
Ann. I. H. Poincaré – AN 24 (2007) 875–895
www.elsevier.com/locate/anihpc

Singular limits for a 4-dimensional semilinear elliptic problem
with exponential nonlinearity

Sami Baraket a,∗, Makkia Dammak a, Taieb Ouni a, Frank Pacard b

a Département de Mathématiques, Faculté des Sciences de Tunis, Tunisia
b Université Paris 12 et Institut Universitaire de France, France

Received 20 January 2006; received in revised form 31 March 2006; accepted 7 June 2006

Available online 31 January 2007

Abstract

Using some nonlinear domain decomposition method, we prove the existence of branches of solutions having singular limits for
some 4-dimensional semilinear elliptic problem with exponential nonlinearity.
© 2006

Résumé

En utilisant une variante non linéaire de la méthode de décomposition de domaines, nous démontrons l’existence de branches de
solutions ayant une limite singulière, pour une équation semilinéaire elliptique avec nonlinéarité exponentielle, en dimension 4.
© 2006 . .
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1. Introduction and statement of the results

In the last decade important work has been devoted to the understanding of singularly perturbed problems, mostly
in a variational framework. In general, a Liapunov–Schmidt type reduction argument is used to reduce the search
of solutions of singularly perturbed nonlinear partial differential equations to the search of critical points of some
function that is defined over some finite dimensional domain.

One of the purposes of the present paper is to present a rather efficient method to solve such singularly per-
turbed problems. This method has already been used successfully in geometric context (constant mean curvature
surfaces, constant scalar curvature metrics, extremal Kähler metrics, manifolds with special holonomy, . . . ) but has
never appeared in the framework of nonlinear partial differential equations. We felt that, given the interest in singular
perturbation problems, it was worth illustrating this method on the following model problem:

Assume that Ω ⊂ R
4 is a regular bounded open domain in R

4. We are interested in positive solutions of{
�2u = ρ4eu in Ω,

u = �u = 0 on ∂Ω,
(1)
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when the parameter ρ tends to 0. Obviously, the application of the implicit function theorem yields, for ρ close to 0,
the existence of a smooth one parameter family of solutions (uρ)ρ that converges uniformly to 0 as ρ tends to 0. This
branch of solutions is usually referred to as the branch of minimal solutions and there is by now quite an important
literature that is concerned with the understanding of this particular branch of solutions [12].

The problem we would like to consider is the existence of other branches of solutions as ρ tends to 0. To describe
our result, let us denote by G(x, ·) the solution of{

�2G(x, ·) = 64π2δx in Ω,

G(x, ·) = �G(x, ·) = 0 on ∂Ω.
(2)

It is easy to check that the function

R(x, y) := G(x,y) + 8 log |x − y| (3)

is a smooth function. Finally, we define

W
(
x1, . . . , xm

) :=
m∑

j=1

R
(
xj , xj

) +
∑
j �=�

G
(
xj , x�

)
. (4)

Our main result reads:

Theorem 1.1. Assume that (x1, . . . , xm) is a nondegenerate critical point of W , then there exist ρ0 > 0 and
(uρ)ρ∈(0,ρ0), a one parameter family of solutions of (1), such that

lim
ρ→0

uρ =
m∑

j=1

G(xj , ·)

in C4,α
loc (Ω − {x1, . . . , xm}).

This result is in agreement with the result of Lin and Wei [6] where sequences of solutions of (1) that blow up as
ρ tends to 0 are studied. Indeed, in this paper, the authors show that blow up points can only occur at critical points
of W .

Our result reduces the study of nontrivial branches of solutions of (1) to the search of critical points of the function
W defined in (4). Observe that the assumption on the nondegeneracy of the critical point is a rather mild assumption
since it is certainly fulfilled for generic choice of the regular bounded open domain Ω .

Semilinear equations involving fourth order elliptic operator and exponential nonlinearity appear naturally in con-
formal geometry and in particular in the prescription of the so called Q-curvature on 4-dimensional Riemannian
manifolds [2,3]

Qg = 1

12

(−�gSg + S2
g − 3|Ricg|2

)
where Ricg denotes the Ricci tensor and Sg is the scalar curvature of the metric g. Recall that the Q-curvature changes
under a conformal change of metric

gw = e2wg,

according to

Pgw + 2Qg = 2Qgw e4w (5)

where

Pg := �2
g + δ

(
2

3
SgI − 2 Ricg

)
d (6)

is the Paneitz operator, which is an elliptic 4th order partial differential operator [3] and which transforms according
to

e4wPe2wg = Pg, (7)
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under a conformal change of metric gw := e2wg. In the special case where the manifold is the Euclidean space, the
corresponding Paneitz operator is simply given by

Pgeucl = �2

in that case (5) reduces to

�2w = Qgw e4w

the solutions of which give rise to conformal metric gw = e2wgeucl whose Q-curvature is given by Qgw . There is by
now an extensive literature about this problem and we refer to [3] and [9] for references and recent developments.

When n = 2, the analogue of the Q-curvature is nothing but the Gauss curvature and the corresponding problem
has been studied for a long time. More relevant to the present paper is the study of nontrivial branches of solutions of{−�u = ρ2eu in Ω,

u = 0 on ∂Ω,
(8)

that are defined on some domain of R
2. The study of this equation goes back to 1853 when Liouville derived a

representation formula for all solutions of (8) that are defined in R
2, [7]. Beside the applications in geometry, elliptic

equations with exponential nonlinearity also arise in the modeling of many physical phenomenon such as: thermionic
emission, isothermal gas sphere, gas combustion, gauge theory [15], . . .

When ρ tends to 0, the asymptotic behavior of nontrivial branches of solutions of (8) is well understood thanks
to the pioneer work of Suzuki [14] that characterizes their possible limits. The existence of nontrivial branches of
solutions was first proven by Weston [17] and then a general result has been obtained by Baraket and Pacard [1]. More
recently these results were extended, with applications to the Chern–Simons vortex theory in mind, by Esposito [5]
and Del Pino, Kowalczyk and Musso [4] to handle equations of the form

−�u = ρ2V eu

where V is a nonconstant (positive) function. We give in Section 9 some results concerning the fourth order analogue
of this equation. Let us also mention that the construction of nontrivial branches of solutions of semilinear equations
with exponential nonlinearities has allowed Wente to provide counterexamples to a conjecture of Hopf [16] concerning
the existence of compact (immersed) constant mean curvature surfaces in Euclidean space.

We now describe the plan of the paper: In Section 2 we discuss rotationally symmetric solutions of (1). In Section 3
we study the linearized operator about the radially symmetric solution defined in the previous section. In Section 4,
we discuss the analysis of the bi-Laplace operator in weighted spaces. Both sections strongly use the b-calculus that
has been developed by Melrose [11] in the context of weighted Sobolev spaces and by Mazzeo [10] in the context of
weighted Hölder spaces (see also [13]).

A first nonlinear problem is studied in Section 6 where the existence of an infinite dimensional family of solutions
of (1) that are defined on large balls and that are close to the rotationally symmetric solution is proven. In Section 7, we
prove the existence of an infinite dimensional family of solutions of (1) that are defined on Ω with small balls removed.
Finally, in Section 8, we show how elements of these infinite dimensional families can be connected together to pro-
duce the solutions of (1) that are described in Theorem 1.1. This last section borrows ideas from applied mathematics
were domain decomposition methods are of common use. Section 9 is devoted to some comments. In Section 10, we
explain how the results of the previous analysis can be extended to handle equations of the form �2u = ρ4V eu.

Note added in proof : We should mention the recent preprint of M. Clapp, C. Muñoz and M. Musso, Singular limits
for the bi-Laplacian operator with exponential nonlinearity in R

4 where sufficient topological conditions are given
that ensure the existence of critical points of the function W .

2. Rotationally symmetric solutions

We first describe the rotationally symmetric solutions of

�2u − ρ4eu = 0, (9)

that will play a central rôle in our analysis. Given ε > 0, we define

uε(x) := 4 log
(
1 + ε2) − 4 log

(
ε2 + |x|2)
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that is clearly a solution of (9) when

ρ4 = 384ε4

(1 + ε2)4
. (10)

Let us notice that Eq. (9) is invariant under some dilation in the following sense: If u is a solution of (9) and if
τ > 0, then u(τ ·) + 4 log τ is also a solution of (9). With this observation in mind, we define, for all τ > 0

uε,τ (x) := 4 log
(
1 + ε2) + 4 log τ − 4 log

(
ε2 + τ 2|x|2). (11)

3. A linear fourth order elliptic operator on R
4

We define the linear fourth order elliptic operator

L := �2 − 384

(1 + |x|2)4
(12)

which corresponds to the linearization of (9) about the solution u1 (= uε=1) that has been defined in the previous
section.

We are interested in the classification of bounded solutions of Lw = 0 in R
4. Some solutions are easy to find. For

example, we can define

φ0(x) := r∂ru1(x) + 4 = 4
1 − r2

1 + r2
,

where r = |x|. Clearly Lφ0 = 0 and this reflects the fact that (9) is invariant under the group of dilations τ → u(τ ·) +
4 log τ . We also define, for i = 1, . . . ,4

φi(x) := −∂xi
u1(x) = 8xi

1 + |x|2 ,

which are also solutions of Lφj = 0 since these solutions correspond to the invariance of (9) under the group of
translations a → u(· + a).

The following result classifies all bounded solutions of Lw = 0 that are defined in R
4.

Lemma 3.1. Any bounded solution of Lw = 0 defined in R
4 is a linear combination of φi for i = 0,1, . . . ,4.

Proof. We consider on R
4 the Euclidean metric geucl = dx2 and the spherical metric

gS4 = 4

(1 + |x|2)2
dx2

induced by the inverse of the stereographic projection

Π : R4 −→ S4

x �−→
(

2x

1 + |x|2 ,
1 − |x|2
1 + |x|2

)
.

According to [3] we have Pg
S4 = �2

S4 − 2�S4 and Pgeucl = �2. Therefore, we obtain from (7)(
4

(1 + |x|2)2

)2(
�2

S4 − 2�S4

) = �2.

In particular, if w : (R4, geucl) → R is a bounded solution of Lw = 0 then, w : (R4, gS4) → R is a bounded solution of(
�2

S4 − 2�S4 − 24
)
w = 0 (13)

away from the north pôle N ∈ S4 (with slight abuse of notation we identify w with w ◦ Π−1). It is easy to check that
the isolated singularity at the north pôle is removable (since w is assumed to be bounded) and hence (13) holds on
all S4.
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We now perform the eigenfunction decomposition of w in terms of the eigendata of the Laplacian on S4. We
decompose

w =
∑
��0

w�

where w� belongs to the �-th eigenspace of −�S4 , namely, w� satisfies �S4w� = −λ�w� with

λ� := �(� + 3).

We get from (13)(
λ2

� + 2λ� − 24
)
w� = 0.

Hence, w� = 0 for all � except eventually those for which λ� = 4. This implies that w : S4 −→ R is a combination of
the eigenfunctions associated to � = 1 that are given by ϕi(y) = yi for i = 1, . . . ,5, where y = (y1, . . . , y5) ∈ S4. The
sphere being parameterized by the inverse of the stereographic projection we may write y = Π(x). Then, the functions
4ϕi precisely correspond to the functions φi for i = 1, . . . ,4, while the function 4ϕ5 corresponds to the function φ0.
This completes the proof of the result. �

Let Br denote the ball of radius r centered at the origin in R
4.

Definition 3.1. Given k ∈ N, α ∈ (0,1) and μ ∈ R, we define the Hölder weighted space Ck,α
μ (R4) as the space of

functions w ∈ Ck,α
loc (R4) for which the following norm

‖w‖Ck,α
μ (R4)

:= ‖w‖Ck,α(B1)
+ sup

r�1

(
r−μ

∥∥w(r·)∥∥Ck,α(B1−B1/2)

)
,

is finite.

More details about these spaces and their use in nonlinear problems can be found in [13]. Roughly speaking,
functions in Ck,α

μ (R4) are bounded by a constant times (1 + r2)μ/2 and have their �-th partial derivatives that are

bounded by (1 + r2)(μ−�)/2, for � = 1, . . . , k + α.
As a consequence of the result of Lemma 3.1, we have the:

Proposition 3.1. Assume that μ > 1 and μ /∈ N, then

Lμ :C4,α
μ

(
R

4) −→ C0,α
μ−4

(
R

4)
w �−→ Lw

is surjective.

Proof. The mapping properties of Lμ are very sensitive to the choice of the weight μ. In particular, it is proved in [8],
[11] and [10] (see also [13]) that Lμ has closed range and is Fredholm provided μ is not an indicial root of L at
infinity. Recall that ζ ∈ R is an indicial root of L at infinity if there exists a smooth function v on S3 such that

L
(|x|ζ v) =O

(|x|ζ−5)
at infinity. It is easy to check that the indicial roots of L at infinity are all ζ ∈ Z. Indeed, let e be an eigenfunction of
−�S3 that is associated to the eigenvalue γ (γ + 2), where γ ∈ N, hence

�S3e = −γ (γ + 2)e.

Then

L
(|x|ζ e) = (ζ − γ )(ζ − γ − 2)(ζ + 2 + γ )(ζ + γ )|x|ζ−4e +O

(|x|ζ−8).
Therefore, we find that −γ − 2, −γ , γ and γ + 2 are indicial roots of L at infinity. Since the eigenfunctions of the
Laplacian on the sphere constitute a Hilbert basis of L2(S3), we have obtained all the indicial roots of L at infinity.
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If μ /∈ Z, some duality argument (in weighted Lebesgue spaces) shows that the operator Lμ is surjective if and
only if the operator L−μ is injective. And, still under this assumption

dim KerLμ = dim CokerL−μ.

The result of Lemma 3.1 precisely states that the operator Lμ is injective when μ < −1. Therefore, we conclude that
Lμ is surjective when μ > 1, μ /∈ Z. This completes the proof of the result. �
4. Analysis of the bi-Laplace operator in weighted spaces

Given x1, . . . , xm ∈ Ω we define X := (x1, . . . , xm),

Ω∗(X) := Ω − {
x1, . . . , xm

}
,

and we choose r0 > 0 so that the balls B2r0(x
i) of center xi and radius r0 are mutually disjoint and included in Ω . For

all r ∈ (0, r0) we define

Ωr(X) := Ω −
m⋃

j=1

Br

(
xj

)
.

With these notations, we have the:

Definition 4.1. Given k ∈ R, α ∈ (0,1) and ν ∈ R, we introduce the Hölder weighted space Ck,α
ν (Ω∗(X)) as the space

of functions w ∈ Ck,α
loc (Ω∗(X)) for which the following norm

‖w‖Ck,α
ν (Ω∗(X))

:= ‖w‖Ck,α(Ωr0/2(X)) +
m∑

j=1

sup
r∈(0,r0/2)

(
r−ν

∥∥w
(
xj + r·)∥∥Ck,α(B2−B1)

)
,

is finite.

Again, these spaces have already been used many times in nonlinear contexts and we refer to [13] for further details
and references. Functions that belong to Ck,α

ν (Ω∗(X)) are bounded by a constant times the distance to X to the power
ν and have their �-th partial derivatives that are bounded by a constant times the distance to X to the power ν − �, for
� = 1, . . . , k + α.

When k � 2, we denote by [Ck,α
ν (Ω∗(X))]0 be the subspace of functions w ∈ Ck,α

ν (Ω∗(X)) satisfying w = �w = 0
on ∂Ω .

We will use the following:

Proposition 4.1. Assume that ν < 0 and ν /∈ Z, then

Lν :
[
C4,α

ν

(
Ω∗(X)

)]
0 −→ C0,α

ν−4

(
Ω∗(X)

)
,

w �−→ �2w

is surjective.

Proof. Again this result follows from the theory developed in [8], [11] and [10] (see also [13]). The mapping proper-
ties of Lν depend on the choice of the weight ν. The operator Lν has closed range and is Fredholm provided ν is not
an indicial root of �2 at the points xj . This time, ζ ∈ R is an indicial root of �2 at xj if there exists a smooth function
v on S3 such that

�2(|x − xj |ζ v) =O
(|x − xj |ζ−3)

at xj . As in Proposition 4.1, it is easy to check that the indicial roots of �2 at xj are all ζ ∈ Z.
If ν /∈ Z, some duality argument (in weighted Lebesgue spaces) shows that the operator Lν is surjective if and only

if the operator L−ν is injective. And, still under this assumption

dim KerLν = dim CokerL−ν.
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We claim that the operator Lν is injective if ν > 0. Indeed, isolated singularities of any solution w ∈ C4,α
ν (Ω∗(X))

of �2w = 0 in Ω∗ are removable if ν > 0. Therefore, w is a bi-harmonic function in Ω with w = �w = 0 on ∂Ω .
This implies that w ≡ 0 and hence Lν is injective when ν > 0 as claimed.

We then conclude that Lν is surjective when ν < 0, ν /∈ Z. This completes the proof of the result. �
Given y1, . . . , ym close enough to x1, . . . , xm, we set Y := (y1, . . . , ym) and we define a family of diffeomorphisms

D(= DX,Y )

D :Ω −→ Ω

depending smoothly on y1, . . . , ym by

D(x) := x +
m∑

j=1

χr0

(
x − xj

)(
xj − yj

)
, (14)

where χr0 is a cutoff function identically equal to 1 in Br0/2 and identically equal to 0 outside Br0 . In particular,
D(yj ) = xj for each j , provided ‖X − Y‖ � r0/2.

The equation �2w̃ = f̃ where f̃ ∈ C0,α
ν−4(Ω

∗(Y )) can be solved by writing w̃ = w ◦ D and f̃ = f ◦ D so that w is
a solution of the problem

�2w + (
�2(w ◦ D) − (

�2w
) ◦ D

) ◦ D−1 = f (15)

where this time f ∈ C0,α
ν (Ω∗(X)). It should be clear that∥∥(

�2(w ◦ D) − (
�2w) ◦ D

) ◦ D−1
∥∥
C0,α

ν−4(Ω
∗(X))

� c‖Y − X‖‖w‖C4,α
ν (Ω∗(X))

(16)

provided ‖Y − X‖ � r0/2.
We fix ν < 0, ν /∈ Z and use the result of Proposition 4.1 to get a right inverse Gν,X for Lν : [C4,α

ν (Ω∗(X))]0 →
C0,α

ν−4(Ω
∗(X)). The estimate (16) together with a perturbation argument shows that (15) is solvable provided Y is

close enough to X. This provides a right inverse Gν,Y that depends continuously (and in fact smoothly) on the points
y1, . . . , ym in the sense that

f ∈ C0,α
ν

(
Ω∗(X)

) �−→ Gν,Y (f ◦ DX,Y ) ◦ (DX,Y )−1 ∈ C4,α
ν

(
Ω∗(X)

)
depends smoothly on Y .

5. Bi-harmonic extensions

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) we define Hi(= Hi(ϕ,ψ; ·)) to be the solution of⎧⎨
⎩

�2Hi = 0 in B1,

H i = ϕ on ∂B1,

�Hi = ψ on ∂B1,

(17)

where, as already mentioned, B1 denotes the unit ball in R
4.

We set B∗
1 = B1 − {0}. As in the previous section, we define:

Definition 5.1. Given k ∈ N, α ∈ (0,1) and μ ∈ R, we introduce the Hölder weighted space Ck,α
μ (B∗

1) as the space of

functions w ∈ Ck,α
loc (B∗

1) for which the following norm

‖w‖Ck,α
μ (B∗

1)
:= sup

r∈(0,1/2)

(
r−μ

∥∥w(r·)∥∥Ck,α(B2−B1)

)
,

is finite.

When Ω = B1, m = 1 and x1 = 0, this agrees with the space and norm already defined in the previous section.
Let e1, . . . , e4 be the coordinate functions on S3. We prove the:
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Lemma 5.1. Assume that∫
S3

(8ϕ − ψ)d volS3 = 0 and also that
∫
S3

(12ϕ − ψ)e� d volS3 = 0 (18)

for � = 1, . . . ,4. Then there exists c > 0 such that∥∥Hi(ϕ,ψ; ·)∥∥C4,α
2 (B∗

1)
� c

(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)

)
.

Proof. There are many ways to proof this result. Here is a simple one that has the advantage to be quite flexible. We
consider the eigenfunction decomposition of ϕ and ψ in terms of the eigenfunctions of −�S3 .

ϕ =
∑
��0

ϕ� and ψ =
∑
��0

ψ�, (19)

where, for each � � 0, the functions ϕ� and ψ� belong to the �-th eigenspace of −�S3 , namely

�S3ϕ� = −�(2 + �)ϕ� and �S3ψ� = −�(2 + �)ψ�.

Then the function Hi can be explicitly written as

Hi =
∑
��0

r�

(
ϕ� − 1

4(� + 2)
ψ�

)
+

∑
��0

1

4(� + 2)
r2+�ψ�. (20)

Observe that, under the hypothesis (18), the coefficients of r0 and r1 vanish and hence, at least formally, the expansion
of H only involves powers of r that are greater than or equal to 2.

We claim that

‖ϕ�‖L∞ � c�‖ϕ‖L∞, ‖ψ�‖L∞ � c�‖ψ‖L∞

where the constant c� depends polynomially on �. For example, we can write ϕ� = a�e� where a� ∈ R and e� is an
eigenvalue of −�S3 that is normalized to have L2 norm equal to 1. Then

|a�| =
∣∣∣∣
∫
S3

ϕ�e� dvS3

∣∣∣∣ � c‖ϕ‖L2 � c‖ϕ‖L∞ .

Next, e� solves �S3e� = −�(2 + �)e�, we can use elliptic regularity theory to show that the L∞(S3) norm of e�

depends polynomially on �. The claim then follows at once.
This immediately yields the estimate

sup
r�1/2

(
r−2

∣∣Hi
∣∣ + ∣∣�Hi

∣∣) � c
(‖ϕ‖L∞ + ‖ψ‖L∞

)
.

This estimate, together with the maximum principle and standard elliptic estimates yields

sup
r�1

(
r−2

∣∣Hi
∣∣ + ∣∣�Hi

∣∣) � c
(‖ϕ‖L∞ + ‖ψ‖L∞

)
.

The estimate for the derivatives of Hi now follows at once from Schauder’s estimates. �
Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) we define (when it exists!) He(= He(ϕ,ψ; ·)) to be the solution of⎧⎨

⎩
�2He = 0 in R

4 − B1,

He = ϕ on ∂B1,

�He = ψ on ∂B1,

(21)

that decays at infinity.

Definition 5.2. Given k ∈ N, α ∈ (0,1) and ν ∈ R, we define the space Ck,α
ν (R4 − B1) as the space of functions

w ∈ Ck,α
loc (R4 − B1) for which the following norm

‖w‖Ck,α
ν (R4−B1)

:= sup
r�1

(
r−ν

∥∥w(r·)∥∥Ck,α
ν (B2−B1)

)
,

is finite.
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We prove the:

Lemma 5.2. Assume that∫
S3

ψ d volS3 = 0. (22)

Then there exists c > 0 such that∥∥He(ϕ,ψ; ·)∥∥C4,α
−1 (R4−B1)

� c
(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)

)
.

Proof. We use the notations of the previous lemma. Now, the function He can be explicitly written as

He = r−2ϕ0 +
∑
��1

r−2−�

(
ϕ� + 1

4�
ψ�

)
−

∑
��1

1

4�
r−�ψ�. (23)

Observe that (22) implies that the expansion of He only involves powers of r that are lower than or equal to −1. The
proof is now identical to the proof of Lemma 5.1 and left to the reader. �

Under the hypothesis of Lemma 5.2, there is uniqueness of the bi-harmonic extension of the boundary data that
decays at infinity.

If F ⊂ L2(S3) is a space of functions defined on S3, we define the space F⊥ to be the subspace of functions of F

that are L2(S3)-orthogonal to the functions 1, e1, . . . , e4. We will need the:

Lemma 5.3. The mapping

P :C4,α
(
S3)⊥ × C2,α

(
S3)⊥ −→ C3,α

(
S3)⊥ × C1,α

(
S3)⊥

,

(ϕ,ψ) �−→ (
∂rH

i − ∂rH
e, ∂r�Hi − ∂r�He

)
where Hi = Hi(ϕ,ψ; ·) and He = He(ϕ,ψ; ·), is an isomorphism.

Proof. Granted the explicit formula given in the previous two lemmas, we have

P(ϕ,ψ) =
(∑

��2

(� + 1)

(
2ϕ� + 1

�(� + 2)
ψ�

)
,
∑
��2

2(� + 1)ψ�

)
. (24)

We denote by Wk,2(S3) the Sobolev space of functions on S3 whose weak partial derivatives, up to order k are
in L2(S3). The norm in Wk,2(S3) can be chosen to be

‖ϕ‖Wk,2(S3) :=
(∑

��0

(1 + �)2k‖ϕ�‖2
L2(S3)

)1/2

when the function ϕ is decomposed over eigenspaces of �S3

ϕ =
∑
��0

ϕ�

where �S3ϕ� = −�(� + 2)ϕ�. It follows at once that

P :Wk+3,2(S3)⊥ × Wk+1,2(S3)⊥ −→ Wk+2,2(S3)⊥ × Wk,2(S3)⊥

is invertible. Elliptic regularity theory then implies that the corresponding map is also invertible when defined between
the corresponding Hölder spaces. �
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6. The first nonlinear Dirichlet problem

For all ε, τ > 0, we set

Rε := τ/
√

ε.

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) satisfying (18), we define

u := u1 + Hi
(
ϕ,ψ; (·/Rε)

)
.

We would like to find a function u solution of

�2u − 24eu = 0 (25)

which is defined in BRε and is a perturbation of u. Writing u = u + v and using the fact that Hi is bi-harmonic, we
see that this amounts to solve the equation

Lv = 384

(1 + r2)4

(
eHi(ϕ,ψ;(·/Rε))+v − 1 − v

)
. (26)

We will need the following:

Definition 6.1. Given r̄ � 1, k ∈ N, α ∈ (0,1) and μ ∈ R, the weighted space Ck,α
μ (Br̄ ) is defined to be the space of

functions w ∈ Ck,α(Br̄ ) endowed with the norm

‖w‖Ck,α
μ (Br̄ )

:= ‖w‖Ck,α(B1)
+ sup

r∈[1,r̄]
(
r−μ

∥∥w(r·)∥∥Ck,α(B1−B1/2)

)
.

For all σ � 1, we denote by

Eσ :C0,α
μ (Bσ ) −→ C0,α

μ

(
R

4)
the extension operator defined by Eσ = f in Bσ and

Eσ (f )(x) = χ

( |x|
σ

)
f

(
σ

x

|x|
)

on R
4 − Bσ where t �→ χ(t) is a smooth nonnegative cutoff function identically equal to 0 for t � 2 and identically

equal to 1 for t � 1. It is easy to check that there exists a constant c = c(μ) > 0, independent of σ � 1, such that∥∥Eσ (w)
∥∥
C0,α

μ (R4)
� c‖w‖C0,α

μ (Bσ )
. (27)

We fix

μ ∈ (1,2)

and denote by Gμ a right inverse for L provided by Proposition 3.1. To find a solution of (26), it is enough to find
v ∈ C4,α

μ (R4) solution of

v = N(ε, τ,ϕ,ψ;v) (28)

where we have defined

N(ε, τ,ϕ,ψ;v) := Gμ ◦ ERε

(
384

(1 + | · |2)4

(
eHi(ϕ,ψ;(·/Rε))+v − 1 − v

))
.

Given κ > 1 (whose value will be fixed later on), we now further assume that the functions ϕ ∈ C4,α(S3),
ψ ∈ C2,α(S3) satisfying (18) and the constant τ > 0 satisfy∣∣log(τ/τ∗)

∣∣ � 2κε log 1/ε, ‖ϕ‖C4,α(S3) � κε and ‖ψ‖C2,α(S3) � κε, (29)

where τ∗ > 0 is fixed.
We have the following technical:
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Lemma 6.1. Given κ > 0. There exist εκ > 0, cκ > 0 and c̄κ > 0 such that, for all ε ∈ (0, εκ)∥∥N(ε, τ,ϕ,ψ;0)
∥∥
C4,α

μ (R4)
� cκε2. (30)

Moreover,∥∥N(ε, τ,ϕ,ψ;v2) − N(ε, τ,ϕ,ψ;v1)
∥∥
C4,α

μ (R4)
� c̄κε2‖v2 − v1‖C4,α

μ (R4)
(31)

and ∥∥N(ε, τ,ϕ2,ψ2;v) − N(ε, τ,ϕ1,ψ1;v)
∥∥
C4,α

μ (R4)
� c̄κε

(‖ϕ2 − ϕ1‖C4,α(S3) + ‖ψ2 − ψ1‖C2,α(S3)

)
(32)

provided all ṽ ∈ {v, v1, v2} ⊂ C4,α
μ (R4) and all ϕ̃ ∈ {ϕ,ϕ1, ϕ2} ⊂ C4,α(S3), ψ̃ ∈ {ψ,ψ1,ψ2} ⊂ C4,α(S3) satisfy-

ing (18), also satisfy

‖ṽ‖C4,α
μ (R4)

� 2cκε2, ‖ϕ̃‖C4,α(S3) � κε, ‖ψ̃‖C2,α(S3) � κε,

and |log(τ/τ∗)| � 2κε log 1/ε.

Proof. The proof of these estimates follows from the result of Lemma 5.1 together with the assumption on the norms
of ϕ and ψ . Let c

(i)
κ denote constants that only depend on κ (provided ε is chosen small enough).

It follows from Lemma 5.1 that∥∥Hi(ϕ,ψ; ·/Rε)
∥∥
C4,α

2 (BRε )
� cR−2

ε

(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)

)
� c(1)

κ ε2.

Therefore, we get∥∥(
1 + | · |2)−4(eHi(ϕ,ψ;·/Rε) − 1

)∥∥
C0,α

μ−4(BRε )
� c(2)

κ ε2.

Making use of Proposition 3.1 together with (27) we conclude that∥∥N(ε, τ,ϕ,ψ;0)
∥∥
C4,α

μ (R4)
� cκε2.

To derive the second estimate, we use the fact that∥∥(
1 + | · |2)−4eHi(ϕ,ψ;·/Rε)

(
ev2 − ev1 − v2 + v1

)∥∥
C0,α

μ−4(BRε )
� c(3)

κ ε2‖v2 − v1‖C4,α
μ (R4)

and ∥∥(
1 + | · |2)−4(eHi(ϕ,ψ;·/Rε) − 1

)(
v2 − v1

)∥∥
C0,α

μ−4(BRε )
� c(4)

κ ε2‖v2 − v1‖C4,α
μ (R4)

,

provided v1, v2 ∈ C4,α
μ (R4) satisfy ‖vi‖C4,α

μ (R4)
� 2cκε2.

Finally, in order to derive the third estimate, we use∥∥(
1 + | · |2)−4(eHi(ϕ2,ψ2;·/Rε) − eHi(ϕ1,ψ1;·/Rε)

)
ev

∥∥
C0,α

μ−4(BRε )

� c(5)
κ ε

∥∥Hi(ϕ2 − ϕ1,ψ2 − ψ1; ·/Rε)
∥∥
C4,α

2 (BRε )
,

provided v ∈ C4,α
μ (R4) satisfies ‖v‖C4,α

μ (R4)
� 2cκε2. The second and third estimates again follow from Proposition 3.1

and (27). �
Reducing εκ > 0 if necessary, we can assume that,

c̄κε2 � 1

2
(33)

for all ε ∈ (0, εκ). Then, (30) and (31) in Lemma 6.1 are enough to show that

v �−→ N(ε, τ,ϕ,ψ;v)
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is a contraction from{
v ∈ C4,α

μ

(
R

4): ‖v‖C4,α
μ (R4)

� 2cκε2}
into itself and hence has a unique fixed point v(ε, τ,ϕ,ψ; ·) in this set. This fixed point is a solution of (26) in BRε .

We summarize this in the:

Proposition 6.1. Given κ > 1, there exist εκ > 0 and cκ > 0 (only depending on κ) such that given ϕ ∈ C4,α(S3),
ψ ∈ C2,α(S3) and τ > 0 satisfying (18) and∣∣log(τ/τ∗)

∣∣ � 2κε log 1/ε, ‖ϕ‖C4,α(S3) � κε and ‖ψ‖C2,α(S3) � κε, (34)

the function

u(ε, τ,ϕ,ψ; ·) := u1 + Hi(ϕ,ψ; ·/Rε) + v(ε, τ,ϕ,ψ; ·),
solves (25) in BRε . In addition∥∥v(ε, τ,ϕ,ψ; ·)∥∥C4,α

μ (R4)
� 2cκε2 (35)

and ∥∥v(ε, τ,ϕ2,ψ2; ·) − v(ε, τ,ϕ1,ψ1; ·)
∥∥
C4,α

μ (R4)
� 2c̃κε

(‖ϕ2 − ϕ1‖C4,α(S3) + ‖ψ2 − ψ1‖C2,α(S3)

)
. (36)

The last estimate easily follows from (31) and (32) in Lemma 6.1. Observe that the function v(ε, τ,ϕ,ψ; ·) being
obtained as a fixed point for contraction mappings, it depends continuously on the parameter τ .

7. The second nonlinear Dirichlet problem

For all ε ∈ (0, r2
0 ), we set

rε = √
ε.

Recall that G(x, ·) denotes the unique solution of

�2G(x, ·) = 64π2δx

in Ω , with G(x, ·) = �G(x, ·) = 0 on ∂Ω . In addition, the following decomposition holds

G(x,y) = −8 log |x − y| + R(x, y)

where y �−→ R(x, y) is a smooth function.
Given x1, . . . , xm ∈ Ω . The data we will need are the following:

(i) Points Y := (y1, . . . , ym) ∈ Ωm close enough to X := (x1, . . . , xm).
(ii) Parameters Λ := (λ1, . . . , λm) ∈ R

m close to 0.
(iii) Boundary data Φ := (ϕ1, . . . , ϕm) ∈ (C4,α(S3))m and Ψ := (ψ1, . . . ,ψm) ∈ (C2,α(S3))m each of which satis-

fies (22).

With all these data, we define

ũ :=
m∑

j=1

(
1 + λj

)
G

(
yj , ·) +

m∑
j=1

χr0

(· − yj
)
He

(
ϕj ,ψj ; (· − yj

)
/rε

)
(37)

where χr0 is a cutoff function identically equal to 1 in Br0/2 and identically equal to 0 outside Br0 .
We define ρ > 0 by

ρ4 = 384ε4

2 4
.

(1 + ε )
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We would like to find a solution of the equation

�2u − ρ4eu = 0, (38)

which is defined in Ωrε(Y ) and is a perturbation of ũ. Writing u = ũ + ṽ, this amounts to solve

�2ṽ = ρ4eũ+ṽ − �2ũ. (39)

We need to define an auxiliary weighed space:

Definition 7.1. Given r̄ ∈ (0, r0/2), k ∈ R, α ∈ (0,1) and ν ∈ R, we define the Hölder weighted space Ck,α
ν (Ωr̄(X))

as the space of functions w ∈ Ck,α(Ωr̄(X)) that is endowed with the norm

‖w‖Ck,α
ν (Ωr̄ (X))

:= ‖w‖Ck,α(Ωr0/2(X)) +
m∑

j=1

sup
r∈[r̄,r0/2)

(
r−ν

∥∥w
(
xj + r·)∥∥Ck,α(B2−B1)

)
.

For all σ ∈ (0, r0/2) and all Y ∈ Ωm such that ‖X − Y‖ � r0/2, we denote by

Ẽσ,Y : C0,α
ν

(
Ωσ (Y )

) −→ C0,α
ν

(
Ω∗(Y )

)
,

the extension operator defined by Ẽσ,Y (f ) = f in Ωσ (Y ),

Ẽσ,Y (f )(yj + x) = χ̃

( |x|
σ

)
f

(
yj + σ

x

|x|
)

in Bσ (yj ) − Bσ/2(y
j ), for each j = 1, . . . ,m and Ẽσ,Y (f ) = 0 in each Bσ/2(y

j ), where t �→ χ̃(t) is a cutoff function
identically equal to 1 for t � 1 and identically equal to 0 for t � 1/2. It is easy to check that there exists a constant
c = c(ν) > 0 only depending on ν such that∥∥Ẽσ,Y (w)

∥∥
C0,α

ν (Ω∗(Y ))
� c‖w‖C0,α

ν (Ωσ (Y ))
. (40)

We fix

ν ∈ (−1,0),

and denote by Gν,Y a right inverse for �2 provided by Proposition 4.1. Clearly, it is enough to find ṽ ∈ C4,α
ν (Ω∗(Y ))

solution of

ṽ = Ñ(ε,Λ,Y,Φ,Ψ ; ṽ) (41)

where we have defined

Ñ(ε,Λ,Y,Φ,Ψ ; ṽ) := Gν,Y ◦ Ẽrε,Y

(
ρ4eũ+ṽ − �2ũ

)
.

Given κ > 0 (whose value will be fixed later on), we further assume that Φ and Ψ satisfy

‖Φ‖(C4,α(S3))m � κε, and ‖Ψ ‖(C2,α(S3))m � κε. (42)

Moreover, we assume that the parameters Λ and the points Y are chosen to satisfy

|Λ| � κε, and ‖Y − X‖ � κ
√

ε. (43)

Then, the following result holds:

Lemma 7.1. Given κ > 1. There exist εκ > 0, cκ > 0 and c̄κ > 0 such that, for all ε ∈ (0, εκ)∥∥Ñ(ε,Λ,Y,Φ,Ψ ;0)
∥∥
C4,α

ν (Ω∗(Y ))
� cκε3/2. (44)

Moreover,∥∥Ñ(ε,Λ,Y,Φ,Ψ ; ṽ2) − Ñ(ε,Λ,Y,Φ,Ψ ; ṽ1)
∥∥
C4,α

ν (Ω∗(Y ))
� c̄κε2‖ṽ2 − ṽ1‖C4,α

ν (Ω∗(Y ))
(45)

and



888 S. Baraket et al. / Ann. I. H. Poincaré – AN 24 (2007) 875–895
∥∥Ñ(ε,Λ,Y,Φ2,Ψ2; ṽ) − Ñ(ε,Λ,Y,Φ1,Ψ1; ṽ)‖C4,α
ν (Ω∗(Y ))

� c̄κε1/2(‖Φ2 − Φ1‖(C4,α(S3))m + ‖Ψ2 − Ψ1‖(C2,α(S3))m
)

(46)

provided v ∈ {ṽ, ṽ1, ṽ2} ⊂ C4,α
ν (Ω∗(Y )), Φ̃ ∈ {Φ,Φ1,Φ2} ⊂ (C4,α(S3))m, Ψ̃ ∈ {Ψ,Ψ1,Ψ2} ⊂ (C2,α(S3))m satisfy-

ing (22), also satisfy

‖v‖C4,α
ν (Ω∗(Y ))

� 2cκε3/2, ‖Φ̃‖(C4,α(S3))m � κε, ‖Ψ̃ ‖(C2,α(S3))m � κε,

and |Λ| � κε, ‖Y − X‖ � κ
√

ε.

Proof. The proof of the first estimate follows from the result of Lemma 5.2 together with (42), (43). More precisely,
we have∥∥ρ4eũ∥∥

C0,α
ν−4(Ωrε (Y ))

� cκε(4−ν)/2 and
∥∥�2ũ

∥∥
C0,α

ν−4(Ωrε (Y ))
� cκε3/2.

The proof of the first estimate follows from (43) and Proposition 4.1.
The proof of the second estimate follows from∥∥ρ4(eũ+v2 − eũ+v1

)∥∥
C0,α

ν−4(Ωrε (Y ))
� cκε2‖v2 − v1‖C4,α

ν (Ω∗(Y ))

and the third estimate follows from∥∥ρ4(eũ2+v − eũ1+v
)∥∥

C0,α
ν−4(Ωrε (Y ))

� cκε(4−ν)/2(‖Φ2 − Φ1‖(C4,α(S3))m + ‖Ψ2 − Ψ1‖(C2,α(S3))m
)

and ∥∥�2(ũ2 − ũ1)
∥∥
C0,α

ν−4(Ωrε (Y ))
� cκε1/2(‖Φ2 − Φ1‖(C4,α(S3))m + ‖Ψ2 − Ψ1‖(C2,α(S3))m

)
(where ũj corresponds to ũ when Φ = Φj and Ψ = Ψj ) together with (43) and Proposition 4.1. �

Reducing εκ is necessary, we can assume that

c̄κε2 � 1

2

for all ε ∈ (0, εκ). Then, (44) and (45) are enough to show that

ṽ �−→ Ñ(ε,Λ,Y,Φ,Ψ ; ṽ)

is a contraction from{
ṽ ∈ C4,α

ν

(
Ω∗(Y )

)
: ‖ṽ‖C4,α

ν (Ω∗(Y ))
� 2cκε3/2}

into itself and hence has a unique fixed point ṽ(ε,Λ,Y,Φ,Ψ ; ·) in this set. This fixed point is a solution of (39).
We summarize this in the:

Proposition 7.1. Given κ > 0, there exists εκ > 0 and cκ > 0 (only depending on κ) such that for all ε ∈ (0, εκ), for
all set of parameters Λ, points Y satisfying

|Λ| � κε, and ‖Y − X‖ � κ
√

ε

and boundary functions Φ and Ψ satisfying (22) and

‖Φ‖(C4,α(S3))m � κε, and ‖Ψ ‖(C2,α(S3))m � κε.

The function

ũ(ε,Λ,Y,Φ,Ψ ; ·) :=
m∑(

1 + λj
)
Gyj +

m∑
χr0

(· − yj
)
He

(
ϕj ,ψj ; (· − yj )/rε

) + ṽ(ε,Λ,Y,Φ,Ψ ; ·),

j=1 j=1
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solves (38) in Ωrε(Y ). In addition∥∥ṽ(ε,Λ,Y,Φ,Ψ ; ·)∥∥C4,α
ν (Ω∗) � 2cκε3/2 (47)

and ∥∥ṽ(ε,Λ,Y,Φ2,Ψ2; ·) − ṽ(ε,Λ,Y,Φ1,Ψ1; ·)
∥∥
C4,α

ν (Ω∗)

� 2c̄κε1/2(‖Φ2 − Φ1‖(C4,α(S3))m + ‖Ψ2 − Ψ1‖(C2,α(S3))m
)
. (48)

Again the last estimate follows from (45) and (46) in Lemma 7.1.
Observe that the function ṽε,Λ,Y,Φ,Ψ being obtained as a fixed point for contraction mappings, it depends continu-

ously on the parameters Λ and the points Y .

8. The nonlinear Cauchy-data matching

Keeping the notations of the previous sections, we gather the results of Propositions 6.1 and 7.1. From now on
κ > 1 is fixed large enough (we will shortly see how) and ε ∈ (0, εκ).

Assume that X = (x1, . . . , xm) ∈ Ωm is a nondegenerate critical point of the function W defined in the introduction.
For all j = 1, . . . ,m, we define τ

j∗ > 0 by

−4 log τ
j∗ = R

(
xj , xj

) +
∑
��=j

G
(
x�, xj

)
. (49)

We assume that we are given:

(i) Points Y := (y1, . . . , ym) ∈ Ωm close to X := (x1, . . . , xm) satisfying (43).
(ii) Parameters Λ := (λ1, . . . , λm) ∈ R

m satisfying (43).
(iii) Parameters T := (τ 1, . . . , τm) ∈ (0,∞)m satisfying (29) (where, for each j = 1, . . . ,m, τ∗ is replaced by τ

j∗ ).

We set

Rj
ε := τ j /

√
ε.

First, we consider some set of boundary data

Φ := (
ϕ1, . . . , ϕm

) ∈ (
C4,α

(
S3))m and Ψ := (

ψ1, . . . ,ψm
) ∈ (

C2,α
(
S3))m

satisfying (18) and (29).
Recall that

ρ4 = 384ε4

(1 + ε2)4
.

Thanks to the result of Proposition 6.1, we can find uint a solution of

�2u − ρ4eu = 0

in each Brε (y
j ), that can be decomposed as

uint(ε, T ,Y,Φ,Ψ ;x) := u
(
ε, τ j , ϕj ,ψj ;Rj

ε

(
x − yj

)
/rε

) + 4 log

(
τ j (1 + ε2)

2ε2

)
= uε,τ j

(
x − yj

) + Hi
(
ϕj ,ψj ; (x − yj )/rε

) + v
(
ε, τ j , ϕj ,ψj ;Rj

ε

(
x − yj

)
/rε

)
in Brε (y

j ).
Similarly, given some boundary data

Φ̃ := (
ϕ̃1, . . . , ϕ̃m

) ∈ (
C4,α

(
S3))m and Ψ̃ := (

ψ̃1, . . . , ψ̃m
) ∈ (

C2,α
(
S3))m
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satisfying (22) and (42), we use the result of Proposition 7.1, to find uext a solution of

�2u − ρ4eu = 0

in Ωrε(Y ), that can be decomposed as

uext(ε,Λ,Y, Φ̃, Ψ̃ ;x) =
m∑

j=1

(
1 + λj

)
G

(
yj , x

) +
m∑

j=1

χr0

(
x − yj

)
He

(
ϕ̃j , ψ̃j ; (x − yj

)
/rε

)
+ ṽ(ε,Λ,Y, Φ̃, Ψ̃ ;x).

It remains to determine the parameters and the boundary functions in such a way that the function that is equal to
uint in

⋃
j Brε (y

j ) and that is equal to uext in Ωrε(Y ) is C3 function. This amounts to find the boundary data and the
parameters so that, for each j = 1, . . . ,m

uint = uext, ∂ruint = ∂ruext, �uint = �uext, ∂r�uint = ∂r�uext, (50)

on ∂Brε (y
j ). Assuming we have already done so, this provides for each ε small enough a function uε ∈ C3(Ω) (which

is obtained by patching together the function uint and the function uext) weak solution of �2u − ρ4eu = 0 and elliptic
regularity theory implies that this solution is in fact smooth. This will complete the proof of our result since, as ε tends
to 0, the sequence of solutions we have obtained satisfies the required properties, namely, away from the points xj the
sequence uε converges to

∑
j G(xj , ·).

Before we proceed, some remarks are due. First it will be convenient to observe that the functions uε,τ j can be
expanded as

uε,τ j (x) = −8 log |x| − 4 log τ j +O(ε) (51)

near ∂Brε . Also, the function

m∑
j=1

(
1 + λj

)
G

(
yj , x

)
that appears in the expression of uext can be expanded as

m∑
�=1

(
1 + λ�

)
G

(
y�, yj + x

) = −8
(
1 + λj

)
log |x| + (

1 + λj
)
R

(
yj , x

) +
∑
��=j

(
1 + λ�

)
G

(
y�, x

)

+ ∇x

(
R

(
yj , ·) +

∑
��=j

G
(
y�, ·))∣∣∣∣

yj

· x +O
(|x|2) (52)

near ∂Brε (y
j ).

In (50), all functions are defined on ∂Brε (y
j ), nevertheless, it will be convenient to solve, instead of (50) the

following set of equations

(uint − uext)
(
yj + rε·

) = 0, (∂ruint − ∂ruext)
(
yj + rε·

) = 0,

(�uint − �uext)
(
yj + rε·

) = 0, (∂r�uint − ∂r�uext)
(
yj + rε·

) = 0,
(53)

on S3. Here all functions are considered as functions of z ∈ S3 and we have simply used the change of variables
x = yj + rεz to parameterize ∂Brε (y

j ).
Since the boundary data we have chosen satisfy (18) and (22), we can decompose

Φ = Φ0 + Φ1 + Φ⊥, Ψ = 8Φ0 + 12Φ1 + Ψ ⊥

and

Φ̃ = Φ̃0 + Φ̃1 + Φ̃⊥, Ψ̃ = Ψ̃1 + Ψ̃ ⊥

where the components of Φ0, Φ̃0 are constant functions on S3, the components of Φ1, Φ̃1, Ψ̃1 belong to

Ker(�S3 + 3) = Span{e1, . . . , e4}
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and where the components of Φ⊥,Ψ ⊥, Φ̃⊥, Ψ̃ ⊥ are L2(S3) orthogonal to the constant function and the functions
e1, . . . , e4. Observe that the components of Ψ over the constant functions or functions in Ker(�S3 +3) are determined
by the corresponding components of Φ . Moreover, Ψ̃ has no component over constant functions.

We first consider the L2(S3)-orthogonal projection of (53) onto the space of functions that are orthogonal to the
constant function and the functions e1, . . . , e4. This yields the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕj,⊥ − ϕ̃j,⊥ = M

(j)

0 (ε,Λ,T ,Y,Φ, Φ̃,Ψ, Ψ̃ ),

∂rH
i
(
ϕj,⊥,ψj,⊥; ·) − ∂rH

e
(
ϕ̃j,⊥, ψ̃j,⊥; ·) = M

(j)

1 (ε,Λ,T ,Y,Φ, Φ̃,Ψ, Ψ̃ ),

ψj,⊥ − ψ̃j,⊥ = M
(j)

2 (ε,Λ,T ,Y,Φ, Φ̃,Ψ, Ψ̃ ),

∂r�Hi
(
ϕj,⊥,ψj,⊥; ·) − ∂r�He

(
ϕ̃j,⊥, ψ̃j,⊥; ·) = M

(j)

3 (ε,Λ,T ,Y,Φ, Φ̃,Ψ, Ψ̃ )

(54)

where the functions M
(j)
k are nonlinear functions of the parameters ε, Λ, Y , T and the boundary data Φ , Φ̃ , Ψ

and Ψ̃ . Moreover, using (51) and (52) and also (35) (keeping in mind that μ ∈ (1,2)) and (47) (keeping in mind that
ν ∈ (−1,0)), we conclude that, for each j = 1, . . . ,m and k = 0,1,2,3∥∥M

(j)
k

∥∥
C4−k,α(S3)

� cε (55)

for some constant c > 0 independent of κ (provided ε ∈ (0, εκ)).
Thanks to the result of Lemma 5.3 and (55), this last system can be re-written as(

Φ⊥, Φ̃⊥,Ψ ⊥, Ψ̃ ⊥) = M(ε,Λ,T ,Y,Φ, Φ̃,Ψ, Ψ̃ )

where

‖M‖(C4,α(S3))2m×(C2,α(S3))2m � cε

for some constant c > 0 independent of κ (provided ε ∈ (0, εκ)). Moreover, (36) and (48) imply (reducing εκ if
necessary) that the mapping M is a contraction from the ball of radius κε in (C4,α(S3))2m × (C2,α(S3))2m into itself
and as such has a unique fixed point in this set. Observe that this fixed point depends continuously on ε, Λ, T , Y and
also on Φ0, Φ̃0, Φ1, Φ̃1 and Ψ̃1.

We insert this fixed point in (53) and now project the corresponding system over the set of functions spanned by
e1, . . . , e4 and finally over the set of constant functions. We define, for all j = 1, . . . , n

Ej (Y ; ·) := R
(
yj , ·) +

∑
��=j

G
(
y�, ·).

The first projection, over the set of functions spanned by e1, . . . , e4, yields the system of equations⎧⎪⎪⎨
⎪⎪⎩

Φ1 = M1(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1),

Φ̃1 = M2(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1),

Ψ1 = M3(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1),√
ε∇Ej

(
Y ;yj

) = M
(j)

4 (ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

(56)

where the functions Mk (and also M
(j)

4 ) are nonlinear functions depending continuously on the parameters ε, Λ, T , Y

and the components of the boundary data Φ0, Φ̃0, Φ1, Φ̃1 and Ψ̃1. Moreover,

|Mk| � cε and
∣∣M(j)

4

∣∣ � cε

for some constant c > 0 independent of κ (provided ε ∈ (0, εκ)).
Let us comment briefly on how these equations are obtained. These equations simply come from (50) when expan-

sions (51) and (52) are taken into account, together with the expression of Hi(ϕj ,ψj ; ·) and He(ϕ̃j , ψ̃j ; ·) given in
Lemmas 5.1 and 5.2, and also the estimates (35) and (47). Observe that the projection of the term x → ∇Ej(Y ;yj ) ·x
that arises in (52), as well as the projection of its partial derivative with respect to r , over the set of constant function
is equal to 0. Moreover, this term projects identically over the set of functions spanned by e1, . . . , e4 as well as its
derivative with respect to r . Finally, its Laplacian vanishes identically.

Recall that we have defined in the introduction the function

W(Y) :=
m∑

R
(
yj , yj

) +
∑

G
(
yj1, yj2

)
.

j=1 j1 �=j2
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Using the symmetries of the functions G and R, namely the fact that

G(x,y) = G(y,x) and R(x, y) = R(y, x)

we get

∇W |Y = 2
(∇E1

(
Y ;y1), . . . ,∇Em

(
Y ;ym

))
.

Now, we have assumed that the point X = (x1, . . . , xm) is a nondegenerate critical point of the functional W and
hence

∇W |X = 0,

and (
R

4)m � Z �−→ D(∇W)|X(Z) ∈ (
R

4)m

is invertible. Therefore, the last equation can be rewritten as
√

ε(Y − X) = M5(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1).

If we define the parameters U := (u1, . . . , um) by

uj = −4 log τ j + 8λj log rε − (
1 + λj

)
R

(
yj , yj

) −
∑
��=j

(
1 + λ�

)
G

(
y�, yj

)
,

the projection of (53) over the constant function leads to the system⎧⎪⎪⎨
⎪⎪⎩

U = M6(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1),

Φ̃0 = M7(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1),

Φ0 = M8(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1),

Λ = M9(ε,Λ,T ,Y,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1)

(57)

where the function Mk satisfies the usual properties. We set

Z = √
ε(Y − X)

so that the system we have to solve reads

(U,Λ,Z,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1) = M(ε,U,Λ,Z,Φ0, Φ̃0,Φ1, Φ̃1, Ψ̃1). (58)

where as usual, the nonlinear function M depends continuously on the parameters T ,Λ,Z and the functions
Φ0, Φ̃0,Φ1, Ψ̃1 and is bounded (in the appropriate norm) by a constant (independent of ε and κ) time ε, provided
ε ∈ (0, εκ). Observe that

U,Λ ∈ R
m, Z ∈ (

R
4)m

, Φ0, Φ̃0 ∈ R
m, Φ1, Φ̃1, Ψ̃1 ∈ (

Ker(�S3 + 3)
)m

.

In addition, reducing εκ if necessary, this nonlinear mapping sends the ball of radius κε (for the natural product norm)
into itself, provided κ is fixed large enough and ε ∈ (0, εκ). Applying Schauder’s fixed point theorem in the ball of
radius κε in the product space where the entries live yields the existence of a solution of (58) and this completes the
proof of Theorem 1.1.

9. Comments

Let us comment on how the condition “(x1, . . . , xm) is a nondegenerate critical point of W ” enters in our analysis
since, we confess, it is somehow very well hidden in the technicalities of the proof.

The condition “(x1, . . . , xm) is a critical point of W ” enters in the estimate (52) when Y = X and Λ = 0, since, in
this case we have

m∑
G

(
x�, xj + x

) = −8 log |x| + Ej

(
X;xj

) +O
(|x|2)
�=1
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while, if (x1, . . . , xm) were not a critical point of W , then ∇Ej(X;xj ) �= 0 and we would only have
m∑

�=1

G
(
x�, xj + x

) = −8 log |x| + Ej

(
X;xj

) +O
(|x|)

and this would not be enough: roughly speaking this says that the approximate solution we have constructed is not
close to any solution of the problem. Given the result of Lin and Wei [6], the condition on “(x1, . . . , xm) being a
critical point of W ” is certainly a necessary condition for the result of Theorem 1.1 to hold.

The origin of the “nondegeneracy” assumption takes its roots in the result of Lemma 3.1 that classifies all the
solutions of the linearized equation about the rotationally symmetric solution. The existence of elements φi , for
i = 1, . . . ,4 in the kernel of L has forced us in Proposition 3.1 to work with weights μ > 1 to obtain the surjectivity
of the operator Lμ. This choice has one important consequence: In Lemma 5.1, we had to restrict our attention to
boundary data that satisfy the constraints (18) and (22) (even though only the second constraint in (18) is important
to understand where the nondegeneracy condition comes from) to obtain bi-harmonic extensions in the unit ball that
vanish at the origin at least quadratically. A second reading will convince the reader that this property was crucial in
the estimate of Lemma 6.1. Indeed, the main estimate in this lemma arises from the fact that∣∣Hi(ϕ,ψ; ·/Rε)

∣∣ � c(1)
κ ε2|x|2.

Without the second hypothesis in (18) we would only have∣∣Hi(ϕ,ψ; ·/Rε)
∣∣ � c(1)

κ ε3/2|x|
that would have led in Lemma 6.1 to the estimate∥∥N(ε, τ,ϕ,ψ;0)

∥∥
C4,α

μ (R)4 � cκε3/2.

But since μ ∈ (1,2) this implies that, on the boundary ∂BRε the function v(ε, τ,ϕ,ψ; ·) is bounded by a constant
times ε(3−μ)/2 and since

ε(3−μ)/2 � ε

the function v would be much larger than the functions Hi(ϕ,ψ; ·/Rε) on this boundary and hence could not be
considered as a small perturbation anymore. Given the fact that, in the construction of Hi and He we could not
prescribe all possible boundary data, we had to “find” new degrees of freedom to compensate the constraints imposed
by (18) and (22). The introduction of the parameters τ j and λj enter at this point to compensate the first condition
imposed by (18) and also the condition imposed by (22). The points yj close to xj are introduced to compensate the
second condition imposed by (18) and this is precisely where the nondegeneracy of the critical points of W comes
into play.

Let us point out that the nondegeneracy condition strictly speaking can be weakened as this has been done for
example in [4] and [5] in the case of Eq. (8). The idea being that the nondegeneracy is essentially used to solve the
last equation in (56) by some disguised version of the Implicit Function Theorem. But, remembering that the problem
we want to solve is a variational problem, this last equation can be rephrased essentially as the gradient of a function
Wε that is defined on Ωm and that converges (in a sense to be made precise) to the function W as ε tends to 0. Some
extra work is needed, but in any case, we could have used some variational techniques to find critical points of this
functional. Since nondegeneracy of critical points is a generic condition and in order not to make the exposition of
this “nonlinear domain decomposition technique” as clear as possible, we have chosen not to follow this route.

10. Further results

Modifying very little the previous analysis, it is possible to extend the result of Theorem 1.1 to handle more general
equations. We will illustrate this on one example.

As usual, let us assume that Ω ⊂ R
4 is a regular bounded open subset and let us choose z1, . . . , zp ∈ Ω and

α1, . . . , αp ∈ (0,+∞). We would like to extend the result of Theorem 1.1 to the equation⎧⎨
⎩�2u = ρ4eu − 64π2

p∑
i=1

αiδzi in Ω, (59)
u = �u = 0 on ∂Ω.
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Namely, we are still looking for solutions that concentrate at some points x1, . . . , xm ∈ Ω , as the parameter ρ → 0
and, in order to keep the amount of technicalities as low as possible, we will assume that the set of concentration
points xj and the set of singularities zi are disjoint. This problem is very much in the spirit of the work of [5] and [4]
even though we do not know any applications in physics. On the other hand solutions of this problem might be of
interest to understand constant Q-curvature metrics with singularities.

Setting

v := u +
p∑

i=1

αiG
(
zi, ·)

we can rephrase the equation satisfied by u as an equation satisfied by v, namely{
�2v = ρ4e−∑

αiG(zi ,·)ev in Ω,

v = �v = 0 on ∂Ω.
(60)

This equation is a particular case of the more general problem{
�2u = ρ4V eu in Ω,

u = �u = 0 on ∂Ω,
(61)

where V :Ω → [0,+∞) is a smooth function. We are still looking for solutions of this last equation that concentrate
at some points x1, . . . , xm, as the parameter ρ → 0. In order to keep the technicalities as low as possible, we will
assume that the set of concentration points xj and the set of zeros of V are disjoint.

As in the introduction, we introduce the functional

W
(
x1, . . . , xm

) :=
m∑

j=1

R
(
xj , xj

) +
∑
j �=�

G
(
xj , x�

) + 2
m∑

j=1

logV
(
xj

)
. (62)

It is easy to check that the result of Theorem 1.1 holds when (1) is replaced by (61) and (62) replaces (4). We briefly
describe the main modifications that are needed to prove this modified result.

Only Sections 6, 7 and 8 have to be slightly modified. In Section 6, (25) has to be replaced by

�2u = 24eu + ε4g

where g is a bounded function (in fact bounded in C0,α(BRε ) by some constant independent of ε). It is easy to check
that the analysis goes through. The presence of the term ε4g does not alter the estimates in Lemma 6.1 and in fact,
keeping the notations of introduced in the proof of Lemma 6.1, we have∥∥ε4g

∥∥
C0,α

μ−4(BRε )
� cε2+μ/2.

The result of Proposition 6.1 remains unchanged. Section 7 applies vertabim and Proposition 7.1 is unchanged.
In Section 8, the main modification due is in the definition of uint. Indeed, for each j = 1, . . . ,m we apply the

result of the modified version of Section 6 with

g = 1

τ 4
j

(
�2 logV

)(
yj + ε · /τj

)
.

This induces in each Brε (y
j ) a solution of

�2u = ρ4V eu

that can be decomposed as

uint(x) = uε,τ j

(
x − yj

) − logV (x) + Hi
(
ϕj ,ψj ; (x − yj

)
/rε

) + v
(
ε, τ j , ϕj ,ψj ;Rj

ε

(
x − yj

)
/rε

)
.

The remaining of the analysis of Section 8 remains essentially unchanged once the definition of Ej is modified into

Ej(Y ; ·) := R
(
yj , ·) +

∑
��=j

G
(
y�, ·) + logV

(
yj

)
.

We leave the details to the reader.
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