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Abstract

In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous
Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal
to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution
equation satisfied by Pu, the projection of the solution on the Stokes space — the space of divergence free vector fields with a
normal trace equal to zero — and the second one is a quasi-stationary elliptic equation satisfied by (I — P)u, the projection of the
solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (I — P)u. We also
study the existence of weak solutions to the three-dimensional instationary Navier—Stokes equations for more regular data, but
without any smallness assumption on the initial and boundary conditions.
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MSC: 35Q30; 35K50; 35B65; 76D05; 76D07

Keywords: Navier-Stokes equations; Stokes equations; Oseen equations; Nonhomogeneous boundary conditions

1. Introduction

Let £2 be a bounded and connected domain in RY, with N =2 or N = 3, with a regular boundary I, and let T be
positive. Set 0 =2 x (0,7T) and ¥ = I" x (0, T'). We are interested in the following boundary value problems for
the Navier-Stokes equations

3
a—‘t’—Au+K(u.V)u+vp=0, divu=0 in 0,

u=g onJx, u(0) =ug in £2,

(1.1)

where g is a nonhomogeneous boundary condition, ug is the initial condition, and k =0 or ¥ = 1. For « = 0 Eq. (1.1)
corresponds to the Stokes equations and for k = 1 to the Navier—Stokes equations. We are also interested in similar
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problems for the Oseen equations. Let us denote by n the outward unit normal to the boundary I". In the case when
the normal component of g is equal to zero, that is to say if

g(x,t)-n(x)=0 forae.(x,r)el x(0,7T), (1.2)

Eq. (1.1) can be studied by pseudo-differential techniques [13,14], and the regularity results for the Stokes equa-
tions are of the same type as for the heat equation [13,14,24]. Moreover, using the so-called Stokes operator A (see
Section 2), when condition (1.2) is satisfied, Eq. (1.1) with ¥ = 0 can be written in the form:

v = Au+ (—A)Dg, u(0) = up, (1.3)

where, for almost all ¢ € (0, T), Dg(¢) is the solution of the stationary Stokes problem with g(¢) as nonhomogeneous
boundary condition.

For engineering applications — see e.g. [15] — it is important to study Eq. (1.1) when condition (1.2) is not satisfied.
However in that case the situation is more complicated because (1.1) cannot be written in the form of an evolution
equation. Indeed, due to the incompressibility condition, if u is a solution to (1.1) we have

/divu(t)dx =(u(?) - n, 1)H,1/2(F)’H1,2(F) =0 forae.te(0,7).
2

Thus we look for u(#) in the space
VO(2)={uel?(2) | divu=0, (u-n, 1) 1200 g2 =0}.
But the Stokes operator is defined as an unbounded operator in the space
VI(2)={ueLl*(®2)|divu=0, u-n=0in H~/*(I")}.

Consequently, Eq. (1.1) cannot be written as an evolution equation of the form (1.3), contrarily to the case when (1.2)
is satisfied (see Section 2).

To overcome this difficulty Fursikov, Gunzburger and Hou [9,8] have first determined the trace spaces correspond-
ing to some function spaces, before proving the existence of weak solutions. Thus, taking the trace g in the right space,
using an extension procedure, they prove the existence of a solution in the space initially chosen.

Another approach is investigated in [7]. It consists in solving the stationary Stokes problem

—Aw(t)+Vr(t)=0 and divw(z)=0 in 2, w()=g() onT,

for all ¢ € [0, T'], and looking for the equation satisfied by u — w. Farwig, Galdi and Sohr [7] prove new regularity
results for the Stokes equations when g belongs to some classes of Banach spaces. The corresponding classes of
Hilbert spaces are the following ones [7, Theorem 4 and Corollary 5]:

(i) ge L?(0, T: H™'/2(I")) and (g(1), m)g-1/2(py g2y = 0,
(i) ge L*(0, T; B¥*(I')) N H'(0, T; H™'/2(I")) and [ g(t) -n=0.

The existence of solutions to the Navier—Stokes equations is also proved in [7] for small data.
Here, motivated by stabilization problems [22,23], we would like to find optimal regularity results for the solution
to the Stokes and the Oseen equations when g belongs to the space

VS2(3) = L2(0, T; V(D)) N HY2(0, T; VO(I)),
with s > 0, and

Vi) = {ueHS(F) ' /u'nzo}.
r

We are also interested in finding a sufficient condition on g so that a weak solution to Eq. (1.1) exists in the case where
kx = 1. This approach is an essential step to study the local feedback boundary stabilization of the Navier—Stokes
equations [22,23].

The paper is organized as follows. We study the Stokes equation in Section 2. We give a new definition of weak
solutions to Eq. (1.1) (in the case where k = 0) that we compare with the other ones existing in the literature. Thanks
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to this new definition we are able to prove optimal regularity results for Pu and (I — P)u, where u is the solution of
the Stokes equations and P is the so-called Helmholtz projection operator (Theorems 2.3 and 2.7). In particular if g
belongs to V¥5/2( %), Pug belongs to V,Sfl/ 2(Q), and if they satisfy some compatibility conditions, we first prove that
Pu belongs to Vs+1/2=65/241/4=¢/2(0) forall e > 0if 0 < s < 2,5 # 1 (Theorem 2.3). The question of knowing if we
can take ¢ = 0 is not obvious in the case when g(¢) - n # 0. Using results already proved in Theorem 2.3, we answer
positively to this question in Theorem 2.7. In Section 3, we prove that we can have Pu e V¥+1/25/2+1/4(y and
(I — P)u e Vst1/2.s/241/ 4(Q) under conditions on g and uy which are different from the ones in [9] (Theorem 3.1).
In Section 4, we study the Oseen equations in two cases. The first one corresponds to the linearized Navier—Stokes
equations around a stationary state, and the second one corresponds to a linearization around an instationary state.
We extend the results of Section 2 to the first case. The second case, with homogeneous boundary conditions, is
needed in Section 4 to study the Navier—Stokes equations with nonhomogeneous boundary conditions. We prove
the existence of global weak solutions to the Navier-Stokes equations, in the 3D case, when g € V3/43/4(x) =
L2(0, T; V3/4(I) N H3*0, T; VO(I")). To the best of our knowledge, this existence result for the three-dimensional
Navier—Stokes equations seems to be new. Since we prove the existence of a weak solution, we are not able to establish
uniqueness (the situation is the same as in the case of homogeneous boundary conditions), contrarily to the existence
results obtained by a fixed point method with small data where uniqueness is directly proved [14,8,9,7].

In Appendix A we establish results needed for the stationary Stokes equations with nonhomogeneous boundary
conditions. Their extension to the stationary Oseen equations are stated in Appendix B.

2. Stokes equation

Throughout the paper we assume that £2 is at least of class C?. In this section we study the Stokes equations with
a nonhomogeneous boundary condition:

9
a—ltl—Au—i-Vp:O, divu=0 in 0, o
u=g onl, u(0) =ug in £2.

The main results of this section are stated in Theorems 2.3 and 2.7.
2.1. Notation

Let us introduce the following function spaces: H*(£2; RY) = H*(£2), L2(£2; RY) = L2(£2), the same notation
conventions are used for the spaces Hj; (£2; RM), and the trace spaces H*(I'; RM), Throughout what follows, for all
u € L2(£2) such that diva € L?(£2), we denote by u - n the normal trace of u in H~Y2(I) [25]. Following [9], we
use the letter V to define different spaces of divergence free vector functions and for some associated trace spaces:

V(Q2)={ueH () |divu=0in 2, (w-n,1)y-12 g2y =0} fors >0,
Vi(2)={ueH (£2)|divu=0in 2, u-n=00nI"} fors>0,

1
Vy(2)={ueH*(2)|divu=0in 2, u=00onI'} fors> 5

V() = {ueHS(F) ( /u»n:O} fors >0.
r

For s < 0, V*(I') is the dual space of V™~ (I"), with VO(I") as pivot space. For spaces of time dependent functions we
set

V9o (Q)=H(0,T; V'(£2)) N L*(0, T; V* (£2)),
and
V9o (2) = HO (0, T; VO(IM) N L*(0, T; V¥ (IN).
Observe that
VRo(Q) =H"(Q) N L*(0, T; V°(£2)) foralls >0ando >0,
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where H>? (Q) = (H*° (Q))", and H*? (Q) corresponds to the notation in [20].
We denote by y; € L(VO(I")) and y, € L(V(I")) the operators defined by

ypu=(u-mn and y;u=u-—yp,u forallu e VO(I).

As usual, for s > 1/2, yo € L(V*(£2), V*=1/2(I")) denotes the trace operator. Throughout the paper, for all @ €
H3/2%¢ (§2) and all € H/>1¢ (), with ¢’ > 0, we denote by ¢(®, ), the constant defined by

@ =1 [(22 n—y (2.2)
c(P,Y)=—— — - -n— , .
|| on
r
where |I"| is the (N — 1)-dimensional Lebesgue measure of I". If moreover @ € Vg/ 2+g/(9)7 then % -n =0 (see
[3, Lemma 3.3.1]), and in that case we shall use the constant
1
cw) = [ @3)
|| J

We also introduce the space

du

w(0,T; Vi(£2),V1(£2)) = {u e L*(0,T; V() - € L*(0,T; V—l(:z))},

where V™1(£2) denotes the dual space of V(l)(.Q) with VQ(Q) as pivot space.

Let us denote by P the orthogonal projection operator in L?(£2) on VS (£2). Recall that the Stokes operator
A = PA, with domain D(A) = H2(2) N V(l)(.Q) in VS(.Q), is the infinitesimal generator of a strongly continuous
analytic semigroup (e’ A),;g on Vg(.Q). The operator P can be continuously extended to a bounded operator from
H () to V71(£2), that we still denote by P.

We also introduce the Dirichlet operators D € £(VO(I"), VO(£2)) and D, e LVO(I), (H'(£2)/R)’) defined by

Dg=w and Dpg=m,
where (w, i) is the solution to
—AW+Var =0 and divw=0 in £, w=g onl/.
Notice that D can be extended to a bounded operator from V—Y2(r) into VO(£2) (see Corollary A.1).

2.2. Stokes equation

Fursikov, Gunzburger and Hou have studied the linearized Navier—Stokes and Navier—Stokes equations with non-
homogeneous boundary conditions when the domain £2 is not necessarily bounded in R? [8,9]. For that they first
characterize the traces for functions belonging to spaces of the type

V®(Q) = {u | uis the restriction to Q of a function belonging to H) (RN *1), divu =0},
where
HEO (RN = L2(R; B (RY)) N H' (R; B2 (RY)).
Observe that for s = 2, we have V@ (Q) = V>1(Q). For s = 1, the identity
HO®RN) = L2(R; H' (RY)) n H'(R; H ' (RY)) = w(R; H' (RY), H' (RY)),
does not imply the corresponding identity for H"(Q) or VI (Q), that is
HY (@ cw( T;H (2, H'@2),  HP@#W(0 T;H (2),H (%),
V() cw(0,T;V'(2), v 1(2)) and V(@) #W(0,T;V'(2),V(£2)).
It is proved in [8] that, if N = 3, the trace space of functions in yd (Q)1is
G'(2)={ueL*(0,T; V/2()) | yrue H/*(0, T; VVA(I), yyue HY4(0,T; V(M) }.
In [8,9], solutions to Eq. (2.1) are defined as follows.
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Definition 2.1. A function u € V(Q) is a solution to Eq. (2.1) if u = v + w, where v = Eg (E is a continuous
extension operator from GY(Z) to YD (Q)), and w is the solution to the equation
oW ov

— —AwW+Vp=———Ayv, divw=0 1in Q,
ot tVPr=-5 0

w=0 onX, w(0) =up —v(0) in 2.

In [8,9], extension operators E € £(G!(X), VV(Q)) are explicitly defined, but any continuous extension operator
from G'(X) to V(l)(Q) can be used to define solutions to Eq. (2.1). The theorem below is a direct consequence of
results established in [8].

Theorem 2.1. If g € G'(X) and if y,gli—0 = y.&(0) = (ug - n)n, then Eq. (2.1) admits a unique solution in V'V (Q)
in the sense of Definition 2.1, and the following estimate holds:

lullyo gy < C(llgl 20, 7:v12cry) + Vel mro,rv-12cry) + 18l g3, 7:v-1my) + I0ollyvoce))-

Let us state a simple proposition that will be useful in the following.

Proposition 2.1. Assume that g € C([0, T]; V™V/2(I")) and ug € V°(82). Then the compatibility condition y,g|,—o =
¥2,8(0) = (ug - m)n is equivalent to (I — P)(uy — Dg(0)) =0.

Proof. Assume that y,g(0) = (up - n)n. Then (I — P)(D((up - n)n) — Dg(0)) = 0. Moreover (I — P)D((up - n)n) =
(I — P)ugp, because D((ug - m)n) —ug € Vg(.Q). Thus (I — P)(uy — Dg(0)) =0.

Conversely, if (I — P)(ug — Dg(0)) = 0, then y, (I — P)ug) = y (I — P) Dg(0)) = y,£(0). And y, (I — P)ug) =
ynUo. The proof is complete. 0O

Observe that Definition 2.1 cannot be used to define weak solutions when g € L2(O, T;VO(F )) or g €
L2(0, T; V-V 2(F )). In this case, following [18,1,2,7], solutions can be defined by a duality method (also called
‘the transposition method’ in [18-20]).

Definition 2.2. Assume that g € L20,T; V-Y2(I") and ug € H~1(£2). A function u € L2(0, T; VO(£2)) is a solution
to the Stokes equations (2.1), defined by duality (or transposition), if and only if

T
0P
f= —— At Hn, gt dr ,P(0)),,— 2.4
Q/U 0/< on (1) + ¥ ()m, g( )>V1/2(F),V'/2(F) + (uo, @(0))y 1(2),H)($2) (24)

for every f e L2(0, T; VO(£2)), where (@, V) is the solution to

0P
—— AP+ VY =1, divd= i
o7 + Vyr , v 0 in Q, 2.5)

®=0 onlX, ?(T)=0 in£2.

Remark 2.1. Notice that (ug, d)(O))H,l(m’H(])(Q) = (Puy, <P(0))V,1(9)’V(|)(9). Thus only Pug intervenes in the above
definition. The above definition is slightly different from the one in [7, Definition 1]. Actually it can be shown that
they are equivalent in the case when g € L%(0,T;V-Y2(I")) and ug e H~'(£2).

Theorem 2.2. For all g € L*>(0,T;V~Y2(I")) and all wg € H™ (), Eq. (2.1) admits a unique solution in
L2(0, T; VO(Q)) in the sense of Definition 2.2, and

lallz20,7:v002)) < C(||g||L2(0,T;V—1/2(r)) + ”Pu()”V—](Q))- (2.6)

Moreover if g and g satisfy the assumptions of Theorem 2.1, then the solutions given by Theorems 2.1 and 2.2
coincide.
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Remark 2.2. The result stated in Theorem 2.2 will be completed by additional regularity results in Lemma 3.1. Since
Definition 2.2 is equivalent to [7, Definition 1], we can observe that Theorem 2.2 and Lemma 3.1 are already stated
in [7, Theorem 4]. Since our approach is slightly different from the one in [7], we prefer to give complete proofs for
the convenience of the reader.

Proof. Step 1. Let fbein L2(0, T; V°(£2)), the solution (@, v/) to Eq. (2.5) belongs to
V21(Q) x L*(0, T; H'(2)/R).
Let A € L(L*(0,T; VO(£2)), (L*(0, T; VI/2(I")) x V}(£2))) be the operator defined by

0P
Al) = <_E +yn—c(y)n, 4’(0)),
where (@, ) is the solution to Eq. (2.5) and c(v¥) is defined in (2.3). Eq. (2.4) can be rewritten in the form

@ H1200,7,v002)) = (4D (&, PuO))LZ(O,T;V'ﬁ(F))><V(1)(.Q),L2(0,T;V—]/Z(F))XV—](.Q)’
and we have

f, A*(g, Puy))

(A, (. Pu()))LZ(O,T;V1/2(F))><V(1)(.Q),L2(O,T;V*I/Z(F))XV*I((2) = L2(0,T;VO(£2))"

Since A* — the adjoint of A — belongs to £(L>(0,T; V~1/2(I")) x V-1(£2), L*(0, T; V°(£2))), the function u =
A*(g, Pup) is clearly a solution to Eq. (2.1) in the sense of Definition 2.2, and the estimate of u follows from the
continuity of A*. To prove the uniqueness, we observe that if u is a solution corresponding to (g, ug) = (0, 0), setting
f=uin (2.4), we prove that u = 0.

Step 2. To compare the solutions corresponding to Definitions 2.1 and 2.2 we first consider the case of regular data.
Assume that g € C' ([0, T]; V3/2(I")). Let (w(t), m (1)) € V>(£2) x H'(£2)/R be the solution to the equation:

—AW@)+Vr(t)=0 and divw(t) =0 in 2, w()=g(l) onl. 2.7

Itis clear that (w, ) € C1([0, T1; V2(2) x H'(£22)/R). Let (y, ¢) be the weak solution in W (0, T; V}(£2), V™1 (£2)) x
L%(0, T; L?(£2)/R) to the equation

dy

Ay+V W Givy=0 inQ
- _ = ——, 1IVy = m .
ot YTYVAE T, y

y=0 onX, y(0) = P(up —w(0)) in 2.

2.8)

We set u = w4 y. We can easily verify that u = w+y is a solution to Eq. (2.1) in the sense of Definitions 2.1 and 2.2.

Step 3. Let g be in G'(2), uy € VO(.Q), and assume that y,g(0) = (up - n)n. Recall that (/ — P)ug = (I —
P)D((ug-n)n). Thus (I — P)ug = (I — P)Dy,g(0) = (I — P)Dg(0). Let (g;)x be a sequence in C' ([0, T']; V3/2(I"))
converging to g in G (X). Let (wi(r), T (7)) be the solution to Eq. (2.7) corresponding to g (¢), and set upx =
Pug + (I — P)Dgi(0) = Pug + (I — P)wi(0). Since (v, (0))x converges to y,g(0) in V=/2(I"), (I — P)wi(0))x
converges to (I — P)ug in VO(£2). Moreover from the definition of ug ;. it follows that g; and ug x obey the com-
patibility condition y,,gx (0) = (ug x - n)n. Let (yk, gx) be the weak solution to Eq. (2.8) corresponding to wy, and set
u; = Wi + yr. We have

u; (0) = Pur(0) + (I — P)ug(0) = Pwi(0) +yx(0) + (I = P)wi(0) = Pug + (I — P)wi(0) =up«.

Due to Step 2, ug is the solution to Eq. (2.1) in the sense of Definitions 2.1 and 2.2. By a density argument and due
to the estimates in Theorem 2.1 and to (2.6), it follows that the solutions u to Eq. (2.1) in the sense of Definitions 2.1
and 2.2 coincide if g € G'(X) and y,g(0) = (up -m)n. 0O

Definition 2.2 cannot be used to obtain optimal regularity results because Pu and (/ — P)u are not decoupled in
the weak formulation (2.4).

We are going to define weak solutions to Eq. (2.1) in the case where g € L%(0, T; VO(I")), by adapting to the case
of the Stokes operator the extrapolation used in [4] and [5] for the heat equation. Before stating a new definition of
weak solutions to Eq. (2.1), let us define solutions when the data are regular. Suppose that g € CC1 (10, T1; V3/2(IM)).
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Denote by (w(t), 7 (¢)) € V2(2) x H! (£2)/R the solution to Eq. (2.7), that is (w(z), 7w (¢)) = (Dg(t), Dpg(t)), and
denote by (y, ¢) the solution to Eq. (2.8). We already know that (u, p) = (W +y, 7 + ¢) is a solution to Eq. (2.1) in
the sense of Definition 2.2. Eq. (2.8) can be rewritten in the form

y=Ay—Pw,  y(0)= Puy,
because w(0) =0, and y is defined by
t
y(t) =e'4 Puy — /e(l_S)APW’(s) ds.
0
Integrating by parts we obtain

t
y(1) =4 Pug + / (—A)e" 94 Pw(s)ds — Pw(r).
0
Thus we have

t
Pu(r) =y(t) + Pw(t) =e'4 Puy + / (—=A)e"" 94 P Dg(s) ds.
0

With the extrapolation method, we can extend the operator A to an unbounded operator A of domain D(A) = Vg(.Q)
in (~D(A*))’ = (D(A))’, in order that (A, D(A)) be the infinitesimal generator of a strongly continuous semigroup
(e’A),>0 on (D(A*))’, satisfying e'duy = e'4ug for all ug € VS(Q). This means that Pu is solution to the equation
Pu’ = APu+ (—A)PDg, Pu(0) = Puy.
The equation satisfied by (I — P)u is nothing else than
(I —Pu@t)= U - P)wt)= (I — P)Dg(1).
One can easily verify that Dy, g(t) € VS(.Q). Thus we have (I — P)Dg(t) = (I — P)Dy,g(t). The operator

P o D is linear and continuous from VO(I") to V,I,/ 2(.Q). Thus (—A)PD is linear and continuous from V°(I") to

(D((—A*)3/4+)Y for all & > 0. Consequently (—A)P Dg belongs to L2(0, T; (D((—A*)3/4€))’) if g belongs to
L2(0, T; VO(I)).
We can now state a new definition of weak solution.

Definition 2.3. A function u € L2(0, T; V°(£2)) is a weak solution to Eq. (2.1) if

Puis a weak solution of evolution equation

Pu' = APu+ (—A)PDg, Pu(0) = Puy, (2.9)
and if (I — P)u is defined by
(I — Pyu(-)=(I — P)Dy,g(-) inL*(0,T;V°(£2)). (2.10)

By definition of weak solutions to evolution equations [4], a function Pu € L%, T; Vg(.Q)) is weak solution to
Eq. (2.9) if and only if, for all @ € D(A*), the mapping ¢ > fQ Pu(t)® belongs to HL(0, T) and satisfies

d . -
a/JDu(z)q):/Pu(t)A P +((—=A)PDE®). P) o se) prasy:
2 2

Observe that A* = A and that

(=20 PDED. @)1y piaey = [ & D (=A%)

r
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Due to Lemma A.4, we have

P
fg(t)D*(—A*)‘P = /g(t)(—% +yn— C(Iﬁ)n>,
r r

where ¥ € H'(£2)/R is determined by
Vi = — P)A®.

Thus the variational equation satisfied by Pu is nothing else than

% / Pu(t)® = f Pu(t)A® + f g(t)(—% +1/m—c(¢)n) for all @ € D(A*). .11
2 2 r

Remark 2.3. If y,g = 0 then (I — P)u=0 and u = Pu is only determined by the evolution equation Pu’ = A Pu+
(—A)Dg, Pu(0) = Puy. If y;g=0, Pug =0, and y,,g # 0, we can ask if Pu = 0 or not. Due to Proposition A.1 we
can claim that the answer is negative. Indeed if y;g = 0 and y,,g # 0 then P Dg # 0. We also clarify the contribution
of y,g to Pu in Proposition 2.2.

Remark 2.4. Notice that in Definition 2.3, we do not require that u(0) = ug, we only impose the initial condi-
tion Pu(0) = Puy. Indeed if g € L2(0, T; VO(I")), then (I — P)u = (I — P)Dg belongs to L>(0, T; V/2(2)),
(I — P)u(0) is not defined, and therefore the initial condition of (I — P)u cannot be defined. On the other hand
ifge H*(0,T; VO(I")) with s > 1/2, then (I — P)u = (I — P) Dg belongs to H*(0, T; V/2(£2)), and (I — P)u(0) is
well defined in V'/2(£2). If (I — P)u(0) = (I — P)uy, then the solution defined in Definition 2.3 satisfies u(0) = uy.
Otherwise we only have Pu(0) = Pug. According to Proposition 2.1 the condition (I — P)uy = (I — P)u(0) is
equivalent to (I — P)(ug — Dg(0)) = 0 because (I — P)u(0) = (I — P)Dg(0).

Therefore only the datum Puy is needed to define the weak solutions of Eq. (2.1). When (I — P)Dg(0) is well de-
fined, it is natural to assume that (I — P)ug = (I — P)Dg(0). This is the reason why throughout what follows, we only
state theorems with assumptions on Pug. The component (I — P)u(0), when it exists, is defined by (I — P)Dg(0),
and only in that case we assume that (I — P)ug = (I — P)Dg(0).

We are going to prove the main results of this section: Theorems 2.3, 2.5, 2.6, and 2.7.
Theorem 2.3.

(i) Forall Puy e VO(2) and all g € L*(0, T; VO(I')) Eq. (2.1), admits a unique weak solution in L*>(0, T; V°(£2))
in the sense of Definition 2.3. This solution obeys

”Pu”LZ(O,T;V,]/Z_S(Q)) + I Pull gia—ero,;vo(2)) + ” (- P)u||L2(O,T;V1/2(.Q))
< C(||Pu0||Vg(g) + gl z20.7:v0(ry))  forall e > 0.
(i) Ifg e V&S/2(2) with 0 < s < 2, and $2 is of class C> when 3/2 < s < 2, then
|- P)uHLz(O,T;VH"/Z(.Q)) + [ (1 = Pyul wro V@) S Clglvesz e

(iii) If 2 is of class C3, g € VS5/2(X) and Pug € VO V22, with0 < s < 1 and 0V (s — 1/2) = max(0, s — 1/2),

then
| Pullys+1/2-e.5/2+1/412( 0y < C(IIPu0||V2v<571/z>(Q) + ||g||Vs,;/z(2)) forall e > 0. (2.12)
(iv) If 2 is of class C3, g € VS3/2(5), Pug € V5 /2 (82), with | < s <2, and if ug and g(0) satisfy the compatibility
condition
yo(P(ug — Dg(0))) =0, (2.13)

then the estimate (2.12) is satisfied.
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(v) If 2 is of class C3, g belongs to V-1(X) and Pug € V,ll (£2), and if Pug and g(0) satisfy the compatibility
condition

P(uo — Dg(0)) € V§(£2),

then a belongs to V>1(Q) + (L*(0, T; V3/2(£2)) N H'(0, T; VY/2(2))), in particular u belongs to C ([0, T;
Vi) and

||“||c([o,T];V1(Q)) < C(||Pu0||v}7(9) + ||g||V1-1(2))-

Remark 2.5. If y,,g =0, it is proved in [14, Theorem 2.1] that we can take ¢ = 0 in estimate (2.12). We would like to
know if we can still take ¢ = 0 in estimate (2.12) if y,g # 0. This is not at all obvious because the condition y,g =0
plays a crucial role in the calculations in [13,14] (see e.g. identity [13, (A.27)]). We give a complete answer to this
question in Theorems 2.5, 2.6, and 2.7.

The assumption ‘§2 is of class C3 is needed when we use regularity results for Dg stated in Corollary A.1 for
ge V$/2(2) with s > 3 /2. Since the results stated in (iii) and (iv) are obtained by interpolation this additional
assumption for £2 is needed in all these cases.

Proof. Step 1. The system

Pu'=APu, Pu(0)=0, and (I—P)u=0,
admits u = 0 as unique solution. Thus uniqueness of solution to Eq. (2.1) is obvious. Let us prove the existence. Let
us first take g € C1([0, T']; V3/2(I")). We have already seen that the function u = w +y, where (w(t), 7 (¢)) is the
solution to (2.7) and (y, q) is the solution to (2.8), is a solution to Eq. (2.1) in the sense of Definition 2.2. Let us show

that u is a solution to Eq. (2.1) in the sense of Definition 2.3. We notice that (I — P)u= (I — P)w= (I — P)Dy,g.
For all @ € D(A), we have

d d d d
E/Pu(t)(b = E/u(t)di - a/w(z)tb + E/y(t)fb

2

/(Ay Vg+ Aw—Vr)d = /(y+W)A¢ /gg

on
r
0P
/PuAd)—l—fu(I—P)A(P /g~8—n

2 r

/PuA<1>+/u vy — /

2

/ PuAd +/ (—8— +Yn— c(tp)n),
on

where ¥ € H'(£2)/R is defined by
VY= — P)A®.

According to the weak formulation (2.11), u is a solution to Eq. (2.1) in the sense of Definition 2.3. From the above
calculation it also follows that

/PAu(P =/A(y+w)¢ :(APu+(—A)PDg,q))(D(A)),’D(A) for all @ € D(A),
2 2
that is

PAu=APu+ (—A)PDg inL*(0,T;(D(A))). (2.14)

Now suppose that g € L20, T; VO(IM). Let (gx)r be a sequence in clqo, T1; V3/2(ry) converging to g in
L2(0, T; VO(I")). Let (wi(2), 71 (1)) be the solution to Eq. (2.7) corresponding to gx(?), let (yk, gx) be the weak



930 J.-P. Raymond / Ann. I. H. Poincaré — AN 24 (2007) 921-951

solution to Eq. (2.8) corresponding to wy, and set uy = wy + yr. We have already seen that (uy); converges in
L%(0, T; V9(£2)) to the solution u to Eq. (2.1) in the sense of Definition 2.2. Moreover, passing to the limit when
k tends to infinity in the equality (I — P)uy = (I — P)Dy, gk, we obtain (I — P)u= (I — P)Dy,g. Knowing that
(Pug)k converges to Pu in L%, T; VS(Q)), and passing to the limit in the variational formulation

d 0P
—/Puk(t)¢=/PukA<P+/gk-(———i—t/fn—c(w)n),
dr on

Q 2 r

we can show that Pu is the solution of Pu’ = APu + (—A)PDg, Pu = Puy. Thus u is the solution of Eq. (2.1) in
the sense of Definition 2.3.

Step 2. If g € V*9/2( %) with 0 < s < 2, and if £2 is of class C3 when 3/2 < s < 2, from Corollary A.1 it follows
that

” - P)uHLz(O,T;V~‘+1/2(Q)) + ” (= P)“” HS/2(0,T;V1/2(2)) S Cliglyssrn(z)-
Step 3. To prove the statements (iii) and (iv) in the theorem, we follow the technique of proof used in [16] for the
heat equation. We have
'
Pu(t) =e4 Puy— A / =94 P Dg(s)ds. (2.15)
0
If ge L%(0, T; VO(I)), then (—A)!/4=#/4 P Dg belongs to L?(0, T; VY (£2)), and

t
< ||elA(_A)1/4_8/2PuO||Vg(9) + f ||(_A)1—8/4e(l—S)A || || (—A)1/4_8/4PDg(S)||Vg(Q) ds
0

t
< Ct*1/4+6/2||Pllo||V2(_Q) + /(f - s)*1+e/4 ” (_A)1/478/4PDg(S)HVO(Q) ds.
0
From Young’s inequality for convolutions, we deduce that

||Pu||L2(0,T;V1/2_S(Q)) < C(||Pll0||v0(9) + ”g”LZ(O,T;VO(F))) for all ¢ > 0. (216)

Moreover
t

df% = Ae' Pug — APDg(t) — A / Ae"=94 P Dg(s) ds
0
_ _(_A)3/4+s/2etA(_A)1/4—8/2PuO + (_A)3/4+8/2(_A)1/4—8/2PDg([)
t
+ (_A)3/4+e/2(_A)1/478/2/Ae(tfs)APDg(s)ds
0
— (_A)3/4+s/2[_(_A)1/4—5/2Pu(t) + (—A)1/4_8/2PDg(t)],
that is
(—A) T2 Pu = —(=A) /42 Pu(r) + (—A) 42 P Dg (1),

Since (—A)Y/4~¢/2 Pu and (—A)'/4~¢/2 P Dg belong to L2(0, T; VY (£2)), we deduce that

1PW'll 20, 751D~ Ay

< C(”(_A)1/4_8/2Pu”L2(O,T;V2 + ||(_A)l/4_8/2PDg||L2

(82)) (O,T;Vg(.o)))

< C(IPull 2. 7:v12-¢ 2y + I8l 20.7:v0(ry)) < C(I1Pwollyocey + &l r20.7:v0(ry))- (2.17)
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for all ¢ > 0. By interpolation between (2.16) and (2.17), we obtain
I Pull g1/a—er20,7:v9(2)) < C(IPuollyocgy + lIgl 20, 7:vo(ry).  foralle > 0.
Step 4. Let us show that if g € V>!(X) and if ug and g(0) obey the compatibility condition
P(up — Dg(0)) € VV2(2) N V{(£2),
then Pu belongs to V3/2783/4=¢/2(() for all ¢ > 0. By integration by parts in Eq. (2.15), we have

t
Pu(t) =e'*(Pug — PDg(0)) + PDg(t) — / =94 PDg (5)ds. (2.18)
0
Since g € L2(0, T; V>(I')), from Lemma A.1 it follows that P Dg € L%(0, T; V3/2(£2)). Moreover

t
(—A)SM*S/Z/G([?&)A PDg/(s) dS
0

1
/(_A)]78/46075)/‘(_A)1/47£/4PDg/(S)ds
0

VO(2) VO(2)

t
< C/(t _ S)—1+s/4 ”(—A)1/4_£/4PDg/(S)”VQ(_Q)dS‘
0

From Young’s inequality for convolutions it follows that
)

/ e(™4 P Dg/(s)ds

0

< Cliglvai(s)-
L2(0,T;V3/27¢(2))

We also have:
[(—A)>/*#/2e'4(Pug — P Dg(0))
< Ct_1/2+£/4‘

C1 2R (=a)Y 4=/ (Pug — PDg(0)) | yo )

va(g) S
‘P up — P Dg(0) ||V3/2—8/2(_Q)0V(1)(.Q)
< Crm PR (1Pwollys gy + [ P DO |yan ) < Cr7 24 (I Puollysi gy + lgllvar x))-
Thus
||Pu||L2(0,T;V5/2—g(_Q)) < C(||Pu0||v3/2(_(2) + ||g||V2,1(2)), forall ¢ > 0.
By differentiating (2.18) we obtain

t

= Ae'*(Pug — PDg(0)) — A / =94 PDg (5)ds.

0
Since g’ € L*(0, T; VO(I")), from Step 3 we deduce that A fé e"=94 P Dg'(s) ds belongs to H'/47¢/2(0, T; VO(£2)).
Moreover, since P (ug — Dg(0)) € V3/2(£2) N V(l)(.Q), e/4(Puy — P Dg(0)) belongs to

L*(0,T; V/2(2) N V(£2)) N HY4(0, T; V9(£2)).

In particular e!A(Puy — P Dg(0)) belongs to HY4%0,T; VZ(2) N V(l)(.Q)). Thus Ae'4(Puy — P Dg(0)) belongs to
H'40, T; V(£2)). Therefore 452 € H1/4=¢/2(0, T; VI(£2)), and we have

dPu
dt

||Pu||H5/4—g/2(O’T;V2(_Q)) < C(||Pll0||v3/2(9) + ||g||V2,1(2)), forall ¢ > 0.

The other estimates of the statements (iii) and (iv) in Theorem 2.3 can be obtained by interpolation.
Step 5. Suppose now that g belongs to vLI(x), Pug e V,ll (£2), and that uy and g(0) satisfy the compatibility
condition P (ug — Dg(0)) € V(l)(.Q). From Corollary A.1 we deduce that

|- P)““Hl(o,r;vlﬂ(g)) +]a - P)“HLZ((),T;V3/2(.(2)) S Cliglviics)-
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Moreover as in Step 3 we have

t
Pu(t) =e'*(Pug — PDg(0)) + PDg(t) — / =94 PDg (s)ds.
0
Since Pug — PDg(0) € V) (£2), e'A(Pug — P Dg(0)) belongs to V>!(Q). Since
ge H'(0,T; V(M) N L*(0,T; VI(IM),
from Corollary A.1 it follows that P Dg belong to
H'(0,T; V'/2(2)) N L*(0, T; V/3(£2)).

The term fot e(’_‘)APDg’(s) ds belongs to vzl (Q) because P Dg’ belongs to L%, T; Vg(.Q)) (actually it belongs to
L2(0, T; VY/2(2))). Tt is clear that H'(0, T; VY/2(2)) N L2(0, T; V3/2(22)) = C([0, T]; V! (£2)) and V>!(Q) —

C(0,T1; VI(Q)), see [6, Chapter 18, Section 1.3, page 579]. Thus the proof is complete. 0O
Theorem 2.4. For all g € L2(O, T; VO(F )), the solutions given by Theorems 2.2 and 2.3 coincide.
Proof. The proof is given in the first step in the proof of Theorem 2.3. O

Before ending this subsection we would like to give an equivalent formulation to Eq. (2.9) which allows us to use
regularity results from [14].

Proposition 2.2. Assume that 2 is of class C3, g € V*1(X), Pug € V}(£2), and P (uy — Dg(0)) € V) (£2). A function
Pu e V>1(Q) is a weak solution to Eq. (2.9) if and only if the following conditions are satisfied:

(i) Pu(0) = Pug. There exists a function € L20, T; HY(2)) such that
oP
—8;' — APu+Vr =0, (2.19)

in the sense of distributions in Q.
(i1) Pu satisfies the following boundary condition:

Pulz =y:g—y:(Vq), (2.20)
where g € L*>(0, T; H*(£2)/R) is the solution to the boundary problem
dq (1)

Ag(t) =0 in$2, =git)-n onl, foralltel0,T]. 2.21)
Proof. First prove (2.19). Let u be the solution of (2.1) and let Pu be the solution of (2.9). Due to Theorem 2.3, we
know that Pu € V/2=&3/4=¢/2() for all ¢ > 0, and that (I — P)u e L2(0, T; V/2(£2)) N H' (0, T; VV/2(£2)). Thus
the pressure in (2.1) belongs to L%(0, T; HY(£2)), and we have

oPu o(I — P)u

—— —APu+Vp=A - Plu—
at TP ( ) Jt

We know that (I — P)u = (I — P)Dg, and from the characterization of (I — P) (see [25]), it follows that
(I — P)Dg=Vgq, where ¢ is the solution of (2.21). Since g € Vz*l(Z‘), the function g belongs to H'Y (0, T;
H32(£2)) N L%(0, T; H3(£2)) (we have only assumed that £2 is of class C3, and we cannot hope to have a bet-
ter regularity than H3(£2) even if the Neumann condition is in H>(I"), see [26]). Thus Ag € L*(0, T; H'(£2))
and ‘;—‘t] € L%(0, T; H¥?*(£2)). Since AVg = VAq in the sense of distributions in Q, Eq. (2.19) is established with
T=p—Aq+ %—j’.

To prove (2.20), we observe that

Puly =uly —(I - Plulx =g— (I - P)Dg|x,
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and that (I — P)Dg = Vg, where ¢ is the solution of (2.21). Therefore (2.20) is proved because g(t) — y9(Vq(?)) =

v:8() — v (Vq(1)).
Now we assume that Pu € V%! (Q) obeys the statements (i) and (ii) of the proposition. For all @ € V2(02) OV(I)(.Q),
we have

d oP
T Pu(®)® = | APu(t))® = | u(t) AP — (y,g(t) —Yr (Vq(t))) e

Q Q Q r
Introducing the function ¥ € H!(£2)/R defined by Vs = (I — P)A®, we obtain

0P
e(Va0) - ——= [ A®-Vat)= [ (I = P)A®) - Vq0) = [ VY -Vq(®) = [ ¥&®)-n.
r Q Q Q r

The first equality comes from the fact that % -n =0 and that [, o AVq(1) = 0. Thus, if Pu obeys conditions (i) and
(ii) in the proposition, then Pu is the weak solution to Eq. (2.9) (see (2.11)). O
Proposition 2.3. Assume that g € V**/>(X) and Pug € Vf,il/z(.Q) for some s > 1. Let q be the solution of (2.21).

The compatibility condition

728(0) — Vg (0) = yo Puy, (2.22)
is equivalent to (2.13).
Proof. We have

1P Dg(0) = yoDg(0) — yo((I — P)Dg(0)) = »0g(0) — nVq(0) = y:g(0) — y: Vq(0),

which proves that (2.13) and (2.22) are equivalent. O

Proposition 2.4. There exists a constant C > 0 such that

V2 (V@) ys (ry < Clgllvscry  forall's €10,3], and all g € V*(I'),
where q is the solution of Eq. (2.21), and

|V 0@ yo ) < Clgllvogry  for all g e VO(I),

where V; denotes the tangential gradient operator. In the above statements we assume that

2 is of class C* if 0 < s <3/2,
2 is of class C* if3/2 < s <5/2, (2.23)
and $2 is of class c’ if5/2 <s<3.

Proof. If g € V¥(I") and s € 10, 3], we know that ¢ € H13/2(22), Vg e B**1/2(£2), and y0(Vq) € H*(I"), which

provides the estimate of the proposition in the case when s > 0. For s = 0, we have ypqg € H 1(F ), and V;:(y0q) €
VO(I"). The proof is complete. O

Remark 2.6. Since we use regularity results for the auxiliary problem (2.21), we need that §2 satisfies (2.23) (see [26,
Exercise 3.11]). From Proposition 2.2 and a density argument it follows that the system (2.19)—(2.20) is equivalent to

Pu'=APu+(=A)D(yig—y:(Vg)).  Pu(0) = Puy,
ifge L2(0,T; VS(I') and s > 0, and to

Pu'=APu+(=A)D(rig—Vi(ro@)),  Pu(0) = Puy,
ifge L2(0, T; VO(I)).
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Theorem 2.5. Assume that g € V5/2(X), Pug € V5 /2(2), with 3/2 < s < 3, and $2 satisfies (2.23). If uy and g(0)

satisfy the compatibility condition (2.22), then the solution Pu to Eq. (2.9) satisfies the estimate

||Pu||V.r+l/2,S/2+l/4(Q) < C(|IPU()||V.:;1/2(Q) + ||g||Vs.s/2(E)). (2.24)

Proof. By a density argument, it is sufficient to prove estimate (2.24) when g € V$$/2(2)NV21(2). In this way we
can use Proposition 2.2. With Proposition 2.4, we can show that

|ve (V@) |yssrn (s < Cligllyssn sy foralls €10,3], and all g € V¥*/2(5),

where ¢ is the solution of Eq. (2.21). Thus, the theorem is a direct consequence of the above estimate, of Propo-
sition 2.2, and of known regularity results for the instationary Stokes equations with nonhomogeneous boundary
conditions [24]. O

Theorem 2.6. Assume that 2 is of class C3, g € V¥$/2(X), and Pug € ng(sil/z)(ﬂ), with s € [0, 1[. Then the
solution Pu to Eq. (2.9) satisfies the estimate

| Pullys+1/2s/2+1/4 gy < C(IIPllollvgvcv—l/z)(m + lIgllys.srzcs))- (2.25)
Proof. By a density argument, it is sufficient to prove estimate (2.25) in the case when g € VZ1(x) and g(0) and Pug
satisfy yo(P Dg(0) — Pup) =0.If g e v21(x), with Proposition 2.4 we can show that

lye(Va)|

where ¢ is the solution of Eq. (2.21). (For s = 0, we have to observe that V;(yoq) = yr (Vq).) Thus estimate (2.25)
follows from Proposition 2.2, and from [14, Theorem 2.1] in the case where 0 <s < 1. O

Vs.s/2(5) < C”g”VLS/Z(Z) forall s € [0, 1[,

Theorem 2.7. Assume that g € VS/2(5), Pug € Vo'~ V2 (@), with s € [0, 1[N 11, 3[, and 2 satisfies (2.23). If uy
and g(0) satisfy the compatibility condition (2.13) when 1 <s < 3, then

[ Pullys+i/2s2+1/4g) < C(IIPUOIIng<s—1/2>(Q) +lglvesrsy)- (2.26)

Proof. Estimate (2.26) is already proved for s € [0, 1[ and s € [3/2, 3[. For s € ]1, 3/2[, it is obtained by interpolation
between the regularity results stated in Theorems 2.5 and 2.6. O

Remark 2.7. In Theorems 2.5 and 2.7, for s = 2, we have to assume that 2 is of class C* (because we make use
of Proposition 2.2), while in Theorem 2.3(iv) we only assume that £2 is of class C3. Actually, combining the results
stated in Theorem 2.6 for s = 0 with arguments in Step 4 of the proof of Theorem 2.3, we can show that (2.26) is still
true when £2 is of class C3.

Corollary 2.1. Assume that §2 is of class C3. If g belongs to V3/*3/4(%), if Pug € V,3,/4(.Q), and if Puy = P Dg(0),
then
1Pullysasss o)+ [ (1 = P)uHL2((),T;V5/4(.Q))OH3/4(0,T;Vl/z(.Q)) +llulleqo,ri v
S C(IPuolly3a ) + l1gllvarars s))- (2.27)

Proof. From Theorem 2.6 with s = 3/4, it follows that
| Pullys/ass gy < C(IIPUOIIV}L/4(Q) + llgllva/s35 5y )-
It is clear that (I — P)u belongs to
L*(0,7; V4 (2)) n HY*(0, T; VV/2(2)) — C([0, T1; V¥/*(£2)).
3/4

Moreover Pu € C([0, T1; V;/"(£2)). Indeed, if g € V®O(X) and Pug € V(£2), then Pu e V/21/4(Q). If
ge VL1(X) and Pug = P Dg(0), then
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t
Pu(t) = PDg(r) — / =94 pDg'(s)ds,
0

t
/e“*)APDg/(s)ds € L*(0,T; VX(2)) N H' (0, T; VI/*(2)) — H*3(0,T; V/°(2)),
0
PDge L*(0,T; V¥/2(2)) N H' (0, T; V'/2(2)) = H*3(0, T; VV/4(£2)).
By interpolation we obtain that Pu € C ([0, T']; V,31/ 4(.Q)) when the assumptions of the corollary are satisfied. The
proof is complete. O

3. Other regularity results

In the previous section we have seen that, for all s € [0,3[ with s # 1, if g belongs to vss/ 2(2), Pug €
VOVE=2 () and if yo(Pug — P Dg(0)) = 0 when s > 1, then
| Puallys+1/2.5/241/4¢0) < C(IIPuollvgv@—l/z)(Q) + lIglvssr(x))-

This result generalizes to the Stokes equations the type of regularity results known for the nonhomogeneous heat
equation. We would like to obtain regularity results different from the ones stated in Theorems 2.3 and 2.7, still in
the case where y,g # 0. From [8] or from Theorem 2.3, we know that the condition g € V3/2:3/4(%) is not suffi-
cient to guarantee that u belongs to V>!(Q) if y,g # 0. The regularity of the normal trace of g must be better than
what is needed for the tangential component. We show below that the regularity u € V¥*/2(Q) can be obtained if
ge L%0,T; V:=12(my)y n H/2(0, T; V-1/2(I")). At the end of the section, we compare our result with the corre-
sponding one in [8] in the case when y,g = g.

Theorem 3.1. For all s € [0,2] with s # 3, all Pug € [V™'(£2), VL(2)1y/2, and all g € L>0, T; V'~V2(I") n
H*/2(0, T; V-V2(I")) satisfying yo(Pug — PDg(0)) =0 if s > 3/2, Eq. (2.1), admits a unique weak solution in
L%(0, T; VO(2)) in the sense of Definition 2.3. This solution obeys

I1Pullyssr2g) + 1Pl 1o, 751D Ay VO2)1/2)

< C(IPwolly-1@) i@, + 182, r:vs-12pnmszo.r:v-12(r))-

|2 = Pyullyes o) < Cligllz.rvs-12rpnmsio.rv-120)-
Lemma 3.1. For all Puy € V™'(£2), and all g € L*>(0, T;V~Y2(I")), Eq. (2.1) admits a unique weak solution in
L2(0, T; VO(£2)) in the sense of Definition 2.3. This solution obeys

| Pull 20 7:v02y) + 1 Pullg10.7:(pax)y)y S C(”PUOHV*I(Q) + ||g||L2(o,T;V71/2(r))),

|2 = Pyul 20 7vogay < Cligll20.7:v-120))-
Proof. If g belongs to L2(0, T; V=1/2(I")), then P Dg belongs to L>(0, T; VO(£2)) (see Corollary A.1), (—A) P Dg
belongs to L2(0, T; (D(A*))"), and we have

H (—A)PDg| L2(0,T:(D(A%)) < C||PDg||L2(0,T;Vg(_Q)) < Cligl2,7,v-12(r)) -
Due to [4, Chapter 3, Theorem 2.2], the equation

Pu' = APu+ (—A)PDg, Pu(0) = Puy,
admits a unique solution in L2(0, T; VO(£2)) N H'(0, T; (D(A*¥))’) and

IPull 200 7:v0(2)) + 1 PUll 10,7 (Dcaxyy < C(I1PUolly-1 () + ”(_A)PDg”LZ(O,T;(D(A*))’))
< C(IIPuolly-1 gy + ||g||L2(0,T;V—1/2(p)))~ O
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Lemma 3.2. For all Pug € V}(2), and all g € L>(0, T; V3¥/2(I"))NH'(0, T; V-Y2(I")) satisfying P(ug— Dg(0)) €
V(l)(.Q), Eq. (2.1) admits a unique weak solution in L%, T; V2 (82)) in the sense of Definition 2.3. This solution obeys

lually2igy < C(||Pllo||v,1,(.(z) + gl 20, 7:v32(PyynE L 0.7:V-1/2(1y)) -

Proof. Let g bein L2(0, T; V¥/2(I) N H'(0, T; V™Y/2(I")), and set (w(t), 7 (1)) = (Dg(t), D,g(t)). It is clear that
(w, ) e V21(Q) x L?(0, T; H'(£2)/R) (see Corollary A.1), and that

IWlvai o) < CligllL20,7;v32rynmt 0, 1:v-12(r))-
Let (y, ¢) be the weak solution in W (0, T; V}(£2), V=1(£2)) x L?(0, T; L?(£2)/R) to the equation

ay ow . .

Y Ay+vg=—2 divy=0 ino,

or MY TVa=—5r divy=0 inQ 3.1)
y=0 onX, y(0) = P(up —w(0)) in£2.

We know that

1¥llv21(0) < C(]| P (uo — w(0)) ”vg,<g) + 1= PW 20,7 v0@2))
C(I1Pwollvi @) + IWllcqo.r:vi(ey + I8l L20.7:v3 2yt 0,1:v-112(r)))
C

<
< C(I1Pwollvi (@) + gl 20, 7:v32 Pyt 0.1:v-12(1y) -

Since u =w +y is a solution to Eq. (2.1) in the sense of Definition 2.3. The proof is complete. O

Remark 3.1. As mentioned in Remark 2.2, Lemma 3.1 is already stated in [7, Theorem 4]. We have given a short
proof for the convenience of the reader. Observe that Lemma 3.2 is not a consequence of [7, Corollary 5] since we do
not assume that up € H(£2).

Proof of Theorem 3.1. The result stated in Theorem 3.1 can be derived by interpolation from Lemmas 3.1 and 3.2.
Indeed we have (see [12]):

[L2(0, T; V7Y2(I)), L*(0, T; VI2()) n H' (0, T; VTV/2(1))]
=L*(0,7; V*='2() N HS2(0, T; VI2()),
[H'(0,T; (D(A")), H'(0, T; Vo%(2))]. , = H' (0, T; [(D(A%), V()]

s/2

s/2 s/Z)’

and
[L2(0. T: V(). V21(Q)], , = V**/2(0),
foralls €[0,2]. O

Before ending this section, we would like to compare the result stated in Theorem 3.1 with the one in
[8, Theorem 6.1], in the case when g = y,g. Observe that the trace theorems proved in [8] are obtained when 2
is bounded or unbounded, but the regularity result in [8, Theorem 6.1] is stated for a bounded domain. More-
over when y,g = 0, Pu = u, and due to Theorem 2.7, it is sufficient to take y,g € V¥~1/25/2=1/4( %) to have
u € V5%/2(Q). This means that the result stated in Theorem 3.1 is not optimal with respect to the tangential reg-
ularity needed for g. Now let us consider the case when g = y,g. First of all, observe that only the case where
s > 1 is studied in [8]. For s = 2 the result stated in Lemma 3.2 — when y;g = 0 — is exactly the one corre-
sponding to s = 2 in [8, Theorem 6.1]. For s = 1, we obtain u € V1’1/2(Q) and Pue WO, T;Vi(2), V- 1(2))
if g = y,,g belongs to L2, T:VY2(r)) n HY2(0, T; V-Y2(I")). The corresponding result stated in [8, Theorem
6.1] for s = 1 is different. It is assumed there that g = y, g belongs to L2, T;VV2(r)yn HY*0, T; V-Y(I")
L20, T; VV2(r)yn HY2(0, T; V-Y2(I")). Thus the assumption in [8, Theorem 6.1] for s = 1 is stronger than ours.
But the solution is obtained in V(l)(Q) which is strictly smaller than W (0, T’; V(£2), V-1(£2)). Therefore the two
results cannot be completely compared. Observe that in Theorem 3.1 we also state results in the case when s € [0, 1[
which is not considered in [8, Theorem 6.1].
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4. Oseen equation
4.1. Linearized Navier—Stokes equations around a stationary state

In this section, we want to extend the results of Section 2 to the equation

9
8—?—Au+(z~V)u+(u~V)z+Vp=O, divu=0 in O, @
u=g onJx, u(0) =ug in £2,

where z belongs to V! (£2).
To study Eq. (4.1) we introduce the unbounded operators A, and A} in VS(Q) defined by

D(A;) ={ue V()| PAu— P((z-V)u) — P((u-V)z) e V() },
D(A}) ={ue V()| PAu+ P((z-V)u) — P((Vz)'u) e VI(2)},
Au= PAu— P((z . V)u) — P((u . V)z) and Aju=PAu+ P((z . V)u) — P((Vz)Tu).

Throughout this section we assume that Ao > 0 is such that

f(x0|u|2+ IVul* + (z- V)u) -u+ ((u-V)z) -u)dx > %/(|u|2+ |Vul*)dx and
ko)
/(A0|u|2 +[Vul? = (- V)u) -u+ ((Vz)"u) - u) dx >
2

for all u € V}(£2).

4.2)

N =

2
/(|u|2 +|Vu/?) dx
2

Lemma 4.1. The operator (A, — dol) (respectively (A} — Aol)) with domain D(A; — Aol) = D(Az) (respectively
D(A; — o) = D(A})) is the infinitesimal generator of a bounded analytic semigroup on Vg (£2). Moreover, for all
0< o<1, wehave

D((hol — Ap)®) = D((hol — A))¥) = D((hol — A)*) = D((—A)%).

Proof. The first part of the theorem is a direct consequence of (4.2) (see e.g. [4, Chapter 1, Theorem 1.12]). The
characterization of the domains of (Aol — A,)* and (Aol — A})* follows from [17]. O

Let us denote by A, the extension of Ay to (D(A})) = (D(A*)) . Following what is done for the Stokes equations,
we introduce the Dirichlet operators associated with Ao/ — A,. For all g € VO(I"), we denote by D,g = w, and
D, ;g = 7 the solution to the equation

AW —AW+ (z-VIW+ (W-V)z+Vr =0 and divw=0 in 2, w=g onl.

Following what has been done for the Stokes equations, when g € C, Cl (10, T[; V3/2(I")), we look for the solution (u, p)
of Eq. (4.1) in the form (u, p) = (w, ) + (y, ), where (w(z), (1)) = (D,g(t), D ,8&(?)), and (y, g) is the solution
of

9 ow . .
8—?—Ay+(z~V)y~|—(y~V)z+Vq=—§+A0w, divy=0 inQ,
y=0 onX, y(0)=ug in£2.
We have
1 !

y(1) =42 Pug — / =94 pw (s)ds + Ao / el=942 pw(s)ds
0 0

t
=4 Pug + (Mol — Ap) f e=9%2 Pw(s)ds — Pw(?).
0
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Thus Pu is defined by

t
Pu(t) = e'4 Puy + / (Aol — Ap)e" 9% Pw(s)ds.
0
This leads to the following definition.

Definition 4.1. A function u € L2(0, T; V°(£2)) is a weak solution to Eq. 4.1) if

Pu is a weak solution of evolution equation
Pu’ = A,Pu+ (Al — A,)PD,g, Pu(0) = Puy, 4.3)
and

(I — P)u(-)= (I — P)Dyyag(-) inL*(0,T;V%(£2)).
As in Section 2, we can establish the following theorem.
Theorem 4.1.

(i) We assume that z € V'(82). For all Pug € VO(£2) and all g € L*(0, T; VO(I')) Eq. (4.1), admits a unique weak
solution in L*(0, T; VO(£2)) in the sense of Definition 4.1. This solution obeys

”Pu”LZ(O,T,V,]/Z_g(Q)) + ||Pu||H1/4_5/2(O‘T,Vg(_Q)) + || (1 - P)“”LZ(O’T’VI/Z(Q))
< C(||Pu0||V$1)(_Q) + ”g”Lz(O,T;VO(F))) for all e > 0.
(i) Ifge VSS/2(Z) with 0 < s <2, and if 2 is of class C3 when 3/2 < s < 2, then
” (I - P)uHLZ(O,T;VS+1/2(Q)) + ” (I - P)l,l” HS/Z(O,T;VI/Z(.Q)) < C”g”vs,sﬂ(z)- (44)

(iii) If 2 satisfies (2.23), z € VI/2V6=1/D(Q) g e V5/2(5), Puy e Vo' 12(2), with s € [0, 1[ U1, 3[, and if
Puy and g(0) satisfy the compatibility condition (2.13) when 1 < s < 3, then

||Pu||Vx+l/2,x/2+l/4(Q) < C(||PU()||VSV<S—1/2>(Q) + ||g||Vs,.v/2(2)). 4.5)
Proof. To prove the estimate stated in (i), thanks to Lemma 4.1, it is sufficient to replace A, e’ A and D by Az,
e/4z, and D, in the proof of Theorem 2.3. To prove (ii), we notice that (I — P)(D;y,g — Dy,g) = 0. Indeed if

w=D,y,gand v= Dy, g, thenw —v e Vg(.Q) and (I — P)(w — v) = 0. We postpone the end of proof at the end of
the section. O

Now we would like to show that u € LZ(O, T: VO(£2)) is a weak solution to Eq. (4.1) if and only if

Pu is a weak solution of the evolution equation

Pu =APu+ (—A)PDg+ P(divz®u)) + P(divu®z)),  Pu(0) = Puy, (4.6)
and

(I — P)u(-)=(I — P)Dy,g(-) inL*(0,T;V°(£2)). (4.7)

We have already noticed that (I — P)(D;y,g — Dy,g) = 0. Moreover ifu € L2%(0,T;V9(2)),thenzQuandu®z
belong to (L%(0, T'; (L3/2(£2))V). Thus P(div(z ® u)) + P (div(u ® z)) is well defined in L2(0, T; (D(A*))’) by

(P(div(z®u)) + P(div(u®z)), ¢)L2(O,T;(D(A*))’),LZ(O,T;D(A*))

=—/((u®z)+(z®u))-v(bdxdt forall @ € L*(0, T; D(A*)).
0
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Therefore weak solutions to problem (4.6) may be defined as weak solutions in L%(0, T; (D(A%))"). To prove that
weak solutions to Egs. (4.3) and (4.6) are identical, we first study Eq. (4.6).

Proposition 4.1. For all Pug € Vg (£2) and all g € L*(0, T; VO(I")) the problem (4.6), admits a unique weak solution
Pu in L*(0, T; VO(£2)) and it satisfies

1Pl 20,7 v0 (2 < C(I1PWollyoce) + gl 2,7 vocry)-

Proof. For all ve L%(0, T; VY(£2)), z® v and v ® z belong to L?(0, T; (L3/?(£2))V) because z € V!(£2). Thus, if
ve L%, T: VB (£2)), the evolution equation
y = Ay+ (-A)PDg+ P(div(z® ((I — P)Dy,g))) + P(div(((/ — P)Dy»g) ®12))
+ P(div(z ® v)) + P(div(v ® z)),
Pu(0) = Puy,

admits a unique solution yy in L%, T; VS(.Q)). More precisely we can show that

||YV||L2(0,T*;V2(_Q)) < C(”Z ®V+VZl o7+ w32V T 18220, 7+ vory) + |l PuOHVg(Q)),
for some 1 <o <2, and forall 0 < T* < T, where C is independent of T*. Therefore, as in [21, Proposition 2.7] we
can show that for 7* > 0 small enough, the mapping

VH—Yy

is a contraction in L2(0, T*; VS(.Q)). Thus we have proved the existence of a unique local solution to Eq. (4.6). As
in [21] we can iterate this process to prove the existence of a unique global in time solution in L0, T: VO (£2)) to
Eq. (4.6). The estimate of Puin L%(0,T; Vg(.Q)) can be derived as in [21]. The estimate for (/ — P)u= (I — P)Dy, g
follows from the continuity of the operator (I — P)Dy;,. The proof is complete. 0O

Theorem 4.2. A function u € L%(0, T; VO(£2)) is a weak solution to Eq. (4.1), in the sense of Definition 4.1, if and
only if u is the weak solution to problem (4.6)—(4.7).

Proof. This equivalence can be easily shown in the case when ug € V(l)(.Q) andgeC cl (0, T; V3/2(I")). Due to the
estimates in Proposition 4.1 and in Theorem 4.1(i), the equivalence follows from a density argument.

End of proof of Theorem 4.1. To prove the estimate stated in (iii), we write Eq. (4.1) in the form

Pu' = APu+ (—A)PDg+ P(div(z® ((I — P)Dy,g))) + P(div(((I — P)Dy,g) ® z))
+ P(div(z® Pu)) + P(div(Pu®z)),
Pu(0)=Puy, (I —Pu=( - P)Dy,g,
and we are going to use a fixed point method as in the proof of Proposition 4.1.

Step 1. Let us prove (4.5) for 0 < s < 1. For v e L2(0, T; V5T'/2(2)) N HS/2+1/4(0, T; VO(£2)), we denote by
Py, the solution to the equation

Py = APy+ (=A)PDg+ P(div(z® ((I — P)Dyug))) + P(div((( — P)Dysg) ®2))
+ P(div(z® V) + P(div(v® 2)), Pu(0) = Puy.

We have to prove that the mapping v — Pyy is a contraction in L2(0, T*; V5T/2(2)) 0 H*/2+1/40, T*; V0 (£2)) for
T* > 0 small enough. For that we have to verify that if v belongs to L2(0, T*; V5T /2(2))n H*/2+1/4(0, T*; Vo)),
then the two terms v ® z and z ® v belong to H¢(0, T*; HS~1/2V0(2)) n H6/2=1/4+eVve( T*; L2(£2)) for some
& > 0. This can be easily verified since z € V3/2(£2). Thus from classical results for the Stokes equations with ho-
mogeneous boundary conditions, and from Theorem 2.7 (to deal with the nonhomogeneous boundary condition), we
obtain the estimate
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I PYvllys+i/2s241/4 (2 % 0.7%) < Clz®v+ve® Z e 0, 7% HG—1/2M0 (@) H /21 fA+e)ve (0, T+ L2(82))
+ ||g||Vs-s/2(1“><(o,T*)) + ||PUO||V2V(:71/2)(_Q)),
where C > 0 is independent of T*. Thus we can show that the mapping v — Pyy is a contraction in
L2(0, 7% VM 2(2)) n B2 (0, T VE(2))

for 7* > 0 small enough. Next the estimate (4.5) can be obtained as in the proof of Proposition 4.1.

Step 2. Let us prove (4.5) for 1 < s < 3. Since z belongs to V3/2vG=12)(2), div(((I — P)Dy,g) ® z) and
div(z ® (I — P)Dy,g)) belong to L>(0, T; H~V/2(£2)) N H*/>~1/4(0, T; L?>(£2)). The solution of the Stokes
equation with a source term in L2(0, T; H~1/2(2)) N H¥/2~1/4(0, T; L2(£2)), belongs to L2(0, T; V5*(2)) n
HS/2H3/40, T, VO(2)) € L2(0, T; Vi T/%(2)) n HS/2+1/4(0, T; VO(£2)). Therefore these nonhomogeneous terms

do not cause any difficulty. Similarly if v belongs to L2(0,T*; Vfl+l/2(.{2)) N HS2HV40, T*; VS(Q)), we can easily
check that P(div(z ® v)) + P(div(v ® z)) belongs to H®(0, T*; VS~1/2(2)) N HS/2=1/4+2(0, T*; VO(£2)) for some
& > 0. Thus as in Step 1, we can conclude with a fixed point method. O

4.2. Linearized Navier—Stokes equations around an instationary state

In this section, we want to study the linearized Navier—Stokes equations around an instationary state z, with homo-
geneous boundary conditions:

0
8—?—Au+(z-V)u+(u-V)z+Vp=f, divu=0 in Q, 48)
u=0 onX, u(0) =ug in £2,

in the case where z belongs to L2(0, T; VH(£2)) N L>™(0, T; L*(£2)), and f belongs to L2(0, T; H 1 (£2)).
For almost all ¢ € (0, T), we define the operators A, (1) € L(V{(22), V1(£2)) and A} (1) € LV} (£2), V~1(£2)) by

(Az(Du, V>V_|(Q)’V(1)(Q) = /(—Vu Vv —((z@) - V)u) - v+ (- V)v) - z(1)) dx,
2

(A;()u, V)V-‘(.Q),V(IJ(Q) = /(—Vu Vv ((2() - V)u) - v+ ((v- Vu) - z()) dx,
2

for allu € V{(£22) and all v € V) (2).
Let us still denote by P the continuous extension to H~!(£2) of the Helmholtz projector, that is the bounded
operator from H'(£2) onto V1 (£2) defined by (Pf, ¢>V71(9)’V(1)(9) = {f, ¢>H*1(.Q),H(')(.Q) for all fe H™'(£2), and

all d € V(l)(.Q) (see e.g. [27, page xxiii] or [3, Appendix A.1]). Eq. (4.8) can be rewritten in the form
u = A,(t)u+ Pf, u(0) = uyg.
Lemma 4.2. Assume that z belongs to LZ(O, T:VI2)) N L0, T; L*(£2)). There exist Ay > 0 and M > 0 such that
and
2
<)"Ou - Al(t)uv u)V_l(Q),V(lJ(Q) 2 E ”u”V(l)(Q)v

forallue V(), all ve V(22) and almost all t € (0, T).

Proof. Forallu e V(l)(.Q), almost all t € (0, T), and A¢ > 0, we have:
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(rou— Az(Du, “>V*1(m,vg(m = /()‘0|“|2 +Vu? + ((z(t) - V)u) -u— ((u- V)u) -z(r)) dx

(Rolul* +[Vu]® = ((u- V)u) - z(1)) dx

(Rolu® + |Vul?) dx — lallps @) lallys @) 12l oo o, 71452

1/4 7/4

(KO|“| + [Vu| )dx - C||U||Vg(9)||U||V(1)(Q)||Z||L<>0(0,T;L4(Q))

(rolul* + |Vu]?) dx ||u||V 12~ Cl2le o 1inscan W 2y

where C = 8 47 It is sufficient to choose Ao = 1 + C||z||LOO(0 TLA@)"

Forallu e V(l)(.Q), allve V(l)(.Q), and almost all ¢ € (0, T'), we have:

(A v)yoi o) V1(9)|
< lullys @) IVllv @) + 12l oo o, 751820 1y @) IVl @) + IllLsce) IV @) 12l oo 0,714 (2)
< ”u”VO(Q)”V”VO(Q) + C||Z||L°O(0,T;L4(Q))”u”VO(Q)”V”VO(g)-

The proof is complete. O

Theorem 4.3. Assume that z belongs to L*(0,T;V'(£2)) N L>(0, T; L*(2)). For all uy € V(2) and all
fe L?(0,T; H '(2)), Eq. (4.8) admits a unique weak solution w in W(0, T; V}(£2), V™1(£2)).

Proof. The theorem is a direct consequence of Lemma 4.2 and of a theorem by J.-L. Lions (see e.g. [6, Chapter 18,
Section 3.2, Theorems 1 and 2]). O

With A,(¢) and A} (), we can associate two unbounded operators in V 1(£2), still denoted by A,(7) and A; (¢) for
simplicity, and defined by
D(Az()) ={ueVi(2)| PAu— P((z(t) - V)u) — P((u- V)z(1)) € VI(2)},
D(A:(1)) = {ue Vi) | PAu+ P((z(t) - V)u) — P((Vz()) u) e VO(2)},
Az(Hu= PAu— P((z(t) - V)u) — P((u- V)z(1)),
and

A(u= PAu+ P((z(r) - V)u) — P((Va()) "u).
5. The Navier-Stokes equation

In this section, we want to study the equation

9
a—ltl—Au+(u~V)u+Vp=0, divu=0 in Q,

u=g onXx, Pu(0) =uy in 2,

(5.1)

where g belongs to V3/43/4(%), and ug € VS (£2).
One way to solve Eq. (5.1) is to look for a solution u of the form u = w 4+ v, where w is the solution of

—~AW@) + V() =0 and divw(t)=0 in£2, w(@) =gt onTl, (5.2)
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forall r € [0, T'], and v is a solution to

0 0
8—:’—AV+(W-V)V+(V'V)W+(V'V)V-{-(W'V)W-i-v,():—a—‘:,

divv=0 inQ, v=0 onlX, v(0) =ug — PDg(0) in£2.

(5.3)

If w is regular enough, we are going to see below that Eq. (5.3) can be solved by a Galerkin method as in the case of the
Navier—Stokes equations (see e.g. [25, Chapter 3, Theorem 3.1]). For example if g belongs to Vi), thenw belongs
to L2(0, T; V3/2(2)) N H' (0, T; V!/2(£2)). In particular w belongs to L>(0, T'; V3/2(£2)) N C ([0, T']; V1(£2)), which
is enough to prove the existence of solution to Eq. (5.3). The assumption g € V"1 (X) is the one stated in [8,9] to prove
the existence of a unique solution to Eq. (5.1) in the case of small data. The extension procedure in [9, Theorem 3.8]

gH——> W

is different from the one corresponding to Eq. (5.2), but it leads to a similar regularity for w.
Here we assume that g belongs to V3/4'3/4(2). In that case the solution w to Eq. (5.2) belongs to

HY4(0, T; VI/2(2)) N L2(0, T; V/4(82)).

We think that in that case, because of the term w’ in (5.3), neither the extension procedure considered in [9] nor the
one corresponding to w determined by (5.2), may lead to a global existence result for Eq. (5.3). To overcome this
difficulty we consider the extension determined by

g— 1z,
where z is the solution to equation

Pz = APz + (—A)PDg, Pz(0) = P Dg(0),

(5.4)
(I — P)z(-)= (I — P)Dy,g(-) in L*(0,T; V°(£2)).
We look for a solution u to Eq. (5.1) in the form u =2z +y, where y is the solution of
d
a_f —AY+ @ VY +(§-Vz+ (- V)y+ (2 - V)z+Vg=0, divy=0 inQ, 55)

y=0 onX, y(0) =ug — PDg(0) in 2.

Since g € V3¥/43/4(x) and V¥/43/4(x) — C([0,T]; V/4(I")), PDg(0) belongs to H>*(£2), and P(z(0) —
Dg(0)) = 0. According to Corollary 2.1, z belongs to C ([0, T'1; V¥/4(£2)) N L2(0, T; V3/4(2)).
With the notation introduced in Section 4, we can rewrite Eq. (5.5) in the form

Y = A,y — P((y-V)y) — P((z- V)z), y(0) =up — PDg(0). (5.6)

Since z belongs to L2(0, T; V/4(£2)) N C ([0, T1; V3/4(£2)), it is clear that P((z- V)z) belongs to L2(0, T; V=1 (£2)).
Thus Eq. (5.6) is very similar to the three-dimensional Navier—Stokes equation with a source term belonging to
L%(0, T; V~1(£2)). The only difference is that the Stokes operator A is now replaced by A,(r). Let us denote by
Cy([0,T]; Vg(.Q)) the subspace in L*°(0, T'; Vg(.Q)) of functions which are continuous from [0, T'] into VS(Q)
equipped with its weak topology.

Theorem 5.1. For all ugy € VS(.Q) and all g € V3/*3/%(%), Eq. (5.5) admits at least one weak solution in
Cw ([0, T1; Vy(£2)) N L*(0, T; Vi (£2)).

Proof. Let 1y be the exponent appearing in Lemma 4.2. A function y € Cy, ([0, T]; VS(SZ)) NL%0,T; V(l)(.Q)) isa
weak solution to (5.6) if and only if §(¢) = e~y (¢) is a solution in Cy, ([0, T1; VI(£2)) N L2(0, T; V) (£2)) to
¥ = A, (0§ —ro§ — P(X'(§-V)§) — P(e ™ (z-V)z),  §(0)=ug— PDg(0). (5.7)

Due to Lemma 4.2, the existence in L*°(0, T'; VS (£2)NL%0, T; V(l)(.Q)) of a function y satisfying the weak formula-
tion of Eq. (5.7) may be proved as in the case of the Navier—Stokes equations (see e.g. [25, Chapter 3, Theorem 3.1]).
Moreover we have
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t
Ly 2 Lofoe 2
5O g+ 5 15013y ar
0

1 2 (- .
< 5”“0 = PDgO)|[yoq) — (P(e AO()(Z'V)z)’y)Lz(O,t;V”(.Q)),LZ(O,Z;V(I)(Q))'
Thus y obeys the estimate
o2 . 2 2
(MG ”VE(Q) + ”y”iZ(o,t;v(l)(g)) <C(||P(-Vie) ||L2(0,t;V*1(_Q)) +[luo — PDg(0) ”Vg(sz))’ (5.8)

forall 0 <t < T, where C is independent of ¢ and 7. Moreover div(z®Yy) and div(y ® z) belong to L20,T; V- (2)),
and (y - V)y belongs to L20, T; L1(£2)). We have H%(£2) N H(l)(SZ) — Co(£2) with a dense embedding. Hence
Mp(2) = (H?(£2) NH}(£2))', and (y - V)y which belongs to L?(0, T; L' (£2)) can be identified with an element in
L?(0, T; (H*(2) NH}(£2))"). Thus

f=divz®y) +divy®2z) + (y- V)y € L*(0, T; (H2 N H{(2))').
Defining Pfin L?(0, T; (V2NV} (£2))) by

(PE@), @), for all @ € V2NV (£2),

V2OV4(2)),V2NV(2) T (f(’)’ ¢>(H2mH(1)(Q))’,H2ﬂH(1)(.Q)

with Eq. (5.5) we can prove that y’ € L%(0,T; (V>N V(])(.Q))/). Since y € L*°(0, T; VS(Q)), we can claim that
ye Cy(0,T]; VS(.Q)), and the proof is complete. O
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Appendix A

Lemma A.1. For all (®,h) € L>(2) x V3/2(I'") the equation:

—AvV+Var =& and divv=0 in$2, v=h onT, (A.1)
admits a unique solution (v, ) in V}(£2) x (L?(§2)/R). Moreover the following estimate holds:

I¥lvacey + 17l 1@y m < C(I1P ) + Ihllvanry)-
If in addition §2 is of class C3 and (®,h) € H/2(2) x V3(I'), then

||V||V5/2(Q) + ||7T||H3/2(.Q)/R < C(||¢||H1/2(.Q) + ||h||V2(r))-

This result can be deduced from [10, Theorem 6.1, Chapter 4].

Lemma A.2. For all h € H'(2) obeying [, h =0, the equation:
—Au+Vp=0 and diva=h inS2, u=0 onrl, (A.2)
admits a unique solution (u, p) in H(I)(.Q) X (Lz(.Q)/R). It satisfies the estimate:

lallg @) + 1Pla @)k < Cll g Q)R

This result is stated in [10, Exercise 6.2, Chapter 4].
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Lemma A.3. For all £ € L2(£2) and all ge V3/2(I), the solution (w, q) to equation:
—Aw+Vg=f and divw=0 in2, w=g onl,

obeys the estimate:

+llgll ez 2ymy < CUIEI @)y + Iglv-120r))
V—3/2(1")

ow
on " +c(w,g)n

w +
W20 Ha

where c(W, q) is the constant corresponding to (W, q), and defined in (2.2).

Proof. (i) Let (@, h) be in L2(£2) x V3/2(I") and let (v, 7) be the solution to Eq. (A.1). The solutions (w, g) and
(v, ) obeys the Green formula:

av ow
/w¢=/fv+/<——+nn)g+/<——qn>h
on on
2 2 r

r

av ow
=/fv+/<——+nn—c(v,n)n)g+/<——qn+c(w,q)n)h.
on on
2 r r

Setting h = 0, with Lemma A.1 we obtain

IWllL22) = sup /W‘p
[ =1
191200,=1 )

N

av
sup <||f”(H2(Q))’”V||H2(Q) + H—a +7an—c(v,7)n ||g||vl/2(r))

1212(0)=1
< C(||f||(H2(Q))/ + ||g||V*1/2(F))-
Setting @ = 0, we obtain

VI/Z([*)

ow ow
— —gn+c(w,g)n = sup — —gn+c(w,g)n |h
on VIR Il =1, on

||g||V1/2(F)>
)

av
—— 4+ nan—c(v,7)n
on

< sup <||f||(H2(9))'||V||H2(SZ) +
Ihllys/2py= vierr
< C(Iflgecay + lgly-120m)-

(ii) Let A be in H(£2) obeying fQ h =0 and let (u, p) be the solution to Eq. (A.2). The solutions (w, ¢) and (u, p)
obey the Green formula:

ou
/fu—i—/qh—i—/(—— +pn>g=0.
on
Q Q r
With Lemma A.2 we have

lgllai@yry = sup /Clh
Mt e)m=lg)

ou
= sup (/(8_ — pn+c(u, p)n>g—/fu)
=1 n 2

”hHHl(Q)/]R a

ou
< sup on Pt c(u, p)n

lgllv-12¢r) + ||f||(H2(.Q))’||u”H2(.Q)>
”hHHl(Q)/Rzl F)

V1/2(

S C(”f”(HZ(Q))’ + ”g”V—l/Z([')).
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The proof is complete. O

We want to define (w, g) and ‘Z—:lv — gn + c(w, ¢)n in the case where f € (H*(£2))' and g € V-Y/2(I"). For all
fe (H?>(2)) and all g € V~'/2(I"), we consider the variational problem

determine (w, ¢, ¥) € VO(£2) x (H'(£2)/R)’ x V™3/2(I") such that

av
/W‘p = (f, V>(H2(Q))/,H2(.Q) — <g, — —7n-+ C(V, 7T)n> + <|P, h)V—S/Z(F)’VG/Z(F)
on V-12(r), V12(I)

for all (@, h) € L?(£2) x V¥/*>(IN), (A.3)

and

Ju
=g, h) (v @yry.mi2)r = EWa@ee)y 1) — <g, 3 Pt P)n>
n V_I/Z(I"),Vl/z(]")
for all h € H'(£2)/R obeying /h =0,
Q
where (v, ) is solution of Eq. (A.1) and (u, p) is solution of Eq. (A.2).

Remark A.1. When f = 0, the estimate
IWllL2(2) < Cligllv-12¢rys

is already stated in [11], but the estimate of ‘5—: — gn+ c(w, g)n seems to be new.

Theorem A.l. For all (f,g) € (H2(£2)) x V-Y2(I"), the variational problem (A.3) admits a unique solution
(W,q, W) e V() x (H'(£2)/R) x V73/2(I') satisfying

IWlivocay + g1l ety my + 1% lv-32¢ry < C(Ifl 22y + Igllv-12(ry)-

Proof. (i) Let us first prove the uniqueness. If f =0, g =0 and if (w, g, ¥) is a corresponding solution to prob-
lem (A.3), choosing (@, i, h) = (w, 0, 0) in (A.3), we obtain w = 0. Choosing (@, i, h) = (0, &, 0) in (A.3), with any
hin HY(£2) obeying fg h =0, we obtain ¢ =0 in (H! (£2)/R)’. Choosing (@, i, h) = (0,0, h) in (A.3), with any h
in V73/2(I"), we obtain ¥ = 0.

(ii) The existence result relies on a density argument. Let (f, g) be in (H2(£2)) x V™V2(I"). The space L2(£2) x
V3/2(F) being dense in (HZ(Q))/ X V_I/Z(F), there exists a sequence (f,, g,), C Lz(.Q) X V3/2(F) converging to
(£, ) in (H2(2)) x V-Y2(I"). Let (Wy, gn) be the solution to the equation

—Aw, +Vg,=f, and divw,=0 in £, w,=¢g, onl.

We can easily verify that (w,, g, ¥,,), with ¥, = % —gnn+c(Wy,, g,)n, is solution to problem (A.3) corresponding
to (f,, g,). From Lemma A.3, we deduce that (w,,, g,, ¥,), converges to some (W, g, ¥) in VO(2) x (H'(£2)/R)’ x
V73/2(I"). To show that (w, g, ¥) is solution to problem (A.3) corresponding to (f, g), it is sufficient to pass to the

limit in the identities

ov ow,
w,® = | f,v+ —a—n+nn—c(v,n)n g, + o — gun+ c(Wy, gy)n |h,
2 2 r r
ou
OZ/hqn+/fnu+/ —E‘FPH—C(Z,P)H gn-

2 2 r

and

The proof is complete. O
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Let us recall that for g € VY/2(I"), (Dg, D,g) = (W, q) is the unique solution in V!(£2) x (L?(£2)/R) to the
equation

—Aw+Vg=0 and divw=0 1in £, w=g onl.
From Theorem A.1 we deduce the following corollary.
Corollary A.1. The operator D is linear and continuous from V* (I') into VS TV/2(2) for all —1/2 < s < 3/2, and the
operator D, is linear and continuous from V°(I") into HV2(2) /R for all —1/2 < s < 3/2 (where by notational

convention H*~V2(2)/R = (H*t1/2(2)/RY if s — 1/2 <0, and H*~'/2(2)/R = H*~1/2(2) /R if s — 1/2 > 0).
If in addition §2 is of class C3 the above results are still true for —1/2 < s < 2.

Proof. Let us prove the result when £2 is of class C? and —1/2 < s < 3/2. The other case can be treated similarly.
Due to Lemma A.1, D is continuous from V3/2(I") into V2(£2), and D, is continuous from V3/2(I') into H'(£2)/R.
From Theorem A.1 it follows that D can be extended to a bounded operator from vV 2(1") into V9(£2), and D, can
be extended to a bounded operator from vV 2(F ) into (H'(£2) /R)’. The result follows by interpolation. O

We define D* € £(V°(£2); VO(I")) as the adjoint of D € L(VO(I"); VO(£2)).
Lemma A.4. For all f € VO(2), D*f is defined by
9
Dif=—" +7n—c(7)n,
an

where c(1) is the constant defined in (2.3), and (v, i) is the solution to
—Av+Va=f and divv=0 inS2, v=0 onT. (A4)

The operator D* is bounded from V*(§2) into VTVY2(I") for all 0 < s < 2. Moreover, for all ® € V*(£2) N V(])(.Q),
we have:

" 0P
D*(-A)® = “on T ¥n—c(y)n,
where c(Yr) is the constant defined in (2.3), and ¥ € Hl(.Q)/R is determined by
Viy=U—-P)AD.

Proof. (i) For all f € VO(£2), and all g € VO(I"), the solution (v, ) to Eq. (A.4) and w = Dg obey:

/Dg'f=/g~<—g—:;+nn—c(7r)n>.
2 r

Thus D*fis well defined as indicated in the statement of the lemma. Due to regularity results for the Stokes equations
we have

: |ty
D f||VS+l/2(1“)— - +7n—c(7)n

< Cllfllvsio.
on I£llvs (2)

Vs+l /2( r
The first part of the lemma is proved.
(i1) From the first part of the proof it follows that

BY
D*(—A)® = —— +yn—c(yY)n,
on

where (é, ) is the solution of the equation

—A®+Vy=(—A)® and dive =0 in£2, ®=0 onr.
This equation is equivalent to

(—A)® =(—A)® and Vy = — P)AD.
Thus @ = & and Vi = (I — P)A®. The proof is complete. O
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Proposition A.1. Let g # 0 be in VY/2(I"). Assume that y, g = 0. Then P Dg is not equal to zero.
Proof. Set (w,q) = (Dg, D,g). We want to prove that Pw # 0, and we assume the contrary. If Pw =0, then w =
(I — P)w = Vg, for some ¢ € H?(£2). Since divw = 0, ¢ is solution to the elliptic problem
—Ap=0 1in £, onp=g-n#0 onl.
Moreover Vo|r = (I — P)w|r = w|, thus
Vo=g onI and y,g=0.
Thus ¢ is equal to a constant C on I", and ¢ is also solution to the elliptic problem
—Ap=0 1in 2, o=C onl.

It yields that ¢ = C in §2 and d,¢ =0 on I", which is in contradiction with g - n # 0. The proof is complete. O
Appendix B

Throughout this appendix we assume that A9 > O satisfies (4.2), and that z belongs at least to V3i(£2), or is more

regular than that.
Lemma B.1. For all (®,h) € L2(£2) x V3/2(I") the equation:

MV—AV+(z-V)V+(v-V)24+Vr =@ and divv=0 inS2, v=h onTl, (B.1)
admits a unique solution (v, ) in VI (£2) x (L?(£2)/R). Moreover the following estimate holds:

I¥lvacey + 17l a1 2y m < C(I1P 2y + Illvszry)- (B.2)
If in addition 2 is of class C3, z € V3/?(2), and (®,h) e H'/2(§2) x V>(I'), then

IVilvs2 @) + Il 322y m < C(||¢||]—[1/2(_Q) + ||h||V2(r))-
The above results are also true if we replace Eq. (B.1) by the following one

MV —AV—(z-VIV+ (V) v+ V=& and divv=0 in$2, v=h onTr. (B.3)
Proof. The uniqueness result is obvious. We only prove the existence of a solution (v, 7) satisfying (B.1), the other
results can be proved similarly. Let (w, ¢) be the solution to the equation

AMW—AW+Vg=¢® and divw=0 in£2, w=h onrl,
and let (u, p) be the solution to the equation

Mu—Au+(zZ-Vu+Wu-V)z4+Vp=—z-V)w—(w-V)z and diva=0 in £2, u=0 onl/.
Since

IWllv2(2) + gl g1 2yr < C(”‘P”LZ(Q) + ||h||V3/2(r)),
the term —(z - V)w — (w - V)z belongs to LZ(.Q). According to Lemma 4.1, we have

lullya@) < C[@- V)W + W Vz| o) < CIP 20y + Ihllvar)-
We next deduce that

||P||Hl(g)/R < C(||¢||L2(Q) + ||h||V3/2(1"))-

It is clear that (v, ) = (W, ¢) + (u, p) is the solution to Eq. (B.1), and the estimate (B.2) is established.
If ze V3/2(£2) and v € V2(£2), then (z - V)v + (Vz)Tv belongs to H'/2(£2) (see [13, Proposition B1]). Then the
solution to Eq. (B.1) belongs to V/2(2). O
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Lemma B.2. For all h € H'(2) obeying f_Q h =0, the equation:

ru—Au+(z-Vu+@-V)z+Vp=0 and diva=h inS2, u=0 onTr, (B.4)
admits a unique solution (u, p) belonging to H!(2) x (LZ(Q)/R). It satisfies the estimate:

lullgz2) + 1Pl g1 2)r < Clillgig)/r-
The above results are also true if we replace Eq. (B.4) by the following one

Aou—Au—(z~V)u+(Vz)Tu+Vp=O and diva=h in$2, u=0 onl. (B.5)

Proof. The lemma can be proved by combining the results of Lemma A.2 and the same kind of arguments as in the
proof of Lemma B.1. O

Lemma B.3. For all f e L>(£2) and all g € V3/>(I"), the solution (W, q) to equation:
MW —AWH (z-V)WH+ (W-V)z+Vg=f and divw=0 in £, w=g onl, (B.6)

obeys the estimate:

+ llgllmr2e2)ry < CUIEI @32y + 1glvoir)

ow
Wllyi20)+ || =— —gn+c(w,g)n
(£2)
on Vfl([')

where ¢(W, q) is the constant corresponding to W, q, and defined in (2.2). If in addition z € V3/2(2) then we also

have:

+ gl 2ymy < C(Ifll @2y + lglv-112¢r))-
V—3/2(1")

ow
- gn—+c(w,g)n

w +
W22 Ha

Proof. If (v, ) is the solution to Eq. (B.3), (u, p) is the solution to Eq. (B.5), and (w, ¢g) to Eq. (B.6), then we have

ad ad

/wd):/fv—i—/ ——V—l—nn g—l—/ —w—qn h—/z-nh~g,
on an

Q 2 r

r r

ou
/fu+/qh+/(——+[)n>g=0.
on
Q r

2

and

Thus the proof can be performed as in the one of Lemma A.3. The assumption z € V3/2(£2) is needed to estimate
z-nh in H'/2(I") when h belongs to V3/2(I"). O

We want to define (w, g) and g—‘l’: — gn + ¢(w, g)n in the case where f € (H2(£2)) and ge V-12(I). As in
Appendix A, for all f € (H2(£2)) and all g € V-V/2(I"), we consider the variational problem

determine (W, ¢, ¥) € V(2) x (H'(22)/R)" x V=¥*(I") such that

0
/w¢=—<g,a—v—nn+z-nh+c(v,n,z~nh)n>
n

V-12(m) V12
o ) )

+ (V) @0y w2 @) + (¥ h)y-3200) vz Y@, h) e L2(2) x VY2(IM),  and (B.7)

ou
=g, ) @)y H1@)r = £ W) @)y m12@) — <g, 3p Pt P)n>
n VU2(0), V12

for all h € H'(§2)/R obeying /h =0,
2
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where (v, 7r) is solution of Eq. (B.3), (u, p) is solution of Eq. (B.5), and

( h) 1 av n h

c(v,m,z-nh)= —— — - -n—m7+z-nh-n).
|| on

r

Observe that the term z - nh appears in the first equation of (B.7). This term was not present in (A.3). If g € VO(I),
we have to define z - nh in L2(I"). If z € V! (£2), then z - n belongs to H'/2(I") — L*(I'). f he VI(I") < LP(I")
for all 1 < p < oo, then z - nh is well defined in L2(F ), which leads to the first estimate in Theorem B.1.

To define z - nh in H/2(I") when h € V3/2(I"), we have to suppose that z € V3/2(2). Indeed if z € V3/2(§2),z-n
belongs to HY(I'), and z - nh belongs HY(I) [13, Proposition B1]. If we only suppose that z € V91(£2), we can only
prove that z - nh belongs H* (I") forall 0 < s < 1/2.

Theorem B.1. For all (f,g) € (HY2(2)) x VO(I"), the variational problem (B.7) admits a unique solution
(W,q, W) e V/2(2) x (H'2(£2)/RY x V-N(I") satisfying
IWllvi22y + lgl g2 @) my + 1 lv-1r) < C(||f||(H3/2(_Q))’ + ||g||V0(r))-

If in addition z € V3/2(2) then, forall (f, g € (H2(2)) x V-V2(I), the variational problem (B.7) admits a unique
solution (W, q, %) € VO(2) x (H'(2)/R)’ x V73/2(I") satisfying

IWll2(2) + 191l a2y my + 1¥v-32(r) < C(||f||(H2(Q))’ + ||g||v—l/2(r))-
Proof. The proof is similar to that of Theorem A.1. O

From Theorem B.1 we deduce the following corollary.

Corollary B.1. The operator D, is linear and continuous from V*(I') into VSt1/2(82) for all 0 < s < 3/2, and the
operator Dy p, is linear and continuous from V*(I") into H2(2) /R for all 0 < s < 3/2 (where by notational
convention H*~V2(2)/R = (Hst1/2(2)/RY if s — 1/2 <0, and H*~V/2(2)/R = H*~V/2(2) /R if s — 1/2 > 0).
If 2. € V3/2(Q2), then the above results are still true for —1/2 <s <3/2.
If 2 is of class C3 and if z € V3/2(82), then the above results are still true for —1/2 < s < 2.

Proof. See the proof of Corollary A.1. O

Let us recall that for g € VI/2(I"), (D,g, D) ;8) = (W, q) is the unique solution in V!(£2) x (L?(£2)/R) to the
equation

AW —AWH+ (z-V)IW+ (W-V)z+Vg=0 and divw=0 in £, w=g onl.
We define D € L(VO(I"); VO(£2)) as the adjoint of D, € L(VO(I"); VO(£2)).

Lemma B.4. For all f € VO(2), D}t is defined by
3
D;f= —8—:; +7n—c(m)n,

where c (1) is the constant defined in (2.3), and (v, ) is the solution to
MV—AV—(z-V)V+ (V) v+ Vr =f and divv=0 in$2, v=0 onT.

The operator Dy is bounded from V*(§2) into VSHUY2() for all 0 < s < 2. Moreover, for all ® € V*(£2) N V(l)(.Q),
we have:

i i P
D} (ol — A})® = —5o Tyn—c@m.

where c(V) is the constant defined in (2.3), and ¥ € H' (§2)/R is determined by
VY= —-P)(A® +(z-V)® — (V2)' D).
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Proof. (i) For all f € V9(£2), and all ge Vo), the pairs (D,g, D), ,8) = (W, q) and (v, ) obey:

/ng-fzfg-(—g—z+nn—c(n)n>.
Q r

This identity gives the expression of D;. As in the proof of Lemma A.4, we can easily show that D} is bounded from
V5 (£2) into VSH/2(M) forall 0 < s < 2.
(ii) From the first part of the proof it follows that

i . )b
D} (ol = A7)® = ——— +ym—c(y)n,

where (é, ) is the solution of the equation

(P — AP —(z-V)® — (V2) D + Vi = (hol — A)® and div® =0 in 2, ®=0 onl.
This equation is equivalent to
(hol —A)® = (Aol —A))® and V¢ =1 —P)(A® +(z-V)® — (V2)T®).

Thus @ = & and V= —P)A®P +(z- V)P — (Vz) P). The proof is complete. O
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