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Abstract

In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous
Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal
to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution
equation satisfied by P u, the projection of the solution on the Stokes space – the space of divergence free vector fields with a
normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (I − P)u, the projection of the
solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for P u and (I − P)u. We also
study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but
without any smallness assumption on the initial and boundary conditions.
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1. Introduction

Let Ω be a bounded and connected domain in R
N , with N = 2 or N = 3, with a regular boundary Γ , and let T be

positive. Set Q = Ω × (0, T ) and Σ = Γ × (0, T ). We are interested in the following boundary value problems for
the Navier–Stokes equations

∂u
∂t

− �u + κ(u · ∇)u + ∇p = 0, div u = 0 in Q,

u = g on Σ, u(0) = u0 in Ω,

(1.1)

where g is a nonhomogeneous boundary condition, u0 is the initial condition, and κ = 0 or κ = 1. For κ = 0 Eq. (1.1)
corresponds to the Stokes equations and for κ = 1 to the Navier–Stokes equations. We are also interested in similar
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problems for the Oseen equations. Let us denote by n the outward unit normal to the boundary Γ . In the case when
the normal component of g is equal to zero, that is to say if

g(x, t) · n(x) = 0 for a.e. (x, t) ∈ Γ × (0, T ), (1.2)

Eq. (1.1) can be studied by pseudo-differential techniques [13,14], and the regularity results for the Stokes equa-
tions are of the same type as for the heat equation [13,14,24]. Moreover, using the so-called Stokes operator A (see
Section 2), when condition (1.2) is satisfied, Eq. (1.1) with κ = 0 can be written in the form:

u′ = Au + (−A)Dg, u(0) = u0, (1.3)

where, for almost all t ∈ (0, T ), Dg(t) is the solution of the stationary Stokes problem with g(t) as nonhomogeneous
boundary condition.

For engineering applications – see e.g. [15] – it is important to study Eq. (1.1) when condition (1.2) is not satisfied.
However in that case the situation is more complicated because (1.1) cannot be written in the form of an evolution
equation. Indeed, due to the incompressibility condition, if u is a solution to (1.1) we have∫

Ω

div u(t)dx = 〈
u(t) · n,1

〉
H−1/2(Γ ),H 1/2(Γ )

= 0 for a.e. t ∈ (0, T ).

Thus we look for u(t) in the space

V0(Ω) = {
u ∈ L2(Ω) | div u = 0, 〈u · n,1〉H−1/2(Γ ),H 1/2(Γ ) = 0

}
.

But the Stokes operator is defined as an unbounded operator in the space

V0
n(Ω) = {

u ∈ L2(Ω) | div u = 0, u · n = 0 in H−1/2(Γ )
}
.

Consequently, Eq. (1.1) cannot be written as an evolution equation of the form (1.3), contrarily to the case when (1.2)
is satisfied (see Section 2).

To overcome this difficulty Fursikov, Gunzburger and Hou [9,8] have first determined the trace spaces correspond-
ing to some function spaces, before proving the existence of weak solutions. Thus, taking the trace g in the right space,
using an extension procedure, they prove the existence of a solution in the space initially chosen.

Another approach is investigated in [7]. It consists in solving the stationary Stokes problem

−�w(t) + ∇π(t) = 0 and div w(t) = 0 in Ω, w(t) = g(t) on Γ,

for all t ∈ [0, T ], and looking for the equation satisfied by u − w. Farwig, Galdi and Sohr [7] prove new regularity
results for the Stokes equations when g belongs to some classes of Banach spaces. The corresponding classes of
Hilbert spaces are the following ones [7, Theorem 4 and Corollary 5]:

(i) g ∈ L2(0, T ;H−1/2(Γ )) and 〈g(t),n〉H−1/2(Γ ),H1/2(Γ ) = 0,
(ii) g ∈ L2(0, T ;H3/2(Γ )) ∩ H 1(0, T ;H−1/2(Γ )) and

∫
Γ

g(t) · n = 0.

The existence of solutions to the Navier–Stokes equations is also proved in [7] for small data.
Here, motivated by stabilization problems [22,23], we would like to find optimal regularity results for the solution

to the Stokes and the Oseen equations when g belongs to the space

Vs,s/2(Σ) = L2(0, T ;Vs(Γ )
) ∩ Hs/2(0, T ;V0(Γ )

)
,

with s � 0, and

Vs(Γ ) =
{

u ∈ Hs(Γ )

∣∣∣∣
∫
Γ

u · n = 0

}
.

We are also interested in finding a sufficient condition on g so that a weak solution to Eq. (1.1) exists in the case where
κ = 1. This approach is an essential step to study the local feedback boundary stabilization of the Navier–Stokes
equations [22,23].

The paper is organized as follows. We study the Stokes equation in Section 2. We give a new definition of weak
solutions to Eq. (1.1) (in the case where κ = 0) that we compare with the other ones existing in the literature. Thanks
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to this new definition we are able to prove optimal regularity results for P u and (I − P)u, where u is the solution of
the Stokes equations and P is the so-called Helmholtz projection operator (Theorems 2.3 and 2.7). In particular if g
belongs to Vs,s/2(Σ), P u0 belongs to Vs−1/2

n (Ω), and if they satisfy some compatibility conditions, we first prove that
P u belongs to Vs+1/2−ε,s/2+1/4−ε/2(Q) for all ε > 0 if 0 � s � 2, s �= 1 (Theorem 2.3). The question of knowing if we
can take ε = 0 is not obvious in the case when g(t) · n �= 0. Using results already proved in Theorem 2.3, we answer
positively to this question in Theorem 2.7. In Section 3, we prove that we can have P u ∈ Vs+1/2,s/2+1/4(Q) and
(I − P)u ∈ Vs+1/2,s/2+1/4(Q) under conditions on g and u0 which are different from the ones in [9] (Theorem 3.1).
In Section 4, we study the Oseen equations in two cases. The first one corresponds to the linearized Navier–Stokes
equations around a stationary state, and the second one corresponds to a linearization around an instationary state.
We extend the results of Section 2 to the first case. The second case, with homogeneous boundary conditions, is
needed in Section 4 to study the Navier–Stokes equations with nonhomogeneous boundary conditions. We prove
the existence of global weak solutions to the Navier–Stokes equations, in the 3D case, when g ∈ V3/4,3/4(Σ) =
L2(0, T ;V3/4(Γ ))∩H 3/4(0, T ;V0(Γ )). To the best of our knowledge, this existence result for the three-dimensional
Navier–Stokes equations seems to be new. Since we prove the existence of a weak solution, we are not able to establish
uniqueness (the situation is the same as in the case of homogeneous boundary conditions), contrarily to the existence
results obtained by a fixed point method with small data where uniqueness is directly proved [14,8,9,7].

In Appendix A we establish results needed for the stationary Stokes equations with nonhomogeneous boundary
conditions. Their extension to the stationary Oseen equations are stated in Appendix B.

2. Stokes equation

Throughout the paper we assume that Ω is at least of class C2. In this section we study the Stokes equations with
a nonhomogeneous boundary condition:

∂u
∂t

− �u + ∇p = 0, div u = 0 in Q,

u = g on Σ, u(0) = u0 in Ω.

(2.1)

The main results of this section are stated in Theorems 2.3 and 2.7.

2.1. Notation

Let us introduce the following function spaces: Hs(Ω;R
N) = Hs(Ω), L2(Ω;R

N) = L2(Ω), the same notation
conventions are used for the spaces Hs

0 (Ω;R
N), and the trace spaces Hs(Γ ;R

N). Throughout what follows, for all
u ∈ L2(Ω) such that div u ∈ L2(Ω), we denote by u · n the normal trace of u in H−1/2(Γ ) [25]. Following [9], we
use the letter V to define different spaces of divergence free vector functions and for some associated trace spaces:

Vs(Ω) = {
u ∈ Hs(Ω) | div u = 0 in Ω, 〈u · n,1〉H−1/2(Γ ),H 1/2(Γ ) = 0

}
for s � 0,

Vs
n(Ω) = {

u ∈ Hs(Ω) | div u = 0 in Ω, u · n = 0 on Γ
}

for s � 0,

Vs
0(Ω) = {

u ∈ Hs(Ω) | div u = 0 in Ω, u = 0 on Γ
}

for s >
1

2
,

Vs(Γ ) =
{

u ∈ Hs(Γ )

∣∣∣ ∫
Γ

u · n = 0

}
for s � 0.

For s < 0, Vs(Γ ) is the dual space of V−s(Γ ), with V0(Γ ) as pivot space. For spaces of time dependent functions we
set

Vs,σ (Q) = Hσ
(
0, T ;V0(Ω)

) ∩ L2(0, T ;Vs(Ω)
)
,

and

Vs,σ (Σ) = Hσ
(
0, T ;V0(Γ )

) ∩ L2(0, T ;Vs(Γ )
)
.

Observe that

Vs,σ (Q) = Hs,σ (Q) ∩ L2(0, T ;V0(Ω)
)

for all s � 0 and σ � 0,
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where Hs,σ (Q) = (Hs,σ (Q))N , and Hs,σ (Q) corresponds to the notation in [20].
We denote by γτ ∈ L(V0(Γ )) and γn ∈L(V0(Γ )) the operators defined by

γnu = (u · n)n and γτ u = u − γnu for all u ∈ V0(Γ ).

As usual, for s > 1/2, γ0 ∈ L(Vs(Ω),Vs−1/2(Γ )) denotes the trace operator. Throughout the paper, for all Φ ∈
H3/2+ε′

(Ω) and all ψ ∈ H 1/2+ε′
(Ω), with ε′ > 0, we denote by c(Φ,ψ), the constant defined by

c(Φ,ψ) = − 1

|Γ |
∫
Γ

(
∂Φ

∂n
· n − ψ

)
, (2.2)

where |Γ | is the (N − 1)-dimensional Lebesgue measure of Γ . If moreover Φ ∈ V3/2+ε′
0 (Ω), then ∂Φ

∂n · n = 0 (see
[3, Lemma 3.3.1]), and in that case we shall use the constant

c(ψ) = 1

|Γ |
∫
Γ

ψ. (2.3)

We also introduce the space

W
(
0, T ;V1(Ω),V−1(Ω)

) =
{

u ∈ L2(0, T ;V1(Ω)
) ∣∣∣∣ du

dt
∈ L2(0, T ;V−1(Ω)

)}
,

where V−1(Ω) denotes the dual space of V1
0(Ω) with V0

n(Ω) as pivot space.
Let us denote by P the orthogonal projection operator in L2(Ω) on V0

n(Ω). Recall that the Stokes operator
A = P�, with domain D(A) = H2(Ω) ∩ V1

0(Ω) in V0
n(Ω), is the infinitesimal generator of a strongly continuous

analytic semigroup (etA)t�0 on V0
n(Ω). The operator P can be continuously extended to a bounded operator from

H−1(Ω) to V−1(Ω), that we still denote by P .
We also introduce the Dirichlet operators D ∈L(V0(Γ ),V0(Ω)) and Dp ∈ L(V0(Γ ), (H 1(Ω)/R)′) defined by

Dg = w and Dpg = π,

where (w,π) is the solution to

−�w + ∇π = 0 and div w = 0 in Ω, w = g on Γ.

Notice that D can be extended to a bounded operator from V−1/2(Γ ) into V0(Ω) (see Corollary A.1).

2.2. Stokes equation

Fursikov, Gunzburger and Hou have studied the linearized Navier–Stokes and Navier–Stokes equations with non-
homogeneous boundary conditions when the domain Ω is not necessarily bounded in R

3 [8,9]. For that they first
characterize the traces for functions belonging to spaces of the type

V(s)(Q) = {
u | u is the restriction to Q of a function belonging to H(s)

(
R

N+1), div u = 0
}
,

where

H(s)
(
R

N+1) = L2(
R;Hs

(
R

N
)) ∩ H 1(

R;Hs−2(
R

N
))

.

Observe that for s = 2, we have V(2)(Q) = V2,1(Q). For s = 1, the identity

H(1)
(
R

N+1) = L2(
R;H1(

R
N

)) ∩ H 1(
R;H−1(

R
N

)) = W
(
R;H1(

R
N

)
,H−1(

R
N

))
,

does not imply the corresponding identity for H(1)(Q) or V(1)(Q), that is

H(1)(Q) ⊂ W
(
0, T ;H1(Ω),H−1(Ω)

)
, H(1)(Q) �= W

(
0, T ;H1(Ω),H−1(Ω)

)
,

V(1)(Q) ⊂ W
(
0, T ;V1(Ω),V−1(Ω)

)
and V(1)(Q) �= W

(
0, T ;V1(Ω),V−1(Ω)

)
.

It is proved in [8] that, if N = 3, the trace space of functions in V(1)(Q) is

G1(Σ) = {
u ∈ L2(0, T ;V1/2(Γ )

) | γτ u ∈ H 1/2(0, T ;V−1/2(Γ )
)
, γnu ∈ H 3/4(0, T ;V−1(Γ )

)}
.

In [8,9], solutions to Eq. (2.1) are defined as follows.
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Definition 2.1. A function u ∈ V(1)(Q) is a solution to Eq. (2.1) if u = v + w, where v = Eg (E is a continuous
extension operator from G1(Σ) to V(1)(Q)), and w is the solution to the equation

∂w
∂t

− �w + ∇p = −∂v
∂t

− �v, div w = 0 in Q,

w = 0 on Σ, w(0) = u0 − v(0) in Ω.

In [8,9], extension operators E ∈ L(G1(Σ),V(1)(Q)) are explicitly defined, but any continuous extension operator
from G1(Σ) to V(1)(Q) can be used to define solutions to Eq. (2.1). The theorem below is a direct consequence of
results established in [8].

Theorem 2.1. If g ∈ G1(Σ) and if γng|t=0 = γng(0) = (u0 · n)n, then Eq. (2.1) admits a unique solution in V(1)(Q)

in the sense of Definition 2.1, and the following estimate holds:

‖u‖V (1)(Q) � C
(‖g‖L2(0,T ;V1/2(Γ )) + ‖γτ g‖H 1/2(0,T ;V−1/2(Γ )) + ‖γng‖H 3/4(0,T ;V−1(Γ )) + ‖u0‖V0(Ω)

)
.

Let us state a simple proposition that will be useful in the following.

Proposition 2.1. Assume that g ∈ C([0, T ];V−1/2(Γ )) and u0 ∈ V0(Ω). Then the compatibility condition γng|t=0 =
γng(0) = (u0 · n)n is equivalent to (I − P)(u0 − Dg(0)) = 0.

Proof. Assume that γng(0) = (u0 · n)n. Then (I − P)(D((u0 · n)n) − Dg(0)) = 0. Moreover (I − P)D((u0 · n)n) =
(I − P)u0, because D((u0 · n)n) − u0 ∈ V0

n(Ω). Thus (I − P)(u0 − Dg(0)) = 0.
Conversely, if (I −P)(u0 −Dg(0)) = 0, then γn((I −P)u0) = γn((I −P)Dg(0)) = γng(0). And γn((I −P)u0) =

γnu0. The proof is complete. �
Observe that Definition 2.1 cannot be used to define weak solutions when g ∈ L2(0, T ;V0(Γ )) or g ∈

L2(0, T ;V−1/2(Γ )). In this case, following [18,1,2,7], solutions can be defined by a duality method (also called
‘the transposition method’ in [18–20]).

Definition 2.2. Assume that g ∈ L2(0, T ;V−1/2(Γ )) and u0 ∈ H−1(Ω). A function u ∈ L2(0, T ;V0(Ω)) is a solution
to the Stokes equations (2.1), defined by duality (or transposition), if and only if

∫
Q

uf =
T∫

0

〈
−∂Φ

∂n
(t) + ψ(t)n,g(t)

〉
V1/2(Γ ),V−1/2(Γ )

dt + 〈
u0,Φ(0)

〉
H−1(Ω),H1

0(Ω)
(2.4)

for every f ∈ L2(0, T ;V0(Ω)), where (Φ,ψ) is the solution to

− ∂Φ

∂t
− �Φ + ∇ψ = f, divΦ = 0 in Q,

Φ = 0 on Σ, Φ(T ) = 0 in Ω.

(2.5)

Remark 2.1. Notice that 〈u0,Φ(0)〉H−1(Ω),H1
0(Ω) = 〈P u0,Φ(0)〉V−1(Ω),V1

0(Ω). Thus only P u0 intervenes in the above
definition. The above definition is slightly different from the one in [7, Definition 1]. Actually it can be shown that
they are equivalent in the case when g ∈ L2(0, T ;V−1/2(Γ )) and u0 ∈ H−1(Ω).

Theorem 2.2. For all g ∈ L2(0, T ;V−1/2(Γ )) and all u0 ∈ H−1(Ω), Eq. (2.1) admits a unique solution in
L2(0, T ;V0(Ω)) in the sense of Definition 2.2, and

‖u‖L2(0,T ;V0(Ω)) � C
(‖g‖L2(0,T ;V−1/2(Γ )) + ‖P u0‖V−1(Ω)

)
. (2.6)

Moreover if g and u0 satisfy the assumptions of Theorem 2.1, then the solutions given by Theorems 2.1 and 2.2
coincide.
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Remark 2.2. The result stated in Theorem 2.2 will be completed by additional regularity results in Lemma 3.1. Since
Definition 2.2 is equivalent to [7, Definition 1], we can observe that Theorem 2.2 and Lemma 3.1 are already stated
in [7, Theorem 4]. Since our approach is slightly different from the one in [7], we prefer to give complete proofs for
the convenience of the reader.

Proof. Step 1. Let f be in L2(0, T ;V0(Ω)), the solution (Φ,ψ) to Eq. (2.5) belongs to

V2,1(Q) × L2(0, T ;H 1(Ω)/R
)
.

Let Λ ∈ L(L2(0, T ;V0(Ω)), (L2(0, T ;V1/2(Γ )) × V1
0(Ω))) be the operator defined by

Λ(f) =
(

−∂Φ

∂n
+ ψn − c(ψ)n,Φ(0)

)
,

where (Φ,ψ) is the solution to Eq. (2.5) and c(ψ) is defined in (2.3). Eq. (2.4) can be rewritten in the form

(u, f)L2(0,T ;V0(Ω)) = 〈
Λ(f), (g,P u0)

〉
L2(0,T ;V1/2(Γ ))×V1

0(Ω),L2(0,T ;V−1/2(Γ ))×V−1(Ω)
,

and we have〈
Λ(f), (g,P u0)

〉
L2(0,T ;V1/2(Γ ))×V1

0(Ω),L2(0,T ;V−1/2(Γ ))×V−1(Ω)
= (

f,Λ∗(g,P u0)
)
L2(0,T ;V0(Ω))

.

Since Λ∗ – the adjoint of Λ – belongs to L(L2(0, T ;V−1/2(Γ )) × V−1(Ω),L2(0, T ;V0(Ω))), the function u =
Λ∗(g,P u0) is clearly a solution to Eq. (2.1) in the sense of Definition 2.2, and the estimate of u follows from the
continuity of Λ∗. To prove the uniqueness, we observe that if u is a solution corresponding to (g,u0) = (0,0), setting
f = u in (2.4), we prove that u = 0.

Step 2. To compare the solutions corresponding to Definitions 2.1 and 2.2 we first consider the case of regular data.
Assume that g ∈ C1([0, T ];V3/2(Γ )). Let (w(t),π(t)) ∈ V2(Ω) × H 1(Ω)/R be the solution to the equation:

−�w(t) + ∇π(t) = 0 and div w(t) = 0 in Ω, w(t) = g(t) on Γ. (2.7)

It is clear that (w,π) ∈ C1([0, T ];V2(Ω)×H 1(Ω)/R). Let (y, q) be the weak solution in W(0, T ;V1
0(Ω),V−1(Ω))×

L2(0, T ;L2(Ω)/R) to the equation

∂y
∂t

− �y + ∇q = −∂w
∂t

, div y = 0 in Q,

y = 0 on Σ, y(0) = P
(
u0 − w(0)

)
in Ω.

(2.8)

We set u = w + y. We can easily verify that u = w + y is a solution to Eq. (2.1) in the sense of Definitions 2.1 and 2.2.
Step 3. Let g be in G1(Σ), u0 ∈ V0(Ω), and assume that γng(0) = (u0 · n)n. Recall that (I − P)u0 = (I −

P)D((u0 ·n)n). Thus (I −P)u0 = (I −P)Dγng(0) = (I −P)Dg(0). Let (gk)k be a sequence in C1([0, T ];V3/2(Γ ))

converging to g in G1(Σ). Let (wk(t),πk(t)) be the solution to Eq. (2.7) corresponding to gk(t), and set u0,k =
P u0 + (I − P)Dgk(0) = P u0 + (I − P)wk(0). Since (γngk(0))k converges to γng(0) in V−1/2(Γ ), ((I − P)wk(0))k
converges to (I − P)u0 in V0(Ω). Moreover from the definition of u0,k it follows that gk and u0,k obey the com-
patibility condition γngk(0) = (u0,k · n)n. Let (yk, qk) be the weak solution to Eq. (2.8) corresponding to wk , and set
uk = wk + yk . We have

uk(0) = P uk(0) + (I − P)uk(0) = P wk(0) + yk(0) + (I − P)wk(0) = P u0 + (I − P)wk(0) = u0,k.

Due to Step 2, uk is the solution to Eq. (2.1) in the sense of Definitions 2.1 and 2.2. By a density argument and due
to the estimates in Theorem 2.1 and to (2.6), it follows that the solutions u to Eq. (2.1) in the sense of Definitions 2.1
and 2.2 coincide if g ∈ G1(Σ) and γng(0) = (u0 · n)n. �

Definition 2.2 cannot be used to obtain optimal regularity results because P u and (I − P)u are not decoupled in
the weak formulation (2.4).

We are going to define weak solutions to Eq. (2.1) in the case where g ∈ L2(0, T ;V0(Γ )), by adapting to the case
of the Stokes operator the extrapolation used in [4] and [5] for the heat equation. Before stating a new definition of
weak solutions to Eq. (2.1), let us define solutions when the data are regular. Suppose that g ∈ C1

c (]0, T ];V3/2(Γ )).
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Denote by (w(t),π(t)) ∈ V2(Ω) × H 1(Ω)/R the solution to Eq. (2.7), that is (w(t),π(t)) = (Dg(t),Dpg(t)), and
denote by (y, q) the solution to Eq. (2.8). We already know that (u,p) = (w + y,π + q) is a solution to Eq. (2.1) in
the sense of Definition 2.2. Eq. (2.8) can be rewritten in the form

y′ = Ay − P w′, y(0) = P u0,

because w(0) = 0, and y is defined by

y(t) = etAP u0 −
t∫

0

e(t−s)AP w′(s)ds.

Integrating by parts we obtain

y(t) = etAP u0 +
t∫

0

(−A)e(t−s)AP w(s)ds − P w(t).

Thus we have

P u(t) = y(t) + P w(t) = etAP u0 +
t∫

0

(−A)e(t−s)APDg(s)ds.

With the extrapolation method, we can extend the operator A to an unbounded operator Ã of domain D(Ã) = V0
n(Ω)

in (D(A∗))′ = (D(A))′, in order that (Ã,D(Ã)) be the infinitesimal generator of a strongly continuous semigroup
(etÃ)t�0 on (D(A∗))′, satisfying etAu0 = etÃu0 for all u0 ∈ V0

n(Ω). This means that P u is solution to the equation

P u′ = ÃP u + (−Ã)PDg, P u(0) = P u0.

The equation satisfied by (I − P)u is nothing else than

(I − P)u(t) = (I − P)w(t) = (I − P)Dg(t).

One can easily verify that Dγτ g(t) ∈ V0
n(Ω). Thus we have (I − P)Dg(t) = (I − P)Dγng(t). The operator

P ◦ D is linear and continuous from V0(Γ ) to V1/2
n (Ω). Thus (−Ã)PD is linear and continuous from V0(Γ ) to

(D((−A∗)3/4+ε))′ for all ε > 0. Consequently (−Ã)PDg belongs to L2(0, T ; (D((−A∗)3/4+ε))′) if g belongs to
L2(0, T ;V0(Γ )).

We can now state a new definition of weak solution.

Definition 2.3. A function u ∈ L2(0, T ;V0(Ω)) is a weak solution to Eq. (2.1) if

P u is a weak solution of evolution equation

P u′ = ÃP u + (−Ã)PDg, P u(0) = P u0, (2.9)

and if (I − P)u is defined by

(I − P)u(·) = (I − P)Dγng(·) in L2(0, T ;V0(Ω)
)
. (2.10)

By definition of weak solutions to evolution equations [4], a function P u ∈ L2(0, T ;V0
n(Ω)) is weak solution to

Eq. (2.9) if and only if, for all Φ ∈ D(A∗), the mapping t → ∫
Ω

P u(t)Φ belongs to H 1(0, T ) and satisfies

d

dt

∫
Ω

P u(t)Φ =
∫
Ω

P u(t)A∗Φ + 〈
(−Ã)PDg(t),Φ

〉
(D(A∗))′,D(A∗).

Observe that A∗ = A and that〈
(−Ã)PDg(t),Φ

〉
(D(A∗))′,D(A∗) =

∫
g(t)D∗(−A∗)Φ.
Γ
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Due to Lemma A.4, we have∫
Γ

g(t)D∗(−A∗)Φ =
∫
Γ

g(t)

(
−∂Φ

∂n
+ ψn − c(ψ)n

)
,

where ψ ∈ H 1(Ω)/R is determined by

∇ψ = (I − P)�Φ.

Thus the variational equation satisfied by P u is nothing else than

d

dt

∫
Ω

P u(t)Φ =
∫
Ω

P u(t)AΦ +
∫
Γ

g(t)

(
−∂Φ

∂n
+ ψn − c(ψ)n

)
for all Φ ∈ D(A∗). (2.11)

Remark 2.3. If γng = 0 then (I − P)u = 0 and u = P u is only determined by the evolution equation P u′ = ÃP u +
(−Ã)Dg, P u(0) = P u0. If γτ g = 0, P u0 = 0, and γng �= 0, we can ask if P u = 0 or not. Due to Proposition A.1 we
can claim that the answer is negative. Indeed if γτ g = 0 and γng �= 0 then PDg �= 0. We also clarify the contribution
of γng to P u in Proposition 2.2.

Remark 2.4. Notice that in Definition 2.3, we do not require that u(0) = u0, we only impose the initial condi-
tion P u(0) = P u0. Indeed if g ∈ L2(0, T ;V0(Γ )), then (I − P)u = (I − P)Dg belongs to L2(0, T ;V1/2(Ω)),
(I − P)u(0) is not defined, and therefore the initial condition of (I − P)u cannot be defined. On the other hand
if g ∈ Hs(0, T ;V0(Γ )) with s > 1/2, then (I −P)u = (I −P)Dg belongs to Hs(0, T ;V1/2(Ω)), and (I −P)u(0) is
well defined in V1/2(Ω). If (I − P)u(0) = (I − P)u0, then the solution defined in Definition 2.3 satisfies u(0) = u0.
Otherwise we only have P u(0) = P u0. According to Proposition 2.1 the condition (I − P)u0 = (I − P)u(0) is
equivalent to (I − P)(u0 − Dg(0)) = 0 because (I − P)u(0) = (I − P)Dg(0).

Therefore only the datum P u0 is needed to define the weak solutions of Eq. (2.1). When (I − P)Dg(0) is well de-
fined, it is natural to assume that (I −P)u0 = (I −P)Dg(0). This is the reason why throughout what follows, we only
state theorems with assumptions on P u0. The component (I − P)u(0), when it exists, is defined by (I − P)Dg(0),
and only in that case we assume that (I − P)u0 = (I − P)Dg(0).

We are going to prove the main results of this section: Theorems 2.3, 2.5, 2.6, and 2.7.

Theorem 2.3.

(i) For all P u0 ∈ V0
n(Ω) and all g ∈ L2(0, T ;V0(Γ )) Eq. (2.1), admits a unique weak solution in L2(0, T ;V0(Ω))

in the sense of Definition 2.3. This solution obeys

‖P u‖
L2(0,T ;V1/2−ε

n (Ω))
+ ‖P u‖H 1/4−ε/2(0,T ;V0(Ω)) + ∥∥(I − P)u

∥∥
L2(0,T ;V1/2(Ω))

� C
(‖P u0‖V0

n(Ω) + ‖g‖L2(0,T ;V0(Γ ))

)
for all ε > 0.

(ii) If g ∈ Vs,s/2(Σ) with 0 � s � 2, and Ω is of class C3 when 3/2 < s � 2, then∥∥(I − P)u
∥∥

L2(0,T ;Vs+1/2(Ω))
+ ∥∥(I − P)u

∥∥
Hs/2(0,T ;V1/2(Ω))

� C‖g‖Vs,s/2(Σ).

(iii) If Ω is of class C3, g ∈ Vs,s/2(Σ) and P u0 ∈ V0∨(s−1/2)
n (Ω), with 0 � s < 1 and 0∨(s−1/2) = max(0, s−1/2),

then

‖P u‖Vs+1/2−ε,s/2+1/4−ε/2(Q) � C
(‖P u0‖V0∨(s−1/2)

n (Ω)
+ ‖g‖Vs,s/2(Σ)

)
for all ε > 0. (2.12)

(iv) If Ω is of class C3, g ∈ Vs,s/2(Σ), P u0 ∈ Vs−1/2
n (Ω), with 1 < s � 2, and if u0 and g(0) satisfy the compatibility

condition

γ0
(
P

(
u0 − Dg(0)

)) = 0, (2.13)

then the estimate (2.12) is satisfied.
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(v) If Ω is of class C3, g belongs to V1,1(Σ) and P u0 ∈ V1
n(Ω), and if P u0 and g(0) satisfy the compatibility

condition

P
(
u0 − Dg(0)

) ∈ V1
0(Ω),

then u belongs to V2,1(Q) + (L2(0, T ;V3/2(Ω)) ∩ H 1(0, T ;V1/2(Ω))), in particular u belongs to C([0, T ];
V1(Ω)) and

‖u‖C([0,T ];V1(Ω)) � C
(‖P u0‖V1

n(Ω) + ‖g‖V1,1(Σ)

)
.

Remark 2.5. If γng = 0, it is proved in [14, Theorem 2.1] that we can take ε = 0 in estimate (2.12). We would like to
know if we can still take ε = 0 in estimate (2.12) if γng �= 0. This is not at all obvious because the condition γng = 0
plays a crucial role in the calculations in [13,14] (see e.g. identity [13, (A.27)]). We give a complete answer to this
question in Theorems 2.5, 2.6, and 2.7.

The assumption ‘Ω is of class C3’ is needed when we use regularity results for Dg stated in Corollary A.1 for
g ∈ Vs,s/2(Σ) with s > 3/2. Since the results stated in (iii) and (iv) are obtained by interpolation this additional
assumption for Ω is needed in all these cases.

Proof. Step 1. The system

P u′ = ÃP u, P u(0) = 0, and (I − P)u = 0,

admits u = 0 as unique solution. Thus uniqueness of solution to Eq. (2.1) is obvious. Let us prove the existence. Let
us first take g ∈ C1([0, T ];V3/2(Γ )). We have already seen that the function u = w + y, where (w(t),π(t)) is the
solution to (2.7) and (y, q) is the solution to (2.8), is a solution to Eq. (2.1) in the sense of Definition 2.2. Let us show
that u is a solution to Eq. (2.1) in the sense of Definition 2.3. We notice that (I − P)u = (I − P)w = (I − P)Dγng.
For all Φ ∈ D(A), we have

d

dt

∫
Ω

P u(t)Φ = d

dt

∫
Ω

u(t)Φ = d

dt

∫
Ω

w(t)Φ + d

dt

∫
Ω

y(t)Φ

=
∫
Ω

(�y − ∇q + �w − ∇π)Φ =
∫
Ω

(y + w)�Φ −
∫
Γ

g · ∂Φ

∂n

=
∫
Ω

P uAΦ +
∫
Ω

u(I − P)�Φ −
∫
Γ

g · ∂Φ

∂n

=
∫
Ω

P uAΦ +
∫
Ω

u · ∇ψ −
∫
Γ

g · ∂Φ

∂n

=
∫
Ω

P uAΦ +
∫
Γ

g ·
(

−∂Φ

∂n
+ ψn − c(ψ)n

)
,

where ψ ∈ H 1(Ω)/R is defined by

∇ψ = (I − P)�Φ.

According to the weak formulation (2.11), u is a solution to Eq. (2.1) in the sense of Definition 2.3. From the above
calculation it also follows that∫

Ω

P�uΦ =
∫
Ω

�(y + w)Φ = 〈
ÃP u + (−Ã)PDg,Φ

〉
(D(A))′,D(A)

for all Φ ∈ D(A),

that is

P�u = ÃP u + (−Ã)PDg in L2(0, T ; (D(A)
)′)

. (2.14)

Now suppose that g ∈ L2(0, T ;V0(Γ )). Let (gk)k be a sequence in C1([0, T ];V3/2(Γ )) converging to g in
L2(0, T ;V0(Γ )). Let (wk(t),πk(t)) be the solution to Eq. (2.7) corresponding to gk(t), let (yk, qk) be the weak
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solution to Eq. (2.8) corresponding to wk , and set uk = wk + yk . We have already seen that (uk)k converges in
L2(0, T ;V0(Ω)) to the solution u to Eq. (2.1) in the sense of Definition 2.2. Moreover, passing to the limit when
k tends to infinity in the equality (I − P)uk = (I − P)Dγngk , we obtain (I − P)u = (I − P)Dγng. Knowing that
(P uk)k converges to P u in L2(0, T ;V0

n(Ω)), and passing to the limit in the variational formulation

d

dt

∫
Ω

P uk(t)Φ =
∫
Ω

P ukAΦ +
∫
Γ

gk ·
(

−∂Φ

∂n
+ ψn − c(ψ)n

)
,

we can show that P u is the solution of P u′ = ÃP u + (−Ã)PDg, P u = P u0. Thus u is the solution of Eq. (2.1) in
the sense of Definition 2.3.

Step 2. If g ∈ Vs,s/2(Σ) with 0 � s � 2, and if Ω is of class C3 when 3/2 < s � 2, from Corollary A.1 it follows
that ∥∥(I − P)u

∥∥
L2(0,T ;Vs+1/2(Ω))

+ ∥∥(I − P)u
∥∥

Hs/2(0,T ;V1/2(Ω))
� C‖g‖Vs,s/2(Σ).

Step 3. To prove the statements (iii) and (iv) in the theorem, we follow the technique of proof used in [16] for the
heat equation. We have

P u(t) = etAP u0 − A

t∫
0

e(t−s)APDg(s)ds. (2.15)

If g ∈ L2(0, T ;V0(Γ )), then (−A)1/4−ε/4PDg belongs to L2(0, T ;V0
n(Ω)), and∥∥(−A)1/4−ε/2P u(t)

∥∥
V0

n(Ω)

�
∥∥etA(−A)1/4−ε/2P u0

∥∥
V0

n(Ω)
+

t∫
0

∥∥(−A)1−ε/4e(t−s)A
∥∥∥∥(−A)1/4−ε/4PDg(s)

∥∥
V0

n(Ω)
ds

� Ct−1/4+ε/2‖P u0‖V0
n(Ω) +

t∫
0

(t − s)−1+ε/4
∥∥(−A)1/4−ε/4PDg(s)

∥∥
V0

n(Ω)
ds.

From Young’s inequality for convolutions, we deduce that

‖P u‖L2(0,T ;V1/2−ε(Ω)) � C
(‖P u0‖V0(Ω) + ‖g‖L2(0,T ;V0(Γ ))

)
for all ε > 0. (2.16)

Moreover

dP u
dt

= AetAP u0 − APDg(t) − A

t∫
0

Ae(t−s)APDg(s)ds

= −(−A)3/4+ε/2etA(−A)1/4−ε/2P u0 + (−A)3/4+ε/2(−A)1/4−ε/2PDg(t)

+ (−A)3/4+ε/2(−A)1/4−ε/2

t∫
0

Ae(t−s)APDg(s)ds

= (−A)3/4+ε/2[−(−A)1/4−ε/2P u(t) + (−A)1/4−ε/2PDg(t)
]
,

that is

(−A)−3/4−ε/2P u′ = −(−A)1/4−ε/2P u(t) + (−A)1/4−ε/2PDg(t).

Since (−A)1/4−ε/2P u and (−A)1/4−ε/2PDg belong to L2(0, T ;V0
n(Ω)), we deduce that

‖P u′‖L2(0,T ;[D((−A)3/4+ε/2)]′)
� C

(∥∥(−A)1/4−ε/2P u
∥∥

L2(0,T ;V0
n(Ω))

+ ∥∥(−A)1/4−ε/2PDg
∥∥

L2(0,T ;V0
n(Ω))

)
� C

(‖P u‖L2(0,T ;V1/2−ε(Ω)) + ‖g‖L2(0,T ;V0(Γ ))

)
� C

(‖P u0‖V0(Ω) + ‖g‖L2(0,T ;V0(Γ ))

)
, (2.17)
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for all ε > 0. By interpolation between (2.16) and (2.17), we obtain

‖P u‖H 1/4−ε/2(0,T ;V0
n(Ω)) � C

(‖P u0‖V0(Ω) + ‖g‖L2(0,T ;V0(Γ ))

)
, for all ε > 0.

Step 4. Let us show that if g ∈ V2,1(Σ) and if u0 and g(0) obey the compatibility condition

P
(
u0 − Dg(0)

) ∈ V3/2(Ω) ∩ V1
0(Ω),

then P u belongs to V5/2−ε,5/4−ε/2(Q) for all ε > 0. By integration by parts in Eq. (2.15), we have

P u(t) = etA
(
P u0 − PDg(0)

) + PDg(t) −
t∫

0

e(t−s)APDg′(s)ds. (2.18)

Since g ∈ L2(0, T ;V2(Γ )), from Lemma A.1 it follows that PDg ∈ L2(0, T ;V5/2(Ω)). Moreover∥∥∥∥∥(−A)5/4−ε/2

t∫
0

e(t−s)APDg′(s)ds

∥∥∥∥∥
V0

n(Ω)

=
∥∥∥∥∥

t∫
0

(−A)1−ε/4e(t−s)A(−A)1/4−ε/4PDg′(s)ds

∥∥∥∥∥
V0

n(Ω)

� C

t∫
0

(t − s)−1+ε/4
∥∥(−A)1/4−ε/4PDg′(s)

∥∥
V0

n(Ω)
ds.

From Young’s inequality for convolutions it follows that∥∥∥∥∥
(·)∫

0

e(·−s)APDg′(s)ds

∥∥∥∥∥
L2(0,T ;V5/2−ε(Ω))

� C‖g‖V2,1(Σ).

We also have:∥∥(−A)5/4−ε/2etA
(
P u0 − PDg(0)

)∥∥
V0

n(Ω)
� C t−1/2+ε/4

∥∥(−A)3/4−ε/4(P u0 − PDg(0)
)∥∥

V0
n(Ω)

� Ct−1/2+ε/4
∥∥P u0 − PDg(0)

∥∥
V3/2−ε/2(Ω)∩V1

0(Ω)

� Ct−1/2+ε/4(‖P u0‖V3/2(Ω) + ∥∥PDg(0)
∥∥

V3/2(Ω)

)
� Ct−1/2+ε/4(‖P u0‖V3/2(Ω) + ‖g‖V2,1(Σ)

)
.

Thus

‖P u‖L2(0,T ;V5/2−ε(Ω)) � C
(‖P u0‖V3/2(Ω) + ‖g‖V2,1(Σ)

)
, for all ε > 0.

By differentiating (2.18) we obtain

dP u
dt

= AetA
(
P u0 − PDg(0)

) − A

t∫
0

e(t−s)APDg′(s)ds.

Since g′ ∈ L2(0, T ;V0(Γ )), from Step 3 we deduce that A
∫ t

0 e(t−s)APDg′(s)ds belongs to H 1/4−ε/2(0, T ;V0(Ω)).
Moreover, since P(u0 − Dg(0)) ∈ V3/2(Ω) ∩ V1

0(Ω), etA(P u0 − PDg(0)) belongs to

L2(0, T ;V5/2(Ω) ∩ V1
0(Ω)

) ∩ H 5/4(0, T ;V0
n(Ω)

)
.

In particular etA(P u0 − PDg(0)) belongs to H 1/4(0, T ;V2(Ω) ∩ V1
0(Ω)). Thus AetA(P u0 − PDg(0)) belongs to

H 1/4(0, T ;V0
n(Ω)). Therefore dP u

dt
∈ H 1/4−ε/2(0, T ;V0

n(Ω)), and we have

‖P u‖H 5/4−ε/2(0,T ;V0
n(Ω)) � C

(‖P u0‖V3/2(Ω) + ‖g‖V2,1(Σ)

)
, for all ε > 0.

The other estimates of the statements (iii) and (iv) in Theorem 2.3 can be obtained by interpolation.
Step 5. Suppose now that g belongs to V1,1(Σ), P u0 ∈ V1

n(Ω), and that u0 and g(0) satisfy the compatibility
condition P(u0 − Dg(0)) ∈ V1

0(Ω). From Corollary A.1 we deduce that∥∥(I − P)u
∥∥

1 1/2 + ∥∥(I − P)u
∥∥

2 3/2 � C‖g‖V1,1(Σ).
H (0,T ;V (Ω)) L (0,T ;V (Ω))
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Moreover as in Step 3 we have

P u(t) = etA
(
P u0 − PDg(0)

) + PDg(t) −
t∫

0

e(t−s)APDg′(s)ds.

Since P u0 − PDg(0) ∈ V1
0(Ω), etA(P u0 − PDg(0)) belongs to V2,1(Q). Since

g ∈ H 1(0, T ;V0(Γ )
) ∩ L2(0, T ;V1(Γ )

)
,

from Corollary A.1 it follows that PDg belong to

H 1(0, T ;V1/2(Ω)
) ∩ L2(0, T ;V3/2(Ω)

)
.

The term
∫ t

0 e(t−s)APDg′(s)ds belongs to V2,1(Q) because PDg′ belongs to L2(0, T ;V0
n(Ω)) (actually it belongs to

L2(0, T ;V1/2
n (Ω))). It is clear that H 1(0, T ;V1/2(Ω)) ∩ L2(0, T ;V3/2(Ω)) ↪→ C([0, T ];V1(Ω)) and V2,1(Q) ↪→

C([0, T ];V1(Ω)), see [6, Chapter 18, Section 1.3, page 579]. Thus the proof is complete. �
Theorem 2.4. For all g ∈ L2(0, T ;V0(Γ )), the solutions given by Theorems 2.2 and 2.3 coincide.

Proof. The proof is given in the first step in the proof of Theorem 2.3. �
Before ending this subsection we would like to give an equivalent formulation to Eq. (2.9) which allows us to use

regularity results from [14].

Proposition 2.2. Assume that Ω is of class C3, g ∈ V2,1(Σ), P u0 ∈ V1
n(Ω), and P(u0 −Dg(0)) ∈ V1

0(Ω). A function
P u ∈ V2,1(Q) is a weak solution to Eq. (2.9) if and only if the following conditions are satisfied:

(i) P u(0) = P u0. There exists a function π ∈ L2(0, T ;H 1(Ω)) such that

∂P u
∂t

− �P u + ∇π = 0, (2.19)

in the sense of distributions in Q.
(ii) P u satisfies the following boundary condition:

P u|Σ = γτ g − γτ (∇q), (2.20)

where q ∈ L2(0, T ;H 2(Ω)/R) is the solution to the boundary problem

�q(t) = 0 in Ω,
∂q(t)

∂n
= g(t) · n on Γ, for all t ∈ [0, T ]. (2.21)

Proof. First prove (2.19). Let u be the solution of (2.1) and let P u be the solution of (2.9). Due to Theorem 2.3, we
know that P u ∈ V5/2−ε,5/4−ε/2(Q) for all ε > 0, and that (I − P)u ∈ L2(0, T ;V5/2(Ω)) ∩ H 1(0, T ;V1/2(Ω)). Thus
the pressure in (2.1) belongs to L2(0, T ;H 1(Ω)), and we have

∂P u
∂t

− �P u + ∇p = �(I − P)u − ∂(I − P)u
∂t

.

We know that (I − P)u = (I − P)Dg, and from the characterization of (I − P) (see [25]), it follows that
(I − P)Dg = ∇q , where q is the solution of (2.21). Since g ∈ V2,1(Σ), the function q belongs to H 1(0, T ;
H 3/2(Ω)) ∩ L2(0, T ;H 3(Ω)) (we have only assumed that Ω is of class C3, and we cannot hope to have a bet-
ter regularity than H 3(Ω) even if the Neumann condition is in H 2(Γ ), see [26]). Thus �q ∈ L2(0, T ;H 1(Ω))

and ∂q
∂t

∈ L2(0, T ;H 3/2(Ω)). Since �∇q = ∇�q in the sense of distributions in Q, Eq. (2.19) is established with

π = p − �q + ∂q
∂t

.
To prove (2.20), we observe that

P u|Σ = u|Σ − (I − P)u|Σ = g − (I − P)Dg|Σ,
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and that (I − P)Dg = ∇q , where q is the solution of (2.21). Therefore (2.20) is proved because g(t) − γ0(∇q(t)) =
γτ g(t) − γτ (∇q(t)).

Now we assume that P u ∈ V2,1(Q) obeys the statements (i) and (ii) of the proposition. For all Φ ∈ V2(Ω)∩V1
0(Ω),

we have

d

dt

∫
Ω

P u(t)Φ =
∫
Ω

�P u(t)Φ =
∫
Ω

u(t)AΦ −
∫
Γ

(
γτ g(t) − γτ

(∇q(t)
)) · ∂Φ

∂n
.

Introducing the function ψ ∈ H 1(Ω)/R defined by ∇ψ = (I − P)�Φ , we obtain∫
Γ

γτ

(∇q(t)
) · ∂Φ

∂n
=

∫
Ω

�Φ · ∇q(t) =
∫
Ω

(
(I − P)�Φ

) · ∇q(t) =
∫
Ω

∇ψ · ∇q(t) =
∫
Γ

ψg(t) · n.

The first equality comes from the fact that ∂Φ
∂n · n = 0 and that

∫
Ω

�∇q(t) = 0. Thus, if P u obeys conditions (i) and
(ii) in the proposition, then P u is the weak solution to Eq. (2.9) (see (2.11)). �
Proposition 2.3. Assume that g ∈ Vs,s/2(Σ) and P u0 ∈ Vs−1/2

n (Ω) for some s > 1. Let q be the solution of (2.21).
The compatibility condition

γτ g(0) − γτ∇q(0) = γ0P u0, (2.22)

is equivalent to (2.13).

Proof. We have

γ0PDg(0) = γ0Dg(0) − γ0
(
(I − P)Dg(0)

) = γ0g(0) − γ0∇q(0) = γτ g(0) − γτ∇q(0),

which proves that (2.13) and (2.22) are equivalent. �
Proposition 2.4. There exists a constant C > 0 such that∥∥γτ (∇q)

∥∥
Vs (Γ )

� C‖g‖Vs (Γ ) for all s ∈ ]0,3], and all g ∈ Vs(Γ ),

where q is the solution of Eq. (2.21), and∥∥∇τ (γ0q)
∥∥

V0(Γ )
� C‖g‖V0(Γ ) for all g ∈ V0(Γ ),

where ∇τ denotes the tangential gradient operator. In the above statements we assume that

Ω is of class C3 if 0 � s � 3/2,

Ω is of class C4 if 3/2 < s � 5/2, (2.23)

and Ω is of class C5 if 5/2 < s � 3.

Proof. If g ∈ Vs(Γ ) and s ∈ ]0,3], we know that q ∈ Hs+3/2(Ω), ∇q ∈ Hs+1/2(Ω), and γ0(∇q) ∈ Hs(Γ ), which
provides the estimate of the proposition in the case when s > 0. For s = 0, we have γ0q ∈ H 1(Γ ), and ∇τ (γ0q) ∈
V0(Γ ). The proof is complete. �
Remark 2.6. Since we use regularity results for the auxiliary problem (2.21), we need that Ω satisfies (2.23) (see [26,
Exercise 3.11]). From Proposition 2.2 and a density argument it follows that the system (2.19)–(2.20) is equivalent to

P u′ = ÃP u + (−Ã)D
(
γτ g − γτ (∇q)

)
, P u(0) = P u0,

if g ∈ L2(0, T ;Vs(Γ )) and s > 0, and to

P u′ = ÃP u + (−Ã)D
(
γτ g − ∇τ (γ0q)

)
, P u(0) = P u0,

if g ∈ L2(0, T ;V0(Γ )).
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Theorem 2.5. Assume that g ∈ Vs,s/2(Σ), P u0 ∈ Vs−1/2
n (Ω), with 3/2 � s < 3, and Ω satisfies (2.23). If u0 and g(0)

satisfy the compatibility condition (2.22), then the solution P u to Eq. (2.9) satisfies the estimate

‖P u‖Vs+1/2,s/2+1/4(Q) � C
(‖P u0‖Vs−1/2

n (Ω)
+ ‖g‖Vs,s/2(Σ)

)
. (2.24)

Proof. By a density argument, it is sufficient to prove estimate (2.24) when g ∈ Vs,s/2(Σ) ∩ V2,1(Σ). In this way we
can use Proposition 2.2. With Proposition 2.4, we can show that∥∥γτ (∇q)

∥∥
Vs,s/2(Σ)

� C‖g‖Vs,s/2(Σ) for all s ∈ ]0,3], and all g ∈ Vs,s/2(Σ),

where q is the solution of Eq. (2.21). Thus, the theorem is a direct consequence of the above estimate, of Propo-
sition 2.2, and of known regularity results for the instationary Stokes equations with nonhomogeneous boundary
conditions [24]. �
Theorem 2.6. Assume that Ω is of class C3, g ∈ Vs,s/2(Σ), and P u0 ∈ V0∨(s−1/2)

n (Ω), with s ∈ [0,1[. Then the
solution P u to Eq. (2.9) satisfies the estimate

‖P u‖Vs+1/2,s/2+1/4(Q) � C
(‖P u0‖V0∨(s−1/2)

n (Ω)
+ ‖g‖Vs,s/2(Σ)

)
. (2.25)

Proof. By a density argument, it is sufficient to prove estimate (2.25) in the case when g ∈ V2,1(Σ) and g(0) and P u0
satisfy γ0(PDg(0) − P u0) = 0. If g ∈ V2,1(Σ), with Proposition 2.4 we can show that∥∥γτ (∇q)

∥∥
Vs,s/2(Σ)

� C‖g‖Vs,s/2(Σ) for all s ∈ [0,1[,
where q is the solution of Eq. (2.21). (For s = 0, we have to observe that ∇τ (γ0q) = γτ (∇q).) Thus estimate (2.25)
follows from Proposition 2.2, and from [14, Theorem 2.1] in the case where 0 � s < 1. �
Theorem 2.7. Assume that g ∈ Vs,s/2(Σ), P u0 ∈ V0∨(s−1/2)

n (Ω), with s ∈ [0,1[ ∩ ]1,3[, and Ω satisfies (2.23). If u0
and g(0) satisfy the compatibility condition (2.13) when 1 < s < 3, then

‖P u‖Vs+1/2,s/2+1/4(Q) � C
(‖P u0‖V0∨(s−1/2)

n (Ω)
+ ‖g‖Vs,s/2(Σ)

)
. (2.26)

Proof. Estimate (2.26) is already proved for s ∈ [0,1[ and s ∈ [3/2,3[. For s ∈ ]1,3/2[, it is obtained by interpolation
between the regularity results stated in Theorems 2.5 and 2.6. �
Remark 2.7. In Theorems 2.5 and 2.7, for s = 2, we have to assume that Ω is of class C4 (because we make use
of Proposition 2.2), while in Theorem 2.3(iv) we only assume that Ω is of class C3. Actually, combining the results
stated in Theorem 2.6 for s = 0 with arguments in Step 4 of the proof of Theorem 2.3, we can show that (2.26) is still
true when Ω is of class C3.

Corollary 2.1. Assume that Ω is of class C3. If g belongs to V3/4,3/4(Σ), if P u0 ∈ V3/4
n (Ω), and if P u0 = PDg(0),

then

‖P u‖V5/4,5/8(Q) + ∥∥(I − P)u
∥∥

L2(0,T ;V5/4(Ω))∩H 3/4(0,T ;V1/2(Ω))
+ ‖u‖C([0,T ];V3/4(Ω))

� C
(‖P u0‖V3/4

n (Ω)
+ ‖g‖V3/4,3/4(Σ)

)
. (2.27)

Proof. From Theorem 2.6 with s = 3/4, it follows that

‖P u‖V5/4,5/8(Q) � C
(‖P u0‖V1/4

n (Ω)
+ ‖g‖V3/4,3/8(Σ)

)
.

It is clear that (I − P)u belongs to

L2(0, T ;V5/4(Ω)
) ∩ H 3/4(0, T ;V1/2(Ω)

)
↪→ C

([0, T ];V3/4(Ω)
)
.

Moreover P u ∈ C([0, T ];V3/4
n (Ω)). Indeed, if g ∈ V0,0(Σ) and P u0 ∈ V0

n(Ω), then P u ∈ V1/2,1/4(Q). If
g ∈ V1,1(Σ) and P u0 = PDg(0), then
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P u(t) = PDg(t) −
t∫

0

e(t−s)APDg′(s)ds,

t∫
0

e(t−s)APDg′(s)ds ∈ L2(0, T ;V2(Ω)
) ∩ H 1(0, T ;V1/4(Ω)

)
↪→ H 2/3(0, T ;V5/6(Ω)

)
,

PDg ∈ L2(0, T ;V3/2(Ω)
) ∩ H 1(0, T ;V1/2(Ω)

)
↪→ H 2/3(0, T ;V5/6(Ω)

)
.

By interpolation we obtain that P u ∈ C([0, T ];V3/4
n (Ω)) when the assumptions of the corollary are satisfied. The

proof is complete. �
3. Other regularity results

In the previous section we have seen that, for all s ∈ [0,3[ with s �= 1, if g belongs to Vs,s/2(Σ), P u0 ∈
V0∨(s−1/2)

n (Ω), and if γ0(P u0 − PDg(0)) = 0 when s > 1, then

‖P u‖Vs+1/2,s/2+1/4(Q) � C
(‖P u0‖V0∨(s−1/2)

n (Ω)
+ ‖g‖Vs,s/2(Σ)

)
.

This result generalizes to the Stokes equations the type of regularity results known for the nonhomogeneous heat
equation. We would like to obtain regularity results different from the ones stated in Theorems 2.3 and 2.7, still in
the case where γng �= 0. From [8] or from Theorem 2.3, we know that the condition g ∈ V3/2,3/4(Σ) is not suffi-
cient to guarantee that u belongs to V2,1(Q) if γng �= 0. The regularity of the normal trace of g must be better than
what is needed for the tangential component. We show below that the regularity u ∈ Vs,s/2(Q) can be obtained if
g ∈ L2(0, T ;Vs−1/2(Γ )) ∩ Hs/2(0, T ;V−1/2(Γ )). At the end of the section, we compare our result with the corre-
sponding one in [8] in the case when γng = g.

Theorem 3.1. For all s ∈ [0,2] with s �= 3
2 , all P u0 ∈ [V−1(Ω),V1

n(Ω)]s/2, and all g ∈ L2(0, T ;Vs−1/2(Γ )) ∩
Hs/2(0, T ;V−1/2(Γ )) satisfying γ0(P u0 − PDg(0)) = 0 if s > 3/2, Eq. (2.1), admits a unique weak solution in
L2(0, T ;V0(Ω)) in the sense of Definition 2.3. This solution obeys

‖P u‖Vs,s/2(Q) + ‖P u‖H 1(0,T ;[(D(A∗))′,V0
n(Ω)]s/2)

� C
(‖P u0‖[V−1(Ω),V1

n(Ω)]s/2
+ ‖g‖L2(0,T ;Vs−1/2(Γ ))∩Hs/2(0,T ;V−1/2(Γ ))

)
,∥∥(I − P)u

∥∥
Vs,s/2(Q)

� C‖g‖L2(0,T ;Vs−1/2(Γ ))∩Hs/2(0,T ;V−1/2(Γ )).

Lemma 3.1. For all P u0 ∈ V−1(Ω), and all g ∈ L2(0, T ;V−1/2(Γ )), Eq. (2.1) admits a unique weak solution in
L2(0, T ;V0(Ω)) in the sense of Definition 2.3. This solution obeys

‖P u‖L2(0,T ;V0(Ω)) + ‖P u‖H 1(0,T ;(D(A∗))′) � C
(‖P u0‖V−1(Ω) + ‖g‖L2(0,T ;V−1/2(Γ ))

)
,∥∥(I − P)u

∥∥
L2(0,T ;V0(Ω))

� C‖g‖L2(0,T ;V−1/2(Γ )).

Proof. If g belongs to L2(0, T ;V−1/2(Γ )), then PDg belongs to L2(0, T ;V0
n(Ω)) (see Corollary A.1), (−Ã)PDg

belongs to L2(0, T ; (D(A∗))′), and we have∥∥(−Ã)PDg
∥∥

L2(0,T ;(D(A∗))′) � C‖PDg‖L2(0,T ;V0
n(Ω)) � C‖g‖L2(0,T ;V−1/2(Γ )).

Due to [4, Chapter 3, Theorem 2.2], the equation

P u′ = ÃP u + (−Ã)PDg, P u(0) = P u0,

admits a unique solution in L2(0, T ;V0
n(Ω)) ∩ H 1(0, T ; (D(A∗))′) and

‖P u‖L2(0,T ;V0
n(Ω)) + ‖P u‖H 1(0,T ;(D(A∗))′) � C

(‖P u0‖V−1(Ω) + ∥∥(−Ã)PDg
∥∥

L2(0,T ;(D(A∗))′)
)

� C
(‖P u0‖V−1(Ω) + ‖g‖L2(0,T ;V−1/2(Γ ))

)
. �
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Lemma 3.2. For all P u0 ∈ V1
n(Ω), and all g ∈ L2(0, T ;V3/2(Γ ))∩H 1(0, T ;V−1/2(Γ )) satisfying P(u0 −Dg(0)) ∈

V1
0(Ω), Eq. (2.1) admits a unique weak solution in L2(0, T ;V0

n(Ω)) in the sense of Definition 2.3. This solution obeys

‖u‖V2,1(Q) � C
(‖P u0‖V1

n(Ω) + ‖g‖L2(0,T ;V3/2(Γ ))∩H 1(0,T ;V−1/2(Γ ))

)
.

Proof. Let g be in L2(0, T ;V3/2(Γ )) ∩ H 1(0, T ;V−1/2(Γ )), and set (w(t),π(t)) = (Dg(t),Dpg(t)). It is clear that
(w,π) ∈ V2,1(Q) × L2(0, T ;H 1(Ω)/R) (see Corollary A.1), and that

‖w‖V2,1(Q) � C‖g‖L2(0,T ;V3/2(Γ ))∩H 1(0,T ;V−1/2(Γ )).

Let (y, q) be the weak solution in W(0, T ;V1
0(Ω),V−1(Ω)) × L2(0, T ;L2(Ω)/R) to the equation

∂y
∂t

− �y + ∇q = −∂w
∂t

, div y = 0 in Q,

y = 0 on Σ, y(0) = P
(
u0 − w(0)

)
in Ω.

(3.1)

We know that

‖y‖V2,1(Q) � C
(∥∥P

(
u0 − w(0)

)∥∥
V1

0(Ω)
+ ‖ − P w′‖L2(0,T ;V0

n(Ω))

)
� C

(‖P u0‖V1
n(Ω) + ‖w‖C([0,T ];V1(Ω)) + ‖g‖L2(0,T ;V3/2(Γ ))∩H 1(0,T ;V−1/2(Γ ))

)
� C

(‖P u0‖V1
n(Ω) + ‖g‖L2(0,T ;V3/2(Γ ))∩H 1(0,T ;V−1/2(Γ ))

)
.

Since u = w + y is a solution to Eq. (2.1) in the sense of Definition 2.3. The proof is complete. �
Remark 3.1. As mentioned in Remark 2.2, Lemma 3.1 is already stated in [7, Theorem 4]. We have given a short
proof for the convenience of the reader. Observe that Lemma 3.2 is not a consequence of [7, Corollary 5] since we do
not assume that u0 ∈ H2(Ω).

Proof of Theorem 3.1. The result stated in Theorem 3.1 can be derived by interpolation from Lemmas 3.1 and 3.2.
Indeed we have (see [12]):[

L2(0, T ;V−1/2(Γ )
)
,L2(0, T ;V3/2(Γ )

) ∩ H 1(0, T ;V−1/2(Γ )
)]

s/2

= L2(0, T ;Vs−1/2(Γ )
) ∩ Hs/2(0, T ;V−1/2(Γ )

)
,[

H 1(0, T ; (D(A∗)
)′)

,H 1(0, T ;V0
n(Ω)

)]
s/2 = H 1(0, T ; [(D(A∗)

)′
,V0

n(Ω)
]
s/2

)
,

and [
L2(0, T ;V0(Ω)

)
,V2,1(Q)

]
s/2 = Vs,s/2(Q),

for all s ∈ [0,2]. �
Before ending this section, we would like to compare the result stated in Theorem 3.1 with the one in

[8, Theorem 6.1], in the case when g = γng. Observe that the trace theorems proved in [8] are obtained when Ω

is bounded or unbounded, but the regularity result in [8, Theorem 6.1] is stated for a bounded domain. More-
over when γng = 0, P u = u, and due to Theorem 2.7, it is sufficient to take γτ g ∈ Vs−1/2,s/2−1/4(Σ) to have
u ∈ Vs,s/2(Q). This means that the result stated in Theorem 3.1 is not optimal with respect to the tangential reg-
ularity needed for g. Now let us consider the case when g = γng. First of all, observe that only the case where
s � 1 is studied in [8]. For s = 2 the result stated in Lemma 3.2 – when γτ g = 0 – is exactly the one corre-
sponding to s = 2 in [8, Theorem 6.1]. For s = 1, we obtain u ∈ V1,1/2(Q) and P u ∈ W(0, T ;V1(Ω),V−1(Ω))

if g = γng belongs to L2(0, T ;V1/2(Γ )) ∩ H 1/2(0, T ;V−1/2(Γ )). The corresponding result stated in [8, Theorem
6.1] for s = 1 is different. It is assumed there that g = γng belongs to L2(0, T ;V1/2(Γ )) ∩ H 3/4(0, T ;V−1(Γ )) ⊂
L2(0, T ;V1/2(Γ )) ∩ H 1/2(0, T ;V−1/2(Γ )). Thus the assumption in [8, Theorem 6.1] for s = 1 is stronger than ours.
But the solution is obtained in V(1)(Q) which is strictly smaller than W(0, T ;V1(Ω),V−1(Ω)). Therefore the two
results cannot be completely compared. Observe that in Theorem 3.1 we also state results in the case when s ∈ [0,1[
which is not considered in [8, Theorem 6.1].
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4. Oseen equation

4.1. Linearized Navier–Stokes equations around a stationary state

In this section, we want to extend the results of Section 2 to the equation

∂u
∂t

− �u + (z · ∇)u + (u · ∇)z + ∇p = 0, div u = 0 in Q,

u = g on Σ, u(0) = u0 in Ω,

(4.1)

where z belongs to V1(Ω).
To study Eq. (4.1) we introduce the unbounded operators Az and A∗

z in V0
n(Ω) defined by

D(Az) = {
u ∈ V1

0(Ω) | P�u − P
(
(z · ∇)u

) − P
(
(u · ∇)z

) ∈ V0
n(Ω)

}
,

D(A∗
z) = {

u ∈ V1
0(Ω) | P�u + P

(
(z · ∇)u

) − P
(
(∇z)Tu

) ∈ V0
n(Ω)

}
,

Azu = P�u − P
(
(z · ∇)u

) − P
(
(u · ∇)z

)
and A∗

zu = P�u + P
(
(z · ∇)u

) − P
(
(∇z)Tu

)
.

Throughout this section we assume that λ0 > 0 is such that∫
Ω

(
λ0|u|2 + |∇u|2 + (

(z · ∇)u
) · u + (

(u · ∇)z
) · u

)
dx � 1

2

∫
Ω

(|u|2 + |∇u|2)dx and

∫
Ω

(
λ0|u|2 + |∇u|2 − (

(z · ∇)u
) · u + (

(∇z)Tu
) · u

)
dx � 1

2

∫
Ω

(|u|2 + |∇u|2)dx

(4.2)

for all u ∈ V1
0(Ω).

Lemma 4.1. The operator (Az − λ0I ) (respectively (A∗
z − λ0I )) with domain D(Az − λ0I ) = D(Az) (respectively

D(A∗
z − λ0I ) = D(A∗

z)) is the infinitesimal generator of a bounded analytic semigroup on V0
n(Ω). Moreover, for all

0 � α � 1, we have

D
(
(λ0I − Az)

α
) = D

(
(λ0I − A∗

z)
α
) = D

(
(λ0I − A)α

) = D
(
(−A)α

)
.

Proof. The first part of the theorem is a direct consequence of (4.2) (see e.g. [4, Chapter 1, Theorem 1.12]). The
characterization of the domains of (λ0I − Az)

α and (λ0I − A∗
z)

α follows from [17]. �
Let us denote by Ãz the extension of Az to (D(A∗

z))
′ = (D(A∗))′. Following what is done for the Stokes equations,

we introduce the Dirichlet operators associated with λ0I − Az. For all g ∈ V0(Γ ), we denote by Dzg = w, and
Dp,zg = π the solution to the equation

λ0w − �w + (z · ∇)w + (w · ∇)z + ∇π = 0 and div w = 0 in Ω, w = g on Γ.

Following what has been done for the Stokes equations, when g ∈ C1
c (]0, T [;V3/2(Γ )), we look for the solution (u,p)

of Eq. (4.1) in the form (u,p) = (w,π) + (y, q), where (w(t),π(t)) = (Dzg(t),Dp,zg(t)), and (y, q) is the solution
of

∂y
∂t

− �y + (z · ∇)y + (y · ∇)z + ∇q = −∂w
∂t

+ λ0w, div y = 0 in Q,

y = 0 on Σ, y(0) = u0 in Ω.

We have

y(t) = etAzP u0 −
t∫

0

e(t−s)AzP w′(s)ds + λ0

t∫
0

e(t−s)AzP w(s)ds

= etAzP u0 + (λ0I − Az)

t∫
e(t−s)AzP w(s)ds − P w(t).
0
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Thus P u is defined by

P u(t) = etAzP u0 +
t∫

0

(λ0I − Az)e
(t−s)AzP w(s)ds.

This leads to the following definition.

Definition 4.1. A function u ∈ L2(0, T ;V0(Ω)) is a weak solution to Eq. (4.1) if

P u is a weak solution of evolution equation

P u′ = ÃzP u + (λ0I − Ãz)PDzg, P u(0) = P u0, (4.3)

and

(I − P)u(·) = (I − P)Dzγng(·) in L2(0, T ;V0(Ω)
)
.

As in Section 2, we can establish the following theorem.

Theorem 4.1.

(i) We assume that z ∈ V1(Ω). For all P u0 ∈ V0
n(Ω) and all g ∈ L2(0, T ;V0(Γ )) Eq. (4.1), admits a unique weak

solution in L2(0, T ;V0(Ω)) in the sense of Definition 4.1. This solution obeys

‖P u‖
L2(0,T ;V1/2−ε

n (Ω))
+ ‖P u‖H 1/4−ε/2(0,T ;V0

n(Ω)) + ∥∥(I − P)u
∥∥

L2(0,T ;V1/2(Ω))

� C
(‖P u0‖V0

n(Ω) + ‖g‖L2(0,T ;V0(Γ ))

)
for all ε > 0.

(ii) If g ∈ Vs,s/2(Σ) with 0 � s � 2, and if Ω is of class C3 when 3/2 < s � 2, then∥∥(I − P)u
∥∥

L2(0,T ;Vs+1/2(Ω))
+ ∥∥(I − P)u

∥∥
Hs/2(0,T ;V1/2(Ω))

� C‖g‖Vs,s/2(Σ). (4.4)

(iii) If Ω satisfies (2.23), z ∈ V3/2∨(s−1/2)(Ω), g ∈ Vs,s/2(Σ), P u0 ∈ V0∨(s−1/2)
n (Ω), with s ∈ [0,1[ ∪ ]1,3[, and if

P u0 and g(0) satisfy the compatibility condition (2.13) when 1 < s < 3, then

‖P u‖Vs+1/2,s/2+1/4(Q) � C
(‖P u0‖V0∨(s−1/2)

n (Ω)
+ ‖g‖Vs,s/2(Σ)

)
. (4.5)

Proof. To prove the estimate stated in (i), thanks to Lemma 4.1, it is sufficient to replace A, etA, and D by Az,
etAz , and Dz in the proof of Theorem 2.3. To prove (ii), we notice that (I − P)(Dzγng − Dγng) = 0. Indeed if
w = Dzγng and v = Dγng, then w − v ∈ V0

n(Ω) and (I − P)(w − v) = 0. We postpone the end of proof at the end of
the section. �

Now we would like to show that u ∈ L2(0, T ;V0(Ω)) is a weak solution to Eq. (4.1) if and only if

P u is a weak solution of the evolution equation

P u′ = ÃP u + (−Ã)PDg + P
(
div(z ⊗ u)

) + P
(
div(u ⊗ z)

)
, P u(0) = P u0, (4.6)

and

(I − P)u(·) = (I − P)Dγng(·) in L2(0, T ;V0(Ω)
)
. (4.7)

We have already noticed that (I −P)(Dzγng−Dγng) = 0. Moreover if u ∈ L2(0, T ;V0(Ω)), then z⊗u and u⊗ z
belong to (L2(0, T ; (L3/2(Ω))N). Thus P(div(z ⊗ u)) + P(div(u ⊗ z)) is well defined in L2(0, T ; (D(A∗))′) by〈

P
(
div(z ⊗ u)

) + P
(
div(u ⊗ z)

)
,Φ

〉
L2(0,T ;(D(A∗))′),L2(0,T ;D(A∗))

= −
∫ (

(u ⊗ z) + (z ⊗ u)
) · ∇Φ dx dt for all Φ ∈ L2(0, T ;D(A∗)

)
.

Q
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Therefore weak solutions to problem (4.6) may be defined as weak solutions in L2(0, T ; (D(A∗))′). To prove that
weak solutions to Eqs. (4.3) and (4.6) are identical, we first study Eq. (4.6).

Proposition 4.1. For all P u0 ∈ V0
n(Ω) and all g ∈ L2(0, T ;V0(Γ )) the problem (4.6), admits a unique weak solution

P u in L2(0, T ;V0
n(Ω)) and it satisfies

‖P u‖L2(0,T ;V0
n(Ω)) � C

(‖P u0‖V0
n(Ω) + ‖g‖L2(0,T ;V0(Γ ))

)
.

Proof. For all v ∈ L2(0, T ;V0
n(Ω)), z ⊗ v and v ⊗ z belong to L2(0, T ; (L3/2(Ω))N) because z ∈ V1(Ω). Thus, if

v ∈ L2(0, T ;V0
n(Ω)), the evolution equation

y′ = Ãy + (−Ã)PDg + P
(
div

(
z ⊗ (

(I − P)Dγng
))) + P

(
div

((
(I − P)Dγng

) ⊗ z
))

+ P
(
div(z ⊗ v)

) + P
(
div(v ⊗ z)

)
,

P u(0) = P u0,

admits a unique solution yv in L2(0, T ;V0
n(Ω)). More precisely we can show that

‖yv‖L2(0,T ∗;V0
n(Ω)) � C

(‖z ⊗ v + v ⊗ z‖Lσ (0,T ∗;(L3/2(Ω))N ) + ‖g‖L2(0,T ∗;V0(Γ )) + ‖P u0‖V0
n(Ω)

)
,

for some 1 < σ < 2, and for all 0 < T ∗ � T , where C is independent of T ∗. Therefore, as in [21, Proposition 2.7] we
can show that for T ∗ > 0 small enough, the mapping

v −→ yv

is a contraction in L2(0, T ∗;V0
n(Ω)). Thus we have proved the existence of a unique local solution to Eq. (4.6). As

in [21] we can iterate this process to prove the existence of a unique global in time solution in L2(0, T ;V0(Ω)) to
Eq. (4.6). The estimate of P u in L2(0, T ;V0

n(Ω)) can be derived as in [21]. The estimate for (I −P)u = (I −P)Dγng
follows from the continuity of the operator (I − P)Dγn. The proof is complete. �
Theorem 4.2. A function u ∈ L2(0, T ;V0(Ω)) is a weak solution to Eq. (4.1), in the sense of Definition 4.1, if and
only if u is the weak solution to problem (4.6)–(4.7).

Proof. This equivalence can be easily shown in the case when u0 ∈ V1
0(Ω) and g ∈ C1

c (0, T ;V3/2(Γ )). Due to the
estimates in Proposition 4.1 and in Theorem 4.1(i), the equivalence follows from a density argument.

End of proof of Theorem 4.1. To prove the estimate stated in (iii), we write Eq. (4.1) in the form

P u′ = ÃP u + (−Ã)PDg + P
(
div

(
z ⊗ (

(I − P)Dγng
))) + P

(
div

((
(I − P)Dγng

) ⊗ z
))

+ P
(
div

(
z ⊗ P u)

) + P
(
div(P u ⊗ z)

)
,

P u(0) = P u0, (I − P)u = (I − P)Dγng,

and we are going to use a fixed point method as in the proof of Proposition 4.1.
Step 1. Let us prove (4.5) for 0 � s < 1. For v ∈ L2(0, T ;Vs+1/2

n (Ω)) ∩ Hs/2+1/4(0, T ;V0
n(Ω)), we denote by

P yv the solution to the equation

P y′ = ÃP y + (−Ã)PDg + P
(
div

(
z ⊗ (

(I − P)Dγng
))) + P

(
div

((
(I − P)Dγng

) ⊗ z
))

+ P
(
div(z ⊗ v)

) + P
(
div(v ⊗ z)

)
, P u(0) = P u0.

We have to prove that the mapping v → P yv is a contraction in L2(0, T ∗;Vs+1/2
n (Ω)) ∩ Hs/2+1/4(0, T ∗;V0

n(Ω)) for

T ∗ > 0 small enough. For that we have to verify that if v belongs to L2(0, T ∗;Vs+1/2
n (Ω))∩Hs/2+1/4(0, T ∗;V0

n(Ω)),
then the two terms v ⊗ z and z ⊗ v belong to Hε(0, T ∗;H(s−1/2)∨0(Ω)) ∩ H(s/2−1/4+ε)∨ε(0, T ∗;L2(Ω)) for some
ε > 0. This can be easily verified since z ∈ V3/2(Ω). Thus from classical results for the Stokes equations with ho-
mogeneous boundary conditions, and from Theorem 2.7 (to deal with the nonhomogeneous boundary condition), we
obtain the estimate
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‖P yv‖Vs+1/2,s/2+1/4(Ω×(0,T ∗)) � C
(‖z ⊗ v + v ⊗ z‖Hε(0,T ∗;H(s−1/2)∨0(Ω))∩H(s/2−1/4+ε)∨ε(0,T ∗;L2(Ω))

+ ‖g‖Vs,s/2(Γ ×(0,T ∗)) + ‖P u0‖V0∨(s−1/2)
n (Ω)

)
,

where C > 0 is independent of T ∗. Thus we can show that the mapping v → P yv is a contraction in

L2(0, T ∗;Vs+1/2
n (Ω)

) ∩ Hs/2+1/4(0, T ∗;V0
n(Ω)

)
for T ∗ > 0 small enough. Next the estimate (4.5) can be obtained as in the proof of Proposition 4.1.

Step 2. Let us prove (4.5) for 1 < s < 3. Since z belongs to V3/2∨(s−1/2)(Ω), div(((I − P)Dγng) ⊗ z) and
div(z ⊗ ((I − P)Dγng)) belong to L2(0, T ;Hs−1/2(Ω)) ∩ Hs/2−1/4(0, T ;L2(Ω)). The solution of the Stokes
equation with a source term in L2(0, T ;Hs−1/2(Ω)) ∩ Hs/2−1/4(0, T ;L2(Ω)), belongs to L2(0, T ;Vs+3/2

n (Ω)) ∩
Hs/2+3/4(0, T ;V0

n(Ω)) ⊂ L2(0, T ;Vs+1/2
n (Ω)) ∩ Hs/2+1/4(0, T ;V0

n(Ω)). Therefore these nonhomogeneous terms

do not cause any difficulty. Similarly if v belongs to L2(0, T ∗;Vs+1/2
n (Ω)) ∩ Hs/2+1/4(0, T ∗;V0

n(Ω)), we can easily
check that P(div(z ⊗ v)) + P(div(v ⊗ z)) belongs to Hε(0, T ∗;Vs−1/2(Ω)) ∩ Hs/2−1/4+ε(0, T ∗;V0(Ω)) for some
ε > 0. Thus as in Step 1, we can conclude with a fixed point method. �
4.2. Linearized Navier–Stokes equations around an instationary state

In this section, we want to study the linearized Navier–Stokes equations around an instationary state z, with homo-
geneous boundary conditions:

∂u
∂t

− �u + (z · ∇)u + (u · ∇)z + ∇p = f, div u = 0 in Q,

u = 0 on Σ, u(0) = u0 in Ω,

(4.8)

in the case where z belongs to L2(0, T ;V1(Ω)) ∩ L∞(0, T ;L4(Ω)), and f belongs to L2(0, T ;H−1(Ω)).
For almost all t ∈ (0, T ), we define the operators Az(t) ∈ L(V1

0(Ω),V−1(Ω)) and A∗
z(t) ∈L(V1

0(Ω),V−1(Ω)) by

〈
Az(t)u,v

〉
V−1(Ω),V1

0(Ω)
=

∫
Ω

(−∇u · ∇v − ((
z(t) · ∇)

u
) · v + (

(u · ∇)v
) · z(t)

)
dx,

〈
A∗

z(t)u,v
〉
V−1(Ω),V1

0(Ω)
=

∫
Ω

(−∇u · ∇v + ((
z(t) · ∇)

u
) · v + (

(v · ∇)u
) · z(t)

)
dx,

for all u ∈ V1
0(Ω) and all v ∈ V1

0(Ω).
Let us still denote by P the continuous extension to H−1(Ω) of the Helmholtz projector, that is the bounded

operator from H−1(Ω) onto V−1(Ω) defined by 〈P f,Φ〉V−1(Ω),V1
0(Ω) = 〈f,Φ〉H−1(Ω),H1

0(Ω) for all f ∈ H−1(Ω), and

all Φ ∈ V1
0(Ω) (see e.g. [27, page xxiii] or [3, Appendix A.1]). Eq. (4.8) can be rewritten in the form

u′ = Az(t)u + P f, u(0) = u0.

Lemma 4.2. Assume that z belongs to L2(0, T ;V1(Ω)) ∩ L∞(0, T ;L4(Ω)). There exist λ0 > 0 and M > 0 such that∣∣〈Az(t)u,v
〉
V−1(Ω),V1

0(Ω)

∣∣ � M‖u‖V1
0(Ω)‖v‖V1

0(Ω)

and 〈
λ0u − Az(t)u,u

〉
V−1(Ω),V1

0(Ω)
� 1

2
‖u‖2

V1
0(Ω)

,

for all u ∈ V1
0(Ω), all v ∈ V1

0(Ω) and almost all t ∈ (0, T ).

Proof. For all u ∈ V1(Ω), almost all t ∈ (0, T ), and λ0 > 0, we have:
0
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〈
λ0u − Az(t)u,u

〉
V−1(Ω),V1

0(Ω)
=

∫
Ω

(
λ0|u|2 + |∇u|2 + ((

z(t) · ∇)
u
) · u − (

(u · ∇)u
) · z(t)

)
dx

=
∫
Ω

(
λ0|u|2 + |∇u|2 − (

(u · ∇)u
) · z(t)

)
dx

�
∫
Ω

(
λ0|u|2 + |∇u|2)dx − ‖u‖L4(Ω)‖u‖V1

0(Ω)‖z‖L∞(0,T ;L4(Ω))

�
∫
Ω

(
λ0|u|2 + |∇u|2)dx − C‖u‖1/4

V0
n(Ω)

‖u‖7/4
V1

0(Ω)
‖z‖L∞(0,T ;L4(Ω))

�
∫
Ω

(
λ0|u|2 + |∇u|2)dx − 1

2
‖u‖2

V1
0(Ω)

− C̃‖z‖8
L∞(0,T ;L4(Ω))

‖u‖2
V0

n(Ω)
,

where C̃ = 77C8

8×47 . It is sufficient to choose λ0 = 1 + C̃‖z‖8
L∞(0,T ;L4(Ω))

.

For all u ∈ V1
0(Ω), all v ∈ V1

0(Ω), and almost all t ∈ (0, T ), we have:∣∣〈Az(t)u,v
〉
V−1(Ω),V1

0(Ω)

∣∣
� ‖u‖V1

0(Ω)‖v‖V1
0(Ω) + ‖z‖L∞(0,T ;L4(Ω))‖u‖V1

0(Ω)‖v‖L4(Ω) + ‖u‖L4(Ω)‖v‖V1
0(Ω)‖z‖L∞(0,T ;L4(Ω))

� ‖u‖V1
0(Ω)‖v‖V1

0(Ω) + C‖z‖L∞(0,T ;L4(Ω))‖u‖V1
0(Ω)‖v‖V1

0(Ω).

The proof is complete. �
Theorem 4.3. Assume that z belongs to L2(0, T ;V1(Ω)) ∩ L∞(0, T ;L4(Ω)). For all u0 ∈ V0

n(Ω) and all
f ∈ L2(0, T ;H−1(Ω)), Eq. (4.8) admits a unique weak solution u in W(0, T ;V1

0(Ω),V−1(Ω)).

Proof. The theorem is a direct consequence of Lemma 4.2 and of a theorem by J.-L. Lions (see e.g. [6, Chapter 18,
Section 3.2, Theorems 1 and 2]). �

With Az(t) and A∗
z(t), we can associate two unbounded operators in V0

n(Ω), still denoted by Az(t) and A∗
z(t) for

simplicity, and defined by

D
(
Az(t)

) = {
u ∈ V1

0(Ω) | P�u − P
((

z(t) · ∇)
u
) − P

(
(u · ∇)z(t)

) ∈ V0
n(Ω)

}
,

D
(
A∗

z(t)
) = {

u ∈ V1
0(Ω) | P�u + P

((
z(t) · ∇)

u
) − P

((∇z(t)
)Tu

) ∈ V0
n(Ω)

}
,

Az(t)u = P�u − P
((

z(t) · ∇)
u
) − P

(
(u · ∇)z(t)

)
,

and

A∗
z(t)u = P�u + P

((
z(t) · ∇)

u
) − P

((∇z(t)
)Tu

)
.

5. The Navier–Stokes equation

In this section, we want to study the equation

∂u
∂t

− �u + (u · ∇)u + ∇p = 0, div u = 0 in Q,

u = g on Σ, P u(0) = u0 in Ω,

(5.1)

where g belongs to V3/4,3/4(Σ), and u0 ∈ V0
n(Ω).

One way to solve Eq. (5.1) is to look for a solution u of the form u = w + v, where w is the solution of

−�w(t) + ∇π(t) = 0 and div w(t) = 0 in Ω, w(t) = g(t) on Γ, (5.2)
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for all t ∈ [0, T ], and v is a solution to

∂v
∂t

− �v + (w · ∇)v + (v · ∇)w + (v · ∇)v + (w · ∇)w + ∇ρ = −∂w
∂t

,

div v = 0 in Q, v = 0 on Σ, v(0) = u0 − PDg(0) in Ω.

(5.3)

If w is regular enough, we are going to see below that Eq. (5.3) can be solved by a Galerkin method as in the case of the
Navier–Stokes equations (see e.g. [25, Chapter 3, Theorem 3.1]). For example if g belongs to V1,1(Σ), then w belongs
to L2(0, T ;V3/2(Ω))∩H 1(0, T ;V1/2(Ω)). In particular w belongs to L2(0, T ;V3/2(Ω))∩C([0, T ];V1(Ω)), which
is enough to prove the existence of solution to Eq. (5.3). The assumption g ∈ V1,1(Σ) is the one stated in [8,9] to prove
the existence of a unique solution to Eq. (5.1) in the case of small data. The extension procedure in [9, Theorem 3.8]

g −→ w

is different from the one corresponding to Eq. (5.2), but it leads to a similar regularity for w.
Here we assume that g belongs to V3/4,3/4(Σ). In that case the solution w to Eq. (5.2) belongs to

H 3/4(0, T ;V1/2(Ω)
) ∩ L2(0, T ;V5/4(Ω)

)
.

We think that in that case, because of the term w′ in (5.3), neither the extension procedure considered in [9] nor the
one corresponding to w determined by (5.2), may lead to a global existence result for Eq. (5.3). To overcome this
difficulty we consider the extension determined by

g −→ z,

where z is the solution to equation

P z′ = ÃP z + (−Ã)PDg, P z(0) = PDg(0),

(I − P)z(·) = (I − P)Dγng(·) in L2(0, T ;V0(Ω)
)
.

(5.4)

We look for a solution u to Eq. (5.1) in the form u = z + y, where y is the solution of

∂y
∂t

− �y + (z · ∇)y + (y · ∇)z + (y · ∇)y + (z · ∇)z + ∇q = 0, div y = 0 in Q,

y = 0 on Σ, y(0) = u0 − PDg(0) in Ω.

(5.5)

Since g ∈ V3/4,3/4(Σ) and V3/4,3/4(Σ) ↪→ C([0, T ];V1/4(Γ )), PDg(0) belongs to H3/4(Ω), and P(z(0) −
Dg(0)) = 0. According to Corollary 2.1, z belongs to C([0, T ];V3/4(Ω)) ∩ L2(0, T ;V5/4(Ω)).

With the notation introduced in Section 4, we can rewrite Eq. (5.5) in the form

y′ = Az(t)y − P
(
(y · ∇)y

) − P
(
(z · ∇)z

)
, y(0) = u0 − PDg(0). (5.6)

Since z belongs to L2(0, T ;V5/4(Ω))∩C([0, T ];V3/4(Ω)), it is clear that P((z ·∇)z) belongs to L2(0, T ;V−1(Ω)).
Thus Eq. (5.6) is very similar to the three-dimensional Navier–Stokes equation with a source term belonging to
L2(0, T ;V−1(Ω)). The only difference is that the Stokes operator A is now replaced by Az(t). Let us denote by
Cw([0, T ];V0

n(Ω)) the subspace in L∞(0, T ;V0
n(Ω)) of functions which are continuous from [0, T ] into V0

n(Ω)

equipped with its weak topology.

Theorem 5.1. For all u0 ∈ V0
n(Ω) and all g ∈ V3/4,3/4(Σ), Eq. (5.5) admits at least one weak solution in

Cw([0, T ];V0
n(Ω)) ∩ L2(0, T ;V1

0(Ω)).

Proof. Let λ0 be the exponent appearing in Lemma 4.2. A function y ∈ Cw([0, T ];V0
n(Ω)) ∩ L2(0, T ;V1

0(Ω)) is a
weak solution to (5.6) if and only if ŷ(t) = e−λ0ty(t) is a solution in Cw([0, T ];V0

n(Ω)) ∩ L2(0, T ;V1
0(Ω)) to

ŷ′ = Az(t)ŷ − λ0ŷ − P
(
eλ0t (ŷ · ∇)ŷ

) − P
(
e−λ0t (z · ∇)z

)
, ŷ(0) = u0 − PDg(0). (5.7)

Due to Lemma 4.2, the existence in L∞(0, T ;V0
n(Ω))∩L2(0, T ;V1

0(Ω)) of a function ŷ satisfying the weak formula-
tion of Eq. (5.7) may be proved as in the case of the Navier–Stokes equations (see e.g. [25, Chapter 3, Theorem 3.1]).
Moreover we have
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1

2

∥∥ŷ(t)
∥∥2

V0
n(Ω)

+ 1

2

t∫
0

∥∥ŷ(τ )
∥∥2

V1
0(Ω)

dτ

� 1

2

∥∥u0 − PDg(0)
∥∥2

V0
n(Ω)

− 〈
P

(
e−λ0(·)(z · ∇)z

)
, ŷ

〉
L2(0,t;V−1(Ω)),L2(0,t;V1

0(Ω))
.

Thus ŷ obeys the estimate∥∥ŷ(t)
∥∥2

V0
n(Ω)

+ ‖ŷ‖2
L2(0,t;V1

0(Ω))
� C

(∥∥P
(
(z · ∇)z

)∥∥2
L2(0,t;V−1(Ω))

+ ∥∥u0 − PDg(0)
∥∥2

V0
n(Ω)

)
, (5.8)

for all 0 < t < T , where C is independent of t and T . Moreover div(z⊗y) and div(y⊗z) belong to L2(0, T ;V−1(Ω)),
and (y · ∇)y belongs to L2(0, T ;L1(Ω)). We have H2(Ω) ∩ H1

0(Ω) ↪→ C0(Ω) with a dense embedding. Hence
Mb(Ω) ↪→ (H2(Ω) ∩ H1

0(Ω))′, and (y · ∇)y which belongs to L2(0, T ;L1(Ω)) can be identified with an element in
L2(0, T ; (H2(Ω) ∩ H1

0(Ω))′). Thus

f = div(z ⊗ y) + div(y ⊗ z) + (y · ∇)y ∈ L2(0, T ; (H2 ∩ H1
0(Ω)

)′)
.

Defining P f in L2(0, T ; (V2 ∩ V1
0(Ω))′) by〈

P f(t),Φ
〉
(V2∩V1

0(Ω))′,V2∩V1
0(Ω)

= 〈
f(t),Φ

〉
(H2∩H1

0(Ω))′,H2∩H1
0(Ω)

for all Φ ∈ V2 ∩ V1
0(Ω),

with Eq. (5.5) we can prove that y′ ∈ L2(0, T ; (V2 ∩ V1
0(Ω))′). Since y ∈ L∞(0, T ;V0

n(Ω)), we can claim that
y ∈ Cw([0, T ];V0

n(Ω)), and the proof is complete. �
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Appendix A

Lemma A.1. For all (Φ,h) ∈ L2(Ω) × V3/2(Γ ) the equation:

−�v + ∇π = Φ and div v = 0 in Ω, v = h on Γ, (A.1)

admits a unique solution (v,π) in V1(Ω) × (L2(Ω)/R). Moreover the following estimate holds:

‖v‖V2(Ω) + ‖π‖H 1(Ω)/R � C
(‖Φ‖L2(Ω) + ‖h‖V3/2(Γ )

)
.

If in addition Ω is of class C3 and (Φ,h) ∈ H1/2(Ω) × V2(Γ ), then

‖v‖V5/2(Ω) + ‖π‖H 3/2(Ω)/R � C
(‖Φ‖H1/2(Ω) + ‖h‖V2(Γ )

)
.

This result can be deduced from [10, Theorem 6.1, Chapter 4].

Lemma A.2. For all h ∈ H 1(Ω) obeying
∫
Ω

h = 0, the equation:

−�u + ∇p = 0 and div u = h in Ω, u = 0 on Γ, (A.2)

admits a unique solution (u,p) in H1
0(Ω) × (L2(Ω)/R). It satisfies the estimate:

‖u‖H2(Ω) + ‖p‖H 1(Ω)/R � C‖h‖H 1(Ω)/R.

This result is stated in [10, Exercise 6.2, Chapter 4].
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Lemma A.3. For all f ∈ L2(Ω) and all g ∈ V3/2(Γ ), the solution (w, q) to equation:

−�w + ∇q = f and div w = 0 in Ω, w = g on Γ,

obeys the estimate:

‖w‖L2(Ω) +
∥∥∥∥∂w

∂n
− qn + c(w, q)n

∥∥∥∥
V−3/2(Γ )

+ ‖q‖(H 1(Ω)/R)′ � C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
,

where c(w, q) is the constant corresponding to (w, q), and defined in (2.2).

Proof. (i) Let (Φ,h) be in L2(Ω) × V3/2(Γ ) and let (v,π) be the solution to Eq. (A.1). The solutions (w, q) and
(v,π) obeys the Green formula:∫

Ω

wΦ =
∫
Ω

fv +
∫
Γ

(
− ∂v

∂n
+ πn

)
g +

∫
Γ

(
∂w
∂n

− qn
)

h

=
∫
Ω

fv +
∫
Γ

(
− ∂v

∂n
+ πn − c(v,π)n

)
g +

∫
Γ

(
∂w
∂n

− qn + c(w, q)n
)

h.

Setting h = 0, with Lemma A.1 we obtain

‖w‖L2(Ω) = sup
‖Φ‖L2(Ω)

=1

∫
Ω

wΦ

� sup
‖Φ‖L2(Ω)

=1

(
‖f‖(H2(Ω))′‖v‖H2(Ω) +

∥∥∥∥− ∂v
∂n

+ πn − c(v,π)n

∥∥∥∥
V1/2(Γ )

‖g‖V−1/2(Γ )

)

� C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
.

Setting Φ = 0, we obtain∥∥∥∥∂w
∂n

− qn + c(w, q)n

∥∥∥∥
V−3/2(Γ )

= sup
‖h‖V3/2(Γ )

=1

∫
Γ

(
∂w
∂n

− qn + c(w, q)n
)

h

� sup
‖h‖V3/2(Γ )

=1

(
‖f‖(H2(Ω))′ ‖v‖H2(Ω) +

∥∥∥∥− ∂v
∂n

+ πn − c(v,π)n

∥∥∥∥
V1/2(Γ )

‖g‖V−1/2(Γ )

)

� C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
.

(ii) Let h be in H 1(Ω) obeying
∫
Ω

h = 0 and let (u,p) be the solution to Eq. (A.2). The solutions (w, q) and (u,p)

obey the Green formula:∫
Ω

fu +
∫
Ω

qh +
∫
Γ

(
−∂u

∂n
+ pn

)
g = 0.

With Lemma A.2 we have

‖q‖(H 1(Ω)/R)′ = sup
‖h‖

H1(Ω)/R
=1

∫
Ω

qh

= sup
‖h‖

H1(Ω)/R
=1

( ∫
Γ

(
∂u
∂n

− pn + c(u,p)n
)

g −
∫
Ω

fu
)

� sup
‖h‖

H1(Ω)/R
=1

(∥∥∥∥∂u
∂n

− pn + c(u,p)n

∥∥∥∥
V1/2(Γ )

‖g‖V−1/2(Γ ) + ‖f‖(H2(Ω))′ ‖u‖H2(Ω)

)

� C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
.
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The proof is complete. �
We want to define (w, q) and ∂w

∂n − qn + c(w, q)n in the case where f ∈ (H2(Ω))′ and g ∈ V−1/2(Γ ). For all
f ∈ (H2(Ω))′ and all g ∈ V−1/2(Γ ), we consider the variational problem

determine (w, q,Ψ ) ∈ V0(Ω) × (H 1(Ω)/R)′ × V−3/2(Γ ) such that

∫
Ω

wΦ = 〈f,v〉(H2(Ω))′,H2(Ω) −
〈
g,

∂v
∂n

− πn + c(v,π)n
〉

V−1/2(Γ ),V1/2(Γ )

+ 〈Ψ ,h〉V−3/2(Γ ),V3/2(Γ )

for all (Φ,h) ∈ L2(Ω) × V3/2(Γ ), (A.3)

and

−〈q,h〉(H 1(Ω)/R)′,H 1(Ω)/R = 〈f,u〉(H2(Ω))′,H2(Ω) −
〈
g,

∂u
∂n

− pn + c(u,p)n
〉

V−1/2(Γ ),V1/2(Γ )

for all h ∈ H 1(Ω)/R obeying
∫
Ω

h = 0,

where (v,π) is solution of Eq. (A.1) and (u,p) is solution of Eq. (A.2).

Remark A.1. When f = 0, the estimate

‖w‖L2(Ω) � C‖g‖V−1/2(Γ ),

is already stated in [11], but the estimate of ∂w
∂n − qn + c(w, q)n seems to be new.

Theorem A.1. For all (f,g) ∈ (H2(Ω))′ × V−1/2(Γ ), the variational problem (A.3) admits a unique solution
(w, q,Ψ ) ∈ V0(Ω) × (H 1(Ω)/R)′ × V−3/2(Γ ) satisfying

‖w‖V0(Ω) + ‖q‖(H 1(Ω)/R)′ + ‖Ψ ‖V−3/2(Γ ) � C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
.

Proof. (i) Let us first prove the uniqueness. If f = 0, g = 0 and if (w, q,Ψ ) is a corresponding solution to prob-
lem (A.3), choosing (Φ, h,h) = (w,0,0) in (A.3), we obtain w = 0. Choosing (Φ, h,h) = (0, h,0) in (A.3), with any
h in H 1(Ω) obeying

∫
Ω

h = 0, we obtain q = 0 in (H 1(Ω)/R)′. Choosing (Φ, h,h) = (0,0,h) in (A.3), with any h
in V−3/2(Γ ), we obtain Ψ = 0.

(ii) The existence result relies on a density argument. Let (f,g) be in (H2(Ω))′ × V−1/2(Γ ). The space L2(Ω) ×
V3/2(Γ ) being dense in (H2(Ω))′ × V−1/2(Γ ), there exists a sequence (fn,gn)n ⊂ L2(Ω) × V3/2(Γ ) converging to
(f,g) in (H2(Ω))′ × V−1/2(Γ ). Let (wn, qn) be the solution to the equation

−�wn + ∇qn = fn and div wn = 0 in Ω, wn = gn on Γ.

We can easily verify that (wn, qn,Ψ n), with Ψ n = ∂wn

∂n −qnn+c(wn, qn)n, is solution to problem (A.3) corresponding
to (fn,gn). From Lemma A.3, we deduce that (wn, qn,Ψ n)n converges to some (w, q,Ψ ) in V0(Ω)× (H 1(Ω)/R)′ ×
V−3/2(Γ ). To show that (w, q,Ψ ) is solution to problem (A.3) corresponding to (f,g), it is sufficient to pass to the
limit in the identities∫

Ω

wnΦ =
∫
Ω

fnv +
∫
Γ

(
− ∂v

∂n
+ πn − c(v,π)n

)
gn +

∫
Γ

(
∂wn

∂n
− qnn + c(wn, qn)n

)
h,

and

0 =
∫
Ω

hqn +
∫
Ω

fnu +
∫
Γ

(
−∂u

∂n
+ pn − c(z,p)n

)
gn.

The proof is complete. �
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Let us recall that for g ∈ V1/2(Γ ), (Dg,Dpg) = (w, q) is the unique solution in V1(Ω) × (L2(Ω)/R) to the
equation

−�w + ∇q = 0 and div w = 0 in Ω, w = g on Γ.

From Theorem A.1 we deduce the following corollary.

Corollary A.1. The operator D is linear and continuous from Vs(Γ ) into Vs+1/2(Ω) for all −1/2 � s � 3/2, and the
operator Dp is linear and continuous from Vs(Γ ) into Hs−1/2(Ω)/R for all −1/2 � s � 3/2 (where by notational
convention Hs−1/2(Ω)/R = (H−s+1/2(Ω)/R)′ if s − 1/2 < 0, and Hs−1/2(Ω)/R = Hs−1/2(Ω)/R if s − 1/2 � 0).

If in addition Ω is of class C3 the above results are still true for −1/2 � s � 2.

Proof. Let us prove the result when Ω is of class C2 and −1/2 � s � 3/2. The other case can be treated similarly.
Due to Lemma A.1, D is continuous from V3/2(Γ ) into V2(Ω), and Dp is continuous from V3/2(Γ ) into H 1(Ω)/R.
From Theorem A.1 it follows that D can be extended to a bounded operator from V−1/2(Γ ) into V0(Ω), and Dp can
be extended to a bounded operator from V−1/2(Γ ) into (H 1(Ω)/R)′. The result follows by interpolation. �

We define D∗ ∈ L(V0(Ω);V0(Γ )) as the adjoint of D ∈L(V0(Γ );V0(Ω)).

Lemma A.4. For all f ∈ V0(Ω), D∗f is defined by

D∗f = − ∂v
∂n

+ πn − c(π)n,

where c(π) is the constant defined in (2.3), and (v,π) is the solution to

−�v + ∇π = f and div v = 0 in Ω, v = 0 on Γ. (A.4)

The operator D∗ is bounded from Vs(Ω) into Vs+1/2(Γ ) for all 0 � s � 2. Moreover, for all Φ ∈ V2(Ω) ∩ V1
0(Ω),

we have:

D∗(−A)Φ = −∂Φ

∂n
+ ψn − c(ψ)n,

where c(ψ) is the constant defined in (2.3), and ψ ∈ H 1(Ω)/R is determined by

∇ψ = (I − P)�Φ.

Proof. (i) For all f ∈ V0(Ω), and all g ∈ V0(Γ ), the solution (v,π) to Eq. (A.4) and w = Dg obey:∫
Ω

Dg · f =
∫
Γ

g ·
(

− ∂v
∂n

+ πn − c(π)n
)

.

Thus D∗f is well defined as indicated in the statement of the lemma. Due to regularity results for the Stokes equations
we have

‖D∗f‖Vs+1/2(Γ ) =
∥∥∥∥− ∂v

∂n
+ πn − c(π)n

∥∥∥∥
Vs+1/2(Γ )

� C‖f‖Vs (Ω).

The first part of the lemma is proved.
(ii) From the first part of the proof it follows that

D∗(−A)Φ = −∂Φ̂

∂n
+ ψn − c(ψ)n,

where (Φ̂,ψ) is the solution of the equation

−�Φ̂ + ∇ψ = (−A)Φ and div Φ̂ = 0 in Ω, Φ̂ = 0 on Γ.

This equation is equivalent to

(−A)Φ̂ = (−A)Φ and ∇ψ = (I − P)�Φ̂.

Thus Φ̂ = Φ and ∇ψ = (I − P)�Φ . The proof is complete. �
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Proposition A.1. Let g �= 0 be in V1/2(Γ ). Assume that γτ g = 0. Then PDg is not equal to zero.

Proof. Set (w, q) = (Dg,Dpg). We want to prove that P w �= 0, and we assume the contrary. If P w = 0, then w =
(I − P)w = ∇ϕ, for some ϕ ∈ H 2(Ω). Since div w = 0, ϕ is solution to the elliptic problem

−�ϕ = 0 in Ω, ∂nϕ = g · n �= 0 on Γ.

Moreover ∇ϕ|Γ = (I − P)w|Γ = w|Γ , thus

∇ϕ = g on Γ and γτ g = 0.

Thus ϕ is equal to a constant C on Γ , and ϕ is also solution to the elliptic problem

−�ϕ = 0 in Ω, ϕ = C on Γ.

It yields that ϕ = C in Ω and ∂nϕ = 0 on Γ , which is in contradiction with g · n �= 0. The proof is complete. �
Appendix B

Throughout this appendix we assume that λ0 > 0 satisfies (4.2), and that z belongs at least to V1(Ω), or is more
regular than that.

Lemma B.1. For all (Φ,h) ∈ L2(Ω) × V3/2(Γ ) the equation:

λ0v − �v + (z · ∇)v + (v · ∇)z + ∇π = Φ and div v = 0 in Ω, v = h on Γ, (B.1)

admits a unique solution (v,π) in V1(Ω) × (L2(Ω)/R). Moreover the following estimate holds:

‖v‖V2(Ω) + ‖π‖H 1(Ω)/R � C
(‖Φ‖L2(Ω) + ‖h‖V3/2(Γ )

)
. (B.2)

If in addition Ω is of class C3, z ∈ V3/2(Ω), and (Φ,h) ∈ H1/2(Ω) × V2(Γ ), then

‖v‖V5/2(Ω) + ‖π‖H 3/2(Ω)/R � C
(‖Φ‖H1/2(Ω) + ‖h‖V2(Γ )

)
.

The above results are also true if we replace Eq. (B.1) by the following one

λ0v − �v − (z · ∇)v + (∇z)Tv + ∇π = Φ and div v = 0 in Ω, v = h on Γ. (B.3)

Proof. The uniqueness result is obvious. We only prove the existence of a solution (v,π) satisfying (B.1), the other
results can be proved similarly. Let (w, q) be the solution to the equation

λ0w − �w + ∇q = Φ and div w = 0 in Ω, w = h on Γ,

and let (u,p) be the solution to the equation

λ0u − �u + (z · ∇)u + (u · ∇)z + ∇p = −(z · ∇)w − (w · ∇)z and div u = 0 in Ω, u = 0 on Γ.

Since

‖w‖V2(Ω) + ‖q‖H 1(Ω)/R � C
(‖Φ‖L2(Ω) + ‖h‖V3/2(Γ )

)
,

the term −(z · ∇)w − (w · ∇)z belongs to L2(Ω). According to Lemma 4.1, we have

‖u‖V2(Ω) � C
∥∥(z · ∇)w + (w · ∇)z

∥∥
L2(Ω)

� C
(‖Φ‖L2(Ω) + ‖h‖V3/2(Γ )

)
.

We next deduce that

‖p‖H 1(Ω)/R � C
(‖Φ‖L2(Ω) + ‖h‖V3/2(Γ )

)
.

It is clear that (v,π) = (w, q) + (u,p) is the solution to Eq. (B.1), and the estimate (B.2) is established.
If z ∈ V3/2(Ω) and v ∈ V2(Ω), then (z · ∇)v + (∇z)Tv belongs to H1/2(Ω) (see [13, Proposition B1]). Then the

solution to Eq. (B.1) belongs to V5/2(Ω). �
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Lemma B.2. For all h ∈ H 1(Ω) obeying
∫
Ω

h = 0, the equation:

λ0u − �u + (z · ∇)u + (u · ∇)z + ∇p = 0 and div u = h in Ω, u = 0 on Γ, (B.4)

admits a unique solution (u,p) belonging to H1(Ω) × (L2(Ω)/R). It satisfies the estimate:

‖u‖H2(Ω) + ‖p‖H 1(Ω)/R � C‖h‖H 1(Ω)/R.

The above results are also true if we replace Eq. (B.4) by the following one

λ0u − �u − (z · ∇)u + (∇z)Tu + ∇p = 0 and div u = h in Ω, u = 0 on Γ. (B.5)

Proof. The lemma can be proved by combining the results of Lemma A.2 and the same kind of arguments as in the
proof of Lemma B.1. �
Lemma B.3. For all f ∈ L2(Ω) and all g ∈ V3/2(Γ ), the solution (w, q) to equation:

λ0w − �w + (z · ∇)w + (w · ∇)z + ∇q = f and div w = 0 in Ω, w = g on Γ, (B.6)

obeys the estimate:

‖w‖V1/2(Ω) +
∥∥∥∥∂w

∂n
− qn + c(w, q)n

∥∥∥∥
V−1(Γ )

+ ‖q‖(H 1/2(Ω)/R)′ � C
(‖f‖(H3/2(Ω))′ + ‖g‖V0(Γ )

)
,

where c(w, q) is the constant corresponding to w, q , and defined in (2.2). If in addition z ∈ V3/2(Ω) then we also
have:

‖w‖L2(Ω) +
∥∥∥∥∂w

∂n
− qn + c(w, q)n

∥∥∥∥
V−3/2(Γ )

+ ‖q‖(H 1(Ω)/R)′ � C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
.

Proof. If (v,π) is the solution to Eq. (B.3), (u,p) is the solution to Eq. (B.5), and (w, q) to Eq. (B.6), then we have∫
Ω

wΦ =
∫
Ω

fv +
∫
Γ

(
− ∂v

∂n
+ πn

)
g +

∫
Γ

(
∂w
∂n

− qn
)

h −
∫
Γ

z · nh · g,

and ∫
Ω

fu +
∫
Ω

qh +
∫
Γ

(
−∂u

∂n
+ pn

)
g = 0.

Thus the proof can be performed as in the one of Lemma A.3. The assumption z ∈ V3/2(Ω) is needed to estimate
z · nh in H1/2(Γ ) when h belongs to V3/2(Γ ). �

We want to define (w, q) and ∂w
∂n − qn + c(w, q)n in the case where f ∈ (H2(Ω))′ and g ∈ V−1/2(Γ ). As in

Appendix A, for all f ∈ (H2(Ω))′ and all g ∈ V−1/2(Γ ), we consider the variational problem

determine (w, q,Ψ ) ∈ V0(Ω) × (
H 1(Ω)/R

)′ × V−3/2(Γ ) such that∫
Ω

wΦ = −
〈
g,

∂v
∂n

− πn + z · nh + c(v,π, z · nh)n
〉

V−1/2(Γ ),V1/2(Γ )

+ 〈f,v〉(H2(Ω))′,H2(Ω) + 〈Ψ ,h〉V−3/2(Γ ),V3/2(Γ ) ∀(Φ,h) ∈ L2(Ω) × V3/2(Γ ), and (B.7)

−〈q,h〉(H 1(Ω)/R)′,H 1(Ω)/R = 〈f,u〉(H2(Ω))′,H2(Ω) −
〈
g,

∂u
∂n

− pn + c(u,p)n
〉

V−1/2(Γ ),V1/2(Γ )

for all h ∈ H 1(Ω)/R obeying
∫

h = 0,
Ω
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where (v,π) is solution of Eq. (B.3), (u,p) is solution of Eq. (B.5), and

c(v,π, z · nh) = − 1

|Γ |
∫
Γ

(
∂v
∂n

· n − π + z · nh · n
)

.

Observe that the term z · nh appears in the first equation of (B.7). This term was not present in (A.3). If g ∈ V0(Γ ),
we have to define z · nh in L2(Γ ). If z ∈ V1(Ω), then z · n belongs to H 1/2(Γ ) ↪→ L4(Γ ). If h ∈ V1(Γ ) ↪→ Lp(Γ )

for all 1 � p < ∞, then z · nh is well defined in L2(Γ ), which leads to the first estimate in Theorem B.1.
To define z · nh in H1/2(Γ ) when h ∈ V3/2(Γ ), we have to suppose that z ∈ V3/2(Ω). Indeed if z ∈ V3/2(Ω), z · n

belongs to H 1(Γ ), and z · nh belongs H1(Γ ) [13, Proposition B1]. If we only suppose that z ∈ V1(Ω), we can only
prove that z · nh belongs Hs(Γ ) for all 0 � s < 1/2.

Theorem B.1. For all (f,g) ∈ (H3/2(Ω))′ × V0(Γ ), the variational problem (B.7) admits a unique solution
(w, q,Ψ ) ∈ V1/2(Ω) × (H 1/2(Ω)/R)′ × V−1(Γ ) satisfying

‖w‖V1/2(Ω) + ‖q‖(H 1/2(Ω)/R)′ + ‖Ψ ‖V−1(Γ ) � C
(‖f‖(H3/2(Ω))′ + ‖g‖V0(Γ )

)
.

If in addition z ∈ V3/2(Ω) then, for all (f,g) ∈ (H2(Ω))′ × V−1/2(Γ ), the variational problem (B.7) admits a unique
solution (w, q,Ψ ) ∈ V0(Ω) × (H 1(Ω)/R)′ × V−3/2(Γ ) satisfying

‖w‖L2(Ω) + ‖q‖(H 1(Ω)/R)′ + ‖Ψ ‖V−3/2(Γ ) � C
(‖f‖(H2(Ω))′ + ‖g‖V−1/2(Γ )

)
.

Proof. The proof is similar to that of Theorem A.1. �
From Theorem B.1 we deduce the following corollary.

Corollary B.1. The operator Dz is linear and continuous from Vs(Γ ) into Vs+1/2(Ω) for all 0 � s � 3/2, and the
operator Dz,p is linear and continuous from Vs(Γ ) into Hs−1/2(Ω)/R for all 0 � s � 3/2 (where by notational
convention Hs−1/2(Ω)/R = (H−s+1/2(Ω)/R)′ if s − 1/2 < 0, and Hs−1/2(Ω)/R = Hs−1/2(Ω)/R if s − 1/2 � 0).

If z ∈ V3/2(Ω), then the above results are still true for −1/2 � s � 3/2.
If Ω is of class C3 and if z ∈ V3/2(Ω), then the above results are still true for −1/2 � s � 2.

Proof. See the proof of Corollary A.1. �
Let us recall that for g ∈ V1/2(Γ ), (Dzg,Dp,zg) = (w, q) is the unique solution in V1(Ω) × (L2(Ω)/R) to the

equation

λ0w − �w + (z · ∇)w + (w · ∇)z + ∇q = 0 and div w = 0 in Ω, w = g on Γ.

We define D∗
z ∈ L(V0(Γ );V0(Ω)) as the adjoint of Dz ∈ L(V0(Γ );V0(Ω)).

Lemma B.4. For all f ∈ V0(Ω), D∗
z f is defined by

D∗
z f = − ∂v

∂n
+ πn − c(π)n,

where c(π) is the constant defined in (2.3), and (v,π) is the solution to

λ0v − �v − (z · ∇)v + (∇z)Tv + ∇π = f and div v = 0 in Ω, v = 0 on Γ.

The operator D∗
z is bounded from Vs(Ω) into Vs+1/2(Γ ) for all 0 � s � 2. Moreover, for all Φ ∈ V2(Ω) ∩ V1

0(Ω),
we have:

D∗
z
(
λ0I − A∗

z
)
Φ = −∂Φ

∂n
+ ψn − c(ψ)n,

where c(ψ) is the constant defined in (2.3), and ψ ∈ H 1(Ω)/R is determined by

∇ψ = (I − P)
(
�Φ + (z · ∇)Φ − (∇z)TΦ

)
.
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Proof. (i) For all f ∈ V0(Ω), and all g ∈ V0(Γ ), the pairs (Dzg,Dp,zg) = (w, q) and (v,π) obey:∫
Ω

Dzg · f =
∫
Γ

g ·
(

− ∂v
∂n

+ πn − c(π)n
)

.

This identity gives the expression of D∗
z . As in the proof of Lemma A.4, we can easily show that D∗

z is bounded from
Vs(Ω) into Vs+1/2(Γ ) for all 0 � s � 2.

(ii) From the first part of the proof it follows that

D∗
z (λ0I − A∗

z)Φ = −∂Φ̂

∂n
+ ψn − c(ψ)n,

where (Φ̂,ψ) is the solution of the equation

λ0Φ̂ − �Φ̂ − (z · ∇)Φ̂ − (∇z)TΦ̂ + ∇ψ = (λ0I − A∗
z)Φ and div Φ̂ = 0 in Ω, Φ̂ = 0 on Γ.

This equation is equivalent to

(λ0I − Az)Φ̂ = (λ0I − Az)Φ and ∇ψ = (I − P)
(
�Φ̂ + (z · ∇)Φ̂ − (∇z)TΦ̂

)
.

Thus Φ̂ = Φ and ∇ψ = (I − P)(�Φ + (z · ∇)Φ − (∇z)TΦ). The proof is complete. �
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