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Abstract

Relaxation theorems which apply to one, two and three-dimensional nonlinear elasticity are proved. We take into account the
fact an infinite amount of energy is required to compress a finite line, surface or volume into zero line, surface or volume. However,
we do not prevent orientation reversal.
© 2006
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1. Main results

1.1. Introduction

Consider an elastic material occupying in a reference configuration Ω ⊂ R
N with N = 1,2 or 3, where Ω is

bounded and open with Lipschitz boundary ∂Ω . The mechanical properties of the material are characterized by a
stored-energy function W : M3×N → [0,+∞] (assumed to be Borel measurable) in terms of which the total stored-
energy is the integral

I (u) :=
∫
Ω

W
(∇u(x)

)
dx (1)

with ∇u(x) ∈ M
3×N the gradient of u at x, where M

3×N denotes the space of all real 3 ×N matrices. In order to take
into account the fact that an infinite amount of energy is required to compress a finite line (N = 1), surface (N = 2)
or volume (N = 3) into zero line, surface or volume, i.e.,
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W(ξ) → +∞ as

{ |ξ | → 0 if N = 1,

|ξ1 ∧ ξ2| → 0 if N = 2,

|det ξ | → 0 if N = 3,

(2)

we consider the following conditions:
(C1) there exist α,β > 0 such that for every ξ ∈ M

3×1,

if |ξ | � α then W(ξ) � β
(
1 + |ξ |p)

for N = 1;
(C2) there exist α,β > 0 such that for every ξ = (ξ1 | ξ2) ∈ M

3×2,

if |ξ1 ∧ ξ2| � α then W(ξ) � β
(
1 + |ξ |p)

for N = 2, where ξ1 ∧ ξ2 denotes the cross product of vectors ξ1, ξ2 ∈ R
3;

(C3) for every δ > 0, there exists cδ > 0 such that for every ξ ∈ M
3×3,

if |det ξ | � δ then W(ξ) � cδ

(
1 + |ξ |p)

,

where det ξ denotes the determinant of ξ , and
(C4) W(PξQ) = W(ξ) for all ξ ∈ M

3×3 and all P,Q ∈ SO(3)

for N = 3, with SO(3) := {Q ∈ M
3×3: QTQ = QQT = I3 and detQ = 1}, where I3 denotes the identity matrix

in M
3×3 and QT is the transposed matrix of Q. (In fact, (C4) is an additional condition which is not related to (2).

However, it means that W is frame-indifferent, i.e., W(Pξ) = W(ξ) for all ξ ∈ M
3×3 and all P ∈ SO(3), and isotropic,

i.e., W(ξQ) = W(ξ) for all ξ ∈ M
3×3 and all Q ∈ SO(3), see for example [12] for more details.)

Fix p ∈ ]1,+∞[, set W
1,p
g (Ω;R

3) := {u ∈ W 1,p(Ω;R
3): u = g on ∂Ω}, where g is given continuous piecewise

affine function from Ω to R
3, define the integral

QI (u) :=
∫
Ω

QW
(∇u(x)

)
dx,

where QW : M
3×N → [0,+∞] denotes the quasiconvex envelope of W , and consider the following assertions:

(R1) inf{I (u): u ∈ W
1,p
g (Ω;R

3)} = inf{QI (u): u ∈ W
1,p
g (Ω;R

3)};
(R2) if un ⇀ u with {un}n�1 minimizing sequence for I in W

1,p
g (Ω;R

3), then ū is a minimizer for QI in

W
1,p
g (Ω;R

3);

(R3) if ū is a minimizer for QI in W
1,p
g (Ω;R

3), then there exists a minimizing sequence {un}n�1 for I in

W
1,p
g (Ω;R3) such that un ⇀ ū,

where “⇀” denotes the weak convergence in W 1,p(Ω;R
3). In this paper we prove (see Section 1.3) the following

relaxation theorems:

Theorem 1.1. (N = 1) If (C1) holds and if W is coercive, i.e., W(ξ) � C|ξ |p for all ξ ∈ M
3×N and some C > 0, then

(R1), (R2) and (R3) hold.

Theorem 1.2. (N = 2) If (C2) holds and if W is coercive, then (R1), (R2) and (R3) hold.

Theorem 1.3. (N = 3) If (C3) and (C4) hold and if W is coercive, then (R1), (R2) and (R3) hold.

Typically, these theorems can be applied with stored-energy functions W of the form

W(ξ) := |ξ |p +

⎧⎪⎨
⎪⎩

h
(|ξ |) if N = 1,

h
(|ξ1 ∧ ξ2|

)
if N = 2,

h
(|det ξ |) if N = 3,

for all ξ ∈ M
3×N , where h : [0,+∞[ → [0,+∞] is Borel measurable and such that for every δ > 0, there exists rδ > 0

such that h(t) � rδ for all t � δ (for example, h(0) = +∞ and h(t) = 1/ts if t > 0 with s > 0).
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1.2. Outline of the paper

Let I :W 1,p(Ω;R
3) → [0,+∞] be defined by

I(u) :=
⎧⎨
⎩

∫
Ω

W
(∇u(x)

)
dx if u ∈ W

1,p
g

(
Ω;R

3),
+∞ otherwise,

let QI :W 1,p(Ω;R
3) → [0,+∞] be defined by

QI(u) :=
⎧⎨
⎩

∫
Ω

QW
(∇u(x)

)
dx if u ∈ W

1,p
g

(
Ω;R

3),
+∞ otherwise,

and let I :W 1,p(Ω;R
3) → [0,+∞] be the lower semicontinuous envelope (or relaxed functional) of I with respect

to the weak topology of W 1,p(Ω;R
3), i.e.,

I(u) := inf
{

lim inf
n→+∞I(un) :un ⇀ u

}
.

Set Y := ]0,1[N and Aff0(Y ;R
3) := {φ ∈ Aff(Y ;R

3): φ = 0 on ∂Y }, where Aff(Y ;R
3) denotes the space of all

continuous piecewise affine functions from Y to R
3, and consider ZW : M3×N → [0,+∞] given by

ZW(ξ) := inf

{∫
Y

W
(
ξ + ∇φ(y)

)
dy: φ ∈ Aff0

(
Y ;R

3)}.

Here is the central theorem of the paper:

Theorem 1.4. If ZW is of p-polynomial growth, i.e., ZW(ξ) � c(1 + |ξ |p) for all ξ ∈ M
3×N and some c > 0, then

I =QI .

Here m = 3 and N = 1,2 or 3, but the proof of Theorem 1.4 (given in Section 3) does not depend on the integers
m and N . This immediately gives the following relaxation result:

Corollary 1.5. Under the hypotheses of Theorem 1.4, if W is coercive, then (R1), (R2) and (R3) hold.

Such results was proved by Dacorogna in [8] when W is continuous and of p-polynomial growth. The distinguish-
ing feature here is that Theorem 1.4 (and so Corollary 1.5) is compatible with (2). More precisely, in Section 4 we
prove the following propositions:

Proposition 1.6. (N = 1) If (C1) holds then ZW is of p-polynomial growth.

Proposition 1.7. (N = 2) If (C2) holds then ZW is of p-polynomial growth.

Proposition 1.8. (N = 3) If (C3) and (C4) hold then ZW is of p-polynomial growth.

Theorem 1.4 follows from Propositions 1.9 and 1.10 below whose proofs are given in Section 3:

Proposition 1.9. If ZW is finite then QW = Q[ZW ] = ZW . Furthermore, for N = 1 we have ZW = W ∗∗, where
W ∗∗ denotes the lower semicontinuous convex envelope of W .

Proposition 1.10. J0 = J1 with J0,J1 :W 1,p(Ω;R
3) → [0,+∞] respectively defined by

J0(u) := inf
{

lim inf I (un) : Affg
(
Ω;R

3) 	 un ⇀ u
}

n→+∞
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and

J1(u) := inf
{

lim inf
n→+∞ZI (un) : Affg

(
Ω;R

3) 	 un ⇀ u
}
,

where Affg(Ω;R
3) := {u ∈ Aff(Ω;R

3): u = g on ∂Ω} and

ZI (u) :=
∫
Ω

ZW
(∇u(x)

)
dx.

Taking Proposition 1.9 into account, from Propositions 1.6, 1.7 and 1.8, we see that stored-energy functions W

satisfying (C1) for N = 1, (C2) for N = 2 and (C3) and (C4) for N = 3, are not quasiconvex, so that the integral I (u)

in (1) is not weakly lower semicontinuous on W 1,p(Ω;R
3) (see [4, Corollary 3.2]). Thus, the Direct Method of the

Calculus of Variations cannot be applied to study the existence of minimizers of I in W
1,p
g (Ω;R3). For this reason,

in the present paper we establish relaxation theorems instead of existence theorems. (In fact, the term “relaxation”
means “generalized existence”, see [10,9,6] for a deeper discussion.)

Other related results can be found in [7,5] where we refer the reader. The present work improves our previous
one [1] (see also [2,3]). The main new contribution of the present paper is the treatment of the case N = 3.

The plan of the paper is as follows. The proofs of Theorems 1.1, 1.2 and 1.3 are given in Section 1.3 (although these
can be easily deduced from the previous discussion). Section 2 presents some preliminaries. In Section 3 we prove
Propositions 1.9 and 1.10 and Theorem 1.4. Finally, Section 4 contains the proofs of Propositions 1.6, 1.7 and 1.8.

1.3. Proof of Theorems 1.1, 1.2 and 1.3

According to Corollary 1.5, we see that Theorems 1.1, 1.2 and 1.3 are immediate consequences of respectively
Propositions 1.6, 1.7 and 1.8.

2. Preliminaries

In this section we recall some (classical) definitions and results. These will be used throughout the paper.
Let m,N � 1 be two integers. For any bounded open set D ⊂ R

N , we denote by Aff(D;R
m) the space of all

continuous piecewise affine functions from D to Rm, i.e., u ∈ Aff(D;Rm) if and only if u is continuous and there
exists a finite family (Di)i∈I of open disjoint subsets of D such that |D \⋃

i∈I Di | = 0 and for every i ∈ I , ∇u(x) = ξi

in Di with ξi ∈ M
m×N (where | · | denotes the Lebesgue measure in R

N ). For any g ∈ W 1,p(D;R
m) with p > 1, we

set

Affg
(
D;R

m
) := {

u ∈ Aff
(
D;R

m
)
: u = g on ∂D

}
(Aff0(D;R

m) corresponds to Affg(D;R
m) with g = 0) and

W
1,p
g

(
D;R

m
) := {

u ∈ W 1,p
(
D;R

m
)
: u = g on ∂D

}
,

(where ∂D denotes the boundary of D). Fix g ∈ W 1,p(Ω;R
m) where Ω ⊂ R

N is bounded and open with Lipschitz
boundary. The following density theorem will play an essential role in the proof of Theorem 1.4:

Theorem 2.1. (Ekeland and Temam [10]) Affg(Ω;R
m) is dense in W

1,p
g (Ω;R

m) with respect to the strong topology
of W 1,p(Ω;R

m).

Let f : Mm×N → [0,+∞] be Borel measurable and let Zf : Mm×N → [0,+∞] be defined by

Zf (ξ) := inf

{∫
Y

f
(
ξ + ∇φ(x)

)
dx: φ ∈ Aff0

(
Y ;R

m
)}

with Y := ]0,1[N . To prove Propositions 1.6, 1.7 and 1.8, we will use the following properties of Zf :
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Proposition 2.2. (Fonseca [11])

(i) For every bounded open set D ⊂ RN with |∂D| = 0 and every ξ ∈ Mm×N ,

Zf (ξ) = inf

{
1

|D|
∫
D

f
(
ξ + ∇φ(x)

)
dx: φ ∈ Aff0

(
D;R

m
)}

.

(ii) If Zf is finite then Zf is rank-one convex, i.e., for every ξ, ξ ′ ∈ M
m×N with rank(ξ − ξ ′) � 1,

Zf
(
λξ + (1 − λ)ξ ′) � λZf (ξ) + (1 − λ)Zf (ξ ′).

(iii) If Zf is finite then Zf is continuous.
(iv) For every bounded open set D ⊂ R

N with |∂D| = 0, every ξ ∈ M
m×N and every φ ∈ Aff0(D;R

m),

Zf (ξ) � 1

|D|
∫
D

Zf
(
ξ + ∇φ(x)

)
dx.

Note that Proposition 2.2 is not exactly the one that can found in Fonseca. Nevertheless, it can be proved using the
same arguments than the one given by Fonseca (for more details see [2, Remark A.2]).

Quasiconvexity is the correct concept to deal with multiple integral problems in the Calculus of Variations. For the
convenience of the reader, we recall its definition:

Definition 2.3. (Morrey [13]) We say that f is quasiconvex if for every ξ ∈ M
m×N , every bounded open set D ⊂ R

N

with |∂D| = 0 and every φ ∈ W
1,∞
0 (D;R

m),

f (ξ) � 1

|D|
∫
D

f
(
ξ + ∇φ(x)

)
dx.

Remark 2.4. Clearly, if f is quasiconvex then Zf = f .

By the quasiconvex envelope of f , that we denote Qf , we mean the greatest quasiconvex function which less than
or equal to f . (Thus, f is quasiconvex if and only if Qf = f .) To prove Proposition 1.9 we will need Theorem 2.5:

Theorem 2.5. (Dacorogna [8,9]) If f is continuous and finite then Qf =Zf .

Let F :W 1,p(Ω;R
m) → [0,+∞] be defined by

F(u) :=

⎧⎪⎨
⎪⎩

∫
Ω

f
(∇u(x)

)
dx if u ∈ W

1,p
g

(
Ω;R

m
)
,

+∞ otherwise,

let QF :W 1,p(Ω;R
m) → [0,+∞] be given by

QF(u) :=

⎧⎪⎨
⎪⎩

∫
Ω

Qf
(∇u(x)

)
dx if u ∈ W

1,p
g

(
Ω;R

m
)
,

+∞ otherwise,

and let F :W 1,p(Ω;R
m) → [0,+∞] be the lower semicontinuous envelope (or relaxed functional) of I with respect

to the weak topology of W 1,p(Ω;R
m), i.e.,

F(u) := inf
{

lim inf
n→+∞F(un) :un ⇀ u

}
,

where “⇀” denotes the weak convergence in W 1,p(Ω;R
m). We close this section with the following integral repre-

sentation theorem that we will use in the proof of Theorem 1.4:
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Theorem 2.6. (Dacorogna [8,9]) If f is continuous and of p-polynomial growth, i.e., f (ξ) � c(1 + |ξ |p) for all
ξ ∈ M

m×N and some c > 0, then F =QF .

3. Proof of Propositions 1.9 and 1.10 and Theorem 1.4

3.1. Proof of Proposition 1.9

Since ZW is finite, ZW is continuous by Proposition 2.2(iii). From Theorem 2.5, we deduce that Q[ZW ] =
Z[ZW ]. But Z[ZW ] =ZW by Proposition 2.2(iv), hence Q[ZW ] =ZW . On the other hand, as ZW � W we have
Q[ZW ] � QW . Moreover, as QW is quasiconvex, from Remark 2.4 we see that Z[QW ] = QW , and consequently
QW �Q[ZW ]. It follows that QW =Q[ZW ] =ZW .

Assume that N = 1. Then, quasiconvexity is equivalent to convexity (see [9, Theorem 1.1, p. 102]). Thus, ZW

is convex (resp. ZW ∗∗ = W ∗∗) since ZW = QW (resp. W ∗∗ is convex). But ZW is continuous (resp. W ∗∗ � W ),
hence ZW � W ∗∗ (resp. W ∗∗ �ZW ). It follows that ZW = W ∗∗.

3.2. Proof of Proposition 1.10

Clearly J1 � J0. We are thus reduced to prove that

J0 � J1. (3)

We need the following lemma:

Lemma 3.1. If u ∈ Affg(Ω;R
3) then J0(u) �ZI (u).

Proof of Lemma 3.1. Let u ∈ Affg(Ω;R
3). By definition, there exists a finite family (Ωi)i∈I of open disjoint subsets

of Ω such that |Ω \ ∪i∈IΩi | = 0 and, for every i ∈ I , ∇u(x) = ξi in Ωi with ξi ∈ M
3×N . Given any δ > 0 and any

i ∈ I , we consider φi ∈ Aff0(Y ;R
3) such that∫

Y

W
(
ξi + ∇φi(y)

)
dy �ZW(ξi) + δ

|Ω| . (4)

Fix any integer n � 1. By Vitali’s covering theorem, there exists a finite or countable family (ai,j + εi,j Y )j∈Ji
of

disjoint subsets of Ωi , where ai,j ∈ R
N and 0 < εi,j < 1

n
, such that |Ωi \⋃

j∈Ji
(ai,j +εi,j Y )| = 0 (and so

∑
j∈Ji

εN
i,j =

|Ωi |). Define ψn :Ω → R
3 by

ψn(x) := εi,j φi

(
x − ai,j

εi,j

)
if x ∈ ai,j + εi,j Y.

Clearly, for every n � 1, ψn ∈ Aff0(Ω;R
3),

‖ψn‖L∞(Ω;R3) � 1

n
max
i∈I

‖φi‖L∞(Y ;R3) and ‖∇ψn‖L∞(Ω;M3×N) � max
i∈I

‖∇φi‖L∞(Y ;M3×N ),

hence (up to a subsequence) ψn
∗
⇀ 0 in W 1,∞(Ω;R

3), where “
∗
⇀” denotes the weak∗ convergence in W 1,∞(Ω;R

3).
Consequently, ψn ⇀ 0 in W 1,p(Ω;R

3). Moreover,

I (u + ψn) =
∑
i∈I

∫
Ωi

W
(
ξi + ∇ψn(x)

)
dx

=
∑
i∈I

∑
j∈Ji

εN
i,j

∫
Y

W
(
ξi + ∇φi(y)

)
dy

=
∑
i∈I

|Ωi |
∫

W
(
ξi + ∇φi(y)

)
dy.
Y
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As u + ψn ∈ Affg(Ω;R
3) for all n � 1 and u + ψn ⇀ u in W 1,p(Ω;R

3), from (4) we deduce that

J0(u) � lim inf
n→+∞ I (u + ψn) �

∑
i∈I

|Ωi |ZW(ξi) + δ =ZI (u) + δ,

and the lemma follows. �
Fix any u ∈ W 1,p(Ω;R

3) and any sequence un ⇀ u with un ∈ Affg(Ω;R
3). Using Lemma 3.1 we have J0(un) �

ZI (un) for all n � 1. Thus,

J0(u) � lim inf
n→+∞J0(un) � lim inf

n→+∞ZI (un),

and (3) follows.

3.3. Proof of Theorem 1.4

Since ZW is of p-polynomial growth, ZW is finite, and so ZW is continuous by Proposition 2.2(iii). From
Theorem 2.1 it follows that

J1(u) = inf
{

lim inf
n→+∞ZI (un) :W 1,p

g

(
Ω;R

3) 	 un ⇀ u
}
.

But QW = Q[ZW ] by Proposition 1.9, hence J1 = QI by Theorem 2.6. On the other hand, given any u ∈
W 1,p(Ω;R

3) and any un ⇀ u with un ∈ W
1,p
g (Ω;R

3), we have ZI (un) � I (un) for all n � 1. Thus,

J1(u) � lim inf
n→+∞ZI (un) � lim inf

n→+∞ I (un),

and so J1 � I . But I � J0 and J0 = J1 by Proposition 1.10, hence I = J1, and the theorem follows.

4. Proof of Propositions 1.6, 1.7 and 1.8

4.1. Case N = 1

In this section we prove Proposition 1.6.

Proof of Proposition 1.6. By (C1) it is clear that if |ξ | � α then ZW(ξ) � β(1 + |ξ |p). Fix any ξ ∈ M
3×1 such that

|ξ | � α and consider φ ∈ Aff0(Y ;R
3) given by

φ(x) :=
{

xν if x ∈ ]0, 1
2 ],

(1 − x)ν if x ∈ ] 1
2 ,1[

with ν ∈ R
3 such that |ν| = 2α. Then,

∣∣ξ + ∇φ(x)
∣∣ =

{
|ξ + ν| if x ∈ ]0, 1

2 [,
|ξ − ν| if x ∈ ] 1

2 ,1[,
hence |ξ + ∇φ(x)| � min{|ξ + ν|, |ξ − ν|} � |ν| − |ξ | � α for all x ∈ ]0, 1

2 [ ∪ ] 1
2 ,1[, and from (C1) we deduce that

ZW(ξ) �
∫
Y

W
(
ξ + ∇φ(x)

)
dx � β

∫
Y

(
1 + ∣∣ξ + ∇φ(x)

∣∣p)
dx � β22p max

{
1, αp

}(
1 + |ξ |p)

.

It follows that ZW(ξ) � β22p max{1, αp}(1 + |ξ |p) for all ξ ∈ M
3×1. �
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4.2. Case N = 2

In this section we prove Proposition 1.7. We begin with the following lemma.

Lemma 4.1. Under (C2) there exists γ > 0 such that for all ξ = (ξ1 | ξ2) ∈ M
3×2,

if min
{|ξ1 + ξ2|, |ξ1 − ξ2|

}
� α then ZW(ξ) � γ

(
1 + |ξ |p)

.

Proof. Let ξ = (ξ1 | ξ2) ∈ M
3×2 be such that min{|ξ1 + ξ2|, |ξ1 − ξ2|} � α (with α > 0 given by (C2)). Then, one the

three possibilities holds:

(i) |ξ1 ∧ ξ2| = 0;
(ii) |ξ1 ∧ ξ2| = 0 with ξ1 = 0;

(iii) |ξ1 ∧ ξ2| = 0 with ξ2 = 0.

Set D := {(x1, x2) ∈ R
2: x1 −1 < x2 < x1 +1 and −x1 −1 < x2 < 1−x1} and, for each t ∈ R, define ϕt ∈ Aff0(D;R)

by

ϕt (x1, x2) :=

⎧⎪⎨
⎪⎩

−tx1 + t (x2 + 1) if (x1, x2) ∈ Δ1,

t (1 − x1) − tx2 if (x1, x2) ∈ Δ2,

tx1 + t (1 − x2) if (x1, x2) ∈ Δ3,

t (x1 + 1) + tx2 if (x1, x2) ∈ Δ4

with

Δ1 := {
(x1, x2) ∈ D: x1 � 0 and x2 � 0

};
Δ2 := {

(x1, x2) ∈ D: x1 � 0 and x2 � 0
};

Δ3 := {
(x1, x2) ∈ D: x1 � 0 and x2 � 0

};
Δ4 := {

(x1, x2) ∈ D: x1 � 0 and x2 � 0
}
.

Consider φ ∈ Aff0(D;R
3) given by

φ := (ϕν1, ϕν2 , ϕν3) with

⎧⎪⎪⎨
⎪⎪⎩

ν = ξ1 ∧ ξ2

|ξ1 ∧ ξ2| if (i) is satisfied,

|ν| = 1 and 〈ξ1, ν〉 = 0 if (ii) is satisfied,

|ν| = 1 and 〈ξ2, ν〉 = 0 if (iii) is satisfied

(ν1, ν2, ν3 are the components of the vector ν). Then,

ξ + ∇φ(x) =

⎧⎪⎨
⎪⎩

(ξ1 − ν | ξ2 + ν) if x ∈ int(Δ1),

(ξ1 − ν | ξ2 − ν) if x ∈ int(Δ2),

(ξ1 + ν | ξ2 − ν) if x ∈ int(Δ3),

(ξ1 + ν | ξ2 + ν) if x ∈ int(Δ4)

(where int(E) denotes the interior of the set E). Taking Proposition 2.2(i) into account, it follows that

ZW(ξ) � 1

4

(
W(ξ1 − ν | ξ2 + ν) + W(ξ1 − ν | ξ2 − ν) + W(ξ1 + ν | ξ2 − ν) + W(ξ1 + ν | ξ2 + ν)

)
. (5)

But |(ξ1 − ν) ∧ (ξ2 + ν)|2 = |ξ1 ∧ ξ2 + (ξ1 + ξ2) ∧ ν|2 = |ξ1 ∧ ξ2|2 + |(ξ1 + ξ2) ∧ ν|2 � |(ξ1 + ξ2) ∧ ν|2, and so∣∣(ξ1 + ν) ∧ (ξ2 − ν)
∣∣ �

∣∣(ξ1 + ξ2) ∧ ν
∣∣ = |ξ1 + ξ2|.

Similarly, we obtain:∣∣(ξ1 − ν) ∧ (ξ2 − ν)
∣∣ � |ξ1 − ξ2|;∣∣(ξ1 + ν) ∧ (ξ2 − ν)
∣∣ � |ξ1 + ξ2|;∣∣(ξ1 + ν) ∧ (ξ2 + ν)
∣∣ � |ξ1 − ξ2|.
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Thus, |(ξ1 − ν) ∧ (ξ2 + ν)| � α, |(ξ1 − ν) ∧ (ξ2 − ν)| � α, |(ξ1 + ν) ∧ (ξ2 − ν)| � α and |(ξ1 + ν) ∧ (ξ2 + ν)| � α,
because min{|ξ1 + ξ2|, |ξ1 − ξ2|} � α. Using (C2) it follows that

W(ξ1 − ν | ξ2 + ν) � β
(
1 + ∣∣(ξ1 − ν | ξ2 + ν)

∣∣p)
� β2p

(
1 + ∣∣(ξ1 | ξ2)

∣∣p + ∣∣(−ν | ν)
∣∣p)

� β22p+1(1 + |ξ |p)
.

In the same manner, we have:

W(ξ1 − ν | ξ2 − ν) � β22p+1(1 + |ξ |p);
W(ξ1 + ν | ξ2 − ν) � β22p+1(1 + |ξ |p);
W(ξ1 + ν | ξ2 + ν) � β22p+1(1 + |ξ |p)

,

and, from (5), we conclude that ZW(ξ) � β22p+1(1 + |ξ |p). �
Proof of Proposition 1.7. Let ξ = (ξ1 | ξ2) ∈ M

3×2. Then, one the four possibilities holds:

(i) |ξ1 ∧ ξ2| = 0;
(ii) |ξ1 ∧ ξ2| = 0 with ξ1 = ξ2 = 0;

(iii) |ξ1 ∧ ξ2| = 0 with ξ1 = 0;
(iv) |ξ1 ∧ ξ2| = 0 with ξ2 = 0.

For each t ∈ R, define ϕt ∈ Aff0(Y ;R) by

ϕt (x1, x2) :=

⎧⎪⎨
⎪⎩

tx2 if (x1, x2) ∈ Δ1,

t (1 − x1) if (x1, x2) ∈ Δ2,

t (1 − x2) if (x1, x2) ∈ Δ3,

tx1 if (x1, x2) ∈ Δ4

with

Δ1 := {
(x1, x2) ∈ Y : x2 � x1 � −x2 + 1

};
Δ2 := {

(x1, x2) ∈ Y : −x1 + 1 � x2 � x1
};

Δ3 := {
(x1, x2) ∈ Y : −x2 + 1 � x1 � x2

};
Δ4 := {

(x1, x2) ∈ Y : x1 � x2 � −x1 + 1
}
.

Consider φ ∈ Aff0(Y ;R
3) given by

φ := (ϕν1 , ϕν2, ϕν3) with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν = α(ξ1 ∧ ξ2)

|ξ1 ∧ ξ2| if (i) is satisfied,

|ν| = α if (ii) is satisfied,

|ν| = α and 〈ξ1, ν〉 = 0 if (iii) is satisfied,

|ν| = α and 〈ξ2, ν〉 = 0 if (iv) is satisfied

(ν1, ν2, ν3 are the components of the vector ν and α > 0 is given by (C2)). Then,

ξ + ∇φ(x) =

⎧⎪⎨
⎪⎩

(ξ1 | ξ2 + ν) if x ∈ int(Δ1),

(ξ1 − ν | ξ2) if x ∈ int(Δ2),

(ξ1 | ξ2 − ν) if x ∈ int(Δ3),

(ξ1 + ν | ξ2) if x ∈ int(Δ4)

(where int(E) denotes the interior of the set E). Taking Proposition 2.2(iv) into account, it follows that

ZW(ξ) � 1 (
ZW(ξ1 | ξ2 + ν) +ZW(ξ1 − ν | ξ2) +ZW(ξ1 | ξ2 − ν) +ZW(ξ1 + ν | ξ2)

)
. (6)
4
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But ∣∣ξ1 + (ξ2 + ν)
∣∣2 = ∣∣(ξ1 + ξ2) + ν

∣∣2 = |ξ1 + ξ2|2 + |ν|2 = |ξ1 + ξ2|2 + α2 � α2,

hence |ξ1 + (ξ2 + ν)| � α. Similarly, we obtain |ξ1 − (ξ2 + ν)| � α, and so

min
{∣∣ξ1 + (ξ2 + ν)

∣∣, ∣∣ξ1 − (ξ2 + ν)
∣∣} � α.

In the same manner, we have:

min
{∣∣(ξ1 − ν) + ξ2

∣∣, ∣∣(ξ1 − ν) − ξ2
∣∣} � α;

min
{∣∣ξ1 + (ξ2 − ν)

∣∣, ∣∣ξ1 − (ξ2 − ν)
∣∣} � α;

min
{∣∣(ξ1 + ν) + ξ2

∣∣, ∣∣(ξ1 + ν) − ξ2
∣∣} � α.

Using Lemma 4.1 it follows that

ZW(ξ1 | ξ2 + ν) � γ
(
1 + ∣∣(ξ1 | ξ2 + ν)

∣∣p)
� γ 2p

(
1 + ∣∣(ξ1 | ξ2)

∣∣p + ∣∣(0 | ν)
∣∣p)

� max
{
1, αp

}
γ 2p+1(1 + |ξ |p)

.

Similarly, we obtain:

ZW(ξ1 − ν | ξ2) � max
{
1, αp

}
γ 2p+1(1 + |ξ |p);

ZW(ξ1 | ξ2 − ν) � max
{
1, αp

}
γ 2p+1(1 + |ξ |p);

ZW(ξ1 + ν | ξ2) � max
{
1, αp

}
γ 2p+1(1 + |ξ |p)

,

and, from (6), we conclude that ZW(ξ) � max{1, αp}γ 2p+1(1 + |ξ |p). �
4.3. Case N = 3

In this section we prove Proposition 1.8. We begin with three lemmas.

Lemma 4.2. If (C3) holds then ZW is finite.

Proof. Clearly, if ξ ∈ M
3×3∗ then ZW(ξ) < +∞ with M

3×3∗ := {ξ ∈ M
3×3: det ξ = 0}. We are thus reduced to prove

that ZW(ξ) < +∞ for all ξ ∈ M
3×3 \ M

3×3∗ . Fix ξ = (ξ1 | ξ2 | ξ3) ∈ M
3×3 \ M

3×3∗ where ξ1, ξ2, ξ3 ∈ R
3 are the

columns of ξ . Then rank(ξ) ∈ {0,1,2} (where rank(ξ) denotes the rank of the matrix ξ ).
Step 1. We prove that if rank(ξ) = 2 then ZW(ξ) < +∞. Without loss of generality we can assume that there exist

λ,μ ∈ R such that ξ3 = λξ1 + μξ2. Given any s ∈ R
∗, consider D ⊂ R

3 given by

D := int

(
8⋃

i=1

Δs
i

)
(7)

(where int(E) denotes the interior of the set E) with:

Δs
1 := {

(x1, x2, x3) ∈ R
3: x1 � 0, x2 � 0, x3 � 0 and x1 + x2 + sx3 � 1

};
Δs

2 := {
(x1, x2, x3) ∈ R

3: x1 � 0, x2 � 0, x3 � 0 and − x1 + x2 + sx3 � 1
};

Δs
3 := {

(x1, x2, x3) ∈ R
3: x1 � 0, x2 � 0, x3 � 0 and − x1 − x2 + sx3 � 1

};
Δs

4 := {
(x1, x2, x3) ∈ R

3: x1 � 0, x2 � 0, x3 � 0 and x1 − x2 + sx3 � 1
};

Δs
5 := {

(x1, x2, x3) ∈ R
3: x1 � 0, x2 � 0, x3 � 0 and x1 + x2 − sx3 � 1

};
Δs

6 := {
(x1, x2, x3) ∈ R

3: x1 � 0, x2 � 0, x3 � 0 and − x1 + x2 − sx3 � 1
};

Δs
7 := {

(x1, x2, x3) ∈ R
3: x1 � 0, x2 � 0, x3 � 0 and − x1 − x2 − sx3 � 1

};
Δs := {

(x1, x2, x3) ∈ R
3: x1 � 0, x2 � 0, x3 � 0 and x1 − x2 − sx3 � 1

}
.
8
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Clearly, D is bounded, open and |∂D| = 0. For each t ∈ R, define ϕs,t ∈ Aff0(D;R) by

ϕs,t (x1, x2, x3) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−t (x1 + 1) − tx2 − tsx3 if (x1, x2, x3) ∈ Δs
1,

tx1 − t (x2 + 1) − tsx3 if (x1, x2, x3) ∈ Δs
2,

t (x1 − 1) + tx2 − tsx3 if (x1, x2, x3) ∈ Δs
3,

−tx1 + t (x2 − 1) − tsx3 if (x1, x2, x3) ∈ Δs
4,

−t (x1 + 1) − tx2 + tsx3 if (x1, x2, x3) ∈ Δs
5,

tx1 − t (x2 + 1) + tsx3 if (x1, x2, x3) ∈ Δs
6,

t (x1 − 1) + tx2 + tsx3 if (x1, x2, x3) ∈ Δs
7,

−tx1 + t (x2 − 1) + tsx3 if (x1, x2, x3) ∈ Δs
8.

(8)

(Note that ϕs,t is simply the only function, affine on every Δs
i , null on ∂D, such that ϕs,t (0) = −t .) Fix

s ∈ R
∗ \ {

λ − μ,−(λ − μ),λ + μ,−(λ + μ)
}

and consider φ ∈ Aff0(D;R
3) given by

φ := (ϕs,ν1, ϕs,ν2, ϕs,ν3) with ν := ξ1 ∧ ξ2

|ξ1 ∧ ξ2|2 ,

(ν1, ν2, ν3 are the components of the vector ν). Then,

ξ + ∇φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ1 − ν | ξ2 − ν | ξ3 − sν) if x ∈ int
(
Δs

1

)
,

(ξ1 + ν | ξ2 − ν | ξ3 − sν) if x ∈ int
(
Δs

2

)
,

(ξ1 + ν | ξ2 + ν | ξ3 − sν) if x ∈ int
(
Δs

3

)
,

(ξ1 − ν | ξ2 + ν | ξ3 − sν) if x ∈ int
(
Δs

4

)
,

(ξ1 − ν | ξ2 − ν | ξ3 + sν) if x ∈ int
(
Δs

5

)
,

(ξ1 + ν | ξ2 − ν | ξ3 + sν) if x ∈ int
(
Δs

6

)
,

(ξ1 + ν | ξ2 + ν | ξ3 + sν) if x ∈ int
(
Δs

7

)
,

(ξ1 − ν | ξ2 + ν | ξ3 + sν) if x ∈ int
(
Δs

8

)
.

As det ξ = 0, ξ1 ∧ ξ3 = μ(ξ1 ∧ ξ2) and ξ2 ∧ ξ3 = λ(ξ2 ∧ ξ1) we have

∣∣det
(
ξ + ∇φ(x)

)∣∣ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣s + (λ − μ)
∣∣ if x ∈ int

(
Δs

1

) ∪ int
(
Δs

7

)
,∣∣s − (λ + μ)

∣∣ if x ∈ int
(
Δs

2

) ∪ int
(
Δs

8

)
,∣∣s − (λ − μ)

∣∣ if x ∈ int
(
Δs

3

) ∪ int
(
Δs

5

)
,∣∣s + (λ + μ)

∣∣ if x ∈ int
(
Δs

4

) ∪ int
(
Δs

6

)
.

It follows that for a.e. x ∈ D, |det(ξ + ∇φ(x)| � min{|s + (λ − μ)|, |s − (λ + μ)|, |s − (λ − μ)|, |s + (λ + μ)|} =: δ
(δ > 0). Taking Proposition 2.2(i) into account and using (C3), we see that there exists cδ > 0 such that

ZW(ξ) � 1

|D|
∫
D

W
(
ξ + ∇φ(x)

)
� cδ + cδ

|D| ‖ξ + ∇φ‖p

Lp(D;R3)
,

which implies that ZW(ξ) < +∞.
Step 2. We prove that if rank(ξ) = 1 then ZW(ξ) < +∞. Without loss of generality we can assume that there

exist λ,μ ∈ R such that ξ2 = λξ1 and ξ3 = μξ1. Consider D ⊂ R
3 given by (7) with s ∈ R

∗ \ {−μ,μ}, and define
φ ∈ Aff0(D;R

3) by φ := (ϕs,ν1, ϕs,ν2, ϕs,ν3) with ν = (ν1, ν2, ν3) ∈ R
3 \ {0} such that 〈ν, ξ1〉 = 0, where, for every

i ∈ {1,2,3}, ϕs,νi
is defined by (8) with t = νi . By Proposition 2.2(iv) we have

ZW(ξ) � 1

8

(
ZW(ξ1 − ν | ξ2 − ν | ξ3 − sν) +ZW(ξ1 + ν | ξ2 − ν | ξ3 − sν)

+ZW(ξ1 + ν | ξ2 + ν | ξ3 − sν) +ZW(ξ1 − ν | ξ2 + ν | ξ3 − sν)

+ZW(ξ1 − ν | ξ2 − ν | ξ3 + sν) +ZW(ξ1 + ν | ξ2 − ν | ξ3 + sν)

+ZW(ξ1 + ν | ξ2 + ν | ξ3 + sν) +ZW(ξ1 − ν | ξ2 + ν | ξ3 + sν)
)
.
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Noticing that s ∈ R
∗ \ {−μ,μ} it is easy to see that:

rank(ξ1 − ν | ξ2 − ν | ξ3 − sν) = 2;
rank(ξ1 + ν | ξ2 − ν | ξ3 − sν) = 2;
rank(ξ1 + ν | ξ2 + ν | ξ3 − sν) = 2;
rank(ξ1 − ν | ξ2 + ν | ξ3 − sν) = 2;
rank(ξ1 − ν | ξ2 − ν | ξ3 + sν) = 2;
rank(ξ1 + ν | ξ2 − ν | ξ3 + sν) = 2;
rank(ξ1 + ν | ξ2 + ν | ξ3 + sν) = 2;
rank(ξ1 − ν | ξ2 + ν | ξ3 + sν) = 2,

and using Step 1 we deduce that ZW(ξ) < +∞.
Step 3. We prove that ZW(0) < +∞. This follows from Step 2 by using Proposition 2.2(iv) with D ⊂ R3 given

by (7) with s ∈ R
∗, and φ ∈ Aff0(D;R

3) defined by φ := (ϕs,ν1, ϕs,ν2, ϕs,ν3) with (ν1, ν2, ν3) ∈ R
3 \ {0}, where, for

every i ∈ {1,2,3}, ϕs,νi
is defined by (8) with t = νi . �

Lemma 4.3. Under (C3) there exists c > 0 such that for every ξ ∈ M
3×3,

if ξ is diagonal then ZW(ξ) � c
(
1 + |ξ |p)

.

Proof. Combining Lemma 4.2 with Proposition 2.2(ii), we deduce that ZW is continuous, and so there exists c0 > 0
such that ZW(ξ) � c0 for all ξ ∈ M3×3 with |ξ |2 � 3. Moreover, it is obvious that ZW(ξ) � c1(1 + |ξ |p) for all
ξ ∈ M

3×3 such that |det ξ | � 1, where c1 > 0 is given by (C3) with δ = 1. We are thus led to consider ξ ∈ M
3×3 such

that ξ is diagonal, |det ξ | � 1 and |ξ |2 � 3, i.e., ξ = (ξij ) with ξij = 0 if i = j ,

|ξ11ξ22ξ33| � 1 and |ξ11|2 + |ξ22|2 + |ξ33|2 � 3.

Then, one the six possibilities holds:

(i) |ξ11| � 1, |ξ22| � 1 and |ξ33| � 1;
(ii) |ξ22| � 1, |ξ33| � 1 and |ξ11| � 1;

(iii) |ξ33| � 1, |ξ11| � 1 and |ξ22| � 1;
(iv) |ξ11| � 1, |ξ22| � 1 and |ξ33| � 1;
(v) |ξ22| � 1, |ξ33| � 1 and |ξ11| � 1;

(vi) |ξ33| � 1, |ξ11| � 1 and |ξ22| � 1.

Claim 1. There exists c2 > 0 such that if ξ is diagonal with |det ξ | � 1 and satisfies either (i), (ii) or (iii), then
ZW(ξ) � c2(1 + |ξ |p).

Consider D ⊂ R
3 given by (7) with s = 1, and define φ ∈ Aff0(D;R

3) by φ := (ϕ1,ν1 , ϕ1,ν2 , ϕ1,ν3), where

(ν1, ν2, ν3) =
{

(2,0,0) if (i) is satisfied,

(0,2,0) if (ii) is satisfied,

(0,0,2) if (iii) is satisfied,

and, for every i ∈ {1,2,3}, ϕ1,νi
is defined by (8) with s = 1 and t = νi . It is then easy to see that for a.e. x ∈ D,

∣∣det
(
ξ + ∇φ(x)

)∣∣ �

⎧⎪⎨
⎪⎩

∣∣2|ξ22||ξ33| − |det ξ |∣∣ if (i) is satisfied,∣∣2|ξ11||ξ33| − |det ξ |∣∣ if (ii) is satisfied,∣∣2|ξ11||ξ22| − |det ξ |∣∣ if (iii) is satisfied,

so that |det(ξ + ∇φ(x))| � 1. Taking Proposition 2.2(i) into account, using (C3) and noticing that |∇φ(x)| = 2
√

3 for
a.e. x ∈ D, we deduce that ZW(ξ) � c2(1 + |ξ |p) with c2 := c12p(1 + (2

√
3)p).
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Claim 2. There exists c3 > 0 such that if ξ is diagonal and satisfies either (iv), (v) or (vi), then ZW(ξ) � c3(1+|ξ |p).

Let ζ ∈ M
3×3 be a rank-one diagonal matrix defined by

ζ11 :=
{

ξ22 + sign(ξ22) if (iv) is satisfied,

0 if either (v) or (vi) is satisfied;
ζ22 :=

{
ξ33 + sign(ξ33) if (v) is satisfied,

0 if either (iv) or (vi) is satisfied;
ζ33 :=

{
ξ11 + sign(ξ11) if (vi) is satisfied,

0 if either (iv) or (v) is satisfied,

where sign(r) = 1 if r � 0 and sign(r) = −1 if r < 0. Then, ξ+ := ξ + ζ and ξ− := ξ − ζ are diagonal matrices such
that:

(a) |ξ+
11| � 1, |ξ+

22| � 1, |ξ+
33| � 1 and |ξ−

11| � 1, |ξ−
22| � 1, |ξ−

33| � 1 if (iv) is satisfied;

(b) |ξ+
11| � 1, |ξ+

22| � 1, |ξ+
33| � 1 and |ξ−

11| � 1, |ξ−
22| � 1, |ξ−

33| � 1 if (v) is satisfied;

(c) |ξ+
11| � 1, |ξ+

22| � 1, |ξ+
33| � 1 and |ξ−

11| � 1, |ξ−
22| � 1, |ξ−

33| � 1 if (vi) is satisfied.

Combining Lemma 4.2 with Proposition 2.2(ii) we deduce that ZW is rank-one convex, so that

ZW(ξ) � 1

2

(
ZW(ξ+) +ZW(ξ−)

)
. (9)

According to (a), (b) and (c), from Claim 1 we see that ZW(ξ+) � c2(1 + |ξ+|p) (resp. ZW(ξ−) � c2(1 + |ξ+|p))
if |det ξ+| � 1 (resp. |det ξ−| � 1). On the other hand, by (C3) we have ZW(ξ+) � c1(1 + |ξ+|p) (resp. ZW(ξ−) �
c1(1 + |ξ+|p)) if |det ξ+| � 1 (resp. |det ξ−| � 1). Noticing that |ξ+|p � 22p(1 + |ξ |p) (resp. |ξ−|p � 22p(1 + |ξ |p))
and using (9), we deduce that ZW(ξ) � c3(1 + |ξ |p) with c3 := 22p max{c1, c2}.

From Claims 1 and 2, it follows that for every ξ ∈ M
3×3, if ξ is diagonal with |ξ |2 � 3 and |det ξ | � 1 then

ZW(ξ) � c4(1 + |ξ |p) with c4 := max{c2, c3}. Setting c := max{c0, c4} we conclude that ZW(ξ) � c(1 + |ξ |p) for
all ξ ∈ M

3×3 such that ξ is diagonal. �
Lemma 4.4. If (C4) holds then ZW(PξQ) =ZW(ξ) for all ξ ∈ M

3×3 and all P,Q ∈ SO(3).

Proof. It is suffices to show that
(i) ZW(PξQ) �ZW(ξ) for all ξ ∈ M

3×3 and all P,Q ∈ SO(3).
Indeed, given ξ ∈ M

3×3 and P,Q ∈ SO(3), we have ξ = P T(P ξQ)QT, and using (i) we obtain ZW(ξ) �
ZW(PξQ). Moreover, (i) is equivalent to

(ii) ZW(Pξ) �ZW(ξ) for all ξ ∈ M
3×3 and all P ∈ SO(3) and

(iii) ZW(ξQ) �ZW(ξ) for all ξ ∈ M
3×3 and all Q ∈ SO(3).

Indeed, (ii) (resp. (iii)) follows from (i) with Q = I3 (resp. P = I3), where I3 is the identity matrix in M
3×3.

On the other hand, given ξ ∈ M
3×3 and P,Q ∈ SO(3), by (ii) (resp. (iii)) we have ZW(P(ξQ)) � ZW(ξQ) (resp.

ZW(ξQ) �ZW(ξ)), and so ZW(PξQ) �ZW(ξ). We are thus reduced to prove (ii) and (iii).

Proof of (ii). Fix any φ ∈ Aff0(Y ;R
3) and set ϕ := Pφ. Then, ϕ ∈ Aff0(Y ;R

3) and ∇ϕ = P∇φ, hence

ZW(Pξ) �
∫
Y

W
(
Pξ + ∇ϕ(x)

)
dx =

∫
Y

W
(
P

(
ξ + P T∇ϕ(x)

))
dx =

∫
Y

W
(
P

(
ξ + ∇φ(x)

))
dx.

From (C4) we deduce that

ZW(Pξ) �
∫
Y

W
(
ξ + ∇φ(x)

)
dx

for all φ ∈ Aff0(Y ;R3), which implies that ZW(Pξ) �ZW(ξ). �
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Proof of (iii). By Vitali’s covering theorem, there exists a finite or countable family (ai + εiQ
TY)i∈I of disjoint

subsets of Y , where ai ∈ R
3 and 0 < εi < 1, such that |Y \ ⋃

i∈I (ai + εiQ
TY)| = 0 (and so

∑
i∈I ε3

i = 1). Fix any
φ ∈ Aff0(Y ;R

3) and define ϕ ∈ Aff0(Y ;R
3) by

ϕ(x) = εiφ

(
Q

x − ai

εi

)
if x ∈ ai + εiQ

TY.

Then,

ZW(ξQ) �
∫
Y

W
(
ξQ + ∇ϕ(x)

)
dx =

∑
i∈I

ε3
i

∫
Y

W
(
ξQ + ∇φ(x)Q

)
dx =

∫
Y

W
((

ξ + ∇φ(x)
)
Q

)
dx.

From (C4) we deduce that

ZW(ξQ) �
∫
Y

W
(
ξ + ∇φ(x)

)
dx

for all φ ∈ Aff0(Y ;R
3), which implies that ZW(ξQ) �ZW(ξ). �

Proof of Proposition 1.8. Fix any ξ ∈ M
3×3∗ (with M

3×3∗ := {ξ ∈ M
3×3: det ξ = 0}) and consider P ∈ SO(3) given

by P := ξM−1 with

M :=
{√

ξTξ if det ξ > 0,

−√
ξTξ if det ξ < 0.

As M is symmetric, there exist Q ∈ SO(3) and ζ ∈ M
3×3 such that ζ is diagonal and M = QTζQ, hence ξ =

PQTζQ. Consequently, ZW(ξ) = ZW(ζ) by Lemma 4.4. Noticing that |ζ | = |ξ |, from Lemma 4.3 we deduce that
there exists c > 0 such that ZW(ξ) � c(1 + |ξ |p) for all ξ ∈ M

3×3∗ . Combining Lemma 4.2 with Proposition 2.2(iii),
we see that ZW is continuous, and using the fact that M

3×3∗ is dense in M
3×3, we conclude that ZW(ξ) � c(1+|ξ |p)

for all ξ ∈ M
3×3. �
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