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Abstract

It is proved that for a simple, closed, extreme polygon Γ ⊂ R
3 every immersed, stable minimal surface spanning Γ is an isolated

point of the set of all minimal surfaces spanning Γ w.r.t. the C0-topology. Since the subset of immersed, stable minimal surfaces
spanning Γ is shown to be closed in the compact set of all minimal surfaces spanning Γ , this proves in particular that Γ can bound
only finitely many immersed, stable minimal surfaces.
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1. Introduction and main results

In 1978 Nitsche formulated the following conjecture (see [23]): A “reasonably well behaved” simple, closed con-
tour can bound only finitely many solutions of Plateau’s problem. The aim of the present article is a proof of the
following partial result:

Theorem 1. Let Γ ⊂ R
3 be a simple, closed, extreme polygon. Then every immersed, stable minimal surface spanning

Γ is an isolated point of the set of all minimal surfaces spanning Γ w.r.t. the C0-topology. In particular, Γ can bound
only finitely many immersed, stable minimal surfaces.

A polygon is termed extreme if it is contained in the boundary of a compact, convex subset of R
3. Furthermore a

disc-type minimal surface X is called immersed if there holds infB |DX| > 0, where we denote by B the open unit
disc {w = (u, v) ∈ R

2 | |w| < 1}. It is said to be stable if the second variation of the area functional A in X in normal
direction ξ := (Xu ∧ Xv)/|Xu ∧ Xv|
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JX(ϕ) :=
∫
B

|∇ϕ|2 + 2KEϕ2 dw = d2

dε2
A(X + εϕξ)|ε=0 (1)

satisfies JX(ϕ) � 0 for any ϕ ∈ C∞
c (B), where E denotes |Xu|2 and K � 0 the Gauss curvature of X.

Let Γ be a closed Jordan curve in R3, and denote by C∗(Γ ) the Plateau class of surfaces X ∈ H 1,2(B,R3) ∩
C0(B,R

3) that span Γ satisfying a fixed three-point condition. We endow C∗(Γ ) with the norm ‖ · ‖C0(B) and denote
by M(Γ ) its subspace {X ∈ C∗(Γ ) | ΔX = 0, |Xu| = |Xv|, 〈Xu,Xv〉 = 0 on B} of disc-type minimal surfaces.
Furthermore let Ms(Γ ) be the subspace of M(Γ ) consisting of those elements which are immersed and stable.

The first deep “finiteness result” was achieved by Tomi (1973) in [27]: If Γ is a regular Jordan curve of class C4,α

with the property that all minimal surfaces X ∈ M(Γ ), which yield global minimizers of the area functional A on
C∗(Γ ), are immersed, then there are only finitely many of them. In combination with the papers [7] resp. [15] Tomi’s
theorem guarantees that regular Jordan curves Γ which are either of class C4,α with total curvature less than 4π or
analytic can bound only finitely many global minimizers of the area functional A on C∗(Γ ). Four years later Tomi
proved in [28]: If Γ is a regular Jordan curve of class C4,α , which bounds only minimal surfaces without boundary
branch points and with interior branch points of at most first order (see Def. 1 below), then Ms(Γ ) is finite. One year
later Nitsche finally achieved his “6π -Theorem” in [23]: If Γ is a regular Jordan curve of class C4,α , which bounds
only minimal surfaces without any branch points and whose total curvature does not exceed the value 6π , then the
entire set M(Γ ) is finite.

In 1990, Sauvigny [24] proved a finiteness result for “small” H-surfaces which is very similar to Theorem 1. If Γ

is an extreme, regular Jordan curve of class C4,α contained in B3
1 (0) and H ∈ [0,1), then it can bound only finitely

many immersed small H-surfaces X which are stable in the sense that JX(ϕ) − 4
∫
B

H 2Eϕ2 dw � 0 ∀ϕ ∈ C∞
c (B).2

The proofs of the above quoted results depend on boundary regularity results for minimal surfaces resp. H-surfaces
spanning C4,α-boundary curves due to Hildebrandt [16] resp. Heinz [8]. Analogs of these results are not available for
polygons. Thus the author had to follow a completely different approach to prove Theorem 1 which uses fundamental
results of Courant [1] and Heinz [10–13] in combination with ideas of Tomi [28] and Sauvigny [24–26]. Of particular
importance are the asymptotic expansions for minimal surfaces in the corners of the bounding polygon due to Heinz
[11] and Heinz’ discovery of a deep connection between the total branch point orders of such minimal surfaces, the
defects of their assigned Schwarz operators and the number of vertices of the bounding polygon, expressed in his
formula (12) below, the main result of his paper [14].

2. Courant’s and Heinz’ results

A polygon Γ is a closed piecewise linear Jordan curve in R3 with N + 3 vertices (N ∈ N) (P1, . . . ,PN+3), where
we require the pairs of vectors (Pj+1 −Pj , Pj −Pj−1) to be linear independent for j = 1, . . . ,N +3, with P0 := PN+3

and PN+4 := P1. We consider the “Plateau class” C∗(Γ ) of surfaces X ∈ H 1,2(B,R
3) ∩ C0(B,R

3) that are spanned
into Γ , i.e. whose boundary values X|∂B : S1 → Γ are weakly monotonic mappings with degree equal to 1, satisfying
a three-point condition: X(eiτN+k ) = PN+k for τN+k := π

2 (1 + k), k = 1,2,3. Our fundamental tools are Courant’s
[1] and Heinz’ [10], [11] maps

ψ :T −→ (
C∗(Γ ),‖ · ‖C0(B)

)
, ψ̃ :T −→ C0(B,R

3) ∩ C2(B,R
3), (2)

which are assigned to our arbitrarily fixed closed polygon Γ . Here T is an open, bounded, convex set of N -tuples
(τ1, τ2, . . . , τN ) =: τ ∈ (0,π)N , which meet the following chain of inequalities 0 < τ1 < · · · < τN < π = τN+1, where
N + 3 was the number of vertices of the considered polygon. Moreover to any τ ∈ T we assign the sets of surfaces

U(τ ) := {
X ∈ C∗(Γ ) | X|∂B(eiτj ) = Pj for j = 1, . . . ,N

}
and

Ũ(τ ) := {
X ∈ C0(B,R

3) ∩ C2(B,R
3) | X(

eiθ ) ∈ Γj for θ ∈ [τj , τj+1]
}
,

2 After completion of this manuscript, Prof. Frank Morgan kindly communicated one of his results to the author [see Indiana Univ. Math. J. 35 (4)
(1986) 813, Theorem 5.8] which generalizes Sauvigny’s theorem especially to systems of C2,α -Jordan curves lying on the boundary of an arbitrary
strictly convex set in R

3, but only for H = 0. The smoothness of the boundary curves are crucial in his proof, as in the results of Tomi, Nitsche,
and Sauvigny.
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for 1 � j � N + 3, where we set Γj := {Pj + t (Pj+1 − Pj ) | t ∈ R}, PN+4 := P1 and τN+4 := τ1. On account of two
uniqueness results in [1] resp. [10] one can define the maps

ψ(τ) := unique minimizer of D within U(τ ) and ψ̃(τ ) := unique minimizer of D within Ũ(τ ),

where D denotes Dirichlet’s integral. We will also use the notation X(·, τ ) for ψ̃(τ ). Now by the result of [1] (see also
[18], p. 558) Satz 1 and 2 in [10] and the main theorem of [11], resp. Satz 1 in [13], these maps have the following
properties:

Theorem 2.

(i) ψ is continuous on T .
(ii) f := D ◦ ψ is of class C1(T ) and f̃ := D ◦ ψ̃ even of class Cω(T ).

(iii) There holds f̃ � f on T and f̃ (τ ) = f (τ) if and only if ψ̃(τ ) = ψ(τ), which is again equivalent to
ψ̃(τ ) ∈ C∗(Γ ).

(iv) ψ̃(τ ) and ψ(τ) are harmonic on B ∀τ ∈ T .
(v) The restriction

ψ |K(f ) :K(f )
∼=−→ M(Γ ) (3)

yields a homeomorphism between the compact set of critical points of f and (M(Γ ),‖ · ‖C0(B)) and a surface

ψ̃(τ ) is conformally parametrized on B , thus a minimal surface in Ũ(τ ), if and only if τ ∈ K(f̃ ).
(vi) Let τ̄ ∈ T be arbitrarily fixed and D ⊂ C some simply connected domain whose intersection D ∩ B with B is

nonvoid and connected and such that D̄ ∩ {eiτ̄k } = ∅. Then there exists some neighborhood UD(τ̄ ) of τ̄ in C
N

and some holomorphic continuation of Xw(·, ·) onto D × UD(τ̄ ).
(vii) Furthermore for any τ̄ ∈ T and k ∈ {1, . . . ,N +3} there exists some neighborhood Bδ(eiτ̄k )×BN

δ (τ̄ ) in C×C
N

about (eiτ̄k , τ̄ ) such that there holds the representation

Xw(w, τ) =
pk∑

j=1

f k
j (w, τ)

(
w − eiτk

)ρk
j (4)

for (w, τ) ∈ (Bδ(eiτ̄k ) ∩ B) × (BN
δ (τ̄ ) ∩ R

N), where the functions f k
j are holomorphic on Bδ(eiτ̄k ) × BN

δ (τ̄ ) and

the exponents ρk
j satisfy

−1 < ρk
1 < · · · < ρk

pk
= 0, pk ∈ {2,3}, (5)

and do not depend on τ ∈ BN
δ (τ̄ ) ∩ R

N .

The last assertion about the independence of the exponents ρk
j of τ ∈ BN

δ (τ̄ ) ∩ RN follows immediately from [10],

(2.20) and (3.28), as we point out now. We set vk := (Pk+1 − Pk)/|Pk+1 − Pk| and consider as in (2.20) of [10] the
reflections Sk at the lines Γk − Pk = Span(vk) for k ∈ {1, . . . ,N + 3} (with PN+4 := P1), explicitly given by

Sk(x) := −x + 2〈vk, x〉vk ∀x ∈ R
3.

The composed reflections Sk−1 ◦ Sk ∈ SO(3) are diagonalizable by conjugation with unitary matrices and have eigen-
values on the S

1. Now the ρk
j appear in (3.28) of [10] as pairwise different (negative) angles of these eigenvalues,

precisely:

Spec(Sk−1 ◦ Sk) = {
e−2π iρk

j
}
, 1 � j � pk,

ordered as in (5) with pk ∈ {2,3}, which proves the claimed independence of the exponents ρk
j of τ ∈ BN

δ (τ̄ ) ∩ R
N .

Moreover we shall note that Sk−1 ◦ Sk �= 1 and thus pk > 1 by our requirement that the vectors Pk−1 − Pk and
Pk+1 − Pk have to be linearly independent. Moreover we see that pk = 2 if and only if ρk

1 = − 1
2 , i.e. if the spectrum

of Sk−1 ◦ Sk is {−1,−1,1}, which can arise if and only if the smaller angle βk between the vectors Pk−1 − Pk

and Pk+1 − Pk is π . If in general βk /∈ {π ,0,π}, then the spectrum of Sk−1 ◦ Sk is {λ, λ̄,1} for some λ ∈ S1 with
2 2
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�(λ) �= 0, i.e. ρk
1 + ρk

2 = −1. One can easily see that there holds either −ρk
1π = βk or (ρk

1 + 1)π = βk , which is by
ρk

1 + ρk
2 = −1 equivalent to the pair of possibilities (ρk

2 + 1)π = βk or −ρk
2π = βk . Moreover we can expand the

holomorphic functions f k
j w.r.t. w about the point eiτk and obtain by (4) for any k ∈ {1, . . . ,N + 3}:

Xw(w, τ) =
pk∑

j=1

∞∑
n=0

f k
j,n(τ )

(
w − eiτk

)ρk
j +n (6)

∀w ∈ Bδ(eiτ̄k ) ∩ B and ∀τ ∈ BN
δ (τ̄ ) ∩ RN . Now we fix some τ̄ ∈ T and choose that pair (j, n) for which f k

j,n(τ̄ ) �= 0

in (6) and ρk
j + n is minimal and term this pair (j∗,m), i.e. we assign this pair to the point τ̄ ∈ T . Since we know that

either (ρk
j∗ + 1)π or −ρk

j∗π equals the smaller angle βk �= 0,π between the linear independent vectors Pk−1 − Pk

and Pk+1 − Pk we conclude due to ρk
pk

= 0 that there has to hold j∗ < pk . Now using these terms the author derived
in [20], Corollary 2.1:

Corollary 1. For any fixed τ̄ ∈ T and k ∈ {1, . . . ,N + 3} there holds

Xw(w, τ̄ ) = f k
j∗,m(τ̄ )

(
w − eiτ̄k

)ρk
j∗+m + O

(∣∣w − eiτ̄k
∣∣ρk

j∗+m+ε) (7)

for B � w → eiτ̄k , where ε := ρk
j∗+1 − ρk

j∗ ∈ (0,1).

Furthermore we derive from part (vi) of Theorem 2 that there is a Taylor expansion of Xw(·, τ̄ ) about any point
w0 ∈ B \ {eiτ̄k }:

Xw(w, τ̄ ) = am(τ̄ )(w − w0)
m + am+1(τ̄ )(w − w0)

m+1 + · · · , (8)

where the coefficients {aj }j�m are holomorphic about the point τ̄ and am(τ̄ ) ∈ C
3 \ {0}.

Definition 1.

(i) We term the exponent m ≡ mτ̄ in (7) resp. (8) the branch point order of the surface X(·, τ̄ ) at the point eiτ̄k ,
k = 1, . . . ,N + 3, resp. w0 ∈ B \ {eiτ̄k }.

(ii) A point w ∈ B is termed a branch point of the minimal surface X(·, τ̄ ) ∈ M̃(Γ ) if its order mτ̄ (w) is positive.

Hence, we see that there holds mτ̄ (w) = 0 in any point w ∈ B if and only if

inf
B

∣∣DX(·, τ̄ )
∣∣ > 0. (9)

Furthermore one obtains easily by (7) and (8) that X(·, τ̄ ) can have only finitely many branch points on B . Hence,
we may define its total branch point order

κ(τ̄ ) :=
∑
w∈B

mτ̄ (w) + 1

2

∑
w∈∂B

mτ̄ (w). (10)

Now we assign to every point τ ∈ K(f̃ ), i.e. to every minimal surface X(·, τ ), its Schwarz operator

Aτ ≡ AX(·,τ ) := −Δ + 2(KE)τ ,

where (KE)τ (w) := (KE)(w, τ) is defined as in (1), on the domain

Dom(Aτ ) := {
ϕ ∈ C2(B) ∩ H̊ 1,2(B) | Aτ (ϕ) ∈ L2(B)

}
(11)

and formulate as a central tool of our paper the “Heinz’ formula” from [14]: For an arbitrary τ ∈ K(f̃ ) one has

dim KerAτ + rank
(
D2f̃ (τ )

) + 2κ(τ) = N. (12)

Furthermore by differentiation of (6) w.r.t. w we obtain exactly as in the proof of Corollary 1 on account of the
holomorphy of the components of Xw(·, τ̄ ) on B:

Xww(w, τ̄ ) = f k∗ (τ̄ )
(
m + ρk∗

)(
w − eiτ̄k

)ρk
j∗+m−1 + O

(∣∣w − eiτ̄k
∣∣ρk

j∗+m+ε−1)
, (13)
j ,m j
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for B � w → eiτ̄k . Furthermore (cf. formula (2.8) in [14]) one proves by integration of Xw(·, τ̄ ) in (6) w.r.t. w that for
any fixed τ̄ ∈ T and k ∈ {1, . . . ,N + 3} there exists some δ > 0 such that

X(w,τ) = 2�
( w∫

eiτk

Xz(z, τ )dz

)
+ X

(
eiτk , τ

)

= �
(

pk∑
j=1

gk
j (w, τ)

(
w − eiτk

)ρk
j +1

)
+ Pk (14)

for w ∈ Bδ(eiτ̄k ) ∩ B and τ ∈ BN
δ (τ̄ ) ∩ R

N , where the functions

gk
j (w, τ) :=

∞∑
n=0

2f k
j,n(τ )

ρk
j + n + 1

(
w − eiτk

)n

are holomorphic on Bδ(eiτ̄k ) × BN
δ (τ̄ ) and satisfy in particular gk

j (e
iτk , τ ) = 2f k

j,0(τ )/ρk
j + 1. Next, as stated in for-

mula (2.9) in [14], one achieves by differentiation of (14) w.r.t. τl for l ∈ {1, . . . , k̂, . . . ,N}:

Xτl
(w, τ) = �

(
pk∑

j=1

∂gk
j

∂τl

(w, τ)
(
w − eiτk

)ρk
j +1

)
, (15)

for w ∈ Bδ(eiτ̄k ) ∩ B and τ ∈ BN
δ (τ̄ ) ∩ R

N and for l = k:

Xτl
(w, τ) = �

(
pl∑

j=1

∂gl
j

∂τl

(w, τ)
(
w − eiτl

)ρl
j +1 − ieiτl

(
ρl

j + 1
)
gl

j (w, τ)
(
w − eiτl

)ρl
j

)
. (16)

To verify now formula (2.10) in [14] we set ∂
∂ϕ

:= u ∂
∂v

− v ∂
∂u

and compute for some l = k ∈ {1, . . . ,N} and
j ∈ {1, . . . , pl}

∂

∂ϕ

(
w − eiτl

)ρl
j +1 = (

ρl
j + 1

)(
w − eiτl

)ρl
j iw, (17)

thus obtaining for l = k:

Xτl
(w, τ) + Xϕ(w, τ) = �

(
pl∑

j=1

(
∂gl

j

∂τl

(w, τ) + ∂gl
j

∂ϕ
(w, τ) + i

(
ρl

j + 1
)
gl

j (w, τ)

)(
w − eiτl

)ρl
j +1

)
(18)

for w ∈ Bδ(eiτ̄l ) ∩ B and τ ∈ BN
δ (τ̄ ) ∩ R

N . Combining this with (15) we achieve

Corollary 2. Let τ̄ ∈ K(f̃ ) be arbitrarily chosen. If there holds mτ̄ (eiτ̄l ) = 0 for each l ∈ {1, . . . ,N}, then the functions
Xτl

(·, τ̄ ) are linearly independent on B .

Proof. Otherwise there would exist some linear relation

N∑
l=1

αlXτl
(·, τ̄ ) ≡ 0 on B, (19)

where there is at least one index k ∈ {1, . . . ,N} with αk �= 0. By (15) we see that Xτl
(w, τ̄ ) → 0 for w → eiτ̄k and

l �= k. Hence, inserting this into (19) we obtain due to αk �= 0 that Xτk
(w, τ̄ ) → 0 for w → eiτ̄k . Now together with (18)

we conclude that there holds also Xϕ(w, τ̄ ) → 0 for w → eiτ̄k . Moreover as we require τ̄ ∈ K(f̃ ), thus that X(·, τ̄ ) has
to be conformally parametrized on B , we have |Xϕ(w, τ̄ )|2 = 2|w|2|Xw(w, τ̄ )|2, ∀w ∈ B . Hence, we would finally
obtain Xw(w, τ̄ ) → 0 for w → eiτ̄k , which would imply mτ̄ (eiτ̄k ) > 0 by (7), contradicting the requirement of the
corollary. �
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Now we set

ρ := min
k=1,...,N+3

ρk
1 > −1. (20)

By the Courant–Lebesgue Lemma and point (iv) of Theorem 2 the author proved in Chapter 2 in [20] the following
important

Lemma 1. There holds

M̃(Γ ) := {set of minimal surfaces onB} ∩
⋃
τ∈T

Ũ(τ ) ∩ H 1,2(B,R
3)

= {
X ∈ image (ψ̃) | X is also conformally parametrized on B

}
.

Combining this result with (8) and point (v) of Theorem 2 the author proved in Chapter 2 in [20]

Corollary 3. There holds M(Γ ) ⊂ M̃(Γ ) and also K(f ) ⊂ K(f̃ ). In particular X(·, τ ) ≡ ψ̃(τ ) coincides with ψ(τ)

for any τ ∈ K(f ).

Moreover let

ξ(·, τ ) := Xu ∧ Xv

|Xu ∧ Xv| (·, τ ) = Xw ∧ Xw

i|Xw|2 (·, τ ) (21)

denote the unit normal field of some minimal surface X(·, τ ) ∈ M̃(Γ ), i.e. for some τ ∈ K(f̃ ). By (7) and (8) one
achieves that ξ(·, τ ) can be continued continuously onto B and even analytically onto B \ {eiτl }l=1,...,N+3, although it
is not defined in the branch points of X(·, τ ), and that at some point eiτk it behaves asymptotically like

ξ(w, τ) = f k
j∗,m(τ ) ∧ f k

j∗,m(τ )

i|f k
j∗,m(τ )|2 + O

(∣∣w − eiτk
∣∣ε) for w −→ eiτk (22)

and k = 1, . . . ,N + 3. Together with (13) one obtains moreover:

|〈ξ(w, τ),Xww(w, τ)〉|
|Xw(w, τ)| = O

(∣∣w − eiτk
∣∣ε−1) for w −→ eiτk (23)

and k = 1, . . . ,N + 3. Heinz used this and identity (3.2) in [14],

(KE)τ (w) ≡ (KE)(τ,w) = −8|〈ξ(w, τ),Xww(w, τ)〉|2
|Xw(w, τ)|2 (24)

for any τ ∈ K(f̃ ), in order to prove: There is some constant const.(τ ), depending on τ and Γ only, such that:

∣∣(KE)τ (w)
∣∣ � const.(τ )

N+3∑
k=1

∣∣w − eiτk
∣∣−2+α ∀w ∈ B, (25)

for

α := 2 min
{
ρk

j − ρk
j−1 | j = 1, . . . , pk, k = 1, . . . ,N + 3

}
> 0 (26)

where we set ρk
0 := −1 for each k. Thus α only depends on Γ but not on τ ∈ K(f̃ ), as the ρk

j do not, whence

(KE)τ ∈ Lp∗
(B) for any p∗ ∈ (1, 2

2−α
) and any τ ∈ K(f̃ ). Moreover one can insure by (24) and (8) that the function

(KE)τ , which is not defined in the branch points of X(·, τ ), is of class L∞
loc(B \ {eiτl }l=1,...,N+3) and can in fact be

continued analytically onto B \ {eiτl }l=1,...,N+3.
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3. Compactness of Ms(Γ )

Theorem 3. If Γ is a rectifiable, closed Jordan curve in R
3 which bounds only minimal surfaces without boundary

branch points, then Ms(Γ ) is a closed subset of M(Γ ), thus compact, w.r.t. the C0(B)-topology.

Proof. Let {Xn} be some sequence in Ms(Γ ) converging to some X ∈M(Γ ) in C0(B,R
3). Then we infer Xn → X

in C1
loc(B,R

3) from Cauchy’s estimates and thus that X also cannot have any interior branch points by Theorem 1
in [24], where one has to use that X cannot be a constant map on account of the imposed three-point condition.
Moreover, since X is bounded by Γ it must be free of boundary branch points, and thus immersed on B . Secondly we
show the stability of X. To this end we fix some ϕ ∈ C∞

c (B) arbitrarily. On account of the requirement |Xn
w| > 0 on

B we can use the identity (KE)n = −8|〈ξn,Xn
ww〉|2/|Xn

w|2 in order to conclude by Cauchy’s estimates that

(KE)nϕ2(w) −→ KEϕ2(w) pointwise for a.e. w ∈ B

and for n → ∞. Now together with −(KE)n � 0 on B and JXn
(ϕ) � 0 for any n ∈ N we achieve by Fatou’s lemma:∫

B

−2KEϕ2 dw � lim inf
n→∞

∫
B

−2(KE)nϕ2 dw �
∫
B

|∇ϕ|2 dw,

i.e. JX(ϕ) � 0 for any ϕ ∈ C∞
c (B). Hence, Ms(Γ ) is a closed subset of M(Γ ) and thus compact on account of the

well-known compactness of M(Γ ). �
Now we fix again some simple, closed polygon Γ and prove the following approximation result to be used below

in Sections 6 and 7:

Lemma 2. If X is some stable minimal surface in M̃(Γ ), then there holds JX(ϕ) � 0 even for all functions
ϕ ∈ H̊ 1,2(B).

Proof. By Lemma 1 and point (v) of Theorem 2 we know that there exists some τ ∈ K(f̃ ) such that X = ψ̃(τ ). Thus
we conclude by (26) that there exists some p∗ > 1 such that KE ∈ Lp∗

(B). Now let ϕ ∈ H̊ 1,2(B) be chosen arbitrarily
and {ϕj } ⊂ C∞

c (B) some sequence with ϕj → ϕ in H̊ 1,2(B). By Sobolev’s embedding theorem we have ϕj → ϕ in
Lq(B), for any q ∈ [1,∞), and therefore together with Hölder’s inequality: ‖KE(ϕ2

j − ϕ2)‖L1(B) → 0, for j → ∞.

Thus together with the required stability of X we obtain 0 � JX(ϕj ) → JX(ϕ) for j → ∞, hence JX(ϕ) � 0. �
4. Extreme polygons prevent boundary branch points

In this section we collect the author’s results of Chapter 4 of [20] which guarantee that Theorem 3 especially
applies to extreme polygons. In Chapter 4 of [20] the author proved the following generalization of Hopf’s “boundary
point lemma”:

Lemma 3. Let Φ ∈ C0(B) ∩ C2(B) be harmonic on B and satisfy

Φ(w0) > Φ(w) ∀w ∈ B, (27)

for some fixed point w0 ∈ ∂B . Then there exists some constant σ > 0 such that there holds

Φ(w0) − Φ(w)

|w0 − w| > σ ∀w ∈ Kδ, π
4
(w0), (28)

for some sufficiently small chosen δ > 0, where Kδ, π
4
(w0) := {w ∈ Bδ(w0) ∩ B|| angle(w − w0,−w0)| ∈ [0, π

4 ]}.

By this result the author derived in Chapter 4 of [20]:

Theorem 4. If Γ is an extreme, simple, closed polygon which is not contained in a plane, then a minimal surface
X ∈M(Γ ) does not possess any boundary branch points.
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Secondly, for an arbitrary simple, closed polygon Γ one has

Lemma 4. Let X(·, τ ) ∈ M̃(Γ ) be a minimal surface whose boundary values are not monotonic on some arc
(eiτk , eiτk+1) ⊂ S

1, for some k = 1, . . . ,N + 3. Then there exists some angle θ ∈ (τk, τk+1) for which eiθ is a boundary
branch point of X(·, τ ). In particular, any X ∈ M̃(Γ ) \M(Γ ) possesses a boundary branch point.

Thirdly, a combination of this lemma with the proof of Theorem 4 implies

Corollary 4. Let Γ be some extreme, simple, closed polygon. If a minimal surface X ∈ M̃(Γ ) satisfies 2κ(X) = 1
then it is already free of branch points on B .

Combining (24) with Theorem 1 on p. 175 in [3] the author derived in Chapter 4 of [20] for any extreme, simple,
closed polygon Γ :

Corollary 5. Let τ̄ ∈ K(f ) and δ > 0 be fixed with the property that X(·, τ ) has no branch points on B for
τ ∈ Bδ(τ̄ ) ∩ K(f ), where we set Bδ(τ̄ ) := BN

δ (τ̄ ) ∩ R
N . Then there exists some δ̄ ∈ (0, δ] and some constant C

depending on Γ , τ̄ and δ̄ only such that there holds

∣∣(KE)τ (w)
∣∣ � C

N+3∑
k=1

∣∣w − eiτk
∣∣−2+α ∀w ∈ B, (29)

for any τ ∈ K(f )∩Bδ̄(τ̄ ), with α := 2 min{ρk
j −ρk

j−1|j = 1, . . . , pk, k = 1, . . . ,N +3} > 0 and ρk
0 := −1 for each k.

5. The Schwarz operators Aτ and Ȧτ for τ ∈ K(f̃ )

We set

C2
0(B) := {

ϕ ∈ C2(B) ∩ C0(B)|ϕ|∂B ≡ 0
}

and consider the Schwarz operator Aτ := −Δ + 2(KE)τ , for τ ∈ K(f̃ ), on the domain

Dom(Aτ ) := {
ϕ ∈ C2(B) ∩ H̊ 1,2(B) | Aτ (ϕ) ∈ L2(B)

}
, (30)

and the minimal Schwarz operator Ȧτ and minimal Laplace operator Δ̇ on the domain H 2,2(B) ∩ C2
0(B). Using

estimate (25) one can prove assertion (3.11) in [14] (see Proposition 2.1 in [19] or Section 7.1 in [20]) which reads:

Proposition 1. For any ϕ ∈ H 2,2(B) ∩ C2
0(B) and any τ ∈ K(f̃ ) there holds

∣∣(KE)τ ϕ(w)
∣∣ � c(τ,α)

N+3∑
k=1

∣∣w − eiτk
∣∣−1+α/2‖Δ̇ϕ‖L2(B) ∀w ∈ B. (31)

Now in Proposition 2.2 in [19] the author proved that H 2,2(B)∩C2
0(B) is densely contained in H 2,2(B)∩ H̊ 1,2(B)

w.r.t. the H 2,2(B)-norm, which implies that estimate (31) extends onto H 2,2(B) ∩ H̊ 1,2(B) for any τ ∈ K(f̃ ). Using
these results the author achieved in [19] (or Section 7.1 in [20]) that there holds for any ϕ ∈ H 2,2(B) ∩ H̊ 1,2(B) and
any τ ∈ K(f̃ ):∥∥2(KE)τ ϕ

∥∥
L2(B)

� 1

2
‖Δϕ‖L2(B) + c‖ϕ‖L2(B), (32)

for some constant c = c(τ ) that only depends on τ . Using this estimate the author proved in [19] that Dom( ¯̇Δ) =
Dom(Ȧτ ) = H 2,2(B) ∩ H̊ 1,2(B), ∀τ ∈ K(f̃ ). Moreover in [19] or Section 7.2 in [20] the author showed the essential

self-adjointness of Δ̇ w.r.t. 〈·, ·〉L2(B), i.e. ¯̇Δ = ( ¯̇Δ)∗. Together with estimate (32), for τ ∈ K(f̃ ), one can infer from

Theorem 4.4 in [21], p. 288, that also Ȧτ = −Δ̇ + 2(KE)τ is essentially self-adjoint w.r.t. 〈·, ·〉L2(B), ∀τ ∈ K(f̃ ).
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Furthermore it is proved in [19] that Aτ is symmetric, i.e. Aτ ⊂ (Aτ )∗, and thus closable in L2(B). Hence, together
with the fact that Dom(Aτ ) is densely contained in L2(B) one can derive by twice application of Theorem 5.29 in [21],
p. 168, that (Aτ )∗ is densely defined in L2(B) and closed, (Aτ )∗∗ = Āτ and (Aτ )∗ = (Aτ )∗ = ((Aτ )∗)∗∗, ∀τ ∈ K(f̃ ).
Combining the above results with Theorem 5.29 in [21], p. 168, the author achieved in [19] or Section 7.2 in [20]:

Theorem 5. (Ȧτ )∗ = Ȧτ = Āτ = (Aτ )∗ are self-adjoint operators with domain H 2,2(B) ∩ H̊ 1,2(B), ∀τ ∈ K(f̃ ).

Now we will denote SH̊ 1,2(B) := {ϕ ∈ H̊ 1,2(B) | ‖ϕ‖L2(B) = 1}, and analogously S(H 2,2(B) ∩ H̊ 1,2(B)) and
S Dom(Aτ ). Moreover we consider the bilinear form

Lτ (ϕ,ψ) :=
∫
B

∇ϕ · ∇ψ + 2(KE)τ ϕψ dw,

for ϕ,ψ ∈ H̊ 1,2(B), and denote J τ (ϕ) := Lτ (ϕ,ϕ). We fix some τ ∈ K(f̃ ) and p∗ ∈ (1, 2
2−α

) arbitrarily and ab-
breviate A := Aτ , L := Lτ and J := J τ . In Section 4 of [19] or Chapter 8 in [20] the author proved by Ehrling’s
interpolation lemma that there exists some constant C(p∗) such that

J (ϕ) � 1

2

∫
B

|∇ϕ|2 dw − C(p∗)‖KE‖Lp∗
(B) ∀ϕ ∈ SH̊ 1,2(B). (33)

Combining this result with L2-regularity theory, Theorem 8.13 in [5], Theorem 5 and well known ideas of spectral
theory the author achieved in [19] or Chapter 8 in [20]:

Theorem 6. The spectra of A and Ā coincide, are discrete and accumulate only at ∞, thus their eigenspaces are finite
dimensional. Furthermore there holds for their common smallest eigenvalue:

λmin(A) = inf
S Dom(A)

J = inf
SH̊ 1,2(B)

J = inf
S(H 2,2(B)∩H̊ 1,2(B))

J = λmin(Ā). (34)

Thus we may abbreviate λmin := λmin(A) = λmin(Ā). Moreover, applying Harnack’s inequality, Theorem 8.20
in [5], to the modulus |ϕ∗| of some eigenfunction ϕ∗ ∈ ESλmin(Ā) ⊂ H 2,2(B) ∩ H̊ 1,2(B), with ‖ϕ∗‖L2(B) = 1, the
author finally derived from the above theorem (see Theorem 1.2 in [19]):

Theorem 7.

(i) For an eigenfunction ϕ∗ ∈ ESλmin(Ā) there holds |ϕ∗| > 0 on B and therefore:

dim ESλmin(Ā) = dim ESλmin(A) = 1. (35)

(ii) Especially an eigenfunction ϕ∗ ∈ ESλmin(A) satisfies |ϕ∗| > 0 on B .

6. The component K(f̃ )1
τ∗ of K(f̃ ) is a closed Cω-curve

From this section on we assume that Γ is an extreme, simple, closed polygon which is not contained in a plane.
We shall prove the main result, Theorem 1, by contradiction. Thus we assume the existence of some X∗ ∈ Ms(Γ )

and some sequence {Xn} ⊂M(Γ ) with

Xn −→ X∗ in C0(B,R
3). (36)

Thus by means of (3) the points τ ∗ := ψ−1(X∗) ∈ Ks(f ) and τn := ψ−1(Xn) ∈ K(f ) satisfy

τn −→ τ ∗ in K(f ), (37)

where we introduced the notation

Ks(f ) := ψ−1(Ms(Γ )
)
.
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By K(f ) ⊂ K(f̃ ) τ ∗ would be a non-isolated critical point of f̃ and therefore rank(D2f̃ (τ ∗)) � N − 1. Moreover
we know that X(·, τ∗) ≡ ψ̃(τ ∗) coincides with ψ(τ ∗) = X∗ ∈ Ms(Γ ) by Corollary 3. Hence, we have κ(τ ∗) = 0 and
could conclude now by Heinz’ formula (12) dim KerAX(·,τ∗) � 1, thus 0 would be an eigenvalue of Aτ∗ := AX(·,τ∗).
Moreover we know together with Lemma 2 that there holds

J τ∗ := JX(·,τ∗) � 0 on H̊ 1,2(B), (38)

thus in particular on Dom(Aτ∗
). Therefore 0 would even be the smallest eigenvalue of Aτ∗

. For if there were some
negative eigenvalue λ∗ < 0 of Aτ∗

with some eigenfunction ϕ∗, we would obtain by the proof of the symmetry of Aτ∗

in [19] that

J τ∗
(ϕ∗) = Lτ∗

(ϕ∗, ϕ∗) = 〈
Aτ∗

(ϕ∗), ϕ∗〉
L2(B)

= λ∗〈ϕ∗, ϕ∗〉L2(B) < 0, (39)

which is a contradiction. Hence, together with (35) we would arrive at

dim Ker
(
Aτ∗) ≡ dim ESλmin=0

(
Aτ∗) = 1. (40)

In combination with κ(τ ∗) = 0 we could therefore derive from formula (12) exactly rank(D2f̃ (τ ∗)) = N − 1. Hence,
there would be a δ > 0 such that

rank
(
D2f̃

)
� N − 1 on Bδ(τ

∗), (41)

where we abbreviate Bδ(τ
∗) for BN

δ (τ ∗) ∩ R
N ⊂⊂ T . Due to f̃ ∈ Cω(T ) we know that K(f̃ ) is an analytic set

which possesses therefore a locally finite analytic triangulation due to [22], p. 463, and is therefore especially locally
connected, such that a combination of (41) and (37) shows that the sequence {τn} would approach τ ∗ along the
1-skeleton K(f̃ )1 of the simplicial complex K(f̃ ). Hence, we would arrive at the

Contradiction hypothesis. If the assertion of the main result, Theorem 1, were wrong, then there would have to exist
some point τ ∗ ∈ Ks(f ) which is also contained in the closure of the union of 1-simplices of the simplicial complex

K(f̃ ), i.e. τ ∗ ∈ Ks(f ) ∩ (K(f̃ )1 \ K(f̃ )0) �= ∅.

Now this gives rise to the idea to analyze the following subset Z of the connected component K(f̃ )1
τ∗ of the

1-skeleton K(f̃ )1 (of K(f̃ )) that contains τ ∗:

Z := {
τ ∈ K(f̃ )1

τ∗ | κ(τ) = 0, rank
(
D2f̃ (τ )

) = N − 1, J τ � 0 on C∞
c (B)

}
.

Now we prove the following crucial

Theorem 8. The set Z ( �= ∅) is an open and closed subset of K(f̃ )1
τ∗ , thus Z = K(f̃ )1

τ∗ .

Proof. (a) By τ ∗ ∈ Z we know that Z is not empty.
(b) Secondly we derive the “openness” of the condition κ(τ) = 0, i.e. we prove: Let τ̄ ∈ Z be some arbitrarily fixed

point, then there exists some δ > 0 such that κ ≡ 0 on Bδ(τ̄ ) ∩ K(f̃ ). In fact, since we have rank D2(f̃ )(τ̄ ) = N − 1
there exists some δ > 0 such that rank D2(f̃ )(τ ) � N −1 for any τ ∈ Bδ(τ̄ ). Hence, together with Heinz’ formula (12)
we can conclude that 2κ(τ) � 1 for any τ ∈ Bδ(τ̄ ) ∩ K(f̃ ). Thus recalling Corollary 4 we achieve in fact κ(τ) = 0
for any τ ∈ Bδ(τ̄ ) ∩ K(f̃ ).

(c) Next we show that κ(τ) = 0 and J τ � 0 on C∞
c (B) are “closed conditions”. To this end we combine the above

reasoning with Corollary 4 in order to achieve: Let τ̄ ∈ Z be some arbitrarily fixed point, then there exists some
δ > 0 such that there holds K(f̃ ) ∩ Bδ(τ̄ ) = K(f ) ∩ Bδ(τ̄ ). In particular, this shows Z ⊂ K(f ). This can be seen as
follows: The inclusion “⊃” follows from Corollary 3. “⊂”: By part (b) of the proof we know that there exists some
δ > 0 such that there holds κ ≡ 0 on K(f̃ ) ∩ Bδ(τ̄ ). Now if the assertion were wrong there would have to exist some
point τ ∗ ∈ K(f̃ ) ∩ Bδ(τ̄ ) which is contained in K(f̃ ) \ K(f ) and therefore X(·, τ ∗) ∈ M̃(Γ ) \ M(Γ ) on account
of Lemma 1 and points (v) and (iii) of Theorem 2. By Corollary 4 this implies that X(·, τ ∗) would have to possess
a boundary branch point in contradiction to κ(τ ∗) = 0. Now the second assertion follows from the first one due to
Z ⊂ K(f̃ ) by its definition. Now we consider a sequence {τn} ⊂ Z that converges to some point τ̂ ∈ K(f̃ )1∗ . On
τ
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account of Z ⊂ K(f ) and the closedness of K(f ) we have τn → τ̂ in K(f ). Thus by the properties of the points
of Z, Corollary 3, (3) and Theorems 3 and 4, i.e. by the closedness of Ms(Γ ), we see:

X
(·, τ n

) = ψ
(
τn

) −→ ψ(τ̂ ) = X(·, τ̂ ) in
(
Ms(Γ ),‖ · ‖C0(B)

)
, (42)

which means that κ(τ̂ ) = 0 and J τ̂ � 0 on C∞
c (B), proving the closedness of the conditions κ(τ) = 0 and J τ � 0

on C∞
c (B).

(d) Now we show the openness of the condition rank(D2f̃ ) = N − 1. As already used in (41) we achieve for any
fixed point τ̄ ∈ Z the existence of some δ > 0 such that

rank
(
D2f̃

)
� N − 1 on Bδ(τ̄ ). (43)

Now since K(f̃ )1
τ∗ is a piecewise analytic curve none of its points can be an isolated critical point of f̃ , which implies

in fact by (43):

rank
(
D2f̃

) ≡ N − 1 on Bδ(τ̄ ) ∩ K(f̃ )1
τ∗ . (44)

Moreover the condition rank (D2f̃ ) = N − 1 is also closed, for let {τn} ⊂ Z be some sequence converging to some
point τ̂ ∈ K(f̃ )1

τ∗ , then rank(D2f̃ (τ̂ )) � N − 1, since otherwise τ̂ would be an isolated critical point of f̃ . Inserting
this and κ(τ̂ ) = 0 (by (c)) into formula (12) we see that 0 is an eigenvalue of Aτ̂ . Thus as we also know J τ̂ � 0 on
Dom(Aτ̂ ) by (c) and Lemma 2 we gain as in (39) that 0 is even the smallest eigenvalue of Aτ̂ and therefore as in (40):

dim ESλmin=0
(
Aτ̂

) = dim Ker
(
Aτ̂

) = 1.

Hence, inserting this and κ(τ̂ ) = 0 into Heinz’ formula (12) again we achieve exactly rank(D2(f̃ )(τ̂ )) = N − 1.
(e) Finally we prove the openness of the stability condition, i.e. of J τ � 0 on C∞

c (B). To this end let

ι :
(
H 2,2(B) ∩ H̊ 1,2(B),‖ · ‖H 2,2(B)

)
↪→ (

L2(B),‖ · ‖L2(B)

)
denote the inclusion, thus image(ι) = Dom(Āτ ) for any τ ∈ K(f̃ ),

S
(
H 2,2(B) ∩ H̊ 1,2(B)

) := {
ϕ ∈ H 2,2(B) ∩ H̊ 1,2(B) | ‖ϕ‖H 2,2(B) = 1

}
and ‖ · ‖ the operator norm for bounded linear operators L mapping (H 2,2(B)∩ H̊ 1,2(B),‖ · ‖H 2,2(B)) into L2(B), i.e.

‖L‖ := sup
{∥∥L(ϕ)

∥∥
L2(B)

| ϕ ∈ S
(
H 2,2(B) ∩ H̊ 1,2(B)

)}
.

Now we prove:
For any fixed τ̄ ∈ Z there exists some δ̄ > 0 and some constant C(α) only depending on α, τ̄ and δ̄ such that there

holds ∣∣(KE)τ ϕ(w)
∣∣ � C(α)

N+3∑
k=1

∣∣w − eiτk
∣∣−1+ α

2 ‖Δϕ‖L2(B) ∀w ∈ B, (45)

for any τ ∈ Bδ̄(τ̄ ) ∩ K(f ) and any ϕ ∈ H 2,2(B) ∩ H̊ 1,2(B). In fact, we already derived the existence of some neigh-
borhood Bδ(τ̄ ) such that X(·, τ ) is free of branch points on B for any τ ∈ Bδ(τ̄ )∩K(f ). Thus we obtain the existence
of some δ̄ ∈ (0, δ] such that estimate (29) holds for any τ ∈ Bδ̄(τ̄ ) ∩ K(f ) with some constant C that does not depend
on τ . Applying this in the ending of the proof of Proposition 1, i.e. of Proposition 2.1 in [19], we achieve estimate
(45) for any τ ∈ Bδ̄(τ̄ ) ∩ K(f ) and any ϕ ∈ H 2,2(B) ∩ C2

0(B) and then even for any ϕ ∈ H 2,2(B) ∩ H̊ 1,2(B) by the
fact that H 2,2(B)∩C2

0(B) is densely contained in H 2,2(B)∩ H̊ 1,2(B) w.r.t. the H 2,2(B)-norm, proved in Proposition
1 in [19]. Using estimate (45) we prove now:

Let τ̄ be some arbitrary point of Z. Then there holds for an arbitrary sequence {τn} ⊂ K(f̃ ) with τn → τ̄ :∥∥Āτn ◦ ι − Āτ̄ ◦ ι
∥∥ −→ 0 for n −→ ∞. (46)

Set

Sn := sup
{∥∥(

(KE)τ
n − (KE)τ̄

)
ϕ
∥∥

L2(B)
| ϕ ∈ S

(
H 2,2(B) ∩ H̊ 1,2(B)

)}
= ∥∥Āτn ◦ ι − Āτ̄ ◦ ι

∥∥,



974 R. Jakob / Ann. I. H. Poincaré – AN 24 (2007) 963–987
and let {εn} be an arbitrary null-sequence. By the definition of the supremum there exists for each n ∈ N some function
ϕn ∈ S(H 2,2(B) ∩ H̊ 1,2(B)) that satisfies

0 � Sn − ∥∥(
(KE)τ

n − (KE)τ̄
)
ϕn

∥∥
L2(B)

< εn. (47)

We set gn := ((KE)τ
n − (KE)τ̄ )ϕn for each n. Firstly we infer from the requirement that {τn} ⊂ K(f̃ ) converges to

τ̄ ∈ Z that κ(τn) = κ(τ̄ ) = 0 and that τn and τ̄ are contained in K(f ) for sufficiently large n on account of parts
(b) and (c) of the proof. Thus we can see by Sobolev’s embedding theorem due to 2 − 2

2 = 1 and ‖ϕn‖H 2,2(B) = 1 in
combination with Corollary 3, (3), Cauchy’s estimates and (24):∣∣gn(w)

∣∣ � ‖ϕn‖L∞(B)

∣∣(KE)τ
n − (KE)τ̄

∣∣(w)

� const.
∣∣(KE)τ

n − (KE)τ̄
∣∣(w) −→ 0 for n → ∞, (48)

pointwise for any w ∈ B . Furthermore on account of the facts that τn and τ̄ are contained in K(f ) for large n and
τn → τ̄ we can apply estimate (45) and obtain together with ‖Δϕn‖L2(B) � 1 the estimate∣∣gn(w)

∣∣ �
∣∣(KE)τ

n

ϕn

∣∣(w) + ∣∣(KE)τ̄ ϕn

∣∣(w)

� C(α)

(
N+3∑
k=1

∣∣w − eiτn
k

∣∣−1+α/2 + ∣∣w − eiτ̄k
∣∣−1+α/2

)
, (49)

for any w ∈ B and n > N , with N sufficiently large. Now we verify the requirements of Vitali’s theorem applied
to {gn}. To this end let E ⊂ B be an arbitrary measurable subset with positive L2-measure and define R := √

L2(E).
Now τn → τ̄ implies in particular the existence of some number d > 0 such that dist(τn, ∂T ) > d , ∀n ∈ N. Thus we
can conclude that there has to exist some R̄ > 0 such that

2R̄ < min
k=1,...,N+3

{∣∣eiτn
k+1 − eiτn

k

∣∣, ∣∣eiτ̄k+1 − eiτ̄k
∣∣},

with τN+4 := τ1, uniformly ∀n ∈ N. Then we obtain the following estimate:∥∥∣∣w − eiτn
k

∣∣−1+α/2∥∥2
L2(E)

�
∫

⋃N+3
j=1 BR(e

iτn
j )

∣∣w − eiτn
k

∣∣−2+α dw +
∫

E\⋃N+3
j=1 BR(e

iτn
j )

∣∣w − eiτn
k

∣∣−2+α dw

� (N + 2)R−2+απR2 + 2π

R∫
0

r−2+αr dr +L2(E)R−2+α

=
(

(N + 2)π + 2π

α
+ 1

)
Rα −→ 0

for R̄ > R ↘ 0, i.e. for L2(E) ↘ 0, uniformly for any n ∈ N and for any k = 1, . . . ,N + 3. Thus by the same
estimate for the summands in (49) involving the τ̄k and by Minkowski’s inequality we achieve finally ‖gn‖L2(E) → 0
if L2(E) ↘ 0, uniformly for any n > N . Hence, together with (48) Vitali’s theorem yields ‖gn‖L2(B) → 0, for n → ∞,
and therefore together with (47):

0 � Sn < ‖gn‖L2(B) + εn −→ 0 for n → ∞,

which proves (46). Furthermore using that

Āτ ◦ ι :
(
H 2,2(B) ∩ H̊ 1,2(B),‖ · ‖H 2,2(B)

) −→ (
L2(B),‖ · ‖L2(B)

)
are bounded operators due to estimate (32) and by image(ι) = Dom(Āτ ) for any τ ∈ K(f̃ ) we can immediately
conclude from (46) and Theorem 2.29 on p. 207 in Kato’s book [21] that

Āτn −→ Āτ̄ in the generalized sense, (50)

if K(f̃ ) � τn → τ̄ , for an arbitrarily fixed point τ̄ ∈ Z, where we used Kato’s terminology in [21], p. 202. Now since
Āτ has a discrete spectrum only accumulating at ∞, for any τ ∈ K(f̃ ), by Theorem 6 we can apply Theorem 3.16 on
pp. 212–213 in [21] which yields due to (50):
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Let τ̄ be some arbitrary point of Z, {τn} ⊂ K(f̃ ) an arbitrary sequence with τn → τ̄ and d ∈ R \ Spec(Āτ̄ )

arbitrarily fixed. Then there holds also d ∈ R \ Spec(Āτn
) and

dim
⊕
λ<d

ESλ

(
Āτn) ≡ dim

⊕
λ<d

ESλ

(
Āτ̄

)
, (51)

for sufficiently large n. Now together with parts (b) and (d) of the proof and formulas (12), (34) and (35) we can
finally see:

For any τ̄ ∈ Z there is some neighborhood Bε(τ̄ ) such that J τ � 0 on Dom(Aτ ) for any τ ∈ Bε(τ̄ ) ∩ K(f̃ )1
τ∗ .

For, suppose the assertion were wrong, i.e. that there exists some sequence {τn} ⊂ K(f̃ )1
τ∗ with τn → τ̄ and

infDom(Aτn
) J

τn
< 0 ∀n ∈ N. Hence, by (34) we achieve:

λmin
(
Āτn) = λmin

(
Aτn) = inf

S Dom(Aτn
)
J τn

< 0 ∀n ∈ N. (52)

Now by parts (b) and (d) we know already that τ̄ possesses some neighborhood Bδ(τ̄ ) such that there hold κ(τ) = 0
and rank(D2(f̃ )(τ )) = N − 1 ∀τ ∈ Bδ(τ̄ ) ∩ K(f̃ )1

τ∗ . Hence, in combination with Heinz’ formula (12) we conclude
that Ker(Aτn

) �= {0}, thus by Dom(Aτn
) ⊂ Dom(Āτn

) that Ker(Āτn
) �= {0} for n > n̄ and some sufficiently large n̄.

Therefore we achieve together with (52):

dim
⊕
λ�0

ESλ

(
Āτn) � 2 ∀n > n̄. (53)

Now we know for τ̄ ∈ Z by the definition of Z and formula (12) that dim Ker(Aτ̄ ) = 1, thus especially that 0 is
an eigenvalue of Aτ̄ , and since Lemma 2 yields J τ̄ � 0 on Dom(Aτ̄ ) we can conclude as in (39) that 0 is even the
smallest eigenvalue of Aτ̄ . Hence, we infer from formula (35) that

dim ESλmin=0
(
Āτ̄

) = dim ESλmin=0
(
Aτ̄

) = 1. (54)

Now on account of K(f̃ ) � τn → τ̄ we can apply (51) with d := (λ2(Ā
τ̄ ) − λmin(Ā

τ̄ ))/2 > 0, which yields together
with (53), λmin(Ā

τ̄ ) = 0 and (54):

2 � dim
⊕
λ<d

ESλ

(
Āτn) ≡ dim

⊕
λ<d

ESλ

(
Āτ̄

) = dim ES0
(
Āτ̄

) = 1

for sufficiently large n, which is a contradiction.
Hence, in fact Z �= ∅ is an open and closed subset of the connected set K(f̃ )1

τ∗ , thus Z = K(f̃ )1
τ∗ . �

Next combining this result with the implicit function theorem for real analytic functions, [4] p. 268, we finally
achieve

Corollary 6. The set Z = K(f̃ )1
τ∗ is a closed analytic Jordan curve.

Proof. Firstly we know that K(f̃ ) is a closed subset of T and therefore also its 1-skeleton K(f̃ )1 and its connected
component K(f̃ )1

τ∗ . Moreover we know by part (c) of the proof of the above theorem that Z = K(f̃ )1
τ∗ is contained in

K(f ) ⊂⊂ T , which yields the closedness of the set Z w.r.t. the standard topology of R
N and therefore its compactness.

Thus together with the fact that the analytic set K(f̃ ) possesses a locally finite analytic triangulation Z = K(f̃ )1
τ∗ can

only consist of a finite number of consecutive analytic arcs. Now we show that the set Z is not only a piecewise but
an entirely analytic curve, i.e. it does not have any “corners”. Firstly we fix some point τ̄ ∈ Z and obtain the existence
of some δ > 0 such that K(f̃ )1

τ∗ ∩ Bδ(τ̄ ) is connected on account of the local connectedness of K(f̃ )1
τ∗ . Moreover

we have rank(D2f̃ (τ̄ )) = N − 1 due to τ̄ ∈ Z and derive from the symmetry of D2f̃ (τ̄ ) the existence of a uniquely
determined permutation of the coordinates τ1, . . . , τN in T such that there holds detDτ̂ (∇τ̂ (f̃ ))( ˆ̄τ , τ̄N ) �= 0, where
we denote by τ̂ := (τ1, . . . , τN−1) the tuple of the first N − 1 permuted coordinates. Hence we can choose the above
δ that small, depending on τ̄ , such that there holds

detDτ̂

(∇τ̂ (f̃ )
)
(τ̂ , τN) �= 0 ∀(τ̂ , τN) = τ ∈ Bδ(τ̄ ). (55)



976 R. Jakob / Ann. I. H. Poincaré – AN 24 (2007) 963–987
Hence, we obtain by the implicit function theorem for analytic functions, [4] p. 268, applied to ∇τ̂ f̃ ∈ Cω(T ,R
N−1)

that

Mδ(τ̄ ) := {
(τ̂ , τN) = τ ∈ Bδ(τ̄ ) | ∇τ̂ (f̃ )(τ̂ , τN ) = 0

}
(56)

is a one-dimensional analytic submanifold of Bδ(τ̄ ), containing K(f̃ )1
τ∗ ∩ Bδ(τ̄ ) in particular. Thus we can con-

clude that K(f̃ )1
τ∗ ∩ Bδ(τ̄ ) is a one-dimensional connected analytic manifold, possibly with boundary, which proves

that Z = K(f̃ )1
τ∗ is a one-dimensional compact connected analytic manifold, possibly with boundary, as the point τ̄

was chosen arbitrarily in Z. Hence, we infer from the classification theorem of one-dimensional compact connected
smooth manifolds (see the appendix in [6]) that Z is either homeomorphic to [0,1] or S

1. Now we suppose Z ∼= [0,1]
and consider some boundary point τ̄ ∈ ∂Z. We note that there holds ∇τ̂ (f̃ )(τ̄ ) = 0 and (55). Now fixing some suffi-
ciently small δ̃ ∈ (0, δ] the implicit function theorem for analytic functions yields the existence of some neighborhood
J := [τ̄N − ε1, τ̄N + ε2] of τ̄N , depending on δ̃, and some Cω-map g :J → R

N−1 such that g(τ̄N ) = ˆ̄τ and

graph(g|
J̊
) := {(

g(τN), τN

) | τN ∈ J̊
} = Mδ̃(τ̄ ). (57)

Hence, recalling definition (56) we conclude immediately that

graph(g|
J̊
) ⊃ Z ∩ Bδ̃(τ̄ ). (58)

Now the continuity and injectivity of (g(·), ·) on J implies that (g(·), ·) : J̊
∼=→ graph(g|

J̊
) performs a homeomorphism.

Hence, since Z ∩ Bδ̃(τ̄ ) is connected we conclude that (g(·), ·)−1(Z ∩ Bδ̃(τ̄ )) is connected as well and therefore an
interval I . Moreover we infer from τ̄ ∈ ∂Z and (g(τ̄N ), τ̄N ) = τ̄ that τ̄N ∈ ∂I . Thus we have either I ⊂ (τ̄N − ε1, τ̄N ]
or I ⊂ [τ̄N , τ̄N + ε2) and we shall assume the first case without loss of generality. Then we infer especially that

∂f̃

∂τN

(
g(τN), τN

) = 0 ∀τN ∈ I (59)

by Z = K(f̃ )1
τ∗ . Moreover since ∂f̃

∂τN
(g(·), ·) is analytic on J we can conclude by the identity theorem for real analytic

functions that (59) extends in fact onto J , i.e.

∂f̃

∂τN

(
g(τN), τN

) = 0 ∀τN ∈ J.

Now together with (56) and (57) this implies firstly (g(τN), τN) ∈ K(f̃ )∩Bδ̃(τ̄ ) ∀τN ∈ J̊ . Next we know that K(f̃ )∩
Bδ̃(τ̄ ) is contained in the one dimensional manifold Mδ̃(τ̄ ) implying K(f̃ ) ∩ Bδ̃(τ̄ ) = K(f̃ )1 ∩ Bδ̃(τ̄ ), and thus we
obtain

graph(g|
J̊
) ⊂ K(f̃ )1

τ∗ ∩ Bδ̃(τ̄ ) = Z ∩ Bδ̃(τ̄ ),

where we used that (g(τ̄N ), τ̄N ) = τ̄ is contained in the connected component K(f̃ )1
τ∗ of τ ∗ and thus the entire graph

of g|
J̊

. Together with (58) and the definition of I we obtain therefore:

graph(g|
J̊
) = Z ∩ Bδ̃(τ̄ ) = graph(g|I ).

Hence, we can infer that for any point τ 2
N ∈ (τ̄N , τ̄N +ε2) there would have to exist some point τ 1

N ∈ I ⊂ (τ̄N −ε1, τ̄N ]
such that (g(τ 1

N), τ 1
N) = (g(τ 2

N), τ 2
N), thus especially τ 1

N = τ 2
N , which contradicts τ 1

N � τ̄N < τ 2
N and proves in fact

Z ∼= S
1. �

7. Strict monotonicity of Tomi’s function F(X(·))

Now the implicit function theorem (in its Cω-version) yields an analytic regular parametrization τ̃ : [0,2π ]/(0 ∼
2π) → Z of the analytic closed Jordan curve Z = K(f̃ )1

τ∗ , which corresponds via ψ to the closed path Xt :=
X(·, τ̃ (t)) of minimal surfaces in Ms(Γ ), where we recall that ψ and ψ̃ coincide on K(f ) ⊃ Z by Corollary 3.
Following an idea due to Tomi in [27] and [28] we are going to consider the composition of the so-called volume
functional F (up to a factor 1

3 ) with this closed path of minimal surfaces Xt , i.e.

F
(
Xt

) :=
∫ 〈

Xt
u ∧ Xt

v,X
t
〉
dw, (60)
B
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which we shall call Tomi’s function and whose existence is guaranteed by estimate (61) below. Just as Tomi did we aim
to derive its strict monotonicity on [0,2π ], which contradicts τ̃ (0) = τ̃ (2π) as a result of our contradiction hypothesis
in Section 6 and thus proves our main theorem.

We fix some τ̄ ∈ T and l ∈ {1, . . . ,N} arbitrarily and infer from Theorem 2(vii), (15) and (16) that there exists
some δ > 0 such that there hold the estimates∣∣Xw(w, τ)

∣∣ � const.(δ, τ̄ , k)
∣∣w − eiτk

∣∣ρ, (61)

for any k ∈ {1, . . . ,N + 3} and for k �= l:∣∣Xτl
(w, τ)

∣∣ � const.(δ, τ̄ , l, k)
∣∣w − eiτk

∣∣ρ+1
, (62)

∀w ∈ Bδ(eiτ̄k ) ∩ B and ∀τ ∈ Bδ(τ̄ ) := BN
δ (τ̄ ) ∩ R

N ⊂⊂ T , but for k = l only |Xτl
(w, τ)| � const.(δ, τ̄ , l)|w − eiτl |ρ ,

which we shall avoid in the sequel by using (18), thus the estimate∣∣Xτl
(w, τ) + Xϕ(w, τ)

∣∣ � const.(δ, τ̄ , l)
∣∣w − eiτl

∣∣ρ+1
, (63)

∀w ∈ Bδ(eiτ̄l ) ∩ B and ∀τ ∈ Bδ(τ̄ ), where we abbreviate ρ := mink=1,...,N+3 ρk
1 ∈ (−1,0] for the smallest exponent

of the ρk
j , for j = 1, . . . , pk and k = 1, . . . ,N + 3. Now we consider the functions

ql(w, τ) := 〈
Xu(w, τ) ∧ Xv(w, τ),Xτl

(w, τ)
〉 = 〈

Xu(w, τ) ∧ Xv(w, τ),Xτl
(w, τ) + Xϕ(w, τ)

〉
for l = 1, . . . ,N , w ∈ B \ {eiτk } and τ ∈ T , where we used that

〈Xu ∧ Xv,Xϕ〉(w) = u〈Xu ∧ Xv,Xv〉(w) − v〈Xu ∧ Xv,Xu〉(w) = 0

for any X ∈ C1(B,R
3) and w ∈ B . Moreover we infer from (61)–(63):∣∣ql(w, τ)

∣∣ � c(δ, τ̄ , l, k)
∣∣w − eiτk

∣∣2ρ
, (64)

∀w ∈ Bδ(eiτ̄k ) ∩ B , k = 1, . . . ,N + 3, and ∀τ ∈ Bδ(τ̄ ). In the sequel we will denote Δσ (τ̄ ) := B \ ⋃N+3
k=1 Bσ (eiτ̄k ), for

σ < δ, and prove for any fixed l = 1, . . . ,N :

Proposition 2. The function Ql(·) := ∫
B

ql(w, ·)dw is continuous on T .

Proof. Firstly we can infer from estimate (64) that the function Ql exists in any point τ̄ of T . Now we fix some
σ ∈ (0, δ) and τ̄ ∈ T arbitrarily and introduce the functions Ql

σ (τ ) := ∫
Δσ (τ̄ )

ql(w, τ)dw, for τ ∈ Bδ(τ̄ ) ⊂⊂ T , which
are well-defined again due to estimate (64). We have:∣∣Ql

σ (τ̄ ) − Ql
σ (τ )

∣∣ �
∫

Δσ (τ̄ )

∣∣ql(w, τ̄ ) − ql(w, τ)
∣∣dw. (65)

By Hilfssatz 1(A) in [13] Xτl
(·, ·) is uniformly continuous on Δσ (τ̄ ) × Bσ/2(τ̄ ) due to eiτk ∈ Bσ/2(eiτ̄k ) for |τ̄ − τ | �

σ
2 , ∀k ∈ {1, . . . ,N + 3}. Hence, for every ε > 0 there is some �(ε) > 0 such that |Xτl

(w, τ̄ ) − Xτl
(w, τ)| < ε, if

|(w, τ̄ ) − (w, τ)| < �, i.e. if |τ̄ − τ | < � uniformly for any w ∈ Δσ (τ̄ ), which means that

Xτl
(·, τ ) −→ Xτl

(·, τ̄ ) in C0(Δσ (τ̄ )
)
, (66)

for τ → τ̄ . Furthermore we know by Hilfssatz 1(A) in [13] resp. point (vi) of Theorem 2 that D(u,v)X(·, ·) is uniformly

continuous on Δσ (τ̄ ) × Bσ/2(τ̄ ) again due to eiτk ∈ Bσ/2(eiτ̄k ) for |τ̄ − τ | � σ
2 , ∀k ∈ {1, . . . ,N + 3}. Hence, as above

we obtain that

D(u,v)X(·, τ ) −→ D(u,v)X(·, τ̄ ) in C0(Δσ (τ̄ )), (67)

for τ → τ̄ . Thus combining (66) and (67) we infer ql(·, τ ) → ql(·, τ̄ ) in C0(Δσ (τ̄ )), which yields together with
Lebesgue’s convergence theorem and (65):∣∣Ql

σ (τ̄ ) − Ql
σ (τ )

∣∣ �
∫ ∣∣ql(w, τ̄ ) − ql(w, τ)

∣∣dw −→ 0, (68)
Δσ (τ̄ )
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for τ → τ̄ and any fixed σ < δ. Moreover we obtain by estimate (64) for any σ ∈ (0, δ) and τ ∈ Bδ(τ̄ ):∣∣Ql(τ) − Ql
σ (τ )

∣∣ =
∣∣∣∣∫
B

ql(w, τ)dw −
∫

Δσ (τ̄ )

ql(w, τ)dw

∣∣∣∣
�

N+3∑
k=1

∫
Bσ (eiτ̄k )∩B

∣∣ql(w, τ)
∣∣dw

�
N+3∑
k=1

c(δ, τ̄ , l, k)

∫
Bσ (eiτ̄k )∩B

∣∣w − eiτk
∣∣2ρ dw. (69)

Now we estimate for any k = 1, . . . ,N + 3 and σ ∈ (0, δ):∫
Bσ (eiτ̄k )

∣∣w − eiτk
∣∣2ρ dw �

∫
Bσ (eiτk )

∣∣w − eiτk
∣∣2ρ dw +

∫
Bσ (eiτ̄k )\Bσ (eiτk )

∣∣w − eiτk
∣∣2ρ dw

� 2π

σ∫
0

r2ρ+1 dr + ∣∣Bσ

(
eiτ̄k

) \ Bσ

(
eiτk

)∣∣σ 2ρ � ρ + 2

ρ + 1
πσ 2ρ+2.

Hence, together with (69) and 2ρ + 2 > 0 we achieve:∣∣Ql(τ) − Ql
σ (τ )

∣∣ � (N + 3)const.(δ, τ̄ , l)
ρ + 2

ρ + 1
πσ 2ρ+2 −→ 0, (70)

for σ ↘ 0, uniformly in τ ∈ Bδ(τ̄ ). Now we split:∣∣Ql(τ̄ ) − Ql(τ)
∣∣ �

∣∣Ql(τ̄ ) − Ql
σ (τ̄ )

∣∣ + ∣∣Ql
σ (τ̄ ) − Ql

σ (τ )
∣∣ + ∣∣Ql

σ (τ ) − Ql(τ)
∣∣ (71)

for any σ ∈ (0, δ) and τ ∈ Bδ(τ̄ ). We choose some ε > 0 arbitrarily and obtain by (70) the existence of some
σ̄ (ε) ∈ (0, δ) such that∣∣Ql(τ) − Ql

σ̄ (τ )
∣∣ <

ε

3
uniformly ∀τ ∈ Bδ(τ̄ ). (72)

Next we know by (68) applied to σ := σ̄ (ε) that there exists some δ̄(ε) ∈ (0, δ) such that∣∣Ql
σ̄ (τ̄ ) − Ql

σ̄ (τ )
∣∣ <

ε

3
∀τ ∈ Bδ̄(τ̄ ). (73)

Hence, combining (71) with σ := σ̄ (ε), (72) and (73) we achieve that for any ε > 0 there exists some sufficiently
small δ̄(ε) ∈ (0, δ) such that |Ql(τ̄ ) − Ql(τ)| � 3 ε

3 = ε, if τ ∈ Bδ̄(τ̄ ), which proves the continuity of Ql in τ̄ , for the
arbitrarily chosen point τ̄ ∈ T , and thus its continuity on T . �

Due to the analyticity of τ̃ and ∂
∂t

Xt = ∑N
l=1

dτ̃l

dt
Xt

τl
the above proposition implies in particular that the integral

Φ1(t) :=
∫

B1(0)

〈
Xt

u ∧ Xt
v,

∂

∂t
Xt

〉
dw (74)

depends continuously on t ∈ [0,2π ]/(0 ∼ 2π). Now we are going to prove

Proposition 3. For r ↗ 1 one has∫
∂Br (0)

〈
Xt

ϕ ∧ Xt,
∂

∂t
Xt

〉
ds −→ 0 in C0([0,2π ]). (75)
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Proof. We consider for some fixed l ∈ {1, . . . ,N} the functions

hl
r (ϕ, τ ) := 〈

Xϕ

(
reiϕ, τ

) ∧ X
(
reiϕ, τ

)
,Xτl

(
reiϕ, τ

)〉
≡ 〈

Xϕ

(
reiϕ, τ

) ∧ X
(
reiϕ, τ

)
,Xτl

(
reiϕ, τ

) + Xϕ

(
reiϕ, τ

)〉
, (76)

for r ∈ (0,1), τ ∈ T and ϕ ∈ [0,2π ]/(0 ∼ 2π). Again we fix some τ̄ ∈ T arbitrarily. Firstly we derive a uniform bound
for |X(·, ·)| on B × Bε(τ̄ ) for some ε > 0. We know that there exists some δ > 0 such that there hold (14) and (61) on
(Bδ(eiτ̄k ) ∩ B) × Bδ(τ̄ ) for k = 1, . . . ,N + 3. Moreover we may apply Theorem 2 (vi) to the domain D := Δδ/2(τ̄ )

which yields a uniform bound b(δ, τ̄ ) of |Xw(·, ·)| on Δδ(τ̄ ) × Bε(τ̄ ) for any ε ∈ (0, δ
2 ) due to eiτk ∈ Bδ/2(eiτ̄k ) for

|τ̄ − τ | � ε < δ
2 . Hence, we can estimate for some arbitrarily chosen k:

∣∣X(0, τ ) − Pk

∣∣ =
∣∣∣∣∣

1∫
0

d

dt
X

(
teiτk , τ

)
dt

∣∣∣∣∣ �
1∫

0

∣∣DX
(
teiτk , τ

)∣∣dt

=
1−δ∫
0

2
∣∣Xw

(
teiτk , τ

)∣∣dt +
1∫

1−δ

2
∣∣Xw

(
teiτk , τ

)∣∣dt

� 2b(δ, τ̄ )(1 − δ) +
1∫

1−δ

2c(δ, τ̄ , k)
∣∣teiτk − eiτk

∣∣ρ dt

= 2

(
b(δ, τ̄ )(1 − δ) + c(δ, τ̄ , k)

δρ+1

ρ + 1

)
,

and therefore

∣∣X(w,τ)
∣∣ �

∣∣X(0, τ )
∣∣ +

∣∣∣∣∣
1∫

0

d

dt
X(tw, τ)dt

∣∣∣∣∣
�

∣∣X(0, τ )
∣∣ +

1∫
0

∣∣DX(tw, τ)
∣∣|w|dt

� |Pk| + 2

(
b(δ, τ̄ )(1 − δ) + c(δ, τ̄ , k)

δρ+1

ρ + 1
+ b(δ, τ̄ )

)
,

for (w, τ) ∈ Δδ(τ̄ ) × Bε(τ̄ ) and an arbitrarily chosen k. Hence, together with (14) on (Bδ(eiτ̄k ) ∩ B) × Bδ(τ̄ ), for
k = 1, . . . ,N + 3, and ρ + 1 > 0 we achieve the desired uniform bound for |X(·, ·)| on B × Bε(τ̄ ) for any ε ∈ (0, δ

2 ).
Moreover we obtain by Hilfssatz 1 (A) in [13] that Xτl

(·, ·) is uniformly continuous on Δδ(τ̄ ) × Bε(τ̄ ) for any
ε ∈ (0, δ

2 ), in particular uniformly bounded, due to eiτk ∈ Bδ/2(eiτ̄k ) for |τ̄ − τ | � ε < δ
2 , ∀k ∈ {1, . . . ,N + 3}. Hence,

together with (62) we have proved the existence of some δ > 0 such that |Xτl
(·, ·)| is uniformly bounded on (B \

Bδ(eiτ̄l )) × Bε(τ̄ ) for any ε ∈ (0, δ
2 ). Thus taking also (61) and (63) into account we conclude that there holds for any

ε ∈ (0, δ
2 ):

∣∣hl
r (ϕ, τ )

∣∣ � const.(δ, τ̄ , l)

N+3∑
k=1

∣∣reiϕ − eiτk
∣∣ρ, (77)

∀r ∈ (0,1), ∀ϕ ∈ [0,2π ] and ∀τ ∈ Bε(τ̄ ), where we abbreviate ρ := mink=1,...,N+3{ρk
1 } ∈ (−1,0] for the smallest

exponent of the ρk
j for j = 1, . . . , pk and k = 1, . . . ,N +3. Now we estimate |reiϕ −eiτk |ρ independently of r ∈ (0,1).

To this end we fix some τ ∈ Bε(τ̄ ), k ∈ {1, . . . ,N + 3}, r ∈ (0,1) and ϕ ∈ [0,2π ] \ {τk} and choose some R ∈ (0, 1
8 )

arbitrarily. Now there are two possibilities:
(I) There holds |reiϕ − eiτk | < R or (II) |reiϕ − eiτk | � R.
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Case (I): We consider the angle γ := | angle(eiτk − eiϕ, reiϕ − eiϕ)| which depends on the fixed ϕ only and note
that γ ∈ (π

4 , π
2 ) by the requirement of Case (I) and ϕ �= τk . Now we compute∣∣reiϕ − eiτk

∣∣2 = (1 − r)2 + ∣∣eiϕ − eiτk
∣∣2 − 2(1 − r)

∣∣eiϕ − eiτk
∣∣ cos(γ )

and consider this expression as a quadratic function of 1 − r :

q(x) := x2 + y2 − 2xy cos(γ ) = (
x − y cos(γ )

)2 + (
y sin(γ )

)2

for x ∈ [0,1] and y := |eiϕ − eiτk |. Due to q � (y sin(γ ))2 on [0,1] we thus conclude∣∣reiϕ − eiτk
∣∣ = √

q(1 − r) �
∣∣eiϕ − eiτk

∣∣ sin(γ ),

and therefore by ρ ∈ (−1,0]:∣∣reiϕ − eiτk
∣∣ρ �

∣∣eiϕ − eiτk
∣∣ρ sin(γ )ρ. (78)

Moreover we recall that |eiϕ − eiτk | = 2 sin(
|ϕ−τk |

2 ). Now by sin(θ) � θ
2 for θ ∈ [0, π

2 ] and π
2 � |ϕ−τk |

2 , we have

sin

( |ϕ − τk|
2

)
� |ϕ − τk|

4
. (79)

Furthermore we gain by γ ∈ (π
4 , π

2 ) that sin(γ ) > 1√
2

> 1
2 and therefore together with (78) and (79):

∣∣reiϕ − eiτk
∣∣ρ �

(
2 sin

( |ϕ − τk|
2

))ρ

sin(γ )ρ <

( |ϕ − τk|
4

)ρ

,

for every ϕ ∈ [0,2π ] \ {τk} and k ∈ {1, . . . ,N +3}. On the other hand in Case (II) we have |reiϕ − eiτk |ρ � Rρ . Hence,
we achieve in any case the estimate∣∣reiϕ − eiτk

∣∣ρ �
( |ϕ − τk|

4

)ρ

+ Rρ, (80)

for any k ∈ {1, . . . ,N + 3}, and therefore together with (77):

∣∣hl
r (ϕ, τ )

∣∣ � c(δ, τ̄ , l)

N+3∑
k=1

(( |ϕ − τk|
4

)ρ

+ Rρ

)
, (81)

∀r ∈ (0,1), ∀ϕ ∈ [0,2π ] \ {τj }j=1,...,N+3, ∀τ ∈ Bε(τ̄ ), yielding a Lebesgue dominating term for the family
{hl

r (·, τ )}r∈(0,1) in L1([0,2π ]) for every τ ∈ Bε(τ̄ ) on account of ρ > −1. Furthermore we conclude from the
property X(eiϕ, τ ) ∈ Γj for ϕ ∈ [τj , τj+1], j = 1, . . . ,N + 3, (τN+4 := τ1) ∀τ ∈ T that Xϕ(eiϕ, τ ) ∈ Γj − Pj ≡
Span(Pj+1 − Pj ) and also Xτl

(eiϕ, τ ) ∈ Span(Pj+1 − Pj ) for l = 1, . . . ,N , ϕ ∈ (τj , τj+1) and any τ ∈ T (see also
(4.74) in [14]). Inserting this into (76) we obtain

hl
r (ϕ, τ ) −→ 0 ≡ hl

1(ϕ, τ ) for r ↗ 1, (82)

pointwise for every ϕ ∈ [0,2π ] \ {τj }j=1,...,N+3 and for any τ ∈ T . Moreover,

∂

∂r

(〈Xϕ ∧ X,Xτl
〉)(w, τ) = 〈Xϕr ∧ X,Xτl

〉(w, τ) + 〈Xϕ ∧ Xr,Xτl
〉(w, τ) + 〈Xϕ ∧ X,Xτlr 〉(w, τ),

∀w ∈ B and for any τ ∈ T . Hence, by formulas (15)–(17), estimates (61)–(63) and again (80), with ρ replaced by
2ρ − 1, we achieve∣∣∣∣ ∂

∂r
hl

r (ϕ, τ )

∣∣∣∣ � const.(δ, τ̄ , l)

N+3∑
k=1

∣∣reiϕ − eiτk
∣∣2ρ−1

� c(δ, τ̄ , l)

N+3∑(( |ϕ − τk|
4

)2ρ−1

+ R2ρ−1
)

, (83)

k=1
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∀r ∈ (0,1), ϕ ∈ [0,2π ] \ {τj }j=1,...,N+3 and ∀τ ∈ Bε(τ̄ ), where we fixed some ε ∈ (0, δ
2 ) and R ∈ (0, 1

8 ) arbitrarily.
Now we choose some ε > 0 arbitrarily small. One can easily see that for an arbitrary τ ∈ T there holds

dist(τ, ∂T ) = 1√
2

min
j=1,...,N+3

{|τj+1 − τj |
}
.

Hence, the union
⋃N+3

k=1 Bs(τk) of intervals is disjoint for any τ ∈ Bε(τ̄ ) if we choose s ∈ (0,
dist(τ̄ ,∂T )−ε√

2
), and we

achieve for those s by (81):∫
⋃N+3

k=1 Bs(τk)

|hl
r (ϕ, τ )|r dϕ � c(δ, τ̄ , l)(N + 3)

N+3∑
k=1

∫
Bs(τk)

( |ϕ − τk|
4

)ρ

+ Rρ dϕ,

= c(δ, τ̄ , l)2(N + 3)2
(

sρ+1

4ρ(ρ + 1)
+ sRρ

)
,

∀r ∈ (0,1) and uniformly ∀τ ∈ Bε(τ̄ ). Thus due to ρ +1 > 0 we achieve the existence of some s̄(ε) ∈ (0,
dist(τ̄ ,∂T )−ε√

2
)

such that ∫
⋃N+3

k=1 Bs̄(ε)(τk)

∣∣hl
r (ϕ, τ )

∣∣r dϕ <
ε

2
, (84)

∀r ∈ (0,1) and uniformly ∀τ ∈ Bε(τ̄ ). Moreover we obtain by the mean value theorem, hl
1(ϕ, τ ) ≡ 0, for every

ϕ ∈ [0,2π ] \ {τj }j=1,...,N+3 and any τ ∈ T by (82), and (83):∫
[0,2π]\⋃N+3

k=1 Bs̄(ε)(τk)

∣∣hl
r (ϕ, τ )

∣∣r dϕ =
∫

[0,2π]\⋃N+3
k=1 Bs̄(ε)(τk)

∣∣hl
1(ϕ, τ ) − hl

r (ϕ, τ )
∣∣r dϕ

< 2πconst.(δ, τ̄ , l)(N + 3)

((
s̄(ε)

4

)2ρ−1

+ R2ρ−1
)(

r − r2)
∀r ∈ (0,1) and uniformly ∀τ ∈ Bε(τ̄ ). Thus there exists some radius r̄ < 1 (near 1) depending on s̄(ε), i.e. on ε, such
that ∫

[0,2π]\⋃N+3
k=1 Bs̄(ε)(τk)

∣∣hl
r (ϕ, τ )

∣∣r dϕ <
ε

2
(85)

∀r ∈ (r̄(ε),1) and uniformly ∀τ ∈ Bε(τ̄ ). Hence, combining (84) and (85) we achieve for any ε > 0 the existence of
some radius r̄(ε) < 1 with the property that

∫ 2π

0 |hl
r (ϕ, τ )|r dϕ < ε, for any r ∈ (r̄(ε),1) and uniformly ∀τ ∈ Bε(τ̄ ),

thus

Hl
r :=

2π∫
0

hl
r (ϕ, ·)r dϕ −→ 0 in C0(Bε(τ̄ )

)
, (86)

for r ↗ 1. Hence, since τ̄ was arbitrarily chosen in T we can conclude for any compactly contained subdomain
T ′ ⊂⊂ T with Z ⊂ T ′ that Hl

r → 0 in C0(T̄ ′), for r ↗ 1 and for any l = 1, . . . ,N . Now noting that

∂

∂t
Xt =

N∑
l=1

dτ̃l

dt
Xt

τl
and

∣∣∣∣dτ̃

dt

∣∣∣∣ � const. on [0,2π ]

we infer for r ↗ 1:∫
∂Br (0)

〈
Xt

ϕ ∧ Xt,
∂

∂t
Xt

〉
ds =

N∑
l=1

dτ̃l

dt
H l

r

(
τ̃ (t)

) −→ 0 in C0([0,2π ]). �

Moreover we are going to use the integral identity (1.9) in [9] due to Heinz (see Lemma 3.3 in [17] for a proof):
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Lemma 5. For Y 1, Y 2 ∈ C0(B,R
3) ∩ H 1,2(B,R

3) there holds the formula

FBr (0)

(
Y 1 + Y 2) −FBr(0)

(
Y 1) = 3

∫
Br (0)

〈
Y 1

u ∧ Y 1
v , Y 2〉dw

+
∫

Br(0)

〈
3Y 1 + Y 2, Y 2

u ∧ Y 2
v

〉
dw + 1

r

∫
∂Br (0)

〈
Y 1, Y 2 ∧ (

Y 1
ϕ − Y 2

ϕ

)〉
ds, (87)

for a.e. r ∈ (0,1).

Using

∂

∂t
Xt =

N∑
l=1

dτ̃l

dt
Xt

τl

we may infer from (66), (67), Lebesgue’s convergence theorem and the analyticity of τ̃ that the functions

Φr(t) :=
∫

Br(0)

〈
Xt

u ∧ Xt
v,

∂

∂t
Xt

〉
dw (88)

are continuous in t ∈ [0,2π ]/(0 ∼ 2π) for any r ∈ (0,1) (compare with (74) for r = 1). Together with Theorem 2 (i),
(iv), (vi) and Cauchy’s estimates we can prove the following connection between these integrals Φr and FBr(0)(X

(·)):

Proposition 4. There holds for a.e. r ∈ (0,1) and any t ∈ [0,2π ]/(0 ∼ 2π):

d

dt
FBr(0)

(
Xt

) = 3Φr(t) + 1

r

∫
∂Br (0)

〈
Xt

ϕ ∧ Xt,
∂

∂t
Xt

〉
ds. (89)

Proof. Without loss of generality we may only consider some arbitrary point t∗ ∈ (0,2π). We obtain by (87) applied
to Y 1 := Xt∗ and Y 2 := Xt − Xt∗ for an arbitrarily chosen r ∈ (0,1) which (87) holds for:

FBr (X
t ) −FBr (X

t∗)

t − t∗
= 3

∫
Br

〈
Xt∗

u ∧ Xt∗
v ,

Xt − Xt∗

t − t∗

〉
dw +

∫
Br

〈
2Xt∗ + Xt,

(Xt − Xt∗)u
t − t∗

∧ (
Xt − Xt∗)

v

〉
dw

+ 1

r

∫
∂Br

〈
Xt∗,

Xt − Xt∗

t − t∗
∧ (

2Xt∗
ϕ − Xt

ϕ

)〉
ds, (90)

with Br := Br(0). Firstly we consider the first integral on the right hand side. By Theorem 2 (vi) and by the analyticity
of τ̃ we know that

Xt(w) − Xt∗(w)

t − t∗
−→ ∂

∂t
Xt∗(w) pointwise ∀w ∈ B (91)

and t → t∗. Now combining (66) for some σ < 1−r
2 with the analyticity of τ̃ and applying Cauchy’s estimates to the

harmonic functions ∂
∂t

Xt − ∂
∂t

Xt∗ we achieve:

∂

∂t
Xt −→ ∂

∂t
Xt∗ in C1(Br(0)

)
(92)

for t → t∗, which implies in particular together with the mean value theorem:∥∥∥∥Xt − Xt∗

t − t∗

∥∥∥∥
0

� sup
∗ ∗

∥∥∥∥ ∂

∂t
Xt

∥∥∥∥
0

� const.(r, h), (93)

C (Br (0)) (t −h,t +h) C (Br (0))
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for some sufficiently small chosen h > 0 and |t − t∗| < h. Hence, recalling (91) we infer by Lebesgue’s convergence
theorem:∫

Br

〈
Xt∗

u ∧ Xt∗
v ,

Xt − Xt∗

t − t∗

〉
dw −→

∫
Br

〈
Xt∗

u ∧ Xt∗
v ,

∂

∂t
Xt∗

〉
dw = Φr(t

∗), (94)

for t → t∗. Now we examine the second integral in (90). Using that Xt ≡ ψ̃(τ̃ (t)) = ψ(τ̃ (t)) due to Z ⊂ K(f ) and
Corollary 3 we have by Theorem 2(i) and the analyticity of τ̃ that Xt → Xt∗ in C0(B) for t → t∗. Thus together with
Cauchy’s estimates applied to Xt − Xt∗ we achieve:

Xt −→ Xt∗ in C1(Br(0)
)

(95)

for t → t∗. Moreover we infer from (92) together with the mean value theorem:∥∥∥∥Xt
u − Xt∗

u

t − t∗

∥∥∥∥
C0(Br (0))

� sup
(t∗−h,t∗+h)

∥∥∥∥ ∂

∂t
Xt

u

∥∥∥∥
C0(Br (0))

� const.(r, h), (96)

for some sufficiently small chosen h > 0 and |t − t∗| < h. Hence, together with (95) we achieve by Lebesgue’s
convergence theorem:∫

Br

〈
2Xt∗ + Xt,

(Xt − Xt∗)u
t − t∗

∧ (
Xt − Xt∗)

v

〉
dw −→ 0 (97)

for t → t∗. Finally we examine the third integral in (90). We deduce from (95) especially: Xt
ϕ → Xt∗

ϕ in C0(∂Br(0))

for t → t∗. Thus together with (91) and (93) we infer again by Lebesgue’s convergence theorem:∫
∂Br

〈
Xt∗,

Xt − Xt∗

t − t∗
∧ (

2Xt∗
ϕ − Xt

ϕ

)〉
ds −→

∫
∂Br

〈
Xt∗,

∂

∂t
Xt∗ ∧ Xt∗

ϕ

〉
ds

=
∫

∂Br

〈
Xt∗

ϕ ∧ Xt∗,
∂

∂t
Xt∗

〉
ds,

for t → t∗. Now combining this with (90), (94) and (97) we see indeed that

lim
t→t∗

FBr (X
t ) −FBr (X

t∗)

t − t∗
exists and coincides with the right hand side of (89) for any t∗ ∈ (0,2π), thus ∀t ∈ [0,2π ]/(0 ∼ 2π), and for a.e.
r ∈ (0,1). �

In the sequel we have to examine some notions considered in [26] in order to use Sauvigny’s result, Satz 2 in [26],
correctly:

Definition 2. Let X ∈ M(Γ ) be a fixed immersed minimal surface. For any map Y ∈ C0(B,R
3) we consider its

normal component w.r.t. X:

Y ∗ := 〈Y, ξ〉ξ = Y − 1

E

(〈Y,Xu〉Xu + 〈Y,Xv〉Xv

)
on B,

where ξ denotes the unit normal field of X, as defined in (21).

Furthermore we have to compare our definition of the quadratic form JX assigned to a minimal surface X with the
following one, considered in [26]:

Definition 3. Let X ∈ M(Γ ) be a fixed immersed minimal surface. For any φ ∈ C1(B,R
3) ∩ H 1,2(B,R

3) we define:

IX(φ) :=
∫
B

∣∣(φu)
∗∣∣2 + ∣∣(φv)

∗∣∣2 + 2

E

(〈φu,Xu〉〈φv,Xv〉 − 〈φu,Xv〉〈φv,Xu〉
)

dw.
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Definition 4. We term the normal space of an immersed minimal surface X ∈ M(Γ )

NX := {
φ ∈ C1(B,R

3) ∩ C0(B,R
3) ∩ H̊ 1,2(B,R

3) | φ ‖ ξ on B
}
.

As pointed out on p. 173 in [26] we are going to prove now

Lemma 6. Let X ∈ M(Γ ) be an immersed minimal surface. For any φ ∈ NX there holds ϕ := 〈φ, ξ 〉 ∈ H̊ 1,2(B) ∩
C0(B) and IX(φ) = JX(ϕ).

Proof. We have φ = φ∗ = 〈φ, ξ〉ξ and therefore φu = 〈φ, ξ〉uξ + 〈φ, ξ〉ξu on B . Thus recalling the fundamental
equations ξu ∧ ξv = KXu ∧ Xv = KEξ and |ξu| = |ξv|, 〈ξu, ξv〉 = 0 on B (see Lemma 1 in [24]) we obtain 〈ξu, ξ 〉 ≡
0 ≡ 〈ξv, ξ 〉 on B in particular and conclude that (φu)

∗ = 〈φ, ξ〉uξ on B , whence |(φu)
∗|2 = |〈φ, ξ〉u|2 ≡ |ϕu|2 and

analogously |(φv)
∗|2 = |ϕv|2, yielding∣∣(φu)

∗∣∣2 + ∣∣(φv)
∗∣∣2 = |∇ϕ|2 on B, (98)

which implies especially ϕ ∈ H̊ 1,2(B) ∩ C0(B) by φ ∈ NX and ξ ∈ C0(B,R
3) ∩ C1(B,R

3). A brief computation
yields

〈φu,Xu〉 = 〈φ, ξ〉〈ξu,Xu〉 ≡ −ϕL, 〈φv,Xv〉 = 〈φ, ξ〉〈ξv,Xv〉 ≡ −ϕN,

and

〈φu,Xv〉 = 〈φ, ξ〉〈ξu,Xv〉 ≡ −ϕM = 〈φv,Xu〉 on B,

where we have used the notation in [2], p. 17. Therefore we arrive at:

2

E

(〈φu,Xu〉〈φv,Xv〉 − 〈φu,Xv〉〈φv,Xu〉
) = 2

E
(LN − M2)ϕ2 = 2KEϕ2,

(see p. 19 in [2]). Thus together with (98) we have proved IX(φ) = JX(ϕ). �
Theorem 9. D2f̃ (τ ) is positive semidefinite for any τ ∈ Z.

Proof. We fix some arbitrary point τ̄ of Z. As in [26], pp. 174–182, we consider for an arbitrarily fixed vector α ∈ R
N

the following family of harmonic surfaces Y(·, ε) := X(·, τ̄ + εα) on B , for ε ∈ (−ε0, ε0), where ε0 > 0 is chosen
sufficiently small. By Satz 1 in [26] we know that

φ :=
(

∂

∂ε
Y (·, ε)|ε=0

)∗
∈ NX(·,τ̄ )

and

d2

dε2
f̃ (τ̄ + εα)|ε=0 ≡ d2

dε2
D

(
Y(·, ε))|ε=0 � 2IX(·,τ̄ )(φ). (99)

Moreover we know that J τ̄ � 0 on H̊ 1,2(B) by definition of Z and Lemma 2. We may apply this to the function
ϕ := 〈φ, ξ〉 since Lemma 6 guarantees that 〈φ, ξ〉 ∈ H̊ 1,2(B) ∩ C0(B). Hence, we conclude by IX(φ) = JX(ϕ)

and (99):〈
α,D2f̃ (τ̄ )α

〉 = d2

dε2
f̃ (τ̄ + εα)|ε=0 � 2J τ̄ (ϕ) � 0, for any α ∈ R

N. �
Now we are able to prove

Theorem 10. There holds F(X(·)) ∈ C1([0,2π ]) with

d

dt
F(Xt ) = 3Φ1(t) for t ∈ [0,2π ]. (100)

In particular, F(X(·)) is strictly monotonic on [0,2π ]/(0 ∼ 2π).
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Proof. As trace(τ̃ ) = K(f̃ )1
τ∗ we have ∇f̃ (τ̃ (t)) ≡ 0 implying f̃ (τ̃ (t)) ≡ const., where we used that K(f̃ )1

τ∗ = Z is
an analytic curve, and therefore:

0 ≡ d2

dt2
f̃

(
τ̃ (t)

) =
〈

dτ̃

dt
,D2(f̃ )

(
τ̃ (t)

)dτ̃

dt

〉
, (101)

on [0,2π ]/(0 ∼ 2π). Moreover Theorem 9 yields the positive semidefiniteness of D2(f̃ )(τ̃ (t)) ∀t ∈ [0,2π ]. Together
with the symmetry of D2(f̃ )(τ̃ (t)) we achieve the existence of a symmetric root of D2(f̃ )(τ̃ (t)), i.e. there exists some
symmetric matrix R(t) with D2(f̃ )(τ̃ (t)) = R(t) · R(t), which yields together with (101):

0 ≡
〈

dτ̃

dt
,D2(f̃ )

(
τ̃ (t)

)dτ̃

dt

〉
=

〈
dτ̃

dt
,R(t)� · R(t)

dτ̃

dt

〉
=

∣∣∣∣R(t)
dτ̃

dt

∣∣∣∣2

,

∀t ∈ [0,2π ]. Hence, we arrive at

D2(f̃ )
(
τ̃ (t)

)dτ̃

dt
= R(t) · R(t)

dτ̃

dt
≡ R(t)0 = 0 ∀t ∈ [0,2π ].

Thus on account of Satz 1 in [14] we can conclude that〈
ξ t ,

N∑
k=1

dτ̃k

dt
Xt

τk

〉
∈ Ker

(
Aτ̃(t)

)
, (102)

with ξ t := Xt
u ∧ Xt

v/|Xt
u ∧ Xt

v|. Now due to κ(τ̃ (·)) ≡ 0 by definition of Z we infer from Corollary 2 that the functions
{Xt

τl
}l∈{1,...,N} are linearly independent on B for any t ∈ [0,2π ]. Hence, by the regularity of the parametrization τ̃ of

Z, i.e. by dτ̃ /dt �= 0 on [0,2π ], we gain that

N∑
k=1

dτ̃k

dt
Xt

τk
�≡ 0 on B, (103)

∀t ∈ [0,2π ]. Furthermore in [14] Heinz assigned to every τ ∈ K(f̃ ) the linear map

Cτ :V τ :=
{

N∑
k=1

αkXτk
(·, τ )

∣∣∣∣ (α1, . . . , αN) ∈ Ker
(
D2f̃ (τ )

)} −→ Ker
(
Aτ

)
,

defined by Y �→ 〈ξ(·, τ ), Y 〉. By (5.7), (5.7’) and (5.17) in [14] we know the formula

dim Ker(Cτ ) = 2κ(τ) − �
({

branch points of X(·, τ )
} ∩ {

eiτl
}
l=1,...,N

)
,

for any τ ∈ K(f̃ ). Now by κ(τ̃ (t)) = 0 we infer dim Ker(Cτ̃(t)) = 0, i.e. that Cτ̃(t) is injective ∀t ∈ [0,2π ], which
implies by (102), (103) and λmin(A

τ̃(t)) = 0:〈
ξ t ,

∂

∂t
Xt

〉
=

〈
ξ t ,

N∑
k=1

dτ̃k

dt
Xt

τk

〉
∈ ES(λmin=0)

(
Aτ̃(t)

) \ {0}

∀t ∈ [0,2π ]. Hence, we infer from Theorem 7(ii) and |Xt
u ∧ Xt

v| = 1
2 |DXt |2 > 0 on B:∣∣∣∣〈Xt

u ∧ Xt
v,

∂

∂t
Xt

〉∣∣∣∣ > 0 on B, ∀t ∈ [0,2π ]. (104)

Now we choose some arbitrary sequence of radii rn ↗ 1 such that formula (89) holds for each rn and conclude
together with (88) that

Φrn(t) � Φrn+1(t) or Φrn(t) � Φrn+1(t) ∀t ∈ [0,2π ], (105)

∀n ∈ N. Lebesgue’s convergence theorem guarantees that Φrn(t) → Φ1(t) pointwise for any t ∈ [0,2π ]. Since we
know by (74) and (88) that the functions Φr are continuous on [0,2π ] for any r ∈ (0,1] we can apply Dini’s theorem
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to the monotonic sequence in (105) yielding Φrn → Φ1 in C0([0,2π ]) for n → ∞. If we insert also the convergence
(75) into formula (89) we thus obtain

d

dt
FBrn

(
X(·)) −→ 3Φ1 in C0([0,2π ]), (106)

for n → ∞, which especially implies the equicontinuity of {FBrn
(X(·))} on [0,2π ]. Furthermore due to estimate (61)

we can infer from Lebesgue’s convergence theorem that FBrn
(Xt ) →FB(Xt ) pointwise ∀t ∈ [0,2π ] and for n → ∞.

Hence, combining this with the proof of Arzela–Ascoli’s theorem and (106) we obtain

FBrn

(
X(·)) −→ FB

(
X(·)) in C1([0,2π ]),

for n → ∞, which shows by (106):

d

dt
FB(Xt ) = lim

n→∞
d

dt
FBrn

(Xt ) = 3Φ1(t) ∀t ∈ [0,2π ].

Now together with (104) and (74) we can conclude that d
dt
FB(X(·)) > 0 or < 0 on [0,2π ], i.e. that FB(X(·)) is strictly

monotonic on [0,2π ]. �
Since we trivially have FB(X0) = FB(X2π ) by τ̃ (0) = τ̃ (2π) in contradiction to the strict monotonicity of

FB(X(·)) on [0,2π ] we finally proved our main result under the additional condition that Γ is not contained in a
plane.

If the polygon Γ is contained in a plane, then it is well known that M(Γ ) consists of a single element on ac-
count of the imposed three-point condition. Hence, the first statement of Theorem 1 is proved, and together with the
compactness of the set (Ms(Γ ),‖ · ‖C0(B̄)), on account of Theorems 3 and 4, we immediately infer its finiteness.
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