P (£2),
and for any strongly convergent sequence ( f;,),>1 in w—LP (), p = % > 1, such that forany n > 1,

—div(an(-. Vun)) = fu in D'(£2), (1.4)
we have the semi-strong convergences
Vee (0,1), (un—(1—eu)” —> 0 strongly in W,"”(£2). (1.5)

Contrary to (1.3) we do not consider in (1.5) an g-approximation of (¢ — ¢~ ). We keep this function but we have to
introduce the shift eu inside to obtain the strong convergence. The price to pay is to assume the nonnegativity of the
weak limit u.

A noteworthy corollary of (1.5) (see Corollary 2.4) is that there exist a subsequence (ug(,)),>1 and a sequence

(vk)k>1 strongly converging to u in W(;’p (£2), such that
Vn 2k, ugm =vr ae.inf2. (1.6)
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Thanks to inequality (1.6) the qualifying “semi-strong” for convergence (1.5) takes its whole meaning.

The strong convergences (1.5) are in some sense optimal since we cannot take ¢ = 0 if a,, depends actually on n. We
give a counter-example (see Proposition 3.1) showing that the oscillations of a,, prevent from the strong convergence
of (u, —u)~. The assumptions cannot be relaxed anymore. On the one hand, it is easy to check that the nonnegativity
of u is a consequence of (1.5). On the other hand, the variational inequality (1.4) is a crucial assumption to obtain (1.5)

and (1.6). Indeed, there exists a nonnegative sequence u, weakly converging in WO1 "7 (£2) which does not satisfy (1.6)
and hence neither (1.5) (see Proposition 3.2). Such a sequence has the particular property to satisfy none variational
inequality of type (1.4). This counter-example is quite general since it holds true provided that p <d.

If it is not possible to take ¢ = 0 in the strong convergence (1.5), a natural question is to know if we can replace
the arbitrary small but fixed constant £ > 0 in (1.5) by a positive sequence (&,),>1 converging to 0. We prove that
the answer is positive (see Theorem 4.1) in the case of any sequence of highly-oscillating matrices, i.e. a,(x, &) =
A(x/1,)&, where A is a periodic matrix-valued function. In this linear framework we assume that the variational
inequality (1.4) holds true and that u belongs to W24 (£2). Then, there exists a positive sequence &,, with 7, < &, < 1,
such that

(u,, —(1- an)u)_ —> 0 strongly in W(:’p(.Q). (L.7)

The paper is organized as follows: Section 2 is devoted to the results (1.5) and (1.6) and to their proof. In Section 3
we give two counter-examples showing the optimality of these results. In Section 4 we prove the strong convergence
(1.7) in the case of a sequence of highly-oscillating matrices.

2. Semi-strong convergence results

Let £2 be a bounded open set of RY, d>1,let pe (1,4+o0[and p’ := %. Let a be a fixed function from £2 x R4

into R? which satisfies the following properties:

e a is a Carathéodory function, i.e.

ae. x € 2, a(x,-)iscontinuous on RY,
V& € R, a(-, &) is measurable on £2;

e a is coercive, i.e. there exists a positive constant o and a nonnegative function y in L'(£2) such that
ae.xeR V5 R, a(x.§)-§>alfl’ —y )
e a is strictly monotone, i.e.

ae.x €82, VE£neR?, (a(x,&) —a(x,m)-E—n) >0;

e « is bounded, i.e. there exists a positive constant 8 and a nonnegative function § in L? (§2) such that

ae.xefR, VEeRY, |a(x.6)| <B(E+600))" "
Let (a,)n>1 be a sequence of functions from £2 x R? into R? which satisfies the following properties:

(i) forany n > 1, a, is a Carathéodory function,
(i1) a, is uniformly monotone with respect to a, i.e. for any n > 1,

ae.xeR, VEneR!,  (an(x,&) —an(x,m) - ¢ —n) > (alx,&) —a(x,n) - & —n);
(iii) a, is uniformly bounded, i.e. there exists a positive constant 8 such that, for any n > 1,

ae.xef, VEeR, la,(x, &) <BIEI".
Under the previous assumptions we have the following result:

Theorem 2.1. Let (1), >1 be a sequence in Wol’p(.Q) such that

uy = weakly in Wy'P (). 2.1)
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Assume that there exists a strongly convergent sequence (fp)n>1 in W_l’p,(.Q) such that

—div(a, (-, Vup)) = fu  inD'(R2). (2.2)
Then, we have the implication
Vo e W),
uz>0aein2 — O<v<uaein2 and v<ue in{u>0}, (2.3)

(up —v)~ — 0 strongly in W(}’p(.@)

(a.e. for almost everywhere and e. for everywhere).

Remark 2.2. It is easy to check that the function v := (1 — ¢)u satisfies the requirements of (2.3) for any ¢ € (0, 1).
In this case, we obtain the equivalence

uz>0ae. inf2 <<= Vee(0,1), (un -1 - s)u)_ — 0 strongly in W(}’p(.Q). 2.4)
The implication (=) is an immediate consequence of (2.3) with v := (1 — ¢)u. Conversely, assume that the right-hand
side of (2.4) holds true. Then, the sequence (u,, — (1 — &)u)~ weakly converges to eu~ and strongly to 0 in Wé’p(.Q).

Therefore, the uniqueness of the weak limit in Wol’p (£2) implies that u~ = 0 a.e. in 2, or equivalently, # > 0 a.e.
in £2.
In the sequel, we will only focus on the strong convergence (2.4).

Remark 2.3. The variational inequality (2.2) implies the strong convergence of the negative part of the sequence
(up — u), up to an arbitrary small shift eu. In [2] we proved that the strong convergence holds with ¢ = 0, without
assuming the nonnegativity of u but assuming that a, does not depend on n. In general, the sequence (u, — u)~
does not strongly converge to zero in WO1 "P(£2), evenif u > 0 a.e. in £2. This is due to the oscillations effects of the
sequence a, (see Proposition 3.1 below). Moreover, inequality (2.2) cannot be relaxed (see Proposition 3.2 below).

The previous semi-strong convergence result allows us to obtain a strong approximation from below of the se-
quence u,:

Corollary 2.4. Let (1)1 be a sequence in Wol’p (82) which satisfies assumptions (2.1) with u > 0 a.e., and (2.2).

. . . 1
Then, there exist a subsequence (g u))n>1 and a sequence (Vi )k>1 strongly converging to u in WO‘p(.Q), such that

Ynzk, ugm = vk. (2.5)

Proof of Theorem 2.1. Assume that u > 0 a.e. in §2. Let v be a function in Wé’p(.Q) such that 0 <v <wu a.e.in 2
and v < u everywhere in {u > 0}. Set E,, := {u, — v < 0}. By using successively the uniform monotonicity (ii) of a,,
the variational inequality (2.2) and the strong convergence of f;, to f in W17 (£2), we have

0< —/(a(x, Vu,) —a(x, VU)) -V(up, —v)” dx
Q2

= /(a(x, Vu,) —a(x, Vv)) -V(u, —v)lg, dx
Q

< /(a,, (x, Vuy) —ay,(x, Vv)) -V(u, —v)lg, dx
2

= —/(an(x, Vu,) —a,(x, Vv)) -V(u, —v)” dx
Q

< /all(xa VU) : V(Mn - U)_ dx - <fn7 (ul’l - v)_)w—l‘p/(_o)’wol-P(Q)
2
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= f an(-x7 VU) : V(un - 'U)_ dx — <f’ (M - v)_)W—l,p’(Q),WOLP(Q) + 0(1)
2

= / a,(x,Vv) -V(u, —v)  dx +o(l) (since (u —v)” =0a.e.in )
Q

—/an(x,Vv)~V(un —v)lg, dx 4+ o(1). (2.6)
2

Moreover, using the boundedness (iii) of a,, the boundedness of u,, in Wé’p (£2) and the Holder inequality yield

1

‘/an(x,Vv) “V(u, — v)lEndx‘ < c(/ [Vv|P1g, dx)ly/. 2.7)

Since v > 0 a.e. in 2, we have Vvlg, = Vvlg,nps0) a.€. in £2. Let E be the subset of £2, of the x satisfying
the pointwise convergence u,(x) — u(x) and the inequality v(x) < u(x). Up to a subsequence, still denoted »n, the
set £2 \ E has a zero Lebesgue measure. Let x € E. Assume by contradiction that there exists a subsequence n’ such
that x € E,» N {v > 0}, for any n’ > 1. Then, passing to the limit in the inequality u,(x) < v(x) yields u(x) < v(x),
and consequently, u(x) = v(x). Since v(x) > 0, we also have u(x) > 0 and thus v(x) < u(x) by the assumption on v,
which establishes a contradiction. So, any x € E belongs to a finite number of sets £, N {v > 0}, n > 1. Therefore,
the sequence 1g,n(y~0; converges to 0 a.e. in §2. The Lebesgue dominated convergence theorem thus implies that the
right-hand side of (2.7) tends to 0. This, combined with estimate (2.6), implies that

/(a(x, Vu,) —a(x, Vv)) -V(u, —v)"dx — 0. 2.8)

n—-+00

2

Finally, following the first step of the proof of Theorem 2.19 in [2], we deduce from convergence (2.8) and the
properties of a, the strong convergence of (2.3). O

Proof of Corollary 2.4. By the strong convergences (2.4) of Remark 2.2, for each integer k > 1, the sequence V (1, —
(1 =k YHu) strongly converges to 0 in L? (£2)4. Therefore, there exists a subsequence 0y (n) of n such that

o 1
Vi1, V(g = (1= k)u) " | o) < 5

We may also assume that 61 (n) is a subsequence of 6 (n), for any k > 1. Then, by considering the diagonal extrac-
tion 6 (n) := 6, (n), we obtain, for any n > k, the equality 6, (n) = 6 (ny) for some nj > n, hence the estimate

- - _ - 1 1
| (o = (1 = &~")u) ”LP(.Q) = ||V (uor(my = (1= k")) ”LP(.Q) < ok S o (2.9)

In particular, thanks to the Poincaré inequality, for any k > 1, the series Zn> rUomy — (1 — k~Hu)~ converges

in W(;’p (£2). We can thus define, for each k > 1, the function
— - 1,
(l—k )M—Z(ug(n)—(l—k l)u) GWO p(_Q)

n>k
On the one hand, by virtue of (2.9) we have

IVok — VullLr(2) < _||Vu||L1’(S2) + Z T — 0,

k—>+oo

which implies that the sequence vy strongly converges to u in W(;’p (£2). On the other hand, we have, for any n > k,
g = (1= k~")u+ (o — (1= k")) " — (g — (1 =&~ ")u)

(1 -k~ )u — (u(;(,,) — (1 — k_l)u)_ = Vg,
which yields (2.5) and concludes the proof. O
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3. Counter-examples

The first counter-example shows that in general one cannot take ¢ = 0 in the semi-strong convergence (2.4) of
Theorem 2.1.

Proposition 3.1. There exist a sequence (ap),>1 and a nonnegative sequence (u,),>1 which satisfy assumptions (2.1)

and (2.2), such that (u, — u)~ does not strongly converge to 0 in W(}’p(.Q).

The second counter-example provides a nonnegative and weakly convergent sequence in Wol’p (£2), for which the
result of Corollary 2.4 and thus the one of Theorem 2.1, does not hold true.

Proposition 3.2. Assume that p < d. Then, there exists a nonnegative weakly convergent sequence in W(; "P(2), such
that inequality (2.5) is satisfied by none of its subsequences.

Remark 3.3. For p > d, the situation is completely different. Indeed, let £2 be a smooth bounded open subset of R?
and let (u,),>1 be a sequence which weakly converges to u in W17 (£2). Then, by the Morrey embedding theorem
there exists a subsequence (#g(x))»>1 Which converges uniformly to u in £2, and thus satisfying

Sk == sup lugm) — ullLe2y —> 0.
n>k k——+o00
Therefore, the sequences (ugu))n>1 and (vg :=u — & )r>1 satisfy inequality (2.5) without any assumption of
type (2.2).

Proof of Proposition 3.1. The dimension is d := 1 and §2 := (0, 1). For each integer n > 1, let p,, be the function
defined in (0, 1) by
ifxe[s &4+ 5,

~ ko 1 k+l
lfxe[n+2n’ n)

pn(x):z{ forke{0,...,n—1},

W =

and let u,, be the solution of
{ —(o; ) =1 in (0, 1),
1, (0) =u, (1) =0.

The sequence u,, clearly satisfies the assumptions (2.1) and (2.2) of Theorem 2.1 in the linear case. The weak limit of
Uy in HE((0, 1) is u(x) := 1x(1 —x).

An easy but rather long computation yields for any x € [£, £ 4 %], pef0,...,n—1},
1 1
p p p
u,,(x)—u(x):—S?JrZ(x— ;)(x—i—; - 1) +§/pn(t)dz.
0

Therefore,ifx<%andxe[§+ﬁ,§+ﬁ],thenx+§— 1 <2x —1 <0, hence

1 3 1
- <—@Qx —  x=—(5x—1).
U, (x) —ulx) < Ton 2x -1+ l6nx ™ Gx—1)

In particular, we have
1 k1 k1
- 0 07 - m - RN - bl
it —u < }D< 5) (L-J()[n+4n n+2ni|>
which implies

limin
n—+400

{un—u<0}ﬁ<0, %)‘>i (3.1)
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On the other hand, we have

) IR 1 1 2 1/1 2 1
(up (x) —u' (x)) —[(pn(x)—1)<§—x)+§pn(x)} >Z<§—x> +O(;>,

which combined with estimate (3.1) yields
1/4
liminf | (u, — u’)21 dx > 1 X 1 >0
P n {up—u<0} = 43 20 .
0

Therefore, (1, — u)~ does not strongly converge to 0 in HO1 (0,1)). O

Proof of Proposition 3.2. Let Y := (—%, %)d. Denote by B, the ball of radius r > 0, centered at the origin. Let
R € (0, %) and (R, ),>1 be a sequence in (0, R) converging to 0. Let \7,,, for n > 1, be the unique solution in W;’p(Y)
(the set of the Y-periodic functions in W,.:” (R%)) of

div(|VV,|P2VV,) =0 in Bg\ Bg,,

V,=1 inY \ Bg, (3.2)
{/\nZO inBRn.

Let (¢,),>1 be a positive sequence converging to 0. We consider the ¢,,-rescaled function defined by
X

B, (x) 1= \2,(
&

n

), forx € £2. (3.3)

The function 0, (x) was introduced in [3] (for p = 2) to obtain a capacitary effect in homogenization. The sequence
(Un)n3>1 satisfies the following result:

Lemma 3.4. Assume that p < d and set

p/(d—p) :
Ri= {5 iy P24 34)
exp(—sn ) if p=d.

Then, we have
Oy — 1 weakly in WhP (). (3.5)

Set wy, := {0, = 0} N §2. Then, there exists a positive constant C such that the following estimate holds
1,p 1
Vv e Wy " (£2), v— [ v
|BR, |
wp 2

Let us prove that the result of Proposition 3.2 is satisfied under the assumptions of Lemma 3.4. Let ¢ be a nonneg-
ative and nonzero function in C2°(£2) and consider u,, := ¢, for n > 1. The sequence u, is nonnegative and by (3.5)

< ClIVulLr(e)- (3.6)

weakly converges to ¢ in WO1 'P(£2). Assume by contradiction that there exists a subsequence, still denoted u,,, and a

sequence vk strongly converging to ¢ in WO1 'P(£2), such that inequality (2.5) holds. Thanks to estimate (3.6) we have,
for any n >k,

T
Vi — Vk
|BR,|
2

Wp

1
g’ /fp—[<ﬂ‘+C||Vvk—V§0||LP(9)-
|BR, |
Wn 2

Moreover, the regularity of ¢ and the asymptotic |w,| ~ |$2]| Bg,| imply that

1
lim = s
»H+oo|BRn|/‘” /‘”
wp 2
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which combined with the strong convergence of v to ¢ in WO1 P (£2), gives

A
UV — | Vk
‘ |Br, |
wp 2

where 0, (1) (respectively ox (1)) denotes a sequence converging to 0 as n — 400 (respectively k — +00). Then, by
using inequality (2 5) and the fact that u,, =0 in w,, we deduce from (3.7) that

/vk /u T on(1) 4 0 (1) = 0 (1) + 0g (D). (3.8)
J |BR,1|

S op(1) + o (D), 3.7)

Therefore, passing successwely to the limits n — 400 and k — 400 in (3.8), implies

/wé&

2
which yields the contradiction. O

Proof of Lemma 3.4. Proof of (3.5) The function f/\n defined by (3.2) is radial in the set Bg \ B R, - More precisely,
we have, for any r € (R,, R),

p—d p=—d
rr=I —Rp-1
_ 1+7pﬂ1 = if p<d,
Va(r) == Rr—T — R/
Inr —InR " d
— 1 — s
InR—1InR, p

hence there exists a positive constant ¢y, , independent of n such that
p=d —d
- - y-r d—p ;
98,0012y = | o (RET = RFF) 7 ey I it p<a.
ca,pInR —InR)'"P ~cy ,|InR,|'"P if p=d.
This estimate, combined W1th the choice (3.4) of R,, implies that the sequence v, defined by (3.3) is bounded
in WP (£2). Moreover, since Vn =1 in the set Y \ By, the weak limit of 9, is 1, which yields (3 5). _
Proof of (3.6). Denote by S, the sphere centered at the origin and of radius » > 0. Let V € C'(Y) and let V be the

function defined in spherical coordinates by V(r, &) :=V(y), where y =r& with r > 0 and & € S;. By starting from
the equality

R -
~ ~ v
V(R’E)_V(Rrhs): W(’%é)dr
Ry
and by using the Holder inequality, we obtain the inequality

% 5 [lav | ,
V(R.€) = V(R 6)| < /a o e
r
Ry

where
p— a 4 7
- [W(Rb T — R 1)] if p <d, 3.9)
= .
1
[InR —InR,]” if p=d.

Then, integrating the previous inequality with respect to £ € S7 and using the Holder inequality with respect to the
integral in &, imply

][ ][ ‘ canlVViLe(yy, (3.10)

SR
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where f denotes the average-value and ¢ is a positive constant. On the other hand, using a scaling of order R, in the
Poincaré—Wirtinger type inequality

fw-f W‘ <ClVWiLo,  with W() i= V(R,y),
Bg Sk

implies that

p—d
][ ][ ‘ R o IVVIiLe(r,y) < cRy IIVVILe(y). (3.11)
Bg, SR

The following Poincaré—Wirtinger type inequality also holds true:

‘][ V- ][ V‘ <cllVViLey. (3.12)
Y Sr
Then, combining estimate (3.10) with (3.11) and (3.12), we get
p=d
H ][ ’ cen+Ra? +)IVV Lo, (3.13)
Bg,

where c is a positive constant independent of the function V. Let v be a function in WO1 "P(£2), extended by 0in R¥ \ £2.
Then, putting, for k € 74, the function V(y) :=v(x + &,y) in estimate (3.13) and summing over x € 74, it follows

TR

Moreover, by the definition (3.9) of «, and the choice (3.4) of R, the sequences ¢,;, and &, RnT are bounded.
Therefore, (3.14) yields estimate (3.7). O

p—d

5n“n+3nR i +8n)||vv||LP(.Q) (3.14)

4. The case of highly-oscillating linear operators

We restrict ourselves to a sequence of linear operators defined by highly-oscillating matrix-valued functions in a
bounded open set £2 of RY, d>1.

Let Y := (0, 1)?, let A be a Y-periodic matrix-valued function on R? and let «, 8 be two positive constants such
that

ae.yeRI,VEER!, A(E-&E>alEl* and AQ)'E-£>p7E1R

Let (,),>1 be a positive sequence converging to 0 and let (A;),>1 be the sequence of oscillating matrices defined
by

Ap(x) = A<i> ae x €. 4.1)
Tn
Let (eq, ..., eq) be the canonical basis of R4, By [1] we know that A, H-converges, in the sense of Murat and
Tartar [6], to the constant matrix A* defined by
A¥e; :=/A(y)(ei — in(y)) dy, forief{l,...,d}, 4.2)
Y

where x; is the unique function in H# (Y), with zero average-value in Y, solution of

div(Ae; — AVx;) =0 inD'(RY). (4.3)



130 M. Briane et al. / Ann. 1. H. Poincaré — AN 25 (2008) 121-133

Moreover, for any sequence u,, converging to u weakly in H(} (£2) such that div(A,Vu,) is compact in H “1(2), we
define the so-called corrector

i ._u_t,,zx,<r >3x (4.4

Indeed, if u is smooth enough the sequence u,, strongly converges to u in H, ().

In this framework, Theorem 2.1 can be improved in the following way:

loc

Theorem 4.1. Let 2 be a bounded open set of R, d > 1, witha Lipschitz boundary. Let (u,),>1 be a sequence
weakly converging to u in HOl (£2), such that

u>0ae in and ueW>Vi(Q), 4.5)

where d Vv 2 denotes the maximum between d and 2. Assume that there exists a sequence (f,),>1 Strongly converging
in H-Y($2), such that
—div(A,Vu,) > f, inD'(2). (4.6)

Then, there exists a positive sequence (&,)n>1 converging to 0 such that

(n — (1 —ex)u)” —> 0 strongly in Hy (£2). 4.7

Proof of Theorem 4.1. First, we need to modify the corrector (4.4) by introducing truncatures and a cut-off function

a
i .—u—rnan(x>Tk (x,)( )Tk (a;‘) (4.8)

i=1
where T, for k € N, is the function defined by 7j(¢) := max(—k, min(k, 1)), for t € R, (k,),>1 is a sequence of
positive integers which tends to 400, and (,),,>1 is a sequence of functions in Cé (£2) satisfying, for any n > 1,
0<yn <1 in £2
Yp(x) =1 if dist(x, 0§2) > n,, where n, — 0,
V| <cny! o in 2.
Such a sequence 1, exists since £2 is regular. So, the function i,, belongs to HOl (£2).
The proof is then divided in two steps:
First step: (u, — u,)~ strongly converges to 0 in H(} (£2).
We get rid of the cut-off function v, by introducing the new function

d
Uy .=u—t,,ZTk (xi) < )Tk <8;) 4.9)

We have

d
ad
Vi —Vun_tnszn(x)Tkn(x,)< )Tkn( >+Z Wn(x)_lka,,(Xl)< )Tkn<a:_)
i=1 l

i=1
d

9
+10 ) (Yu(x) = 1) T, (Xi)(%)V[Tkn(a_j)] (4.10)

i=1

2
Since y; € Wl’p(Y) for some p > 2, by the Meyers theorem [5], and since Vu € Ll’_p2 (£2)4 by (4.5) and the Sobolev
embedding theorem, the first term of the right-hand side of (4.10) is O(t,7,, 1Y in L2(£2)-norm by the Holder inequal-
ity. Similarly, by the Holder inequality, the second term is O(n ) in L%(£2)-norm, for any y < = Flnally, since

Viue LdV2([2)d><d by (4.5), the last term of (4.10) is O(z, k) in LZ(Q) -norm. Then, choosing k&, and 8, such that
. —1
niu}rloo Tn (k” + 1, ) =0,
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yields
Vii, — Vii, —> 0 strongly in L?(£2)“. (4.11)
We are thus led to study the sequence Vi, which satisfies

9 9
wn—w+2vx,< >8xl l;v —Tk,,(Xi))<T£>—+ZVTkn(Xt (—)[TM—T@Q;)}

n Tn i
i=1

d
—rnZTk,,(xi)(:—n) [m(af)] 4.12)
i=1

2
Since Vy; € Lﬁ(Y)d, for some p > 2, and since Vu € LI'TP2 (£2) by (4.5), the first term of the right-hand side of (4.12)
is bounded in L2(§2)-norm by a constant times

IV xi gk llLeyys

which converges to 0 by the Lebesgue dominated convergence theorem. Similarly, the second term is bounded
in LZ(Q)—norm by a constant times

which also converges to 0. Finally, since VZu e LIV2(§2)4xd by (4.5), the last term of (4.12) is O(t,k,) in L2(£2)2-
norm. Therefore, by choosing k,, such that

1|8u/6x,-|>k,,} »

LP=2(Y)

ax;

lim r,,k =0
n——+00

(the square will be necessary below), estimate (4.11) and equality (4.12) imply the convergence

d
9
Viiy — Vu+ Y Vi <1> 87” — 50 strongly in L2(£2)°. (4.13)

T
i=1 n !

Note that convergence (4.13), combined with the Holder type inequality

ZVX’( )axl

and the inequality |u, — u| < dt,,k,zl, imply that

CZIIVXzIILP(Y)IIVMII :
L2 i 2w

ity —u weakly in Hy (£2). (4.14)

On the other hand, following for example [4] (pages 26-27), by (4.3) and (4.2) there exists, for each i € {1,...,d}, an
antisymmetric matrix-valued function @; in H; (Y)4*4 such that

(Aei — AVy;) — A*e; =div®d; inD'(R?).

Then, by the definition (4.1) of A,,, the definition (4.8) of i, and the strong convergence (4.13), we have

A, Vi, — A* Vu_thdlv[au (1)}—@12¢( ) ( o >+o(1) (4.15)

where o(1) denotes a strongly convergent sequence to 0 in L*(§2)2. Since ®; is antisymmetric, the first term of

2d
the right-hand side of (4.16) is divergence-free. Moreover, since Viu e Ldvz(Q)dXd and @; € L#’z Y )dXd by the
Sobolev embedding theorem, the second term is O(t,k;) in L?(£2)-norm, hence

div(A,Vii,) —> div(A*Vu) strongly in H~ (). (4.16)
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Now, let us conclude the first step. Using successively the assumption (4.6), the weak convergence (4.14) and the
strong one (4.16), we get

/AnV(un i) Vg — i) dr = —/Anwn i)V — i) dx

2 2
g / AnV’/_tn - V(un - ’/_tn)_dx - (fnv (Mn - L_t")_>H’1(.Q),HOI(.Q)
2
= / ApViy, - V(u, —uy)” dx +0o(1)
2
= / A*Vu -V(u, —it,)” dx +o(1) =o(1). 4.17)
2

This, combined with the equi-coerciveness of A,, implies that V(u,, — u, )™ strongly converges in L2(£2)?, which,
together with (4.14), ends the first step.
Second step: Proof of (4.7).
Set
it — i d fn — (4.18)
vy = luy, —u and v, = . .
n n nllH1(£2) n T+ v,

The sequence v,, converges to 0 by the first step and v, is bounded in Hé (£2). Let us consider a positive sequence &,
such that

. . Vn . n
lim ¢g,= lim — = lim =0. 4.19)

n——+00 n——400 En n—+400 En

Such a sequence ¢, exists since v, and rnk,% converge to 0.
Now, let us study the set {u, — (1 —&,)u < 0}. Since (¢t — ¢7) is 1-Lipschitz, we have by the definition (4.8) of i,

W —u)” < (up —up)” + iy —u| < (up —y)~ +dfnk57
hence
up— (1 —epu<0= —(uy, —u)” +&,u <0
— —(up — ity)~ — dt,k> + gqu < 0.

This, combined with the definition (4.18) of v,, yields

dt,k>
[ty — (1 — &,)u <0} C E, :={—<T”+—"">vn—ﬂ+u<o}. (4.20)
&n En

Finally, let us prove that (u, — (1 — &,)u)~ strongly converges to 0 in HO1 (£2). On the one hand, proceeding as in
(4.17) yields

o V(un — (1= &))" |20 < —/Anv(un — (1= e)u) - V(i — (1 —£,)u)
2

< (ep — 1)/Anvu : V(un - (- 8n)u)1{un—(1—an)u<0} +o(1)
2

< cllVulp, —1-gyu<0yll 122

hence, by taking into account inclusion (4.20),

af V(up — (1 = en)u)” ||iz(m <cl|Vulg, |l 20). 4.21)
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On the other hand, since u > 0 a.e. in £2, we have Vulg, = Vulg,n~0; a.e. in £2. Moreover, in the definition
(4.20) of E, the sequence v, converges a.e. in £2 (up to a subsequence) to some function in HO1 (£2). Then, thanks
to (4.19), the sequence 1g,n,>0y converges to 0 a.e. in §2. Therefore, by the Lebesgue dominated convergence theo-
rem, the sequence Vulg, strongly converges to 0 in L%(£2)?. This, combined with estimate (4.21), yields the strong
convergence (4.7). O
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