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Finite Morse index solutions of exponential problems
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Abstract

We prove that the problem −�u = eu has no negative finite Morse index solution on R
3 and give some applications to bounded

domain problems.
© 2006

Résumé

Nous montrons que le problème −�u = eu ne possède pas de solution négative d’indice de Morse fini sur R
3 et présentons

quelques applications à des problèmes sur des domaines bornés.
© 2006
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0. Introduction

In this short paper, we prove that there are no finite Morse index negative solutions of

−�u = eu (1)

on R
N if N = 3. The key point is to show that, for such a solution, ‖x‖2eu is bounded for large ‖x‖. This enables us

to apply the results of Bidaut-Véron and Véron [3] to obtain a good asymptotic expansion of eu for large ‖x‖. Indeed,
our results provide a partial answer to establishing which solutions of (1) satisfy that ‖x‖2eu is bounded. The Vérons
called this a difficult problem. Central to our proof of this bound is that (1) has no linearized stable solution. This
was proved in [9] for N = 3. Note that, if N � 10, it follows from [13] that there is a linearized stable negative radial
solution of (1). We explain this more in Section 2.

We give two simple applications. In both, Ω is a smooth bounded domain in R
N , where N = 3. First assume that

f : R → R is C1, f (0) � 0 and there exists q ∈ Z (possibly zero) such that f ′(y) ∼ cyq expy as y → ∞ where c > 0.
Then a sequence un of positive solutions of

−�u = f (u) in Ω,

u = 0 on ∂Ω
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are bounded in L∞(Ω) if and only if their Morse indices are bounded. This is an analogue of a result in [2] (for
positive solutions) where they assumed f ′(y) ∼ c|y|p−1 as |y| → ∞ where c > 0 and 1 < p < (N + 2)/(N − 2).
They also allowed changing sign solutions. Similar results for some supercritical problems with power growth appear
in [8]. The main interest of our result is that the problem is very much supercritical.

Secondly, assume the conditions above hold except we also require that f (y) > 0 for y > 0, that f is real analytic
in a neighbourhood of [0,∞) and that either f (0) > 0, or f (0) = 0 and f ′(0) > 0. Then as in [10] there is a “natural”
arc T̂ of positive solutions of

−�u = λf (u) in Ω,

u = 0 on ∂Ω

bifurcating from (0,0) (or from (0, f ′(0)−1λ1) if f (0) = 0) such that −� − λf ′(u)I (plus the boundary condition)
is invertible on T̂ except at isolated points. Here λ1 is the smallest eigenvalue of −� on Ω for Dirichlet boundary
conditions. We can then prove that, if K is a compact subset of T̂ , there are infinitely many bifurcation points in T̂ \K

where the bifurcation points may be points where the branch merely changes direction. (Indeed, this is what happens
for generic Ω , as in [10].) This very considerably generalizes a result of [13] which was for f (y) = ey and Ω a ball.
We explain their result in more detail below. The result in [13] was proved by making major uses of symmetries of f

and ordinary differential equation techniques. There are also results for an annulus in [16]. Our proof is completely
different and holds for much more general domains and much more general f . (It is based partly on ideas in [10].)
Note that equations of this type appear in many applications (as in [5] or [13]). Note also that the analyticity can be
weakened, but we do not know if it can be completely removed.

In more detail, Joseph and Lundgren [13] prove that, if Ω is a ball and f (y) = ey , the branch of positive solutions
(that is, solutions with u > 0 on Ω and λ � 0) has the following structure. If N � 10, it consists of a simple con-
tinuous curve u1

λ for 0 � λ < α where u1
0 = 0 and there are no non-negative bounded solutions if λ � α. Moreover

‖u1
λ‖∞ → ∞ as λ → α. If N = 1,2, the solutions are u1

λ,u
2
λ for 0 < λ � α, where ui

λ depend continuously on λ,
u1

λ < u2
λ on Ω if λ < α, u1

α = u2
α , u1

λ → 0 as λ → 0 and ‖u2
λ‖∞ → ∞ as λ → 0. If 3 � N � 9 the solutions are a

single unbounded smooth arc in C(Ω) × [0,∞) starting from (0,0) with infinitely many changes of direction (that
is, turning points). Note that the solutions here all satisfy λ � β for some β (and thus it is ‖u‖∞ which becomes
unbounded). Moving plane techniques ensure that the solutions must be radial and that in the first two cases u1

λ is
linearized stable when it exists (in the sense to be defined below).

While our proofs resemble in structure the proof of the corresponding result in the supercritical power case in [8],
the details are quite different.

This paper and [8] seem to suggest that one can very often understand the finite Morse index solutions rather well
if there are very few linearized stable solutions.

We prove the finite Morse index result in Section 1 and briefly consider applications in Section 2.

1. Finite Morse index solutions for f (y) = ey

The purpose of this section is to prove that (1) has no negative solution u on R
3 of finite Morse index. Here a

solution is said to be of finite Morse index if the negative spectrum of the closed linear operator −� − euI on L2(R3)

consists of a finite number of points of finite multiplicity. (Note that the linear operator is selfadjoint.) In fact, by
scaling, it would suffice to assume u is bounded above. This result is the key result of this paper. Note that the result
is false if N � 10. We explain this briefly in Section 2. Note also that the case N = 3 is the case of key interest in
physical applications.

Theorem 1.1. −�u = eu has no negative locally bounded solution on R
3 of finite Morse index.

We prove this by a series of lemmas. First note that a solution u of (1) is said to be linearized stable if∫
RN

(|∇φ|2 − euφ2) � 0

for all φ ∈ C∞(RN). This was called stability in [9]. On a domain Ω , we require this inequality for φ ∈ C∞(Ω).
0 0
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It is sometimes more convenient to instead discuss positive solutions of

�v = e−v (2)

on R
3.

Lemma 1.2. (2) has no positive linearized stable solution on R
3.

Proof. This is Theorem 1 in [9] and essentially uses some ideas from Ambrosio and Cabré [1]. �
Lemma 1.3. There exists μ > 1 such that, if v is a positive solution of (2) on Bk , then

v(x) � μ(v(0) + K) on Bk/2,

where K depends only on k.

Proof. Let v̄ be the average value of v on the sphere Sr . Then, as in [9, p. 964], we easily see that r−2(r2v̄′(r))′ is the
average of e−v on Sr and hence r−2(r2v̄′(r))′ � 1 (since v � 0). Now v̄′(0) = 0 by the Taylor expansion of v at 0 and
v̄(0) = v(0). Hence it follows easily by integrating this differential inequality that v̄(r) � v(0) + K on Bk . The result
then follows from Theorem 3.19 in Hayman and Kennedy [12] if we choose ρ = 1

2 r . �
Lemma 1.4. Given s > 0, there exists k positive such that there is no linearized stable solution v of (2) on Bk such
that v � 0 on Bk and v(0) � s.

Proof. Suppose by way of contradiction that there existed linearized stable solutions vn of (2) on Bn for all n such
that vn � 0 on Bn and vn(0) � s. If r > 0, Lemma 1.3 implies that vn are uniformly bounded on Br for large n and
thus, by the equation for vn, �vn are uniformly bounded on Br . Thus, by standard local estimates, {vn} is uniformly
bounded in C2,α on Br/2. Hence we can choose a subsequence converging uniformly on Br/2. Thus, by a standard
diagonalization argument, we can choose a subsequence of vn which converges uniformly on compact sets to a non-
negative solution ṽ of �ṽ = e−ṽ on R

3. Moreover, because the integral in the definition of linearized stability is an
integral over compact sets, it follows easily that ṽ is linearized stable on R

3 (since a subsequence of vn converges
uniformly to ṽ on compact sets). This contradicts Lemma 1.2. �

The following lemma is the key lemma. It combines Lemma 1.4 and rescaling with a careful choice of origin.

Lemma 1.5. If v is a finite Morse index positive solution of (2) on R
3, then ‖x‖2e−v is bounded on R

3.

Proof. It clearly suffices to find C > 0 such that

v(x) � 2 ln‖x‖ − C (3)

for ‖x‖ large.
First note that since v has finite Morse index, it is easy to see that there is an m̃ > 0 such that v is linearized stable

on R
3 \ Bm̃. (A very similar argument appears at the beginning of the proof of Theorem 4 in [7].)

Next note that v(x) → ∞ as ‖x‖ → ∞. To see this, suppose by way of contradiction that ‖xi‖ → ∞ as i → ∞ and
v(xi) � s̃ for all i. Then w(x) = v(x − xi) are linearized stable positive solutions of (2) on large balls with w(0) � s̃.
This contradicts Lemma 1.4.

Let m(t) := inf{v(x): ‖x‖ = t}. Then m is continuous and m(t) → ∞ as t → ∞. We will have proved (3) if we
show that m(t) − 2 ln t is bounded below on (0,∞). Suppose that this is false. If C is large negative (where C will be
chosen later), there exists τ̂ > 0 such that

m(t) − 2 ln t � C if 0 < t � τ̂ (4)

and equality holds if t = τ̂ . (Note that m(t) − 2 ln t → ∞ as t → 0+.) Note also that τ̂ will be large if C is large
negative.
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Now inf{v(x): ‖x‖ � τ̂ } is achieved since v(x) → ∞ as ‖x‖ → ∞. Suppose it is achieved at y, where ‖y‖ =
τ � τ̂ . If τ̂ � ‖x‖ � τ , m(‖x‖) � m(τ) by the choice of τ . Hence, since log is increasing,

m
(‖x‖) − 2 ln

(‖x‖) � m(τ) − 2 ln τ.

Hence (4) will continue to hold if we replace τ̂ by τ provided we decrease C so that equality holds for t = τ .
Hence we can assume that

m(t) − 2 ln t � C for 0 < t � τ,

equality holds for t = τ and

m(t) � m(τ) for t � τ. (5)

Choose s > 2 and let s = 2 lnq . Thus q > 1. If τq−1 � t � τ ,

m(t) − 2 ln t � m(τ) − 2 ln τ,

that is,

m(t) � m(τ) + 2 ln
(
tτ−1)

� m(τ) + 2 lnq−1

= m(τ) − 2 lnq = m(τ) − s. (6)

Let α = m(τ) − s. Then it is easy to check that w(x) ≡ −α + v(e
1
2 α(x − y) + y) is a solution of (2) on R

3 and

w(y) = −α + v(y) = −(
m(τ) − s

) + m(τ) = s.

Now w is non-negative when

v
(
e

1
2 α(x − y) + y

)
� m(τ) − s. (7)

We show that this is true if∥∥e
1
2 α(x − y)

∥∥ �
(
1 − q−1)‖y‖. (8)

To prove this, first note that, by the triangle inequality, (8) implies that∥∥y + e
1
2 α(x − y)

∥∥ � q−1‖y‖.
There are two cases to consider. If

q−1‖y‖ �
∥∥y + e

1
2 α(x − y)

∥∥ � ‖y‖ = τ,

then (6) implies that

v
(
e

1
2 α(x − y) + y

)
� m(τ) − s,

as required. If∥∥y + e
1
2 α(x − y)

∥∥ � ‖y‖ = τ,

then (5) implies that

v
(
y + e

1
2 α(x − y)

)
� m(τ) = v(y) � m(τ) − s.

Hence we have proved that w is non-negative on W := {x: ‖e
1
2 α(x − y)‖ � (1 − q−1)‖y‖}. On W ,

‖x − y‖ � e
1
2 (s−m(τ))

(
1 − q−1)‖y‖.

However m(τ) − 2 ln‖y‖ = C by (4) and the choice of α, and s = 2 lnq . Thus, on W ,

‖x − y‖ � e− 1
2 Ce

1
2 s

(
1 − e− 1

2 s
)
.
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Since these last two inequalities are equivalent we see that if C is large negative, w is non-negative on the ball Bk(y)

of radius k and centre y. Moreover, if C is large negative, w is linearized stable on Bk(y). This follows since if
x ∈ Bk(y),∥∥y + e

1
2 α(x − y)

∥∥ � ‖y‖ − e
1
2 αk

= τ − e
1
2 (m(τ)−s)k

= τ − e
1
2 (2 ln τ+C)e− 1

2 sk by (4)

= τ
(
1 − e

1
2 Ce− 1

2 sk
)

� m̃

since, if C is large negative, τ is large.
Hence we have a linearized stable positive solution w on Bk(y) with w(y) = s. This contradicts Lemma 1.4 (after

a translation) and hence we have proved Lemma 1.5. �
It is now easier to revert to (1) so as to make it more convenient to quote [3].

Lemma 1.6. If u is a finite Morse index negative solution of (1), then ‖x‖2eu(x) → 2e2w(θ) as ‖x‖ → ∞, uniformly
in θ ∈ S2, and −�′w = e2w − 1 on S2, where �′ is the Laplace–Beltrami operator on S2.

Proof. This is simply Theorem 2.2 in [3]. Lemma 1.5 proves the necessary condition to apply their theorem. �
Proof of Theorem 1.1. If w is a solution of the w equation, it follows by integrating the equation for w over S2 that
the average of e2w over S2 is 1. Now the functional for the linearized operator at a solution u is

J (φ) =
∫
R3

(|∇φ|2 − euφ2).
If φ is radial, this becomes

4π

∞∫
0

((
φ′(r)

)2 − eu
(
φ(r)

)2)
r2 dr,

where ‘−’ denotes the average on S2. By the asymptotics in Lemma 1.6, r2eu → 2(e2w) = 2 as r → ∞. Hence we
see that u will have infinite Morse index if, given m ∈ Z

+, we can find β < 2 but close to 2 and m smooth radial
functions {φi}mi=1 of disjoint compact support so that the φi have support in r large (where r2eu � β) and

J1(φi) =
∞∫

0

((
φ′

i (r)
)2 − βr−2(φi(r)

)2)
r2 dr < 0

for each i. To do this, let us consider the equation −(r2z′(r))′ = β1z(r), where β1 < β but close to β . This is an
Euler equation which has solutions rα sin(τ̃ (r − r0)) if s̃ = α + iτ̃ is a solution of s(s + 1) + β1 = 0. The roots of this
equation are complex since β1 > 1/4. (Recall β1 is close to 2.) Thus by choosing a sequence of r0’s tending to ∞, we
can find a sequence of solutions φi of −(r2z′(r))′ = β1z(r) for ri � r � r̃i vanishing at r = ri and at r̃i where ri → ∞
as i → ∞. We extend φi to be zero outside this range. By choosing a subsequence of φi ’s we can arrange that the φi

have disjoint support, and their support is in r large for each i. By a simple integration by parts, J1(φi) < 0 for each i.
Hence, by our earlier comments, we have proved that u has infinite Morse index. This contradicts our assumptions.
Hence no such u exists, as claimed. �
Remark 1.7.

(1) If one examines the argument, we see that it clearly suffices that u is a solution for ‖x‖ > R̃ and has finite Morse
index there.
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(2) The last part could also be proved by using that the best constant in Hardy’s inequality is not achieved.
(3) It would be of interest to generalize Theorem 1.1 to higher dimensions. The main difficulty seems to be in gener-

alizing Lemma 1.2. Our arguments certainly show that, if Lemma 1.2 holds, then Lemma 1.5 holds. In particular,
it seems likely that our ideas and those of Moschini [14] can be used to prove Theorem 1.1 for N = 4.

2. Applications

In this section we indicate two simple applications of Theorem 1.1. Essentially, we combine Theorem 1.1 with
known techniques from [2,8,10,11].

Theorem 2.1. Assume that vn are positive solutions of −�u = expu in Ω , u = 0 on ∂Ω where Ω is a smooth bounded
domain in R

3. Then {‖vn‖∞} is bounded if and only if {m(vn)} is bounded, where m(vn) is the Morse index of the
solution vn.

Proof. If {‖vn‖∞} is bounded, it is easy to see that {m(vn)} is bounded. The converse is by a simple blow up argument
combined with Theorem 1.1. We assume by way of contradiction that ‖vn‖∞ → ∞ as n → ∞ but {m(vn)} is bounded.
The blow up argument is almost identical to the proof of Theorem 2 in [9] in the case of exponential growth. We let
vi(x) = vi,m + wi(x) where vi,m is the maximum of vi on Ω which occurs at xi and wi � 0 on Ω . If we rescale
x as there, we find that a subsequence of the wi (rescaled) converges uniformly on compact sets to a non-positive
solution w of (1) on R

3. As there, we find that the blow up never yields the half-space problem (essentially because
of the effect of the scaling on the boundary conditions). Moreover since the Morse index of vn (and thus wn) are
uniformly bounded, a similar argument to that in the proof of Theorem 8 in [7] shows that w has finite Morse index.
This contradicts Theorem 1.1. �

This generalizes results of [2] and [8] to the exponential case. ([2] was the subcritical case.) As in [8] or [6], we
could handle nonlinearities which are asymptotically yqey as y → ∞ and could prove some results for sign changing
solutions.

We can use the ideas in the proof of Theorem 2.1 to prove the existence of a linearized stable negative solution
of (1) on R

N if N � 10. We sketch this. As λ increases to α, a rescaling of u1
λ − ‖u1

λ‖∞ converges uniformly on
compact sets to a linearized stable radial solution of (1) on R

N (since linearized stability is preserved under uniform
convergence on compact sets).

Our second result concerns the problem

− �u = λf (u) in Ω,

u = 0 on ∂Ω
(9)

where Ω is a smooth bounded domain in R
3, f : R → R is C1, f (y) > 0 for y > 0 and either f (0) > 0, or f (0) = 0

and f ′(0) > 0. Moreover, we assume that f ′(y) ∼ yqey as y → ∞ (where q may be zero) and that f is real analytic
in a neighbourhood of [0,∞) (or more generally f generates a real analytic map of {u ∈ C1(Ω): u > 0 in Ω , ∂u

∂n

= 0

on ∂Ω}, with the C1 norm into C(Ω)). As proved in [10], it is a consequence of analytic bifurcation theory [4] that
there is an unbounded connected arc of positive solutions T̂ of (9) such that (0, λ1(f

′(0))−1) ∈ T̂ (or (0,0) ∈ T̂ if
f (0) > 0) and ‖u(s)‖′ + |λ(s)| → ∞ as s → ∞ (where T̂ = {(u(s), λ(s)): s � 0}) and −�−λ(s)f ′(u(s))I (plus the
boundary condition) is invertible except at isolated points. Here ‖ · ‖′ is the usual C1 norm. Thus the implicit function
theorem applies on T̂ except at isolated points. Moreover the construction of T̂ is “almost” natural. (This is explained
more in [10].)

Theorem 2.2. Assume that the above conditions hold and S is a bounded subset of C[0,1] × R. Then T̂ \ S contains
infinitely many bifurcation points.

Remark 2.3. These bifurcation points may merely be turning points where the branch bends back. This is always the
case where Ω is a ball.
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Proof. This is an easy consequence of Theorem 2.1 here, the comments after its proof and the proof of Theorem 4
in [8]. One also needs to note that if (un,λn) are solutions then standard estimates imply that {‖un‖}∞ is bounded if
{λn(‖un‖∞)q exp(‖un‖∞)} is bounded and that the blow up argument in [9] still applies if λn(‖un‖∞)q exp(‖un‖∞)

→ ∞ as n → ∞ and ‖un‖∞ � 1 (as can be seen by a simple perusal of the proof there). �
Remark 2.4.

(1) The result still holds for other branches which have the properties we mentioned above on the branch T̂ . As in
[10], it follows from [15] that if f is C2, then for “generic” Ω , the branch of positive solutions is a smooth curve
(though possibly not connected). Thus T̂ is a smooth curve with no secondary bifurcations off T̂ . In particular,
for “generic” Ω the analyticity is unnecessary.

(2) Our result contrasts with the supercritical power nonlinearity where it is noted in [8] that the theorem fails on
some annuli. The difference seems to come from the very different scaling laws in the two cases.

(3) The results in [13] show that Theorem 2.2 fails on a ball if N � 10.
(4) We do not know if there is a λ where there are infinitely many solutions. This is true for the example in [13]

(which was for rather particular f ’s on a ball).
(5) Note that by the results in [11], the real analyticity assumption is satisfied if

f (y) = f0(y) +
k∑

i=1

ypi fi(y)

where fi are real analytic in a neighbourhood of [0,∞) and pi > 1 for each i.
(6) It can be shown that an analogue of Theorem 2.2 holds if we replace the conditions at zero by f (0) = 0 and

f ′(y) ∼ qyq−1 as y → 0+ where 1 < q � N/(N − 2) provided that all the positive solutions of −�u = uq in Ω ,
u = 0 on ∂Ω are non-degenerate. It can be shown that this condition is always true for “generic” Ω or for q close
to 1.
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