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Abstract

It is still not known if the radial cavitating minimizers obtained by Ball [J.M. Ball, Discontinuous equilibrium solutions and
cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond. A 306 (1982) 557–611] (and subsequently by many others) are global
minimizers of any physically reasonable nonlinearly elastic energy. We therefore consider in this paper the related problem of
obtaining necessary conditions for these radial solutions to be minimizers with respect to nonradial perturbations. A standard
blowup argument applied to either an inner or an outer variation yields an apparently new inequality that, for most constitutive
relations, has yet to be verified. However, in the special case of a compressible neo-Hookean material, W(F) = μ

2 |F|2 + h(det F),
we show that the inequality produced by an outer variation clearly holds whilst that produced by an inner variation is a well-known
inequality (first proven by Brezis, Coron, and Lieb [H. Brezis, J.-M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math.
Phys. 107 (1986) 649–705] ) which arises in the theory of nematic liquid crystals:

∫
B

∣∣∇n(x)
∣∣2 dx �

∫
B

∣∣∣∣∇
(

x
|x|

)∣∣∣∣
2
dx = 8π

for all n ∈ W1,2(B, ∂B) (so that |n| = 1 a.e.) that satisfy n(x) = x/|x| on ∂B, where B is the unit ball in R
3.
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1. Introduction

For more than twenty years a major open problem in nonlinear elasticity has been whether or not the radial hole
creating minimizers discovered1 by John Ball [4] are indeed global minimizers of the energy. It is therefore of interest
to obtain conditions that are necessary for radial minimizers to be global minimizers of the elastic energy:2

E(u) =
∫
B

W
(∇u(x)

)
dx,

where B ⊂ R
n is the unit ball and W is a continuous, nonnegative, extended real-valued mapping on n × n matrices

F = ∇u(x) that satisfies W(F) = +∞ whenever the determinant of F satisfies det F � 0.
A result of [19,21] shows that a necessary condition for a mapping u :Ω → R

n to be a local (in W 1,p ∩ L∞,
1 � p � ∞) minimizer of the energy E is that, at each point x0 where u is continuously differentiable, W must be
W 1,p-quasiconvex3 at F0 := ∇u(x0): that is,∫

Ω

W
(
F0 + ∇v(x)

)
dx �

∫
Ω

W(F0) dx (1.1)

for every bounded open set Ω ⊂ R
n whose boundary has measure zero and every v in the Sobolev space W

1,p

0 (Ω;R
n).

The standard derivation4 of (1.1) for Lipschitz v (the case p = ∞) is to use test functions of the form uε(x) :=
u(x) + εv(

x−x0
ε

) and the change of variables y = x−x0
ε

to obtain

lim
ε→0

(
E(uε) − E(u)

εn

)
� 0. (1.2)

The bounded convergence theorem allows one to interchange the limit and integral in the above inequality and de-
duce (1.1). In this argument, essential use is made of the assumption that u is continuously differentiable at x0 to prove
that the limit exists.5

In the study of radial cavitation, Ω = B and one considers deformations of the form

u = ur (x) := r(R)

R
x, R := |x|,

where r : [0,1] → [0,∞). If r(0) > 0, then the above deformation produces a spherical hole of radius r(0) at the
center of the deformed ball. It follows (from (3.2)) that, when cavitation occurs,∣∣∇ur (x)

∣∣ → ∞ as |x| → 0.

Moreover, since ur is not even continuous at the origin, let alone continuously differentiable, the standard derivation
of the necessary condition (1.1) fails at the point x0 = 0.

Our approach to circumvent this difficulty is to localize around x0 = 0 (in the reference configuration) and points
y0 on the cavity surface (in the deformed configuration) through the use of inner and outer variations, respectively. In
the case of inner variations we consider test functions of the form

uε(x) := ur

(
x + εw

(
x − x0

ε

))
,

1 Ball’s work is based upon that of Gent and Lindley [11] who find a critical load at which an infinitesimal hole in an infinite body grows to
finite size. See [7,14] for prior related approaches in the context of elastoplasticity. See Horgan and Polignone [16] for a survey of the literature on
cavitation in nonlinear elasticity.

2 A typical model elastic energy density is the generalized compressible neo-Hookean material: W(F) = μ
p |F|p + h(det F), where p is between

1 and n (the dimension of the space), μ > 0, and h is continuous, convex, and blows up as its argument goes to zero or infinity.
3 See Ball and Murat [6] and Morrey [23,24].
4 This proof is due to Ball [3, Theorem 3.1]. See also, e.g., [5, Theorem 2.2] or [26, Theorem 17.1.4].
5 When v is not Lipschitz but merely lies in the Sobolev space W1,p , 1 � p < ∞, the alternative derivation of James and Spector [19] is

necessitated by the condition that W(F) → +∞ as det F → 0+ (see [19, Remark 4.7]. Results of Ball and Murat [6, Theorems 4.1(iii) and 4.5(ii)]
for the model energy given in footnote 2 (with μ = 0 and μ > 0, respectively) show that h must be constant in order for E to be sequentially
weakly lower semicontinuous (SWLSC) in materials that allow for hole formation (p < n). For such materials this is clearly incompatible with a
continuous stored energy W that satisfies W(F) → +∞ as det F → 0+ . See [28] and Müller and Spector [25] for recovery of SWLSC and Conti
and De Lellis [9] for interesting related results.
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and, in the case of outer variations, we consider

uε(x) := ur (x) + εw
(

ur (x) − y0

ε

)
,

where |y0| = r(0) so that y0 lies on the surface of the cavity produced by the map ur .
In this paper we take n = 3 and use the above approach to obtain necessary conditions for ur to be a minimizer

with respect to nonradial perturbations. We prove that the limit

lim
ε→0

(
E(uε) − E(ur )

g(ε)

)
� 0

indeed exists and has a nice form for suitable functions g, where the choice of g depends6 on W .
In particular, if

W(F) = |F|p + | adj F|q + h(det F)

we use the above approach to show that a necessary condition for a radial cavitating minimizer to be a local minimizer
is ∫

B

∣∣∣∣∇
(

w(y)

|w(y)|
)∣∣∣∣

p

dy �
∫
B

∣∣∣∣∇
(

y
|y|

)∣∣∣∣
p

dy = (4π)2p/2

3 − p
(1.3)

in the case 3 > p > 2q � 2, or∫
B

1

|w(y)|2q

∣∣∣∣(adj∇w(y)
)( w(y)

|w(y)|
)∣∣∣∣

q

dy �
∫
B

1

|y|2q
dy = 4π

3 − 2q
(1.4)

in the case 1 � p < 2q < 3, for a suitable class of mappings w ∈ W 1,p(B;R
3) that satisfy w = i on ∂B .

The inequality (1.4) appears to be new and, to our knowledge, has yet to be proved or disproved. However, there
is an extensive literature7 on (1.3) that shows it is satisfied for all mappings w ∈ W 1,p(B;R

3), 1 � p < 3, that satisfy
w = i on ∂B . It is intriguing that (1.3) with p = 2 appears to first occur in a paper of Brezis, Coron, and Lieb [8]
where n = w/|w| is the director in a nematic liquid crystal.

2. Preliminaries

In the following, Ω will denote a nonempty, bounded, open subset of R
3 whose boundary, ∂Ω , has 3-dimensional

Lebesgue measure zero. By Lp(Ω) and W 1,p(Ω) we denote the usual Lebesgue and Sobolev spaces, respectively. We
use the notation Lp(Ω;R

3), etc,̇ for vector-valued maps. We denote by W
1,p

0 (Ω) the closure of C∞
0 (Ω) in W 1,p(Ω).

Given f ∈ W 1,p(Ω;R
3) we write v ∈ f + W

1,p

0 (Ω;R
3) provided v ∈ W 1,p(Ω;R

3) and v − f ∈ W
1,p

0 (Ω;R
3). If

U ⊂ Ω is an open set we write U ⊂⊂ Ω provided there is a compact set KU such that U ⊂ KU ⊂ Ω .
We write

B(a, r) := {
x ∈ R

3: |x − a| < r
}

for the (open) ball of radius r centered at a ∈ R
3. In particular we write B := B(0,1) for the unit ball centered at the

origin. Given a unit vector e0 ∈ R
3, we write

HB := {z ∈ B: z · e0 > 0}
for the (open) half-ball with plane face perpendicular to e0. We let Lin denote the set of all linear maps from R

3 into
R

3 with inner product and norm

L : M = trace
(
LMT)

, |L|2 = L : L,

6 For an inner variation of a generalized compressible neo-Hookean material in three-dimensions g is simply g(ε) = ε3−p . For an outer variation,
g depends on the inverse of the radial minimizer (see Remark 3.2).

7 See, e.g., [1,2,8,10,12,13,15,17].



204 J. Sivaloganathan, S.J. Spector / Ann. I. H. Poincaré – AN 25 (2008) 201–213
respectively. We write Lin+ for those L ∈ Lin with positive determinant. The mapping adj : Lin → Lin will be the
unique continuous function that satisfies

L(adj L) = (det L)I

for all L ∈ Lin, where det L is the determinant of L and I ∈ Lin is the identity mapping. Thus, with respect to any
orthonormal basis, the matrix corresponding to adj L is the transpose of the cofactor matrix corresponding to L.

In nonlinear elasticity one is interested in globally invertible maps that preserve orientation since, in general, matter
can neither interpenetrate itself nor reverse its orientation. A mapping u ∈ W 1,1(Ω;R

3) is called one-to-one almost
everywhere if there is a Lebesgue null set N ⊂ Ω such that u|Ω\N is injective. We write

Def(Ω) := {
u ∈ W 1,p

(
Ω;R

3): det∇u > 0 a.e. and u is one-to-one a.e.
}

(2.1)

for those Sobolev mappings that are allowable deformations of the body.

3. Elasticity; Radial minimizers

We consider a homogeneous body that for convenience will be identified with the ball Bo := B(0,Ro) ⊂ R
3 of

radius Ro > 0 centered at the origin that it occupies in a fixed homogeneous reference configuration. We assume that
the body is hyperelastic with continuous stored energy density W : Lin → R ∪ {+∞}. The quantity W(∇u(x)) gives
the energy stored per unit volume in Bo at any point x ∈ Bo when the body is deformed by a smooth deformation u.
Further, we assume that W(F) = +∞ whenever det F � 0.

The problem of interest is the determination of minimizers for the total elastic energy

E(u,Bo) =
∫
Bo

W
(∇u(x)

)
dx (3.1)

among orientation preserving, injective u that satisfy the boundary condition u(x) = λx for x ∈ ∂Bo, for each λ > 0.
In particular we will be concerned with mappings that are radial, i.e., u of the form

ur (x) = r(R)

R
x, R := |x|,

∇ur (x) = r(R)

R
I +

(
r ′(R) − r(R)

R

)
x
|x| ⊗ x

|x| . (3.2)

The stored-energy functions we will consider are those that satisfy8

W(F) = Ψ
(|F|, | adj F|,det F

) + h(det F) (3.3)

for all F ∈ Lin+, where h ∈ C2(R+, [0,∞)) is a strictly convex function that satisfies

lim
t→0+ h(t) = lim

t→+∞
h(t)

t
= +∞ (3.4)

and, for a unique fixed H > 1,

h′(H) = 0. (3.5)

In addition we will require that Ψ ∈ C2(R+ × R
+ × R

+, [0,∞)) satisfies

Ψ
(|F|, | adj F|,det F

)
� c|F|p for all F ∈ Lin+ (3.6)

for some p ∈ [1,3) and c > 0.

8 Eq. (3.3), with h = 0, is a consequence of the response of the material being independent of observer and the material in its reference configu-
ration being isotropic.
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Remark 3.1. Under various additional hypotheses on Ψ (see [4,22,27,29]) for each λ ∈ (0,∞) there exists

rλ ∈Aλ := {
r ∈ W 1,1((0,Ro)

)
: r(Ro) = λRo, r(0) � 0, r ′ > 0 a.e.

}
(3.7)

at which the total elastic energy (3.1), satisfying (3.3)–(3.6), attains its infimum. Moreover, rλ ∈ C1([0,Ro]) ∩
C2((0,Ro]) and is a solution of the corresponding Euler equation. Furthermore, there exists λcrit � 3

√
H such that

rλ(R) = λR for λ � λcrit

and

rλ(0) > 0 for λ > λcrit. (3.8)

In addition, for λ > λcrit the function rλ satisfies

r ′
λ(0) = 0, lim

R→0+ r ′
λ(R)

[
rλ(R)

R

]2

= H, (3.9)

H < r ′
λ(R)

[
rλ(R)

R

]2

< λ3 for R ∈ (0,Ro]. (3.10)

In other words, for λ > λcrit, the deformation that minimizes the total elastic energy is not the homogeneous
deformation u(x) = λx, which is the minimizer in W 1,s for s > 3. Moreover, the minimizer among radial deformations
exists and creates a new hole at the center of the ball.

Remark 3.2. It follows from (3.10) that r ′
λ > 0 on (0,Ro). Now fix λ > λcrit and define cλ = rλ(0) to be the newly

created cavity radius in the deformed configuration. Then, the map R 
→ rλ(R) has a unique inverse r 
→ Rλ(r). This
map is smooth and satisfies Rλ(cλ) = 0. Let

φ(r) = 1

3
Rλ(r)

3, φ′(r) = R′
λ(r)Rλ(r)

2 = Rλ(r)
2

r ′
λ(Rλ(r))

. (3.11)

Then, by (3.9)2 and (3.11)2,

lim
r→c+

λ

φ′(r) = lim
R→0+

R2

r ′
λ(R)

= c2
λ

H
> 0. (3.12)

Thus, although all of the derivatives of Rλ are infinite at the surface of the cavity, the cube of Rλ has a finite derivative.
We will make use of this fact in Section 5.

Remark 3.3. If Ψ = 0, then the unique minimizer of the energy among deformations that are both radial and injective
is given by

rλ(R)3 :=
{

λ3R3 if λ3 � H,

HR3 + (λ3 − H)R3
o if λ3 > H.

4. Inner variations

In the remainder of the paper we will assume that Ψ is independent of det F, that is,

W(F) = Ψ
(|F|, | adj F|) + h(det F).

We suppose further that there exist m > 0 and C > 1 such that for all t > 0

C−1(tm + t−m
)
� h(t) � C

(
tm + t−m

)
. (4.1)

We also assume that there exists a positive integer M and constants Ki > 0, αi � 0, βi � 0, i = 1,2, . . . ,M, such that

lim
ε→0+ εpΨ

(
x

ε
,

y

ε2

)
= Ψ∞(x, y) :=

M∑
i=1

Kix
αi yβi (4.2)

uniformly on compact subsets of R
+ ×R

+, where p ∈ [1,3) is the growth exponent in (3.6). It follows from (4.2) that
αi + 2βi = p for each i.
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Remark 4.1. A standard hypothesis used to obtain existence of minimizers in nonlinear elasticity is that the stored
energy W be polyconvex. A well-known result on the composition of convex functions yields sufficient conditions for
W to be polyconvex: Ψ is convex with z 
→ Ψ (z, s) and z 
→ Ψ (s, z) nondecreasing for every s > 0.

Theorem 4.2. Assume that the radial minimizer

ur (x) = r(R)

R
x, R := |x| (4.3)

given by Remark 3.1 is a local minimizer of the total elastic energy

E
(
u,B(0,Ro)

) =
∫

B(0,Ro)

[
Ψ

(∣∣∇u(x)
∣∣, ∣∣adj∇u(x)

∣∣) + h
(
det∇u(x)

)]
dx (4.4)

in the W 1,p(B(0,Ro);R
3) ∩L∞(B(0,Ro);R

3) topology, where λ > λcrit and h satisfying (4.1) is as in Section 3.
Let B := B(0,1) be the unit ball in R

3 and suppose that w ∈ Def(B) is a deformation of B that satisfies w = i on
∂B and has finite energy E(w,B) < +∞. Suppose, in addition, that there is a Lebesgue null set N = Nw ⊂ B and an
open neighborhood U = Uw ⊂⊂ B , both of which may depend on w, such that either

0 ∈ U, w(B\N) ∩ U = ∅, (4.5)

or

0 ∈ w(U), w|U is a diffeomorphism, w(B \ (U ∪ N)) ∩ w(U) = ∅. (4.6)

Then

M∑
i=1

Ki

∫
B

∣∣∣∣∇
(

w(y)

|w(y)|
)∣∣∣∣

αi
(∣∣∣∣(adj∇w(y)

)( w(y)

|w(y)|3
)∣∣∣∣

)βi

dy

�
M∑
i=1

Ki

∫
B

∣∣∣∣∇
(

y
|y|

)∣∣∣∣
αi 1

|y|2βi
dy = 4π

3 − p

M∑
i=1

Ki2
(αi/2). (4.7)

Remark 4.3. The purpose of conditions (4.5) and (4.6) is to ensure that the composition of the radial energy min-
imizer ur with w is a deformation with finite energy. Since ur is known to be C2 away from the origin the only
difficulty occurs at points x where w(x) = 0. Condition (4.5) ensures that this does not occur since, except for a null
set, w maps no points into a neighborhood of the origin, i.e, w is a cavitating map that creates one or more new holes,
one of which includes the origin. Condition (4.6) instead requires that w be a diffeomorphism onto some neighbor-
hood of the origin and that, except for a null set, no other points map into this neighborhood. In particular, (4.6) is
satisfied if w itself is a diffeomorphism of the unit ball.

Corollary 4.4. Let9 Ψ (x, y) = xp , 1 � p < 3. Under the hypotheses of Theorem 4.2, a necessary condition for the
radial minimizer ur given by (4.3) to be a local minimizer of the total elastic energy (4.4) is that

∫
B(0,1)

∣∣∇v(y)
∣∣p dy �

∫
B(0,1)

∣∣∣∣∇
(

y
|y|

)∣∣∣∣
p

dy = (4π)2(p/2)

3 − p
(4.8)

for all v ∈ W 1,p(B, ∂B) that are in the closure of the set{
w
|w| : w ∈ Def(B), w = i on ∂B and w satisfies (4.5) or (4.6)

}
.

9 Or, more generally, Ψ∞(x, y) = xp .
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Remark 4.5. It is known that (4.8) is satisfied for all v ∈ W 1,p(B, ∂B), 1 � p < 3, that satisfy v(x) = x/|x| on ∂B .
For p = 2 this inequality was obtained by Brezis, Coron, and Lieb [8] who noted its significance within the theory
of nematic liquid crystals. For p ∈ {1,2} see Coron and Gulliver [10]. For p ∈ [2,3) see Hardt, Lin, and Wang [13].
The final interval p ∈ (1,2] was obtained by Hong [15] in 2001. See also Lin [20], Almgren, Browder, and Lieb [1],
Avellaneda and Lin [2] and Jäger and Kaul [17].

Proof of Theorem 4.2. Let w be as above. Then, for every sufficiently small ε > 0, the mapping vε :B(0,Ro) → R
3

defined by

vε(z) :=
{

εw( z
ε
) if z ∈ B(0, ε),

z otherwise,
(4.9)

satisfies vε ∈ Def(B(0,Ro)) and vε = i on ∂B(0,Ro).
We fix λ > λcrit and let (4.3) be a radial minimizer of E in Aλ given by Remark 3.1. By hypothesis ur is also

a local minimizer of E: thus if ur ◦ vε is sufficiently close to ur in W 1,p ∩ L∞ then, in view of (4.5) or (4.6),
ur ◦ vε ∈ Def(B(0,Ro)) and∫

B(0,Ro)

W
(∇(ur ◦ vε)(z)

)
dz �

∫
B(0,Ro)

W
(∇(ur ◦ i)(z)

)
dz.

Thus by (4.9)2∫
B(0,ε)

[
W

(∇z(ur ◦ vε)(z)
) − W

(∇zur (z)
)]

dz � 0.

However, ∇z(ur ◦ vε)(z) = ∇xur (εw( z
ε
))∇yw( z

ε
) and so the change of variables z = εy, dz = ε3 dy, and ∇y = ε∇z in

the last inequality yields∫
B(0,1)

[
W

(∇xur

(
εw(y)

)∇yw(y)
) − W

(∇zur (εy)
)]

dy � 0. (4.10)

We will next make use of (4.1)–(4.3) and the results in Appendix A in order to simplify our computation of the
integrands in (4.10). By (3.2)

∇xur

(
εw(y)

) = r(ε|w|)
ε|w| I +

(
r ′(ε|w|) − r(ε|w|)

ε|w|
)

ew ⊗ ew, (4.11)

where w := w(y) and ew := w(y)/|w(y)| is a unit vector for a.e. y. Then (4.11) and Lemma A.1 yield
∣∣∇xur (εw)Gw

∣∣ = (∣∣∇xur (εw)Gw
∣∣2)1/2

=
[[

r(ε|w|)
ε|w|

]2

|Gw|2 +
(

r ′(ε|w|)2 −
[
r(ε|w|)
ε|w|

]2)∣∣(Gw)Tew
∣∣2

]1/2

(4.12)

where Gw := ∇yw(y), while (4.11) and Lemma A.3 imply

∣∣adj
(∇xur (εw)Gw

)∣∣ =
[
r(ε|w|)
ε|w|

][
r ′(ε|w|)2∣∣Aw

∣∣2 +
([

r(ε|w|)
ε|w|

]2

− r ′(ε|w|)2
)∣∣Awew

∣∣2
]1/2

, (4.13)

where Aw := adj(∇yw(y)). Also,

det
(∇xur (εw)Gw

) = r ′(ε|w|)
[
r(ε|w|)
ε|w|

]2

det Gw. (4.14)

Our next task is to multiply (4.10) by an appropriate power of ε and take the limit as ε approaches zero. We note
that it suffices to make this computation for the first integral in (4.10) since the second follows in a similar manner.
We start by proceeding pointwise on the individual terms in the integrand. By (3.8) and (3.9)1, for a.e. y ∈ B(0,1),

lim+ r
(
ε
∣∣w(y)

∣∣) = r(0) > 0, lim+ r ′(ε∣∣w(y)
∣∣) = 0. (4.15)
ε→0 ε→0
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Therefore, if we make use of (4.12) and (4.15),

lim
ε→0+ ε

∣∣∇xur (εw)Gw
∣∣ = r(0)

( |∇w|2
|w|2 − |(∇w)Tw|2

|w|4
)1/2

= r(0)

∣∣∣∣∇
(

w(y)

|w(y)|
)∣∣∣∣ (4.16)

and similarly, by (4.13) and (4.15),

lim
ε→0+ ε2

∣∣adj
(∇xur (εw)Gw

)∣∣ =
[

r(0)

|w(y)|
]2∣∣∣∣(adj∇w(y)

)[ w(y)

|w(y)|
]∣∣∣∣. (4.17)

Next, in view of (3.10) and (4.14),

H det∇w(y) �
[
det∇xur

(
εw(y)

)]
det∇w(y) � λ3 det∇w(y)

and consequently, since h is convex and nonnegative,

0 � h
(
det

(∇xur

(
εw(y)

)∇w(y)
))

� h
(
H det∇w(y)

) + h
(
λ3 det∇w(y)

)
. (4.18)

Thus, if we integrate (4.18) over B and make use of (4.1) we find that

0 �
∫
B

h
(
det

(∇xur

(
εw(y)

)∇w(y)
))

dy � 2C2λ3m

∫
B

h
(
det∇w(y)

)
dy < +∞ (4.19)

since λ > λcrit � H > 1 and w has finite energy. Therefore, it follows from (4.19) that if we multiply (4.10) by εs for
any s > 0 and let ε approach zero, both of the terms involving h in (4.10) (see (4.4)) will go to zero.

To complete the proof we now multiply (4.10) by εp and let ε = εn be any sequence that converges to zero to
conclude with the aid of the previous paragraph, (3.8), (4.16), (4.17), the dominated convergence theorem, and (4.2)
that (4.7) is satisfied.

Finally, we must show that ur ◦ vε → ur strongly in W 1,p ∩ L∞ as ε → 0 in order to complete the proof.
The convergence in L∞(B(0,Ro);R

3), and hence Lp(B(0,Ro);R
3), is straightforward. The computation that pro-

duced (4.10) shows that ∇(ur ◦ vε) → ∇ur in Lp(B(0,Ro);R
3) is equivalent to

lim
ε→0+ ε3

∫
B(0,1)

W
(∇xur

(
εw(y)

)∇yw(y) − ∇zur (εy)
)
dy = 0, (4.20)

where W(F) := |F|p . However, (4.20) follows from (4.12), (4.16), and the dominated convergence theorem, since
p < 3. �
5. Outer variations

Recall that B := B(0,1) is the (open) unit ball in R
3 and

Def(B) := {
u ∈ W 1,p

(
B;R

3): det∇u > 0 a.e. and u is one-to-one a.e.
}

is the set of deformations of B . Let e0 ∈ R
3 with |e0| = 1 and, for any δ > 0,

HBδ := {
z ∈ B: z · e0 > δ

}
, HB := {

z ∈ B: z · e0 > 0
}
. (5.1)

Define

Defi(HB) := {
w ∈ Def(B): there exists δ > 0 such that w = i on B \HBδ

}
(5.2)

and note that w = i on ∂B and that δ = δw will in general depend on w.

Theorem 5.1. Assume that the radial minimizer

ur (x) = r(R)
x, R := |x| (5.3)
R
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given by Remark 3.1 is a local minimizer of the total elastic energy

E
(
u,B(0,Ro)

) =
∫

B(0,Ro)

[
Ψ

(∣∣∇u(x)
∣∣, ∣∣adj∇u(x)

∣∣) + h
(
det∇u(x)

)]
dx (5.4)

in the W 1,p(B(0,Ro);R
3) ∩ L∞(B(0,Ro);R

3) topology, where λ > λcrit and h satisfying (4.1) is as in Section 3.
Suppose that w ∈ Defi(HB) is a deformation of B that has finite energy E(w,B) < +∞. Then

M∑
i=1

Ki

∫
HB

(z · e0)
−p/3(∣∣∇w(z)

∣∣2 − ∣∣(∇w(z)
)
e0

∣∣2)αi/2∣∣(adj∇w(z)
)Te0

∣∣βi dz

�
M∑
i=1

Ki

∫
HB

(z · e0)
−p/3(2)αi/2 dz = 18π

(3 − p)(9 − p)

M∑
i=1

Ki2
(αi/2). (5.5)

Theorem 5.2. Let Ψ (x, y) = xp or Ψ (x, y) = yp , p � 1. Then, in either case, inequality (5.5) is satisfied for all
w ∈ i + W

1,p

0 (HB;R
3).

Remark 5.3. It is clear from the proof that Theorem 5.2 remains valid if one instead assumes that Ψ∞ is equal to xp

or yp , p ∈ [1,3), or Kxx
p + Kyy

p/2, p ∈ [2,3), where Kx and Ky are nonnegative. This will be the case when Ψ

is convex, as one might require in a general theorem on existence of minimizers (see Remark 4.1), since Ψ∞ will
consequently be convex and the conditions p ∈ [1,3) and αi + 2βi = p reduces Ψ∞ to one of these forms.

Remark 5.4. It is unfortunate that our blowup analysis using outer variations does not allow for perturbations w that
vary on the newly formed free surface of the cavity. One might instead anticipate a condition similar to Ball and Mars-
den’s [5] quasiconvexity at the boundary. Our analysis is also unable to recover the results of James and Spector [18]
who construct stored energies for which the radial minimizer is not a local minimizer (in W 1,p , 1 � p < 2) due to the
creation of further long thin holes near the cavity and perpendicular to its surface. The analysis in [18] relies crucially
on using finite values of the adjugate term, while our analysis uses, at best, the growth of the adjugate term at infinity.

Proof of Theorem 5.2. The proof is a slight variant of the standard proof that a polyconvex function is quasiconvex.
In the first case we note that F 
→ (|F|2 − |Fe0|2)p/2 is convex for p � 1. Thus for w ∈ i + C∞

0 (HB;R
3) we find that

the single term on the left-hand side of (5.5) is greater than or equal to the single term on the right-hand side plus∫
HB

p2(p−2)/2(z · e0)
−p/3(I − e0 ⊗ e0) : (∇w(z) − I

)
dz. (5.6)

We now observe that the integrand in (5.6) only involves derivatives of w in directions perpendicular to the unit vector
e0 and hence an integration by parts in planes perpendicular to e0, together with the boundary condition w = i on
∂(HB), shows that the integral in (5.6) is equal to zero. The desired result then follows by the density of C∞

0 in W
1,p

0 .
Similarly in the second case, M 
→ |MTe0|p is convex for p � 1. Thus for w ∈ i + C∞

0 (HB;R
3) we find that the

single term on the left-hand side of (5.5) is greater than or equal to the single term on the right-hand side plus∫
HB

p(z · e0)
−p/3(e0 ⊗ e0) : (adj∇w(z) − I

)
dz.

The result will now follow as above upon observing that (adj∇w)Te0 only depends on derivatives of w in directions
perpendicular to e0, while (adj∇w)e0 is a divergence: without loss of generality assume e0 = (1,0,0), then

(e0 ⊗ e0) : adj∇w = w2
,2w

3,3 −w2,3 w3,2

= (w2w3,3 ),2 −(w2w3,2 ),3 . �
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Proof of Theorem 5.1. We first fix λ > λcrit and let (5.3) be a radial minimizer of E given by Remark 3.1. Define
y0 := r(0)e0 so that y0 is a point on the newly formed cavity surface. Let w ∈ Defi(HB) have finite energy and let
δ = δw be as (5.2). Then, for every sufficiently small ε > 0, the mapping vε :B(0, λRo) → R

3 defined by

vε(y) :=
{

y0 + εw(
y−y0

ε
) if y ∈ B(y0, ε),

y otherwise,
(5.7)

satisfies vε ∈ Def(B(0, λRo)) and vε = i on ∂B(0, λRo).
By hypothesis, ur is a local minimizer of E: thus if vε ◦ ur is sufficiently close to ur in W 1,p ∩L∞ then∫

Bo

W
(∇x(vε ◦ ur )(x)

)
dx �

∫
Bo

W
(∇xur (x)

)
dx. (5.8)

However, by Remark 3.1, ur :Bo\{0} → B(0, λRo)\B(0, rλ(0)) is a diffeomorphism. The inverse map (ur )
−1 :

B(0, λRo)\B(0, rλ(0)) → Bo\{0} satisfies

(ur )
−1(y) = R(r)

r
y, r := |y|,

∇y(ur )
−1(y) = R(r)

r
I +

(
R′(r) − R(r)

r

)
y
|y| ⊗ y

|y| ,
where r 
→ R(r) is the inverse map to R 
→ r(R).

The change of variables x = (ur )
−1(y) in (5.8) yields∫

ur (Bo)

W(∇yvε(y)[∇y(ur )
−1(y)]−1)

(det[∇y(ur )−1(y)])−1
dy �

∫
ur (Bo)

W([∇y(ur )
−1(y)]−1)

(det[∇y(ur )−1(y)])−1
dy

and hence, in view of (5.7)2,∫
ur (Bo)∩B(y0,ε)

W(∇yvε(y)[∇y(ur )
−1(y)]−1) − W([∇y(ur )

−1(y)]−1)

(det[∇y(ur )−1(y)])−1
dy � 0, (5.9)

where
[∇y(ur )

−1(y)
]−1 = r

R(r)
I +

(
1

R′(r)
− r

R(r)

)
y
|y| ⊗ y

|y| . (5.10)

The change of variables y = y0 + εz, dy = ε3 dz, and ∇z = ε∇y in (5.9) and (5.10) yields, with the aid of (5.7)1,∫
HBδ∩((ur (Bo)−y0)/ε)

W(∇zw(z)Kε(z)) − W(Kε(z))
det[Kε(z)] dz � 0, (5.11)

where

Kε(z) := [∇y(ur )
−1(y0 + εz)

]−1

= rε(z)
R(rε(z))

I +
(

1

R′(rε(z))
− rε(z)

R(rε(z))

)
eε(z) ⊗ eε(z), (5.12)

rε(z) := |y0 + εz|, eε(z) = y0 + εz
|y0 + εz| , (5.13)

and we have made use of the fact that w = i on B\HBδ .
We will next make use of (4.1), (4.2), as well the results in Appendix A and (5.12) in order to simplify our

computation of the integrands in (5.11). By (5.12) and Lemma A.1

∣∣GwKε(z)
∣∣ =

[[
rε(z)

R(rε(z))

]2

|Gw|2 +
(

1

[R′(rε(z))]2
−

[
rε(z)

R(rε(z))

]2)∣∣Gweε(z)
∣∣2

]1/2

(5.14)

where Gw := ∇zw(z), while (5.12) and Lemma A.3 imply
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∣∣adj
(
GwKε(z)

)∣∣
=

[
rε(z)

R(rε(z))

][
1

[R′(rε(z))]2
|Aw|2 +

([
rε(z)

R(rε(z))

]2

− 1

[R′(rε(z))]2

)∣∣(Aw)Teε(z)
∣∣2

]1/2

(5.15)

where Aw := adj(∇zw(z)). Also,

det
(
GwKε(z)

) = (det Gw)
rε(z)2

R′(rε(z))R(rε(z))2
. (5.16)

Our next task is to multiply (5.11) by an appropriate function of ε, which has limit zero at ε = 0, and take the limit
as ε approaches zero. By (3.10) and (5.16),

H � det Kε(z) � λ3,

H det∇w(z) � det Kε(z)det∇w(z) � λ3 det∇w(z). (5.17)

Therefore, if we multiply (5.11) by any function of ε, which has limit zero at ε = 0, and let ε approach zero, we
conclude from the similar argument in Section 4 (cf. (4.18) and (4.19)) that both of the terms involving h in (5.11)
(see (5.4)) will go to zero.

The function of ε that we will multiply (5.11) by is R(|y0| + ε)p . We first proceed pointwise and note that, by
(3.11), L’Hôpital’s rule, the chain rule, and (3.12)

lim
ε→0+

[
R(|y0 + εz|)
R(|y0| + ε)

]3

= lim
ε→0+

[
φ′(|y0 + εz|)
φ′(|y0| + ε)

(y0 + εz) · z
|y0 + εz|

]
= e0 · z, (5.18)

(e0 = y0/|y0|) while by (3.9)1 and the fact that R(|y0|) = 0,

lim
ε→0+

1

R′(rε(z))
= 0. (5.19)

Thus, in view of (5.13), (5.14), (5.18), and (5.19),

lim
ε→0+ R

(|y0| + ε
)αi |GwKε|αi = |y0|αi (z · e0)

−αi/3(∣∣∇w(z)
∣∣2 − ∣∣(∇w(z)

)
e0

∣∣2)αi/2 (5.20)

and similarly, by (5.13), (5.15), (5.18), and (5.19),

lim
ε→0+ R

(|y0| + ε
)2βi | adj(GwKε)|βi = |y0|2βi (z · e0)

−2βi/3
∣∣(adj∇w(z)

)Te0
∣∣βi . (5.21)

In order to apply the dominated convergence theorem to take the limit as ε goes to zero in (5.11) we require an
upper bound on the ratio

R(|y0| + ε)

R(|y0 + εz|) (5.22)

by an integrable function of z. Define Φn(ε) := R(|y0| + ε)3 = φ(|y0| + ε) and Φd(ε, z) := R(|y0 + εz|)3 = φ(|y0 +
εz|) (see (3.11)) the cube of the function in the numerator and denominator, respectively. Then, by the mean value
theorem applied to each of the functions ε 
→ Φn(ε) and ε 
→ Φd(ε, z), the chain rule, and the fact that Φn(0) =
Φd(0, z) = R(|y0|)3 = 0,

0 <
R(|y0| + ε)3

R(|y0 + εz|)3
= Φn(ε)

Φd(ε, z)
= Φ ′

n(c
n)ε

Φ ′
d(c

d, z)ε
= φ′(cn)

φ′(cd)

|y0 + εz|
(y0 + εz) · z

,

where cn ∈ (0, ε) and cd = cd(z) ∈ (0, ε). In view of (3.12), φ′ is bounded away from zero for sufficiently small ε.
Thus for such ε we find that the function given in (5.22) is bounded, uniformly in z on the set HBδ .

To complete the argument we multiply (5.11) by R(|y0| + ε)p and let ε = εn be any sequence that converges
to zero to conclude with the aid of the sentence following (5.17), (3.8), (5.20), (5.21), the dominated convergence
theorem, (4.2), and the fact that αi + 2βi = p that (5.5) is satisfied.

Finally, the proof that vε ◦ ur → ur strongly in W 1,p ∩L∞ as ε → 0 is similar to that in the previous section. �
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Note added in proof

Theorems 5.1 and 5.2 are valid for a more general class of deformations of the unit ball B: those w ∈ Def(B)

that are equal to the identity on ∂B and whose restriction to a neighborhood of ∂(HB)\∂B is contained in W 1,q for
some q > 3p/(3 − p). To see this, note that the only point in the proof where we originally believed that we needed
a stronger hypothesis is in the bound of Eq. (5.22) above, uniformly in ε, by an integrable function. However, the
existence of such a function for the above w can be deduced, from (5.22) and the displayed equation that follows it,
upon converting the integrals on the left-hand side of (5.5) into spherical coordinates with the flat surface of ∂(HB)

taken as the x–y plane.
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Appendix A

Lemma A.1. Let

F = αI + (β − α)e ⊗ e,

where e ∈ R
3 is a unit vector. Then for any M ∈ Lin

|MF|2 = α2|M|2 + (
β2 − α2)|Me|2, (A.1)

|FM|2 = α2|M|2 + (
β2 − α2)|MTe|2. (A.2)

Proof. We note that

MF = αM + (β − α)Me ⊗ e,

(MF)T = αMT + (β − α)e ⊗ Me

and hence

MF(MF)T = α2MMT + [
2α(β − α) + (β − α)2]Me ⊗ Me.

The desired result (A.1) now follows if one takes the trace. The proof of (A.2) is similar. �
Lemma A.2. Let

A = λe ⊗ e + μ(I − e ⊗ e),

where e ∈ R
3 is a unit vector. Then

adj A = μ2e ⊗ e + λμ(I − e ⊗ e). (A.3)

Proof. Since n = 3 it follows that the determinant of A satisfies det A = λμ2. However, if we multiply (A.3) by A we
conclude that the result is equal to

λμ2e ⊗ e + λμ2(I − e ⊗ e) = λμ2I = (det A)I,

which completes the proof since adj A is the unique linear transformation that satisfies (adj A)A = (det A)I for all
invertible A. �
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Lemma A.3. Let

F = αI + (β − α)e ⊗ e,

where e ∈ R
3 is a unit vector. Then for any M ∈ Lin∣∣adj(MF)

∣∣2 = α2(β2| adj M|2 + (
α2 − β2)∣∣(adj M)Te

∣∣2)
, (A.4)∣∣adj(FM)

∣∣2 = α2(β2| adj M|2 + (
α2 − β2)∣∣(adj M)e

∣∣2)
. (A.5)

Proof. We first note that adj(MF) = (adj F)(adj M), while by the previous lemma

adj F = (αβ)I + (α2 − αβ)e ⊗ e.

Thus if we combine these equations and apply (A.2) of Lemma A.1 we find that∣∣adj(MF)
∣∣2 = ∣∣(adj F)(adj M)

∣∣2

= (
(αβ)2| adj M|2 + (

α4 − (αβ)2)∣∣(adj M)Te
∣∣2)

= α2(β2| adj M|2 + (
α2 − β2)∣∣(adj M)Te

∣∣2)
.

The proof of (A.5) is similar. �
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