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Abstract

In this paper we study the existence of radially symmetric positive solutions in H 1
rad(RN) × H 1

rad(RN) of the elliptic system:

−�u + u − (
αu2 + βv2)

u = 0,

−�v + ω2v − (
βu2 + γ v2)

v = 0,

N = 1,2,3, where α and γ are positive constants (β will be allowed to be negative). This system has trivial solutions of the form
(φ,0) and (0,ψ) where φ and ψ are nontrivial solutions of scalar equations. The existence of nontrivial solutions for some values
of the parameters α,β, γ,ω has been studied recently by several authors [A. Ambrosetti, E. Colorado, Bound and ground states
of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453–458; T.C. Lin, J. Wei, Ground states
of N coupled nonlinear Schrödinger equations in Rn, n � 3, Comm. Math. Phys. 255 (2005) 629–653; T.C. Lin, J. Wei, Ground
states of N coupled nonlinear Schrödinger equations in Rn, n � 3, Comm. Math. Phys., Erratum, in press; L. Maia, E. Montefusco,
B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, preprint; B. Sirakov, Least energy solitary waves
for a system of nonlinear Schrödinger equations in RN , preprint; J. Yang, Classification of the solitary waves in coupled nonlinear
Schrödinger equations, Physica D 108 (1997) 92–112]. For N = 2,3, perhaps the most general existence result has been proved in
[A. Ambrosetti, E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I
342 (2006) 453–458] under conditions which are equivalent to ours. Motivated by some numerical computations, we return to this
problem and, using our approach, we give a more detailed description of the regions of parameters for which existence can be
proved. In particular, based also on numerical evidence, we show that the shape of the region of the parameters for which existence
of solution can be proved, changes drastically when we pass from dimensions N = 1,2 to dimension N = 3. Our approach differs
from the ones used before. It relies heavily on the spectral theory for linear elliptic operators. Furthermore, we also consider the
case N = 1 which has to be treated more extensively due to some lack of compactness for even functions. This case has not been
treated before.
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Résumé

Dans cet article, on étudie l’existence des solutions positives radialement symétriques dans H 1
rad(RN) × H 1

rad(RN) du système
elliptique

−�u + u − (
αu2 + βv2)

u = 0,

−�v + ω2v − (
βu2 + γ v2)

v = 0,

N = 1,2,3 où α et γ sont des constantes positives (il est permis que β soit négatif). Ce système a des solutions triviales de la
forme (φ,0) et (0,ψ) où φ et ψ sont des solutions non triviales des équations scalaires. L’existence de solutions non triviales pour
certaines valeurs des paramètres α,β, γ,ω a été étudiée récemment par plusieurs auteurs. Pour N = 2,3 peut-être le résultat le plus
général d’existence a été prouvé dans [A. Ambrosetti, E. Colorado, Bound and ground states of coupled nonlinear Schrödinger
equations, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453–458] sous des conditions qui sont équivalentes aux nôtres. Motivé par
quelques calculs numériques on retourne à ce problème et en utilisant notre approche on donne une description plus détaillée des
régions de l’espace des paramètres pour lesquels l’existence peut être prouvée. En particulier, en se basant sur des résultats numé-
riques, on démontre que la forme de la région de l’espace des paramètres pour lesquels l’existence de solutions peut être prouvée,
change drastiquement quand on passe des dimensions N = 1,2 à la dimension N = 3. Notre approche diffère des précédentes.
Elle repose fortement sur la théorie spectrale des opérateurs linéaires. De plus, on considère aussi les cas N = 1 qui nécessite un
traitement plus détaillé dût au manque de compacité pour les fonctions paires. Ce cas n’a pas été traité avant.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction and statement of the results

In this paper we study the existence of radially symmetric positive solutions in H 1
rad(R

N)×H 1
rad(R

N) of the system

−�u + u − (
αu2 + βv2)u = 0,

−�v + ω2v − (
βu2 + γ v2)v = 0, (1.1)

N = 1,2,3, where α and γ are positive constants (β will be allowed to be negative). System (1.1) has motivated a
large amount of research, both theoretically and numerically, due to the fact that it gives solitary waves for Schrödinger
systems that govern phenomena in many physical problems, specially nonlinear optics (see [3] and [8] and the refer-
ences therein).

System (1.1) has unique trivial solutions of the form (φ,0) and (0,ψ) where φ and ψ are radially symmetric
positive (nontrivial) functions satisfying

−�φ + φ − αφ3 = 0

and

−�ψ + ω2ψ − γψ3 = 0.

By a nontrivial solution of (1.1) we mean a pair (u, v) such that u �≡ 0 �≡ v.

To state our main existence results we need some preliminaries. We denote by φ0 the unique radial positive function
satisfying

−�φ0 + φ0 − φ3
0 = 0 (1.2)

and for η > 0 we define

−λ1(η) = principal eigenvalue of M0k = −�k − ηφ2
0k. (1.3)

The behavior of the function λ1(η) for η small depends on the dimension N . In fact, as we will see later, if N = 1,2
then, for η > 0, λ1(η) is positive, increasing and

lim λ1(η) = 0 and lim
η→∞λ1(η) = ∞. (1.4)
η→0
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However, if N = 3 then there is a η0 > 0 such that for 0 � η � η0 the whole spectrum of M0 is [0,∞) and for η > η0
we have λ1(η) > 0, increasing with η and

lim
η→η0

λ1(η) = 0 and lim
η→∞λ1(η) = ∞. (1.5)

For N = 3 and 0 � η � η0 we set λ1(η) = 0. From these properties of the function λ1(η) we see that for each α

and γ fixed and N = 1,2,3 there is a unique β > 0 such that λ1(β/α) = 1/λ1(β/γ ). This value will be denoted by
β(α, γ ). Our main result is the following:

Theorem 1.1.

(i) Suppose first N = 1,2. Then
• if 0 � β < β(α,γ ) then system (1.1) has a nontrivial positive radially symmetric solution if

λ1(β/α) < ω2 <
1

λ1(β/γ )
(region A in Fig. 1); (1.6)

• if β(α, γ ) < β then system (1.1) has a nontrivial positive radially symmetric solution if

1

λ1(β/γ )
< ω2 < λ1(β/α) (region B in Fig. 1). (1.7)

(ii) Suppose now N = 3 and α < γ (for the case α � γ the conclusions are similar). Let η0 > 0 be the number
previously defined. Then (1.1) has a nontrivial positive radially symmetric solution if the parameters β and ω2

belong either to the region A = A1 ∪ A2 ∪ A3 or region B in Fig. 2 where β1 = η0α, β2 = η0γ and the regions
A1, A2 and A3 are defined by the following inequalities involving the parameters β < β(α,γ ) and ω2:

A1 = {
0 � β � β1,ω

2 > 0
}
, A2 =

{
β1 < β � β2,0 < ω2 <

1

λ1(β/γ )

}
,

A3 =
{
β2 < β < β(α,γ ),λ1(β/α) < ω2 <

1

λ1(β/γ )

}
and for β > β(α,γ ) the region B is described by (1.7).

It is worthwhile to remark that the numerical experiments performed by [9] for system (1.1) in the case N = 1 and
α = γ = 1 have not detected existence of positive solutions outside the regions A and B . This may be an indication
that, for N = 1,2,3, the regions A and B for which our existence results hold may be optimal in the sense that, outside
them, positive solutions of (1.1) with finite energy do not exist. If this is indeed the case, then Figs. 1 and 2 show how
the shape of the region of existence changes when we pass from dimensions N = 1,2 to dimension N = 3.

Fig. 1.
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Fig. 2.

Next we give sufficient conditions for having the hypotheses of Theorem 1.1 satisfied in dimensions N = 2,3 (the
case N = 1 will be treated separately).

Theorem 1.2. If

β

α
< min

{
1,ω2} and

β

γ
< min

{
1,

1

ω2

}
(1.8)

then we are in region A of Figs. 1 or 2. Hence, system (1.1) has a nontrivial positive solution.

Theorem 1.3. If

β

α
> max

{
1,ω2} and

β

γ
> max

{
1,

1

ω2

}
(1.9)

then we are in region B of Figs. 1 or 2. Hence, system (1.1) has a nontrivial positive solution.

In the case N = 1, we have φ0(x) = √
2 sech(x) and the function λ1(η) is known explicitly and we have the

following:

Theorem 1.4. Suppose N = 1 and let β(α, γ ) > 0 be the unique solution of

1

2

(√
1 + 8β

α
− 1

)
= 2√

1 + 8β/γ − 1
. (1.10)

Then system (1.1) has a nontrivial positive solution if either 0 < β < β(α,γ ) and

1

2

(√
1 + 8β

α
− 1

)
< ω <

2√
1 + 8β/γ − 1

(region A); (1.11)

or β > β(α,γ ) and

2√
1 + 8β/γ − 1

< ω <
1

2

(√
1 + 8β

α
− 1

)
(region B). (1.12)

In the particular case α = γ = 1, the existence region of Theorem 1.4 is precisely the region for which existence of
positive solutions has been verified numerically in [9]. In that case, the curves intersect at β = 1 and ω = 1.

Notice that if γ < α then, as we will see later, β(α, γ ) >
√

αγ . In this case, our existence theorem applies to a
region of the parameters that lies to the right of

√
αγ (see (1.20)).
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Next we state a theorem which is a more geometric version of Theorem 1.1. This version applies to region A in
both Figs. 1 and 2. First we recall that φ and ψ , respectively, are the unique positive radially symmetric decreasing
functions tending to zero exponentially at infinity and satisfying the equations

−�φ + φ − αφ3 = 0 (1.13)

and

−�ψ + ω2ψ − γψ3 = 0. (1.14)

We define the selfadjoint operators

Lh = −�h + (
1 − βψ2)h (1.15)

and

Mk = −�k + (
ω2 − βφ2)k (1.16)

acting on functions belonging to H 2
rad(R

N). Then we can state the following:

Theorem 1.5. If β > 0 and the operators L and M are positive definite then system (1.1) has a nontrivial positive
radially symmetric decreasing solution.

As we will see, in the region A the trivial solutions (φ,0) and (0,ψ) have Morse index equal to one and in region
B their Morse index is at least two. The case of Morse index larger than one has been considered in [5] for more
general nonlinearities. Therefore, we focus our attention on region A.

The solutions of (1.1) are critical points of the functional:

E(u,v) =
∫

RN

(
1

2
|gradu|2 + 1

2
|gradv|2 + u2

2
+ ω2v2

2
− αu4

4
− βu2v2

2
− γ v4

4

)
dx, (1.17)

which is well defined and smooth in H 1
rad(R

N) × H 1
rad(R

N) for N = 1,2,3.
The first attempt to find nontrivial critical points of E(u,v) is to minimize E(u,v) on the Nehari manifold

N =
{
(u, v) ∈ H 1

rad

(
R

N
) × H 1

rad

(
R

N
)
, (u, v) �= (0,0):

I (u, v)=̂
∫

RN

(|gradu|2 + |gradv|2 + u2 + ω2v2 − αu4 − 2βu2v2 − γ v4)dx = 0

}
. (1.18)

As we explain next, such a procedure does not give nontrivial critical points when the parameters lie in region A in
Figs. 1 and 2.

First notice that if (u, v) ∈ N is a critical point of E restricted to N , then (u, v) is a critical point of E because
the Lagrange multiplier is zero. Moreover, the Morse index of a minimizer of E(u,v) on N is at most one because it
is a minimizer of a functional under one constraint (actually, in the present case, the Morse index of the minimizer is
exactly one because if (u, v) solves (1.1) then E′′(u, v)((u, v), (u, v)) < 0). For values of the parameters in the region
B in Fig. 1 and in Fig. 2, the Morse index of each trivial solution (φ,0) and (0,ψ) is at least two (see [1]). Therefore,
in this case, the minimizer of E(u,v) on N gives indeed a nontrivial solution of (1.1).

However, in region A the Morse index of each trivial solutions (φ,0) and (0,ψ) is exactly one (see [1]). In this
case, it is not clear that the minimization procedure produces a nontrivial solution of (1.1). In fact, for values of the
parameters in region A, the level of the nontrivial solution is higher than the level of the trivial solutions (φ,0) and
(0,ψ). Hence, such solution cannot be obtained by the minimization of E(u,v) on N .

In particular, in the narrower region 0 < β <
√

αγ , it is not difficult to show that the Morse index of any eventual
nontrivial solution of (1.1) is at least two. Therefore, any method used to prove the existence of nontrivial solutions
has to take this fact in account.

The existence of positive solutions of (1.1) has been also considered in [3] and [4] for N = 2,3. Existence and
nonexistence results are also proved in [8]. In both papers, the method of proving consists of minimizing the energy
E(u,v) on the double Nehari manifold given by the elements (u, v), u �≡ 0, u �≡ 0 satisfying:
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∫
R3

(|gradu|2 + u2 − αu4 − βu2v2)dx = 0,

∫
R3

(|gradv|2 + ω2u2 − βu2v2 − γ v4)dx = 0. (1.19)

In order to show that the minimizer is indeed a solution of (1.1) the assumption

β2 < αγ (1.20)

is used in those papers. Here in this paper (and in [1] as well) such a condition is not needed. In fact, at least in the
case N = 1, we can show existence of solution for values of β that are to the right of

√
αγ .

As we have said before, our approach was motivated by the numerical experiments of [9] for N = 1 and α =
γ = 1. According to them, positive nontrivial solutions exist if either (1.11) or (1.12) with α = γ = 1 hold. Since we
are focusing our attention to region A, the first thing is to give a geometric meaning for condition (1.11). As we will
see, it turns out that if (1.11) holds then the trivial solutions (φ,0) and (0,ψ) are local minimizers of the functional
E(u,v) restricted to the manifold N . In other words, if we consider E(u,v) as a map from N into R, then under the
condition (1.9), the functional E(u,v) has a mountain pass geometry on the manifold N .

In the general case, the region A in Theorem 1.1 is precisely the region where the functional E(u,v) has the
mountain pass geometry. Under certain conditions which are equivalent to ours, such mountain pass geometry has
already been observed in [1] and, for N = 2,3, the existence of solutions is proved there.

The case N = 1 requires a different approach because certain compactness argument in the space of radial functions
fails in the one-dimensional case. Our approach consists in showing that the problem in a finite interval (−n,n) with
Dirichlet boundary conditions has a nontrivial solution if n is large and we pass to the limit as n tends to infinity.
Careful estimates are needed to show that the limit is not trivial.

Remark 1.1. If N = 2,3 and −√
αγ < β < 0 then we can prove the existence of positive nontrivial solutions but we

do not know if they are decreasing. Due to this technical difficulty, our proof for the case N = 1 does not work for
β < 0 in that range.

This paper is organized as follows:

• Section 2: proof of Theorem 1.5 for N = 2,3;
• Section 3: proof of Theorem 1.5 in the case N = 1;
• Section 4: proof of Theorem 1.1;
• Section 5: proofs of Theorems 1.2, 1.3 and 1.4.

2. Proof of Theorem 1.5 for N = 2,3

In this section we prove Theorem 1.5 in the case N = 2,3. Under the assumptions of Theorem 1.5, it is easy to
show that the trivial solutions (φ,0) and (0,ψ) are strict local minimizers of the functional E(u,v) restricted to the
manifold N . Therefore a mountain pass argument can be used. If we define the quantities:

γ 2
1 = inf

∫
RN (|grad k|2 + ω2k2)dx∫

RN φ2k2 dx
, γ 2

2 = inf

∫
RN (|gradh|2 + ω2h2)dx∫

RN ψ2h2 dx

where φ and ψ are defined by (1.13) and (1.14) respectively, then it is also easy to see that L and M to be positive
definite is equivalent to say that β < min(γ 2

1 , γ 2
2 ). But, under these conditions, the mountain pass argument has been

carried out in [1] and we omit it. Therefore, Theorem 1.5 is proved for N = 2,3.

3. Proof of Theorem 1.5 in the case N = 1

We consider the ODE system:



D.G. de Figueiredo, O. Lopes / Ann. I. H. Poincaré – AN 25 (2008) 149–161 155
−u′′ + u − (
αu2 + βv2)u = 0,

−v′′ + ω2v − (
βu2 + γ v2)v = 0 (3.1)

and, as before, we denote by φ and ψ the unique nontrivial positive symmetric functions tending to zero exponentially
at infinity and satisfying

−φ′′ + φ − αφ3 = 0. (3.2)

and

−ψ ′′ + ω2ψ − γψ3 = 0, (3.3)

respectively. We also define the selfadjoint operators

Lh = −h′′ + (
1 − βψ2)h (3.4)

and

Mk = −k′′ + (
ω2 − βφ2)k. (3.5)

The proof of Theorem 1.1 for the ODE case will be done by approximation; namely, we first show that for n large the
system

−u′′ + u − (
αu2 + βv2)u = 0,

−v′′ + ω2v − (
βu2 + γ v2)v = 0, (3.6)

x ∈ [−n,n], u(−n) = v(−n) = 0 = u(n) = v(n)

has a unique nontrivial positive solution (un, vn) and that its limit as n tends to infinity converges to a nontrivial
solution of (3.1).

Since φ solves (3.2) we have

−φ′(x)2

2
+ φ2

2
− αφ(x)4

4
= 0, (3.7)

and this implies

φ(0) =
√

2

α
. (3.8)

We denote by φn the approximate positive symmetric (unique) solution of the problem

−φ′′
n + φn − αφ3

n = 0, φ(−n) = 0 = φ(n). (3.9)

If we define an = φn(0), it follows that an > φ(0) = √
2/α. We also define φ̃n as the extension of φn to the entire line

setting it equal to zero outside the interval [−n,n]. ψ̃n is defined similarly.

Lemma 3.1. As an converges to φ(0), the approximate solution φ̃n converges to φ in the H 1(R) norm. In particular,
φ̃n converges to φ uniformly on (−∞,∞). A similar statement holds for ψ̃n.

Proof. Using ODE methods, we obtain some estimates for φn on the interval [0,+∞). By symmetry, the same
estimates hold for (−∞,0]. From (3.9) we get:

φ′2
n (x) = φ2

n(x) − 2αφ4
n(x) + cn

where cn = φ′2
n (−n) > 0. Since φn converges to φ uniformly on compact sets and φ(x) tends to zero as x tends to

+∞, there is are x1 > 0 and n0 such that for x > x1 and n > n0 we have

φ2
n(x) − 2αφ4

n(x) + cn � 1

4

(
φ2

n(x) + cn

)
.

Moreover, φ′
n(x) < 0, for x > x1 and then

dφ√
2

� −dx

2
.

φn(x) + cn
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Integrating this last inequality we get

log
φn(x) + √

φ2
n(x) + cn

φn(x1) + √
φ2

n(x1) + cn

� −1

2
(x − x1)

and then

φn(x) + √
φ2

n(x) + cn

φn(x1) + √
φ2

n(x1) + cn

� e− 1
2 (x−x1).

From this last inequality we conclude that for x1 < x < n and some constant K we have

2φn(x) � φn(x) +
√

φ2
n(x) + cn � Ke− 1

2 x. (3.10)

Clearly (3.10) implies that φ̃n converges to φ uniformly on [0,+∞) and that the norm Lp([0,+∞)) of φ̃n is bounded
for 1 � p � ∞. Next, if we subtract (3.2) from (3.9), multiply the result by φn(x) − φ(x) and integrate we get:

n∫
−n

[(
φ′

n(x) − φ′(x)
)2 + (

φn(x) − φ(x)
)2]dx = 2α

n∫
−n

(
φn(x) − φ(x)

)2(
φ2

n(x) + φn(x)φ(x) + φ2(x)
)

dx.

Since this last integral converges to zero (because φ̃n converges to φ uniformly on (−∞,∞)), the lemma is
proved. �

We will also need the following

Lemma 3.2. The solution φn of (3.9) is unique and zero is not an eigenvalue of the linearized operator

Tnh = −h′′ + (
1 − 3φ2

n

)
h

with domain H 2(−n,n) ∩ H 1
0 (−n,n).

Proof. The uniqueness follows from the fact, that for the nonlinearity we are treating, the period of a solution of (3.9)
is a decreasing function of the amplitude. There are several general results about that subject (see for instance [2] and
the references therein) but in our case we can give a simple direct proof. In fact, changing the notation, if we have the
equation u′′ + f (u) = 0 and F ′(u) = f (u) and u(x) is a solution with u′(0) = 0 and u(0) = u0 then the “time” the
solution takes to vanish is given by

X(u0) = 2

u0∫
0

du√
F(u0) − F(u)

.

In our case, F(u) = −u2/2 − αu4/4 and u0 >
√

2/α; then

X(u0) = 4

u0∫
0

du√
(u2

0 − u2)(α(u2
0 + u2) − 2)

.

If we make the change of variable u = tu0 we get

X(u0) = 4

1∫
0

dt√
(1 − t2)(α(1 + t2)u2

0 − 2))

and this shows that X(u0) is a decreasing function of u0 and the uniqueness is proved.
To show the second part of the lemma, we multiply (3.9) by φn and integrating it we see that

〈Tnφn,φn〉 = −2α

n∫
φ4

n dx < 0.
−n
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Therefore the principal eigenvalue of Tn is negative. Now suppose zero is an eigenvalue of Tn with eigenfunction p(x).
Then, besides vanishing at −n and n, p has to vanish at an interior point of (−n,n) because it is not the principal
eigenfunction. Moreover, φ′

n also satisfies the linearized equation and then, by the Sturm oscillation theorem, φ′
n has

at least two zeroes on (−n,n) and this is a contradiction (because φ′
n(x) vanishes at x = 0 only) and the lemma is

proved. �
Next we show the existence of a nontrivial even solution of (3.6) if n is large. As in the three-dimensional case,

this will be done by a mountain pass argument on a manifold. We work in the space H 1
ev(R) × H 1

ev(R), where the
subscript ev stands for even, and we define the truncated energy

En(u, v) =
n∫

−n

(
1

2
u′2 + 1

2
v′2 + u2

2
+ ω2v2

2
− αu4

4
− βu2v2

2
− γ v4

4

)
dx (3.11)

on H 1
ev,0 and the Nehari manifold

Nn =
{

(u, v) ∈ H 1
ev,0(R) × H 1

ev,0(R), (u, v) �= (0,0):

n∫
−n

(
u′2 + v′2 + u2 + ωv2 − αu4 − 2βu2v2 − γ v4)dx = 0

}
. (3.12)

We also define the selfadjoint operators:

Lnh = −h′′ + (
1 − βψ̃2

n

)
h (3.13)

and

Mnk = −k′′ + (
ω2 − βφ̃2

n

)
k (3.14)

with domain H 2
ev(−n,n) ∩ H 1

ev,0(−n,n). The functions φ̃n and ψ̃n have been defined right before Lemma 3.1. Since
by assumption the operators L and M are positive definite, using Lemma 3.1 we see that there are n0 and a constant
m such that for n � n0 we have

〈Lnh,h〉 � m‖h‖2, 〈Mnk, k〉 � m‖k‖2 (3.15)

for any h, k ∈ H 2
ev(−n,n) ∩ H 1

ev,0(−n,n). Arguing exactly as in the proof of Theorem 1.5 for the three-dimensional
case (the verification of Palais–Smale condition is trivial for the case of bounded interval) we construct a sequence of
nontrivial symmetric, positive and decreasing functions (un, vn) satisfying

−u′′
n + un − (

αu2
n + βv2

n

)
un = 0,

−v′′
n + ω2vn − (

βu2
n + γ v2

n

)
vn = 0, (3.16)

x ∈ [−n,n], un(−n) = vn(−n) = 0 = un(n) = vn(n).

Moreover, if we consider the path (tφn, (1 − t)ψn) and we lift it to the manifold Nn defined by (3.12), on this
lifted path the functional En is uniformly bounded because, according to Lemma 3.1, φ̃n and ψ̃n tend to φ and ψ ,
respectively, in H 1(R). Therefore, E(un, vn) is bounded by a constant independent of n and since (un, vn) belongs
to Nn, we conclude that the H 1(−n,n) norm of un and vn are also bounded by a constant independent of n. In
particular, the sequences un(0) and vn(0) are bounded. Passing to a subsequence we can assume that un(0) and vn(0)

converge and our next proposition is:

Lemma 3.3. un(0) and vn(0) converge to a and b, respectively, where a �= 0 �= b.

Proof. First we notice that both un(0) and vn(0) cannot converge to zero because, otherwise, the L∞(−n,n) norms of
un and vn would converge to zero (because un and vn are decreasing) and this contradicts the definition (3.12) of Nn.
Therefore we have to exclude the possibility, say, a �= 0 and b = 0. Suppose a �= 0 and b = 0. Then ‖vn‖L∞(−n,n)
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tends to zero (because vn is decreasing) and, multiplying the second equation of (3.16) by vn and integrating, we see
that the H 1(−n,n) norm of vn tends to zero. In particular, the extended functions ũn, ṽn converge to (φ,0) uniformly
on compact sets. If we multiply the first equation of (3.16) by un and define the function

fn(x) = −u′2
n

2
+ u2

n

2
− αu4

n

4
− 1

2
βu2

nv
2
n

we see that f ′
n(x) = −2βu2

nv
′
n > 0 on [0, n]. Therefore for x ∈ [0, n] we have fn(x) � fn(n) = −−u′2

n (n)/2 = −cn

where cn is a positive constant. Then for x ∈ [0, n] we have

−u′2
n

2
+ u2

n

2
− αu4

n

4
− 1

2
βu2

nv
2
n � −cn

and

u′2
n � u2

n

2
− αu4

n

4
− 1

2
βu2

nv
2
n + cn.

If we choose x2 > 0 such that

u2
n

2
− αu4

n

4
− 1

2
βu2

nv
2
n + cn � 1

4

(
u2

n + cn

)
for x > x2 then arguing exactly as in the proof of Lemma 3.1, we conclude that ũn converges to φ uniformly
on (−∞,∞). Then the is n0 and a constant m1 > 0 such that for n > n0 we have 〈Mnk, k〉 � m1‖k‖2 for any
k ∈ H 1(−∞,∞). However, if we multiply the second equation of (3.16) by vn and integrate we get

∞∫
−∞

(
ṽn

′2 + (
ω2 − βũn

2)ṽn
2 − γ ṽn

4)dx = 0

and then

m1‖ṽn‖2 �
∞∫

−∞

(
ṽn

′2 + (
ω2 − βũn

2)ṽn
2)dx � γ ‖ṽn‖2

L∞‖ṽn‖2

and then vn ≡ 0 for n large and this is a contradiction and the lemma is proved. �
End of proof of Theorem 1.5 in the case N = 1. Since ũn and ṽn are bounded in H 1(−∞,∞), passing to a
subsequence we can assume that ũn and ṽn converge weakly in H 1(−∞,∞) to functions u and v. Clearly (u, v)

solves system (3.1) and, due to Lemma 3.3, none of them are trivial. So, Theorem 1.5 is also proved in the case
N = 1.

4. Proof of Theorem 1.1

To begin the proof of Theorem 1.1, we recall that −λ1(η) is the principal eigenvalue of the operator

M0k = −�k − ηφ2
0k (4.1)

and we need the following proposition:

Lemma 4.1.

(i) If N = 1,2 then for η > 0 λ1(η) is positive, increasing and

lim
η→0

λ1(η) = 0 and lim
η→∞λ1(η) = ∞. (4.2)

(ii) If N = 3 then there is a η0 > 0 such that for 0 � η � η0 the whole spectrum of M0 is [0,∞) and for η > η0 we
have λ1(η) > 0, increasing with η and

lim
η→η0

λ1(η) = 0 and lim
η→∞λ1(η) = ∞. (4.3)
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Proof. For N = 1,2, the fact that λ1(η) is positive for η > 0 follows from Theorem XIII.11 (volume 4) in [6]. The
other properties of the function λ1(η) are trivially verified. For N = 3 using Theorem XIII.9 (volume 4) in [6] we
conclude that for η > 0 and small, the spectrum of M0 is [0,∞) (recall that φ2

0 ∈ L3/2(R3) and then it is a Rollnik
potential according to [7], Section X). Since λ1(η) is positive for η > 0 and large, the existence of η0 is clear as well
as the other properties of λ1(η). So the lemma is proved. �
Proof of Theorem 1.1. First of all we notice that, in terms of φ0 defined by (1.2), the solutions φ and ψ of (1.13) and
(1.14) are φ(x) = (1/

√
α)φ0(x) and ψ(x) = (ω/

√
γ )φ0(ωx), respectively. We define the operators

L1h = −�h − βψ2h = −�h − β
ω2

γ
φ2

0(ωx)h (4.4)

and

M1k = −�k − βφ2(x)k = −�k − β

α
φ2

0(x)k. (4.5)

Therefore

Lh = L1h + h and Mk = M1k + ω2k. (4.6)

Concerning the operator L1, using a scaling argument we see that μ is an eigenvalue of L1 if and only if μ/ω2 is an
eigenvalue of

L2h = −�h − β

γ
φ2

0(x)h. (4.7)

Therefore, the principal eigenvalues of L1 and M1 are −λ2 and −λ3, respectively where λ2 and λ3 are given in terms
of the function λ1(η) by

λ2 = ω2λ1

(
β

γ

)
and λ3 = λ1

(
β

α

)
, (4.8)

respectively.
Consider first the case N = 1,2. From the considerations above we can draw the following conclusions:

1. L is positive definite iff 1 > ω2λ1(β/α); in particular, if 1 < ω2λ1(β/α) then L has at least one negative eigen-
value.

2. M is positive definite iff ω2 > λ1(β/γ ); in particular, if ω2 < λ1(β/γ ) then M has at least one negative eigen-
value.

With those facts at hand, if we look at Fig. 1 we see that in region A the operators L and M are positive definite.
Hence, the existence of solution follows from Theorem 1.5. Moreover, as we have pointed out in the introduction, in
region B the Morse index of the trivial solutions (φ,0) and (0,ψ) is at least two. Hence, as we have also mentioned
in the introduction, the existence of solutions follows from the minimization of E(u,v) on N . An alternative is to use
the usual mountain pass theorem on the entire space H 1

rad(R
3) × H 1

rad(R
3) at the solution (0,0).

Suppose now N = 3 and α < γ and let us define β1 = αη0 and β2 = γ η0. If β � β1 = αη0, then β/α � η0 and
β/γ < η0. According to Lemma 4.1, this implies that the spectra of both L1 and M1 is [0,∞) and then L and M are
positive definite. Therefore, in region A1 Theorem 1.5 applies. If β1 � β � β2 then β/γ � η0 and then the spectrum
of L1 is [0,∞) and this implies that L is positive definite. Moreover, for β1 � β � β2 the operator M is positive
definite if ω2 < 1/λ1(β/γ ). All this mean that in region A2 Theorem 1.5 also applies. The analysis for the regions A3
and B follows exactly as in the case N = 1,2 and Theorem 1.1 is proved.

5. Proofs of Theorems 1.2, 1.3 and 1.4

Proof of Theorem 1.2. We define f (x) = φ(λx) where 0 < λ < 1 will be chosen later. Since φ(x) is decreasing, we
have f (x) > φ(x) for x �= 0. Moreover, f satisfies

−�f + λ2f − λ2αf 3 = 0. (5.1)
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To impose Mf > 0 we use (1.20) and calculate

Mf = −�f + (
ω2 − βφ2)f = f

(
ω2 − λ2 + λ2αf 2 − βφ2) > f

(
ω2 − λ2 + λ2αφ2 − βφ2).

Therefore, Mf > 0 if there is a λ < 1 such that λ2 < ω2 and β < λ2α. Clearly under the first assumption of The-
orem 1.2 such λ exists. Also clearly, f > 0 and Mf > 0 implies that M is positive definite. The positivity of L is
verified in a similar way and Theorem 1.2 is proved as a consequence of Theorem 1.5. �
Proof of Theorem 1.3. We define f (x) = φ(λx) with λ > 1 and arguing as in the proof of Theorem 1.2 we can show
that, under the assumptions of Theorem 1.3, it is possible to choose λ > 1 such that Mf < 0. This implies that M has
at least one negative eigenvalue. According to Remark 2.1, the Morse index of the trivial solution (0,ψ) is at least
two. Similarly we show that the Morse index of the trivial solution (φ,0) is at least two. Therefore, as a consequence
of Theorem 1.1, Theorem 1.3 is proved. �

For the proof of Theorem 1.4 we need the following proposition taken from [9]:

Lemma 5.1. If we define the operator

P1h = −h′′ + (
η2 − 2β sech2(x)

)
h (5.2)

where β > 0, then the eigenvalues λ of P1 are given by λ = η2 − (s − n)2 where

s = 1

2

(√
1 + 8β − 1

)
, (5.3)

n is a nonnegative integer and s − n > 0. In particular, P1 is positive definite if s < η.

The proof of next lemma follows immediately from the preceding lemma and a scaling argument.

Lemma 5.2. If

P2h = −h′′ + (
η2 − 2βc2 sech2(cx)

)
h (5.4)

then P2 is positive definite if s < η/c where s is define by (5.3).

Proof of Theorem 1.4. The solution of −v′′ + ω2v − γ v3 = 0 is ψ(x) = √
2/γω sech(ωx) and then −βψ2(x) =

−2(β/γ )ω2 sech2(ωx). Therefore, according to Lemma 5.2, the operator Lh = −h′′ + (1 − βψ2(x))h is positive
definite if

1

2

(√
1 + 8β

γ
− 1

)
<

1

ω
.

Similarly, M is positive definite if

1

2

(√
1 + 8β

α
− 1

)
< ω

and Theorem 1.4 is proved. �
Remark 5.1. An elementary calculation shows that

√
1 + 8y − 1

2
<

2√
1 + 8/y − 1

for 0 < y < 1.

Therefore, if β2 = αγ and we define y = β/α = γ /β and y < 1 (that is, γ < β < α) we see that β(α, γ ) >
√

αγ ,
where β(α, γ ) is defined in the statement of Theorem 1.4. This means that part of the region of the parameters for
which Theorem 1.1 applies lies to the right of

√
αγ .
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