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Abstract
Consider the problem
—Aug =v’, ve>0in £,
—Ave=ul?, u,>0in$,
ug =ve,=0 onas2,

where £ is a bounded convex domain in RV , N > 2, with smooth boundary d£2. Here p, gc > 0, and

N

&i=—4

p+ 1 qe + 1
This problem has positive solutions for ¢ > 0 (with pge > 1) and no non-trivial solution for & < 0. We study the asymptotic
behavior of least energy solutions as ¢ — 07. These solutions are shown to blow-up at exactly one point, and the location of this
point is characterized. In addition, the shape and exact rates for blowing up are given.
© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

— (N =2).

Résumé
Considérons le probleme
—Augzvf, ve >0en £2,
—Avg =ug€, ugs >0en 2,
ug =ve =0 surds2,
ol £2 est un domaine convexe et borné de RV , N > 2, avec la frontiere réguliere 042. Ici p, ge > 0, et

N N

gi=—"+

p+1 qe + 1
Ce probleme a des solutions positives pour ¢ > 0 (avec pge > 1) et aucune solution non-triviale pour ¢ < 0. Nous étudions
le comportement asymptotique de solutions d’énergie minimale quand & — 0F. Ces solutions explosent en un seul point, et la
position de ce point est caracterisée. De plus, le profil et les vitesses exactes d’explosion sont donnés.
© 2007 Elsevier Masson SAS. All rights reserved.

— (N =2).
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1. Introduction

We consider the elliptic system

—Aug,=v?, v,>0in £, (1.1)
—Ave =ul, u,>0in$2, (1.2)
U, =v, =0 onads2, (1.3)

where £2 is a bounded convex domain in RY, N > 2, with smooth boundary 92. Here p, g, > 0, and
N N

&= +
When ¢ < 0, there is no solution for (1.1)—(1.3), see [19] and [23]. On the other hand when ¢ > 0, we can prove

— (N —2). (1.4)

p+l
existence of solutions obtained by the variational method. In fact, for ¢ > 0, the embedding W (2) = L%t1(2)
is compact for any g. + 1 > (p+ 1)/ p, thatis pg. > 1. Using this, it is not difficult to show that there exists a function
iL¢ positive solution of the variational problem

1
Se(2) =inf{|Aull pu  |ue W (), lull g =1), (1.5)
L P (£2)
see for example [24]. This solution satisfies —Au, = o, —AD, = S.(2)a®, in 2 and i, = 0, = 0 on 982. After
changing to suitable multiples of u, and v, we obtain u, and v, solving (1.1)—(1.3). The pair (u,, v.) is called a least
energy solution of (1.1)—(1.3), which by regularity belongs to C 2(£2) x C%(£2). For others existence results, we refer
to [4,7,9,16], and [20].
We observe that we can write the system (1.1)—(1.3) only in terms of u,, that is

—A(=Au)VP =ule, u;>0in £, (1.6)
ue=Au,=0 onds2. (1.7)
Therefore, we refer to u. as the least energy solution of (1.6)—(1.7).

Concerning least energy solutions of (1.6)—(1.7), in [24] it was proved that S.(£2) — S as ¢ | 0, where § is
independent of §2 and moreover is the best Sobolev constant for the inequality
iy < STFTIAUN oyt (18)
with p, g, N satisfying
L+L—(N—2):O. (1.9)
p+1 qg+1
This shows that the sequence {u}.~ of least energy solutions of (1.6)—(1.7) satisfy

p+l
Jo lAug| 7 dx

ptl

S.(R) = =S+o(l) ase—0. (1.10)

lotell

Relation (1.9) defines a curve in Ri, for the variables p and ¢. This curve is the so-called Sobolev Critical Hyperbola
and replaces the notion of critical exponent in the scalar case. This hyperbola first appeared independently in [4]
and [20] and later in [7] and [16].

In this article, we shall study in detail the asymptotic behaviors of the variational solution u., of (1.6)—(1.7) as
¢ | 0, that is, as g, approaches from below to g, in the Sobolev Critical Hyperbola (1.9).

By the symmetry of the hyperbola, we assume without restriction that
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—_— <pfi=——. 1.11
N_2 PSP =N (1.11)
For each fixed value of p, the strict inequality gives a lower bound for the dimension, i.e. N > max{2,2(p + 1)/p}.
The asymptotic behaviors of Egs. (1.6)—(1.7) as ¢ | 0 has already been studied for the cases p = p* and p = 1.
Next we recall some of these results and explain the relation with ours.

The case p = p™* is equivalent to consider the single equation

2 < N+2

—Augzuf*_s inf2, and u,=0 onaf.

This problem was studied in [1,10,15,21]. There, exact rates of blow-up were given and the location of blow-up points
were characterized. One key ingredient was the Pohozaev identity and the observation that the solution u,, scaled in
the form |ju, ||Zo1O (2)Ue converges to U solution of

—AU=U", U@y)>0 foryeR", (1.12)

u=1, U—0, as|yl— oo, (1.13)
which is unique, explicit, and radially symmetric. For the location of the blow-up and the shape of the solution away of
the singularity, it was proved that a scaled u,, given by |lu;|| L (2)us, converges to the Green’s function G, solution of
—AG(x,-)=46;1n 82, G(x,-) =0on 3S2. The location of blowing-up points are the critical points of ¢ (x) := g(x, x)
(in fact their minima, see [10]), where g(x, y) is the regular part of G(x, y), i.e.

1

(N =2)oylx — y[V =2
In [6], a similar result was proven in the case p =1 (N > 4). There the problem is reduced to study (1.12)—(1.13)
with the operator AZ instead of —A. Both cases p = p* and p = 1 give the same blow-up rate

g(xvy):G(xv y) -

s||ug||%oo(_@) —C ase— 0"

for some explicit C := C(p, N, £2) > 0. We can ask ourselves if this behaviors is universal, i.e. holds for all
2/(N —2) < p < p*. We will see later that this is only a coincide; a general result for the blow-up rate is given
in Theorems 1.2.

Mimicking the above argument, we will study the asymptotic behaviors of the solution u, of (1.6)—(1.7) as ¢ |, 0.
We shall show that ||u, ||Zolo(9)u8 converges, as ¢ | 0, to the solution U of the problem

—AU=V"?, V(y)>0foryeR", (1.14)
—AV =U4, U(y)>O0foryeR", (1.15)
uo=1, U—-0, V>0 as|y|l— oo (1.16)

In [5], it was proved that U and V are radially symmetric, if p > 1 and U € LY7'(RV) and V € LPT(RV). These
last integrability conditions hold when considering least energy solutions, see details in Section 2. Thus U (r) := U (y)
and V(r) := V(y) with r = |y|, moreover U and V are unique, and decreasing in r, see [17,24]. There exist no
explicit form of (U, V) for all p > 2/(N — 2), however to carry out the analysis it is sufficient to know the asymptotic
behaviors of (U, V) as r — oo, which was studied in [17]. They found

. N=2 _ .
rll)nolor U(ry=> 1fp>—N_2,
. N—2 . rN_2 . N
A Vo =aad g lin e vo = ifr=5 (7
N
lim PPNV 22y =b if <p< .
r—00 -2 N -2
In the following, we restrict further the value of p < p* from below:
2
p=1 forN>4 and p>N for N =3,4. (1.18)
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This restriction is needed since, in different parts of the coming proofs, we use that p > 1, condition automatically
satisfies when N = 3, 4. We believe however that this restriction is only technical and we conjecture that the results
of this paper also hold for 2/(N — 2) < p < 1. In addition, we numerically found (radial) solutions in this range that
satisfy Theorem 1.2.

The aim of this paper is to show the following results.

Theorem 1.1. Let u, be a least energy solution of (1.6)—(1.7) and (1.18). Then

(a) there exists xq € §2 such that, after passing to a subsequence, we have
(i) us — 0€ C'(2\ {x0}), (ii) ve = |Aue| P — 0 € C1(£2\ {x0})
as e — 0% and

+1
(iii) [Aue [PV VT v by ase— 0

in the sense of distributions.
(b) xg is a critical point of

¢(x):=g(x,x) ifpe[N/(N—-2),(N+2)/(N-2)] and (1.19)
$(x):=g(x,x) ifpe(2/(N—-2),N/(N-2) (1.20)
for x € 2. The function g(x, y) is defined for p € 2/(N —2), N/(N —2)) by

1
(P(N =2) =2)(N = p(N =2))(N —2)Pofj|x — y[PN-2-2

g0, ) =Gx,y) —

where —Aé(x, )=GP(x,-)in £2, 5(x, )=00n0dS2.

This result gives a description of the function whose critical points are the blow-up points. We remark that for
pe[N/(N —2),(N+2)/(N — 2)], the critical points remain unchanged and equal to the case of a single equation.
Note that if we consider a domain different from a ball, the critical points may change with p in the region 2/(N —2) <
p<N/(N-2).

We observe that regularity of ¢ is needed to compute its critical points in (b). We show next that ¢ is regular. By
definition of (N} we have

lim [x — | P DV Az(x y) = — pg(x,x)
Jim |x =yl g(x,y) (N = Do)

for x € 2. Thus —Ag(x,-) € Lf(.Q) for any g € (N/2, N/(p(N — 2) — N + 2)). This implies, by regularity, that
g2(x, ) € L®(£2) and therefore ¢(x) = g(x, x), x € £2 is bounded. In addition, we define

(1.21)

5 _ (x,x)|x — y[V7PIV2)
g, y) =g,y + b . - (1.22)
(N —=pN—=2))2N — p(N —2) = 2)((N —2)on)?
and we have for any x € £2 that
-1 ,
lim |x _y|(P—2)(N—2)A§(x’y)=_w (1.23)

o (N =2)on)P~2"

Thus g(x, y) is regular in y for x fixed. Since N > p(N — 2), we take first y = x in (1.22) and then the gradient and
we find V,g(x, x) = V,g(x, x). Hence qE(x) is regular.

The next two theorems make more precise the behavior of solutions. First we give the rate of blow-up of the
maximum of the solutions.
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Theorem 1.2. Let the assumptions of Theorem 1.1 be satisfied. Then

lim ellu ||p(Nﬁ]2)72+ _S”<"+”||U|| vy lp(x0)| ifp> N
Ot ellpoo(2) L4(RN) LP(RN) 0 p N_2’

N 2""1

”MS”LOO(_Q) p+ 1

L ., ; N
a V=2 S+t ||U||Lq(RN)|¢(X())| ifp=

8 9

€~>0+ log [lug || oo (2) TN-=2 N -2
- P ool a5 . N

tim el g, = ST U 1D B iFp< s

This theorem gives three regimes of blow-up depending on p. In the case p > N/(N — 2), the blow-up rate
decreases as p | N/(N — 2) reaching a minimum at p = N/(N — 2). There we find a regime with a logarithmic
correction. When p < N/(N — 2) the blow-up rate increases as p | 2/(N —2).

Observe that taking p = ¢ = p™*, we recover the results in [15,21], that is

elluel ooy —> C ase— 0T, (1.24)

for some explicitly given C > 0. See also [1] for the case when £2 is a ball.

When N > 4, we can take p =1, i.e. ¢ = (N +4)/(N — 4), recovering the result in [2,6], where they prove that
(1.24) holds for some C > 0.

The previous theorem is a consequence of the following result, where the behaviors of solutions away from the
singularity is given. Here the three regimes also appear and the behaviors of solutions are now given in terms of the
Green’s function.

Theorem 1.3. Let the assumptions of Theorem 1.1 be satisfied. Then

EE%L luellLoo(2)ve(x) = "U”Lq(RN)G(x5x0)a and (1.25)
(N—iv2)—2 N
im |7 e () = VI Gxo) i p> s
2
llate Il o< 1 N
el =2 1o (x) = P+ AV Gx.xg) if p= ’ (1.26)
8—)0Jr 10g||u5||Loo(g) N =2 N-=2
g1 gt () = WU g G . 30) fp<s—5

where all the convergences are in C®(w) with @ any subdomain of §2 not containing xo. For p < N/(N — 2), the
convergence in (1.26) can be improved to C>* (w).

Let us examine the limit p | 2/(N — 2). In this limit, the exponent of |us|l; =) in Theorem 1.2 tends to
N/(N — 2). Next we consider the corresponding behaviors of vg. Let x; € £2 such that u.(x;) = |[ugll Lo (). Us-
ing (2.7), (2.9) at y = 0, and the convergence (2.13), we find

N
hm Ve (xz) = V(0) hm llug || P22

Le°($2)
This gives
. (p+DIp(N=2)-2] 2) 2 1ptl ~
lim efve(r)] Y —Sv<q+'>[||U||Lq(RN>V<0> 1" [¢(x0)|

for p < N/(N — 2). Note that the exponent of v (x,) tends to 07 as p | 2/(N — 2). Recently in [13] the author
studied the limiting case p =2/(N — 2), and found that a positive solution u of —A(—Au)N —2/2 = 44 in £2, with
u = Au =0 on 952, remains bounded and develops peak(s) as g — oo.

We also consider the problem
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—A(—Aus)l/f’zu’g—i—sus, ug >0in £, (1.27)
Ue = A, =0 on o2 (1.28)

for ¢ > 0. The existence of positive solutions for this problem can be found in [16] and in [20] for the case of a ball.
See [14] for related results when p = 1. Similarly to the problem (1.6)—(1.7), we can define the least energy solutions
for (1.27)-(1.28). Next, we will see a strong link in behaviors between the solutions of the two problems as ¢ — 0.

The following theorem gives the behaviors of least energy solutions of (1.27)-(1.28) as ¢ — 0T. The blow up rates
depend now on the integrability of U? in R¥, consequently we divide the result in five cases. The first three cases are
the analogous of Theorem 1.2 and there ||U || ,2(gvy < 00 holds. The last two cases are the limiting cases, where we
do not have integrability, but we can use the asymptotic behaviors of U (y) as |y| — oo.

Theorem 1.4. Let u, be a least energy solution of (1.27)—(1.28) and (1.18). Then the conclusions of Theorem 1.1 and
Theorem 1.3 hold, and for N > 4 we have

(N=3)p—3

tim elucll @) = MU 2w UK @y IV I ey [0 G0 i p > . (1.29)
(N=3)p—3
luell ey~ p+1 ) N
— N2 - q ; —
S Tl — N =2 Uz 10U ey [$G0) | i p = . (1.30)
2[(1\;,3)1,,3],1\;_’_ ~ N +4 N
. N-2p—2 P _ -2 q(p+1) .
tim ellue o o) = Uz W sam |G| i 50— < P < 75
N—4)24+(N—-2)(N+6)—(N—4
andp> YN =N (N +6) = (N—4) (131
N-=-2
for N > 8, we have
e - N +4
. 2(N-2) -2 .
Jim e el ;%) log luell @) = b2V lo@m [#Go)| if p= 55 (1.32)
and for N = 4, we have
: — 2 q p ; — g — pF —
lim elog lluclloe@) = b2 NU N, g, IV I @) [$G0)| - if p=g=p*=3. (133)

We can check in the three first cases that the corresponding exponents of i || (52) are positive. In particular the
case (1.31) with p = 1, yields

2(N—8) 2N+8
N—4

. N—4 __ -2
81_1)1})1+£||u8||L00(Q) - ”U” ”U”

q;(xo) for N > 8.
L2(RN) (IRN)| |

N+4
LN—4
In (1.32) the exponent of ||ug|| 1. (s2) 1S non-negative, in fact in the limiting case N =8 and p = 1, we have

lim elog llugllzoe(2) = b NU 3@, | (o))
e—>01

Note that for p = 1, the function U is known so the constants in the last two cases can be calculated explicitly.
The cases (1.29) (for p = p*) and (1.33) have been found in [15]. Note that in these cases U is a known function
and equal to V, so the constants can be computed.

2. Preliminaries

Before proving the main theorem, we need some properties of u.. Using that u, is a solution of (1.1)—(1.3), we
have

= 1
/(Aug) P dxzfveAugdx=/u€Av€dx=/ugs+ dx.
2 Q Q

2
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ptl
ot 1 )
Then [+ o(D1lell }, 1 ) = el %1, ) implies
g—1
lim [ u%*!dx = 7, Q2.1
e—0
2

Lemma 2.1. The minimizing sequence u. of (1.10) is such that
lugllLoo(2) = 00
moreover ||[(—Aug)'/P || oo (@) = |ve |l Loo(@) — 00 as & — 0.
Proof. If |lug| 1(0) — oo then by regularity, we find ||ve|l (@) — 00, see [12, Theorem 3.7]. Now, assume that
llugll Loy < M and ||vg || L) < M, by elliptic regularity, we have that
Ivellcrromy <M and el cav g < M
with « € (0, 1) and some constant M. This implies that there exists u*, v* € C2(£2), such that
ug — u* inC*(2), ve—v* in Cz(ﬁ) ase — 0.

Hence u* satisfies

+1)
O#/(AM ) 7 dx=S |:/(I/t )(1+1 i|P(q+l)

which contradicts that S cannot be achieved by a minimizer in a bounded domain, see [24]. In other words there exists
no non-trivial solution for

—Au*=0w"", v>0in £, (2.2)
AV =w"?, u>0in$2, (2.3)
u*=v*=0 ondf2 2.4)

in a convex bounded domain, with p, g satisfying (1.9), see [19,23]. O

To simplify notation, we denote
N N
o=——- and B=——70
qg+1 p+1

so the Sobolev Critical Hyperbola (1.9) takes the form o + g = N — 2.
For any ¢ > 0, let (u, v;) be a solution of (1.1)—(1.3). By the Pohozaev identity, see [19] or [23], we have for any
@, B €R that

N N ~
<q 1 —&)/uge+1dx+<—p+1 —ﬁ)/vf+1dx~|—(N—2—&—,B)/(Vu€,Vv5)dx
&
2 2 2

=— /(Vug, n)(Vug, x — y)ds. (2.5)

We can choose & + =N —2, @ =« and so 8 = 8. This implies that

dug 0
8/ug£+] dx:—/%%( x —y)ds. (2.6)

Since u, becomes unbounded as ¢ — 0 we choose u = u(¢) and x, € §2 such that

ug(xg) = =% = |lug || L= (2) (2.7)
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where a, = N/(q. + 1). Note that 4 — 0 as ¢ — 0.

First we claim that x, stays away from the boundary. This is a consequence of the moving plane method and interior
estimates [8,11]: let ¢1 the positive eigenfunction of (—A, HOl (£2)), normalized to max,ep ¢1(x) = 1. Since p > 1,
multiplying by ¢ we obtain

Al/usqﬁl Z/vp¢1 2/\1/Ua¢1 /¢1,
Q

2
)Ml/.ve¢l =/MZ’“'"¢1 22)»1/%(251 /¢1
2 2

for some C = C(p,q, 1) > 0. Hence [, uc¢p1 < (C/r1) [ ¢1 which implies [, ue < C(£2) with £’ C £2 and
fQ, ve < C(£2'). Using the moving planes method [11], we find that there exist zgae > 0 such that

ug(x —tv) and vg(x —rv) are non-decreasing for r € [0, #p],

veRN with |v| =1, and (v,n(x)) >« and x € 352. Therefore we can find y, 8 such that for any x € {z € 2:
d(z,082) < &} = §2s there exists a measurable set Iy with (i) meas(Iy) > y, (ii) Iy C £2 \ 252, and (iii) ue(y) >
us(x) and vy (y) = ve(x) for any y € I'y. Then for any x € §2;5, we have

1 1
e () < —fus(w dy < —fug <C(2y), and
meas(ly) y
I

£2s
1 1
Ve(X) S ———~ [ ve(Mdy < — [ ve < C(825).
meas(ly) y
Iy Qs

Hence if u,(x;) — o0, this implies that x, will stay out of £25 a neighborhood of the boundary. This proves the claim.
Let x; — x¢ € £2. We define a family of rescaled functions

e 1 (¥) = w8 us (11 5%y + x,), (2.8)

Ve (V) = P v (' 7%y + xe) (2.9)
and find using the definitions of ¢, o, and B, that

—Autgy =vF, u*TFEP =l in (2, (2.10)
—Av, = ufe, pPrTE =yl in 2, (2.11)
Ugy =V =0 onos2. (2.12)

By equicontinuity and using Arzela—Ascoli, we have that

ugy, —>U and vg, —V ase— 0. (2.13)

in C2(K) for any K compact in RV, where (U, V) satisfies (1.14)—(1.16). Now extending ug,,, and vg, by zero
outside .Q and using (2.1), by the argument in [22] or [24], we have that u, , — U strongly (up to a subsequence)

in w5 (RN) In the limit U € LYT'(RY) and V := (— AU)P e LPTI(RY), and they satisfy (1.14)—(1.16). Since
p = 1, the solution (U V) is unique and radially symmetric, see [5]. In addition the radial solutions are unique
[17,24],s0 U = U and V =V, consequently

/ [e., — UT*1 () dy — 0, / e — VIPH () dy > 0. (2.14)
RN
Lemma 2.2. There exists § > 0 such that

s<uf <1
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Proof. Since u — 0, we have u® < 1. By (2.14), we get fBl ugf,fl dx > M, but

M < / ude M dx = N2 / ulet(y)dy < N2 / ulet(y)dy. (2.15)
B ly—xe|<pl=e/2 2

Using the convergence (2.1), we obtain the result. O

Lemma 2.3. There exists K > 0 such that the solution (ug ., ve u) satisfies

e () KUY, veu() SKV(y) VyeRY. (2.16)
We prove this lemma in Section 4.

Lemma 2.4. There exists a constant C > 0 such that
1 for p> N/(N —2),
e <CuN2h(w) withh(u) = { |log(w)| for p=N/(N —2), (2.17)
uPN=2=N fr p < N/(N —2).

Proof. We will establish the following

Ju. 0
/ Ouue Be 1 vydx < CuM ()
n

and from here the result follows applying (2.6). We claim that

oug Ve

on

In the following M is a positive constant that can vary from line to line and we shall use systematically Lemma 2.2.
For p > N/(N — 2), using that —pp + N = 8, we have

< CuPh).

<Cu®

’

/vé’(x)dx <My~ PPENA=e/2) / VP(y)dy < MpP
2 RN
and by (2.16) there exists M > 0 such that
pubtP(N=2)=N-p(N-2)e/2

() <M (2.18)

o = xol PN
for x # xo. Using that 8 < 8+ p(N —2) — N, by Lemma 5.1 we find |[dve/dn| < CuP. For u,, using that —q.a; +
N = a,,

/”Za dx < My~ deetNA=e/2) f Ul (y)dy < Mp®

2 RN
and by (2.16) there exist M > 0 such

T 9e et e (N=2)—qe(N—-2)e/2

qe <
ufr(x) <M x — x (7 (2.19)
for x # xg. Using that oy < oz — N 4+ g (N — 2), by Lemma 5.1, we obtain |du,/dn| < Cu*.
For p < N/(N —2), we have
1
P —pB+p(N-2)(1-¢/2) 14 p
/vs dx < Mpu l}lirb PN D -T2/ / VP(y)dy (2.20)
2 By 1-e/2 (xe)

< Muﬁ+(p(N—2)—N) (2.21)
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and pointwise for vg, we have (2.18) for x # xo. Now for u., we have

/u‘f < My e tNA=e/2) / U?(y)dy < Mp®
2 RN
and by (2.16) there exist M > 0 such that
M—qgag+t1s(P(N—Q)—Z)—qg(P(N—2)—2)8/2

|x — x0|q£(P(N*2)*2)

ulf(x)y <M (2.22)

for x # x¢. From these estimates we prove the claim applying Lemma 5.1 and noting that o, < g — N + g (p(N —
2) —2)+ (p + 1)e/a;. For the case p = N/(N — 2), we proceed as before noting that

/ vl dx < Mp~ PPN log ()| Tim / VP (y)dy < Mlog()| 1
10 |log(u)|
2 Bl/[L178/2 (xe)
and for x # xo we have (2.18). Similarly to (2.22), we obtain that for x # xg, there exist M > 0 such that

qusae +qe(N—=2)—q:(N—2)&/2

ulde(x) <M log(|x — xo|p ™' T¢/2)%. (2.23)

|x — xO|%(N*2)

Using this and proceeding as before we prove the claim and the lemma follows. O

Lemma 2.5.
|u® =1 = O "2h() log ).

Proof. By the theorem of the mean |u® — 1| = |u**elogu| for some s € (0, 1) and therefore (2.17) gives the re-
sult. O

3. Proof of the theorems

We shall give only the proof of Theorems 1.1, 1.2 and 1.3. The proof of Theorem 1.4 is almost identical to the first
three theorems. In fact the main difference is the Pohozaev identity (2.6), which now reads

/ 24 / Jug 31)5( )d 3.1)
e | utdx =— n,x —y)ds. .
& on on Y

ko) 052

Proof of Theorem 1.3. We start by proving the case p > N/(N — 2). We have

—A (el gyue) = lueF5 o 0! in £2, (3.2)
—A(lluellLo@yve) = luellpo@u  in £2, (3.3)
u,=v, =0 onas2. 3.4

We integrate the right-hand side of (3.2)
/ ||u£||€/£‘(9)vf dx = M—(P+l)ﬁ+N+N8/2fv£M(y) dy.
2 2
But N — (p + 1) =0, so using (2.16) by dominated convergence and Lemma 2.5, we get
tim [ gy o2 dr = [ VP01 dy = 1V s, <00,
2 RN

Similarly, now using
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/ e || oo (2yude dox = gu = (@et Do tNENe/2 f ule, dx — [|U| g ryy < 00 (3.5)
2 £2¢

as ¢ — 0. Also using the bound (2.16), we find

Myu~(PTDE+P(N=2)—p(N-2)¢/2

v — xPV-D)

e 1558, 07 () <

for x # x¢ and some M > 0. But —(p + 1) + p(N — 2) > 0 and Lemma 2.2 then ||ug||€ég(g)vf(x) — 0 for x # xo.
Also we have
M,LL_(q£+1)058"1“]8(1\]_2)_‘]8(1\/_2)3/2

qe <
llue [l oo 2y (x) < x — xold:(N=2)

for x # x¢ and some M > 0. But —(g, + Doy + g-(N — 2) > 0 and Lemma 2.2 then ||Ms||L°°(Q)MZS (x) = 0 for

X # Xo.
From here we have

— Al W75 gy 1) = IV vy Sxmrg - and = Allue ooy ve) = 1T, o Sems

in the sense of distributions in §2, as ¢ — 0. Let w be any neighborhood of 92 not containing x¢. By regularity theory,
see Lemma 5.1, we find

e 125 e | cro gy < CLNMN R )08 gy + N I175 )08 | v ]

and a similar bound for ||[[ug | Loo(2) Ve || c1.0(,y)- COnsequently

e 1% g e — V17, g, G in €M) ase—0 (3.6)
and
lite |22 (2yve = U174 )G in €1 (w) as e — 0. 3.7)

For the case p < N/(N — 2), we proceed as before and we have (3.5) and the bound
MM—(qs+1)¢¥g+qs(p(N—2)—2)—qg(p(N—Z)—2)8/2

x — xo|7=(P(N=2=2)

luell Lo (@yude (x) <

for x # xp and some M > 0. Using that —(g. + 1) + g(p(N —2) —2) =2(p + 1) > 0 and Lemma 2.2, we get

luee 1528, 1 (x) — O for x # xo and hence

lute |l e (2yve = U N vy G in €% (w) as & — 0. (3.8)

Now we claim that

1
2 (B+p(N=2)—N) ~ .
el oo ) e~ |Ullggn,G i Cl¥w)ase — 0. (3.9)
We have
1 1
o (B+p(N=2)—N) o (B+p(N=2)—N)
_A(HMSHLOO(Q) us) = ”M&‘”LOC(Q) Uf = ”u6”€oo(9)vf
q

Since the last term converges to (| U || G)? in C1¥(w) as e — 0 and p > 1, we have

L4(RN)

L+p(N-2)-N)

el oo () ue = U7 vy G in C¥*(w) ase — 0.

For the remaining case p = N/(N — 2), we have as ¢ — 0, the convergence

B/a _ N

||u8”LOO(_Q) P — w (p+1)B+N+Ng/2 o dy s l i V(r)N]zer— av=2

llog(luellze@)l ©  aellog(w)l an T % = o
gllUe [ Loo(£2) el 10g(

&
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and the pointwise bound for x # xg

lue 175 )

| Tog(llue [1£7%)]

Mu— PO —2e/2
WP (x) < ——

log(u)|x — xo|P(N=2)"
By Lemma 2.2,

e 195 )

| Tog(llue [1£7%)]
for x # xg. Writing

( lus 175 ) luclf
A —F U | = ———— VY,
[ Tog(llue [1A7%)] [ Tog(llue [1#7%)]

vP(x) =0

we observe that the last term converges to §y—y,. By Lemma 5.1, we have

Bla N/(N=2)
u 0 .
luelly ug—>a G inC"*(w)ase— 0,
| Tog([lu ||A/%)] o

and clearly we have (3.7) using (2.23). This completes the proof of the theorem. 0O

Proof of Theorem 1.2. For p > N/(N — 2) we have

el V2 [t = [ (e g Vi) (v V), x = ).

2 PY?,
By (3.6) and (3.7),
) _ 0G (x, x0) 0G (x, xo)
(N-2)/ e+ gy — V117 q B
slgrg)Slluall a/”é’ dx = ”V”Lp(]RN)”U”Lq(RN)/ o o (n, x — xp)ds.
7] FY?,

Also for the case p < N/(N — 2), using

1 1

2 (P(N=2)=2) 2 (B+p(N=2)—N)

EHMSHLOO(_Q) /ugg+1dx: /(”uS”LOO(Q) V”:Sv n)(||u8||L°C(Q)VU£vn)(na-x_y)ds
2 082

and (3.9) and (3.8), we get

1 ~
. spWN=-2-2) [ g g(p+1) [ 9G(x, x0) 0G(x, x0)
811_r)r68||u£||L00(9) /ug dx = ”U”Lq(RN) o o (n,x — xq) ds.

2 82

The case p = N/(N — 2) is analogous.
The proof of the theorems follows from the next lemma. O

Lemma 3.1. We have the following identities

. 0G(x, xp) 0G(x, xp)
@ f 3
n
82

3 (n,x — x0)ds = —(N — 2)g(xo, x0)
n

and

. 3G (x, x0) 3G (x, x0) N

’ - d = ’ .
(i1) / an n (n,x —xp)ds q+1g(XO x0)
082
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Proof. (i) was proven in [3], see also [15]. To prove (ii) we follow a similar procedure. From [19,23], for any y € RV,
we have the following identity

/Au(x -y, Vv) + Av(x —y,Vu) — (N —2)(Vu, Vv) dx

Q/
u ov
= —x =y, V) + —(x —y,Vu) — (Vu, Vu)(x — y,n)ds,
on on
952’
where 2/ = 2 \ B, with r > 0. For a system —Av =0 and —Au = v?, in §2’, the identity takes the form
N 0
p+lv1’+1 avPtldx = / +1vl’+l(x—y,n)ds+/%[(x—y,Vv)—i—&v]
2 EYol a5

+g—2[(x—y,Vu)+15u] — (Vu,Vu)(x — y,n)ds (3.10)

withd +b=N —2. Let y=0,choosea=N/(p+1) and take v = G(x,0) and u = 5(x, 0). Using that u =v =0
on 452, and so Vu = (Vu,n)n and Vv = (Vv, n)n on 952, we obtain

G 0G 1 N
/——(x n)ds = / — G, n)+ |:(x G)—i——G} ds
p+1 p+1

3B,
oG ~ N ~ ~

+ / —|(x,VG)+ ——G | - (VG,VG)(x,n)ds.
on q+1

3B,
Letk=p(N —2)and I' =on(N — 2). For |x| =r, we have

- 1 1

VG=—— x| *x + Vg, VG =——|x| Vx + Vg,
I“P(N—k)m x+ Vg UN|x| x+ Vg

3G 1 - 3 dG |

—=— vin), —=—— Vg.n),

n - ek Ve = T e )

(x, VG) + N g < N 1) ! x> 4 (x, VE) + N
X, = — X X, — 9,
q+1 G+Dk—2 )Tr(vn—h O+ 8

w.ve) + N ¢ (N — (N — 2)> 2N 4 (x, V) 4 —
X, = X X, —g,
p+1 e & &

p+1
~ x| KoN+2 Vg, x) onpy VEX) N -
VG,VG) = — P2 Vg,V
( )= =6 Trvn—p" ™+ (V8. V)
and

1 1 1
oGPt | v 2-N _
ST p+1[ x|~ ][Fm +g

From here, we check that the terms with |x|3~V =% cancel out, other integrals tend to O since the integrands are
o(|x|'="), and only one term of order |x|'~" remain, giving

/8G3G 1 N _ N

= ds = —1i ds=—-———2(0,0 ]
on 9 (x.n)ds rgr(l)aNrN 1 q—l—lg y +1g( )-
9B,

Proof of Theorem 1.1. (a) The part (ii) follows from Lemma 5.1,

[1AuelP | cra gy < Mol gy + N8l oo
and estimates (2.19), (2.22), and (2.23). Part (i) follows from

letell oy < [|0F HLI(Q)"'HU ||L°°(w)



194 LA. Guerra/Ann. I. H. Poincaré — AN 25 (2008) 181-200

and estimate (2.18). Finally (iii) follows combining (ii) with the convergence

1 1 +1
[ 1m0 = [ orttaes iz g,
RN RN

as ¢ — 0. This completes part (a).
For part (b), note that from (2.6), we have the vectorial equality fm(Vug, Vvg)nds = 0. In the limit for p >
N/(N —2), we get

VG(x,x9), VG (x, x9))nds =0 (3.11)
[ )
082

and similarly for p < N/(N — 2), we obtain

/(vé(x,xo),va(x,xo))n ds =0. (3.12)
52

But we have the following result.

Lemma 3.2. For every xg € §2

/(VG(x, X0), n)(VG(x, X0), n)n ds = -V (xg) (3.13)
052

and
/(vé(x, x0), 1) (V(AG (x, x0)) "/, n)nds = =V (xo). (3.14)
982

Hence combining (3.11) with (3.13), and (3.12) with (3.14), we complete the proof of part (b) and the theorem is
proven. O

Proof of Lemma 3.2. Equality (3.13) was proved in [3] and [15]. To prove (3.14), by (3.10) we have

3G 3G 1 L 9G 3G _ ~ ~

— —nds = —GP"'n4+ —VG+ —VG - (VG,VG)n ds.
on on p+1 on on

982 JB,

Using [, n =0, we get

3G 9G 1 q X
——nds=—/ — N k=le _Ag—r — AggrV ' inds
on dn (p+ DrVv-1 Il T
) V5,
1 g o s —
+rN—1 /{(Vg,n)Vg—l—(Vg,n)Vg_(vg,vg)n}rzv 1 ds
3B,
: / Ly el (3.15)
B P TR s. -
rN-1 oN 8 Fp(N—k) g
3B,

We use the regular g(x, 0) instead of g(x, 0). Thus

rg(0,0) |x|N_k_2
rr=12N —k =2)
pg(0,0) |x|N_k_2
rr-1 '

Vg(x,0)=Vg(x,0) + X, (3.16)

Ag(x,0)=Ag(x,0)+

(3.17)
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But g(x,0) =g(0,0) + (Vg(0,0),x) + o(|x|2) and

/ r_kg(x, O)nds = / rN_k_lg(O, O)nds + / rN_k(Vg(O, 0), y)n ds + o(rN_k'H),
3B, 3B, 3B
where y = x /r. Clearly the first integral in the r.h.s is zero and the other terms tends to zero as r — 0. Hence

lim
r—>0r

/rN_k_lg(x,O)nds=O. (3.18)

dB,

N-1

We replace (3.16) and (3.17) in (3.15), to obtain an identity without g. Using the limit (3.18) and that ¢ and g are
regular, we obtain

on on r—0rN=1

3G 3G 1 1. . 8
/——nds:hm /—ngs:Vg(0,0):VqS(O),
o
EY?) 3B, N

where the last equality follows by the observation after Theorem 1.1. O
4. Proof of Lemma 2.3

Let us recall the problem (2.10)—(2.12),

—Aug, =vf, in$2, 4.1
—Avg = uggu in 2, 4.2)
Ugy =gy, =0 on o2, 4.3)

where 2, = (2 — xg)/,ul’s/z. Let R > 0. We define o(p):=2+4+ N — p(N —2), and the scalar function

1 _ifo(p) <2,
I(Iyl) :={ [log(IyI/R)| ifo(p) =2,
0@ ifo(p) > 2.

Note that o (p) € [0, N) for p € (2/(N —2), (N 4+2)/(N —2)] and o (¢) < 0. We consider the transformations

- y ly[>=N y
< (y): |y|2 Nv s (_) and w (y) = ———Ug, A
’ “E\ 1y ’ Tyl o\ y?

in £2}, the image of £2, under x x/|x)?.
The next lemma is equivalent to Lemma 2.3, using the asymptotic behaviors (1.17).

Lemma 4.1. Let (wg, z) solving

—AT(Iyl)we = 1y|7°Pzl  in 2, (4.4)
—Aze = |y| T OTETOWIL (1w ] in 2, (4.5)
we=2,=0 onds2}. (4.6)

Then for any fixed R € (0, R), we have
lwell oo (k) + N2ell Loo(2r) < C,
where .QSR = 27 N B, and C = C(R) independent of ¢ > 0 provided ¢ is sufficiently small.

Proof. Given R > 0, let wg and zg be solutions of

AJ(|y|)w0:0 in.s?gR and wo=0 ondf), wo=w, ondBg,
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and
Azo=0 in.QgR and zo=0 ondf2}, zo=z. ondBg.

By the convergence in compact sets of w, and z;, see (2.13), we have |z:| + |Vze| + |we| + |Vw,| < C in |y| = R for
C independent of ¢. Therefore by the maximum principle, we get

|Jwol + |V(Jwo)| + |zol + [Vzol <€ in 2F.

Define w = w, — wg and Z = z, — z9. We now write

—AJ(Iy)w =a(y)ze in 02X, 4.7
—AzZ=b(J(Iyl)ws in 2F, (4.8)
W=7=0 ondRk, (4.9)

where a(y) = IyI_"("’)zf_1 and b(y) = |y| o @D+r@—DN=D[J(|y|)w,1%L. Clearly by the maximum principle
w>0andZ>0.
Let P(y) =a(y) and

1 _
Mb(y) fory € Bg \ By,

b(y) for By,
where r € (0, R) and M > 1 both independent of ¢ and to be determined later. Then

b (Iy)we = QI (Iy)we + £ (),

where

Q(y) =

0 forye£2.NB,,

= - = 1 _
FO) =) —0W)J(Iy)we <1_M)b(w(|y|)w8 for y € Bp \ B,

It is clear that f € L™(225), in fact || f || poo () < (1 — 1/M)r~%+N) by using that w,(y) < CroP =N for |y| > r,

when p < N/(N —2), and w.(y) < Cr?~N for |y| >r when p > N/(N — 2). A similar bound is obtained for
p=N/(N —2). Then we transform (4.7)—(4.8) in the system

—AJ =Pz, inR2F,  —Az=QJw.+f in0k
We define 12(y) = Xu, <2 (¥) and 11 (y) = Xz, <2z(y) for y € 2K, we find
—AJW <2n PZ+ fi in Q2F, —AZ<2mQJw+ f» in2fK

Here f1 = —n1)Pze = xz.<220P2e <2Pzpand fo = f + (1 — n2) QJw, where (1 — n2) QJws <20Jwy. We
write the system in the form

—AJD <2m Py |y VI fi in 2F, (4.10)
—IyITAZ<2mQIyI TV T+ falylT" in2F, (4.11)
Ww=z=0 onaRk (4.12)

Let u(y) — 2n20|y| Yu(y) and u(y) — 211 P|y|” u(y) be the multiplication operators P and Q respectively. Note
that a multiplication operator C with corresponding function c(y) € L*(£2X) is bounded from L1 (2X) to L%2(2F)
with 1/sp =1/s1 + 1/s.

Formally we define —L as the operator u(y) — —|y|=” A(]y|”u(y)). More precisely, in the appendix, we define
(—=A)~" and (—L)~', which by the Hardy—Littlewood—Sobolev inequality are bounded, independently of &, from
Lm (.QSR) to L’”Z(.QER ) with 1/m = 1/my + 2/N. Note that the image of these operators is a function with zero-
Dirichlet boundary condition, so they are positive. Then we can write

Ji < (=A)T'P(=L)yT(QU®D) + ¥V ) + (=A) ! fi.
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Denoting by K = (—A)"'"P(—=L)"'Qand h = K|y|™" o + (—=A)~! f{ we have
(I-K)Jw<h
The proof is complete finding m large enough such that h € L™ (.Qf) and (I — K) is invertible from L™ (.Qf) to
L™(2F).
We can estimate Q(y)|y|™" in Lq 1 (.QR) for y =20(p)/(p + 1) > 0, and note that y = —o(g)/(g + 1) using
the Sobolev Hyperbola. Since v , — V in L4 +(RN), we have

—Ng+L, -
J 1)) = VO @ dy > 0 ase 0,
127
Therefore for any A, we can take r small such that

/ el 5T ()@ dy < / [Jwe D) y[77 P dy < 5=
Qr 2

2C(6)

and M large such that for all ¢ < g9 we have

g+l ge=l C () gezl
/ [0y 7] T dy <C®) / [Jw ) TV |y 0@ dy 4 — f [Jwe ] DT |y 7o @ dy
2k Qr M= g,

<A, (4.13)

where we have used b(y) < C(8)[Jw,1% ! with § given by Lemma 2.2.
Now we show that K is bounded from L™ (£2F) to L™ (2[F).

1K T 1n(gry < C1[P(=L)71 QD 1y g,

<Gloramp| gy DT

L (28

< Cil|Iyl 2n P = (Qf)CzIIQJzI)IILS/(Qg)

< Ci1Ca Iyl 2m P

=98 ”Iyl "2m0|| q+‘(QR)||J“~’||L'"’<9§>

C 14 Y ,
<Clliyl P||L5_f;(Q€R)|||y| QnLg(m)nanm @n

with 1/r=1/m +2/N,sor’ > 1impliesm > N/(N —2). 1/r=(p—1)/(p+1)+1/r and 1/s"=1/r" +2/N,
so condition (b) in (5.1) implies N —2+ N/m > 2N /(p + 1) and s’ > 1 implies m > (g + 1)/2 so (a) in (5.1) holds
sincey >0and 1/s"=(q —1)/(¢ + 1) + 1/m’. Since

-1 -1
= P~ _ 7 wehavem =m.
g+1 p+1 N

By
— +1 _
f[zg<y)—U(y/|y|2)|y|2 NPy 7P dy >0 ase — 0,
we deduce that [[|[y]? =Pz u =Iy|Y Pl ps < C(gp) with C(gg) > 0 and for all € € (0, gp). Since
Lr=1(2f) Lr=T(2f

A in (4.13) can be arbitrarily small then the norm of K is small andso / — K: L™ (.QgR )y—> L™ (.QSR ) invertible for m
large. We have that
_ _ 1
1517 2] oy <777 2l (meas(2))
is bounded, since f> is zero outside .QR and

[ A7 11l gy < CHll P2l rcamy < DAl (meas(2)5)) " < Czo) (meas(Br))




198 LA. Guerra/Ann. I. H. Poincaré — AN 25 (2008) 181-200

This implies ||Jwl| L2k S < M for every m large, and consequently for every m > 1. (Use the wg to get that
I Jwe ||Lm(QR) M .) Now we have that

—AZ=b(y)Jws =|y| —0(q)+(g—gs)(N— 2)[Jw 1.
Since o (q) < 0, if we take m large such that mq, > N /2 then

11l ooy < M and therefore ||zl oo (or) < M (4.14)
for some M independent of e. We study now each case of J separately. We have

—AJwe =|y|7°Pz? in 2} (4.15)

(a) In the case J =1, since o (p) < 2, using (4.14), we have —Aw, € L1(£2) for any g € (N/2, N/o (p)). By regu-
larity, we get

lwell oo (2ry < M.

(b) For J(|y|) = —log(|y|/R) > log(R/R), we have

—A@—?V@—%i}:]'ly'zzf in 2F
or equivalently
—A+ ——(y, Vi) + (N —2)w o ing2f.
JIyP | Iyl Ve ‘

Using (4.14), we can take u = w — M with M =sup,_ SUPycoR 22 (y)/(N —2), and we get

—JIyPAu+ (v, Vu) + (N —=2u <0 in 2F.

Since u = —M < 0 on the boundary, u < 0 in 2. This gives we < M in 2X.
For the remaining case p < N/(N — 2), we have

1
AW — — Vi) — — = —7" in 2K,
J J ly|2 " €

As before, defining u = w — M with M =sup,_ SUPy ek zf/[(a(p) —2)(N —a(p))] then
—yPAu—(2=0(p), Vi) = (2= (p)(N =0 (p))u<0 in2f.
Since u = —M < 0 on the boundary, u < 0 in 2X. This implies w, < M in 2F. 0
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Appendix A

Let N > 2. Let h and v be functions in L‘Y,(.QSR ). Given the Green’s function G solution of —AG(x, -) = §, in .Qf,
G(x,)=0on 8(25, we define

(—A)_lh(é)=/G(x,é)h(x)dx, £ e ok

2F



LA. Guerra/Ann. I. H. Poincaré — AN 25 (2008) 181-200 199

and
(—L)—lv(s>=|s|—y/G(x,s>|x|yv<x>dx, £c 0k,
oF

Note that G is positive, so both operators are positive. We know that (—A)~! is bounded, independently of &, from
L (2F) to L7 (2F) with 1/r' = 1/s’ — 2/N. Next we prove the same result for (—L)~!. By the weighted Hardy—
Littlewood—-Sobolev inequality [5,18], for |§|7Y f € LS,(.Qf), we have that

C
_ —1 — —
€77 (=) f|L,/(Q€R)<2H|s| V/mf(mdx L <ClET Lo @n)
L7 (255
2k
forl <s' <r' <oo,with1/r'=1/s' —2/N and
@ —y<NA-1/s)Y=N—-2—-N/r and (b)y <N/r. (5.1)
In other words, for any v € L* (2X), we have
-1 - -1
=7 ]| oy = NETY ) T x 0] L gy
C
<2H|§|V/W|x|yv(x)dx
lx —§&| L (2R)
2k
< C||v||Lx’(_Q§)~ (52)

Lemma 5.1. Let u solve

{—Au:f in.QC]RN,
u=0 on d0s2.

Let w be a neighborhood of 052. Then

lull i@y + 1Vl coagy < C(1LF L1y + £ 1l (@)
forq <N/(N —1),a€(0,1) and o' C w is a strict subdomain of w.
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