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Abstract

In this article we will study the initial value problem for some Schrödinger equations with Dirac-like initial data and therefore
with infinite L2 mass, obtaining positive results for subcritical nonlinearities. In the critical case and in one dimension we prove
that after some renormalization the corresponding solution has finite energy. This allows us to conclude a stability result in the
defocusing setting. These problems are related to the existence of a singular dynamics for Schrödinger maps through the so-called
Hasimoto transformation.
© 2007

Résumé

Dans cet article on étudie le problème de Cauchy pour des équations de Schrödinger avec donnée initiale de type Dirac et donc
avec masse L2 infinie, obtenant des résultats positifs pour les non linéarités sous-critiques. Dans le cas critique et en dimension un,
on montre qu’après une certaine renormalisation la solution correspondante est d’énergie finie. On en déduit un résultat de stabilité
dans le cas défocalisant. Ces problèmes sont liés à l’existence d’une dynamique singulière des applications de type Schrödinger
par la transformation de Hasimoto.
© 2007 . .
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1. Introduction

In this paper we will study the IVP associated to the nonlinear Schrödinger equation (NLS){
iut + �u ± |u|αu = 0, x ∈ R

d, t > 0,

u(0, x) = aδx=0 + u0(x)
(1)
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with 0 � α, and u0 regular and possibly small with respect to aδx=0. A related problem that we also consider is to

take as u(0, x) a perturbation of aei x2
4 .

Let us recall first what is known about the broader question of the minimal regularity needed to assume in the
initial condition u(0, x) so that (1) is well posed. Within the Sobolev class Hs with s � 0 the answer is positive
and well understood, at least from the point of view of local wellposedness, and is due to Ginibre and Velo [12],
Cazenave and Weissler [3]. The proof follows a Picard iteration scheme based on the so-called Strichartz estimates. It
was observed by Kenig, Ponce and Vega in [17], that if s < 0 Picard’s iteration cannot work due to the lack of uniform
continuity of the map datum-solution. Then Vargas and Vega propose in [21] a different class of spaces which are
built using the Fourier transform of the initial condition. In the particular case of the one-dimensional cubic NLS they
are able to consider a larger class than L2. Finally Grünrock in [14] has extended that result, being able to prove local
wellposedness if u(0, x) satisfies that its Fourier transform is in some Lp for p < ∞. Therefore he is just missing the
delta function in (1) with d = 1 and α = 2.

Let us recall next the known explicit solutions of (1) if u0 = 0. It was also noticed in [17], that if there is uniqueness
of (1) with u0 = 0 then the corresponding solution should be invariant under the Galilean transformations. That is to
say for any ν ∈ R

d ,

uν(t, x) := e−it |ν|2+iν·xu(t, x − 2νt) = u(t, x). (2)

This in turn implies that u := ua,±α , with

ua,±α(t, x) = fa(t, x)e±iAa,α(t), (3)

where

fa(t, x) = a
ei |x|2

4t

(it)d/2
, (4)

and

Aa,α(t) =

⎧⎪⎪⎨⎪⎪⎩
|a|α

1 − α d
2

t1−α d
2 if α �= 2

d
,

|a| 2
d log t if α = 2

d
.

(5)

Notice that

lim
t↓0

fa(t, x) = aδx=0 (S ′), (6)

and as a conclusion the IVP (1) is ill-posed if α � 2
d

– see Theorem 1.5 in [17] for a precise statement.
A first natural question is if ua,±α is a stable solution in the subcritical case α < 2

d
. We denote ‖f ‖2 = ‖f ‖L2 . We

have the following result.

Theorem 1.1. Let α < 2
d

. For u0 ∈ L2, there exists a time t0 = t0(a,‖u0‖2) and a unique solution u of (1) such that

u − ua,±α ∈ Lp
([0, t0),L

q
) ∩ C

([0, t0),L
2)

with (p, q) any admissible pair,

2

p
+ d

q
= d

2
, 2 � p � ∞, (d,p) �= (2,2).

Moreover if 0 � α � 1 then t0 can be taken arbitrarily large.

The way to prove this theorem is to write

η(t, x) = e∓iAα,a(t)(u − ua,±α).

Using the fact that fa is a solution for the linear equation, we are lead to the equation{
iηt + �η ± (|η + fa|α − |fa|α

)
(η + fa) = 0, (7)
η(0, x) = u0(x).
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Then we see that if α < 2
d

, the term |fa|α is locally integrable with respect to the time variable and therefore the usual
Picard iteration scheme works. Moreover, if 0 � α � 1, we obtain an a priori control of the L2 norm, so that we get a
global result in this case.

Another natural question in the subcritical case is to consider a more regular perturbation of ua,±α . For this purpose,
we introduce the conformal transformation

T (f )(t, x) = ei |x|2
4t

(it)d/2
f

(
1

t
,
x

t

)
. (8)

Let w be defined by u = T w. Then u solves (1) for 0 < t < t0 iff w solves for 1/t0 < t < ∞
−iwt + �w ± 1

t2−α d
2

|w|αw = 0.

That is iff v(t, x) = w(t, x)e∓iAa,α(1/t) solves for 1/t0 < t < ∞ the equation

−ivt + �v ± 1

t2−α d
2

(|v|α − |a|α)
v = 0. (9)

Let us notice that by the changes of variable we did,

u(t, x) = T
(
e±iAa,α(1/·)v(·, ·))(t, x) = e±iAa,α(t)T (v)(t, x),

the initial solution ua,±α of (1) corresponds to the constant trivial solution a of (9). Finally, the equation of the
perturbation ε(t, x) = v(t, x) − a, with initial data at time 1/t0, writes⎧⎨⎩−iεt + �ε ± 1

t2−α d
2

(|ε + a|α − |a|α)(ε + a) = 0,

ε(1/t0, x) = ε0(x).

(10)

We shall study this equation for large times, in appropriate Sobolev spaces, and under suitable conditions on α. The
subcritical condition α < 2

d
will be crucial in the proofs, since it gets the integrability at infinity of the time-coefficient

in the nonlinearity. The asymptotic behavior of ε will give us informations on Eq. (1), and more precisely on the small
time behavior of the perturbations around the solution ua,±α . The fact that we have been able to prove Theorem 1.1
directly on the initial equation (1) is related to the fact that the mixed spaces we are working with are invariant by the
conformal transformation.

We have the following result.

Theorem 1.2. Let α < 2
d

, and let s > d
2 . For ε0 ∈ Hs , with norm small with respect to |a|, there exists a time t0 = t0(a)

such that Eq. (10) has a unique solution ε in a small ball of L∞((1/t0,∞),H s). Moreover, the wave operator exists
and the equation enjoys the property of asymptotic completeness in Hs .

As a consequence, for u0 small in Σs = {(1 + |x|s)f ∈ L2} with respect to |a|, u0 ∈ H 2, there exists a time
t0 = t0(a) such that Eq. (1) admits a solution that writes, for all 0 < t < t0,

u(t, x) = ua,±α + a
ei |x|2

4t

(it)d/2
e±iAa,α(t)ε

(
x

t
,

1

t

)
, (11)

for a unique ε small in L∞((1/t0,∞),H s), ε0 ∈ L2(x4dx).

The proof of the results on ε is again standard and relies on the fact that in the case s > d
2 , Hs is an algebra included

in L∞. As usual there is the difficulty of the lack of regularity of the nonlinear function appearing in (10), but this is
overcome assuming smallness of ε with respect to a. The passage back to the initial equation (1) is done by using the
scattering results combined with the asymptotic behavior of the linear Schrödinger evolution.

A case of rougher perturbations of aδ0 was recently studied by Kita. In [18] he described the structure of the
solutions yielded by initial data exactly a sum of two or three Dirac masses.

Finally, let us say a few words about which is the situation in the parabolic setting of the IVP analogous to (1), that
is to say{

ut − �u ± |u|αu = 0, x ∈ R
d, t > 0, (12)
u(0, x) = aδx=0.
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This equation has been intensively studied. It particular it has been shown by Weissler [22] that in the focusing case
(sign −), for α � 2

d
, there is no uniqueness. For the defocusing case, if only positive solutions are considered, for

α < 2
d

there is a unique solution, and for α � 2
d

there is no such solution. This result was proved by Brézis and
Friedman in [2]. So, for the heat equation, an important difference is made between the focusing and the defocusing
case, even for α < 2

d
. This is not the picture for the Schrödinger equation as we see from the statements of Theorem 1.1

and Theorem 1.2.
Let us consider next the critical case α = 2

d
and just in dimension d = 1. As it is well known this equation is

completely integrable. It is also closely related to the Schrödinger map equation{γt = γ ∧± γxx,

γ (0, x) = γ0
(13)

with b ∧± c := A±(b ∧ c), and

A± =
(1 0 0

0 1 0
0 0 ±1

)
.

Then it is straightforward that

∂t 〈A±γ, γ 〉 = 0 (14)

if γ solves (13). Therefore for A+ we get the Schödinger map onto the unit sphere S
2, and for A− we have it onto 2d

hyperbolic space:

H
2 = {

(a1, a2, a3) ∈ R
3 such that a2

1 + a2
2 − a2

3 = −1, a3 > 0
}
.

Equation (13) can be also obtained from the flows of curves in R
3 given by

χt = χx ∧± χxx. (15)

In the Euclidean case this equation is also called the Local Induction Approximation and was obtained by Da Rios
[5] as a crude model which describes the dynamics of a vortex filament equation within Euler equations. In [16],
Gutiérrez, Rivas and Vega obtain solutions of the IVP⎧⎨⎩

χt = χx ∧+ χxx,

χ(0, x) =
{

A+
1 x, x � 0,

A+
2 x, x � 0,

(16)

for any unit vectors A+
1 ,A+

2 such that

A+
1 + A+

2 �= 0.

More recently de la Hoz [6] has proved a similar result in the nonelliptic setting. Namely he obtains solutions of⎧⎨⎩
χt = χx ∧− χxx,

χ(0, x) =
{

A−
1 x, x � 0,

A−
2 x, x � 0,

(17)

for any pair of vectors A−
1 and A−

2 in H
2.

In both cases the corresponding solution curves are described geometrically by the curvature and the (generalized)
torsion given by

c(t, x) = c0√
t
, τ (t, x) = x

2t
, (18)

with c0 a free parameter uniquely determined by (A±
1 ,A±

2 ). Therefore at time t = 1 the curves are real analytic while
at t = 0 a corner is developed if c0 �= 0. Recall that the flows given in (15) are both reversible in time so that the above
solutions are examples of the formation of a singularity in finite time. From (18) we conclude that for all time

∞∫
c2(t, x) dx = ∞.
−∞
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However we shall see below that after some renormalization these curves have finite energy.
The connection of (15) with the 1d cubic NLS was proved by Hasimoto who used the transformation

Ψ (t, x) = c(t, x) exp

{
i

x∫
0

τ(t, x′) dx′
}

. (19)

Although he worked just in the Euclidean case (i.e. ∧+ in (15)), a similar argument can be given for the other case,
see for example [19] and [7]. The final conclusion is that if χ solves (15) and Ψ is defined as in (19) then

iΨt + Ψxx ± 1

2

(|Ψ |2 + a(t)
)
Ψ = 0, (20)

for some real function a(t). So in the particular case given in (18) we have

Ψ (t, x) = c0
ei x2

4t√
t

= √
ifc0(t, x).

Then chosen a(t) = −|c0|2/t we get a solution of (20) with

Ψ (0, x) = √
i c0δ.

Notice that the coefficient 1
2 which appears in (20) is harmless and can be easily absorbed by the change of variable

(t ′, x′) = (
2t,

√
2x

)
.

Hence we are interested in solving on R, around the particular solution fa , the equation⎧⎨⎩ iut + uxx ±
(

|u|2 − |a|2
t

)
u = 0,

u(0, x) = aδx=0 + u0(x).

(21)

Unfortunately we are not able to deal with (21) directly, so that we propose for any t0 > 0 the related problem⎧⎪⎪⎨⎪⎪⎩
iut + uxx ±

(
|u|2 − |a|2

t

)
u = 0,

u(t0, x) = a e
i x2
4t0√
it0

+ u1(x),

(22)

and we look for a backward solution. That is to say for

0 < t < t0. (23)

It is natural to consider as before the conformal transformation

u(t, x) = T v(t, x) = ei x2
4t√
it

v

(
1

t
,
x

t

)
. (24)

Then u solves (22) for 0 < t < t0 iff v solves for 1/t0 < t < ∞{
−ivt + vxx ± 1

t

(|v|2 − |a|2)v = 0,

v(1/t0, x) = a + ε0(x),
(25)

where ε0 is defined by u1(x) = (T ε0)(t0, x). It is easy to solve (25) locally in time for both situations focusing and
defocussing. Moreover there is a natural energy. In fact if we define

E(t) = 1

2

∫ ∣∣vx(t, x)
∣∣2

dx ∓ 1

4t

∫ (∣∣v(t, x)
∣∣2 − |a|2)2

dx, (26)

then if v is a solution of (25), we have

∂tE(t) ∓ 1

4t2

∫ (∣∣v(t, x)
∣∣2 − |a|2)2

dx = 0. (27)

As a consequence, and in the defocussing situation, we will be able to prove the following theorem which is the
main result of this paper.
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Theorem 1.3. For all t0 > 0 and for all ε0 ∈ H 1, there exists a unique solution of the IVP{
−ivt + vxx − 1

t

(|v|2 − |a|2)v = 0, 1/t0 < t < ∞,

v(1/t0, x) = a + ε0(x),
(28)

with

v − a ∈ C
(
(1/t0,∞),H 1).

Moreover∫ ∣∣vx(t, x)
∣∣2

dx � 2E(1/t0), (29)

∞∫
1
t0

∫ (∣∣v(t, x)
∣∣2 − |a|2)2

dx
dt

t2
< 4E(1/t0), (30)

and in particular

lim inf
t→∞

1

t

∫ (∣∣v(t, x)
∣∣2 − |a|2)2

dx = 0. (31)

Remark 1.4. Using (31) and (24) we obtain that the solution u of (22) in the defocussing setting for

0 < t < t0

satisfies

lim inf
t→0

∥∥t
∣∣u(t)

∣∣2 − |a|2∥∥2 = 0, (32)

which can be understood as a weak stability result of the singular solution aei x2
4t /

√
t of (22).

Remark 1.5. It would be very interesting to be able to compute the limit of u(t, x) at t = 0, at least if small perturba-

tions of a ei x2
4t√
t

are considered. The difficulty is that the time dependent potential |a|2
t

, is of long range, and therefore
the dynamics at infinity of the renormalized variable v should be modified accordingly; see [20]. This remark quite
likely applies for small perturbations even in the focusing situation. We plan to look at these questions somewhere
else.

Remark 1.6. It is interesting to write which is the energy for (19), the solution of (20), in terms of the geometric
quantities c and τ . It is given by

Ẽ(t) = t2

4
√

2

+∞∫
−∞

(
c2
x(t, x) + c2(t, x)

(
x

2t
− τ(t, x)

)2)
dx + 1

16
√

2

+∞∫
−∞

[
tc2(t, x) − c2

0

]2
dx. (33)

Then

d

dt
Ẽ(t) − 1

16
√

2 t

+∞∫
−∞

[
tc2(t, x) − c2

0

]2
dx = 0, (34)

and

lim inf
t→0

∥∥t |c|2 − |c0|2
∥∥

2 = 0.

Recall that in this case we will solve the equation backwards in time.
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Finally, let us make a remark on the Gross–Pitaevskii defocusing equation{
iψt + �ψ − (|ψ |2 − 1

)
ψ = 0,

ψ(0, x) = ψ0(x).
(35)

This equation was globally solved in 1+H 1(Rd), with an exponential growth in time control of the mass ‖ψ(t)−1‖2,
for d ∈ {2,3} by Bethuel and Saut, and for d = 1 by Gallo [1,9].

In a class of larger spaces, the Zhidkov spaces Xk(Rd), it has been solved in X1(R) and in X2(R2) by Zhidkov, by
Gallo and by Goubet [23,24,8,13]. Also, considered in the natural energy space {f ∈ H 1

loc,∇f ∈ L2, |f |2 − 1 ∈ L2},
it has been solved for d ∈ {2,3} and for d = 4 with smallness assumption, by Gérard in [10]. Recently, Gustafson,

Nakanishi and Tsai described in [15] the scattering in modified 1 + H
d
2 −1(Rd) spaces, for d � 4 and small data. The

proof relies on the linearized equation and the conservation of the energy is not used.
By exploiting more the mass and energy laws, as done for proving Theorem 1.3, we can get a slightly modified

proof of the very short and simple one in [1], allowing to have the following result.

Proposition 1.7. The solution of (35) is globally well-posed in 1 + H 1(Rd), for all dimensions d such that local
existence occurs, that is surely for d ∈ {1,2,3}, with the control∥∥ψ(t) − 1

∥∥
2 � ct,

where the constant c depends on the initial data.

The article is structured as follows. The first two sections contain the proofs for the results in the subcritical case.
In Section 4 we prove Theorem 1.3. Section 5 concerns Proposition 1.7, and in the last section we give a technical
lemma.

2. The sub-critical power. The Strichartz case

We shall prove the following lemma, that implies the local existence result in Theorem 1.1, as indicated in the
introduction.

Lemma 2.1. There exists t0 = t0(a,‖u0‖2) and a unique solution η of Eq. (7){
iηt + �η ± (|η + fa|α − |fa|α

)
(η + fa) = 0,

η(0, x) = u0(x),

such that

η ∈ L∞([0, t0),L
2) ∩ Lp

([0, t0),L
q
)
,

with (p, q) any admissible couple

2

p
+ d

q
= d

2
, 2 � p � ∞, (d,p) �= (2,2).

Proof. Let us denote X the intersection of the mixed spaces. In order to do a fixed point argument in a closed ball
of X, we have to estimate the norm of the operator

Φ(η)(t, x) = eit�u0(x) ± i

t∫
0

ei(t−τ)�
(∣∣η(τ, x) + fa(τ, x)

∣∣α − ∣∣fa(τ, x)
∣∣α)(

η(τ, x) + fa(τ, x)
)
dτ.

The Schrödinger operator is unitary on L2, so one gets

∥∥Φ(η)(t)
∥∥

2 � ‖u0‖2 +
t∫ ∥∥(∣∣η(τ) + fa(τ )

∣∣α − ∣∣fa(τ )
∣∣α)(

η(τ) + fa(τ )
)∥∥

2 dτ. (36)
0
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The nonlinearity we are working with,

F(z) = (∣∣z + fa(τ, x)
∣∣α − ∣∣fa(τ, x)

∣∣α)(
z + fa(τ, x)

)
,

verifies F(0) = 0 and∣∣F ′(z)
∣∣ = max

{∣∣∂zF (z)
∣∣, ∣∣∂zF (z)

∣∣} � c
(∣∣fa(τ, x)

∣∣α + ∣∣z + fa(τ, x)
∣∣α)

.

Under the assumption α � 0, we get∣∣F ′(z)
∣∣ � c

(∣∣fa(τ )
∣∣α + |z|α)

.

This is the classical growth hypothesis on nonlinearities for proving the local wellposedness. As done for the lo-
cal L2 Cauchy problem, one can split the nonlinearity in two parts, F = F1 + F2, with |F ′

1(z)| � c|fa(τ )|α and
|F ′

2(z)| � c|z|α , use

F(z1) − F(z2) =
1∫

0

F ′(tz1 + (1 − t)z2
)
dt (z1 − z2),

for estimating F(η(τ, x)) − F(0) = F(η(τ, x)), and obtain

∥∥Φ(η)(t)
∥∥

2 � ‖u0‖2 + C

t∫
0

∣∣fa(τ )
∣∣α∥∥η(τ)

∥∥
2 + ∥∥ηα+1(τ )

∥∥
2 dτ.

Therefore, for all t > 0,

∥∥Φ(η)(t)
∥∥

2 � ‖u0‖2 + c(a)‖η‖X

t∫
0

dτ

τα d
2

+
t∫

0

∥∥η(τ)
∥∥α+1

L2(α+1) dτ.

Now, we compute the second integral, and in the last term we perform a Hölder inequality∥∥Φ(η)(t)
∥∥

2 � ‖u0‖2 + c(a)‖η‖Xt1−α d
2 + c‖η‖α+1

Lp([0,t],Lq)t
4−dα

4 ,

where

p = 4(α + 1)

dα
, q = 2(α + 1),

form an admissible couple. We get

sup
0<t�t0

∥∥Φ(η)(t)
∥∥

2 � ‖u0‖2 + c(a)t
1−α d

2
0 ‖η‖X + ct

1−α d
4

0 ‖η‖α+1
X .

Then, for ‖u0‖2 finite, Φ(η) satisfies the first condition to be in X.
Let us treat now the LpLq norm. By using the inhomogeneous global Strichartz inequalities, we obtain that for

t > 0,

∥∥Φ(η)(t)
∥∥

LpLq � ‖u0‖2 +
t0∫

0

∥∥(∣∣η(τ) + fa(τ )
∣∣α − ∣∣fa(τ )

∣∣α)(
η(τ) + fa(τ )

)∥∥
2 dτ.

The right-hand side term can be treated exactly like the one in (36). In conclusion, if u0 is in L2, Φ(η) stays in X.
Arguing as before, and assuming t0 small with respect to ‖u0‖2 and to |a|, we get that the operator Φ is a contraction
on a closed ball of X. Therefore the lemma follows from the fixed point theorem. �

Let us prove now the global existence result of Theorem 1.1, in the case α ∈ [0,1]. By multiplying Eq. (7) by η,
and by taking then the imaginary part, we have

∂t

∥∥η(t)
∥∥2

2 = ∓2
∫ (∣∣η(t, x) + fa(t, x)

∣∣α − ∣∣fa(t, x)
∣∣α)�fa(t, x)η̄(t, x) dx. (37)
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Lemma 2.2. If α ∈ [0,1] there exists c(a) > 0 such that for all t � t ′ we have the a priori estimate∥∥η(t)
∥∥2

2 �
∥∥η(t ′)

∥∥2
2ec(a)t

1−α d
2
.

Proof. Lemma 6.1 allows us to upper-bound the right-hand side of (37) and get

∂t

∥∥η(t)
∥∥2

2 � c(a)

tα
d
2

∥∥η(t)
∥∥2

2,

and the lemma follows. �
Therefore, if α ∈ [0,1], by using Lemma 2.2 we can extend the solution η for arbitrary large t0, as done in the

critical case in Section 4.2.

3. The sub-critical power. The Hs case

3.1. Existence of solutions

Lemma 3.1. Let s > d
2 , and let ε0 ∈ Hs with

‖ε0‖Hs � |a|
8

.

There exists a time t0 = t0(a) such that Eq. (10),{
−iεt + �ε ± 1

t
2−α d

2

(|ε + a|α − |a|α)
(ε + a) = 0,

ε(1/t0, x) = ε0(x),

has a unique solution ε in

Y =
{
f ∈ L∞(

(1/t0,∞),H s
)
, sup
t�1/t0

∥∥f (t)
∥∥

Hs � |a|
4

}
.

Proof. In order to do a fixed point argument in this space, we have to estimate the norm in Y of the operator

Φ(ε)(x, t) = e−it�ε0(x) ± i

t∫
1/t0

e−i(t−τ)�
(∣∣ε(x, τ ) + a

∣∣α − |a|α)(
ε(x, τ ) + a

) dτ

τ 2−α d
2

.

By using the fact that the Schrödinger operator is unitary on Hs ,

∥∥Φ(ε)(t)
∥∥

Hs � ‖ε0‖Hs +
t∫

1/t0

∥∥(∣∣ε(τ ) + a
∣∣α − |a|α)(

ε(τ ) + a
)∥∥

Hs

dτ

τ 2−α d
2

.

The nonlinearity

F̃ (z) = (|z + a|α − |a|α)
(z + a)

is a C∞ function on |z| <
|a|
4 with F̃ (0) = 0. Here we see the difference with the case of classical power-nonlinearity

|z|αz, whose lack of regularity imposes the conditions s < α or α even. Since ε(τ ) is in Y and Hs is embedded in L∞,
it follows that |ε(τ )| � ‖ε(τ )‖Hs <

|a|
4 . Therefore [4]∥∥F̃

(
ε(τ )

)∥∥
Hs � c(a),

and

∥∥Φ(ε)(t)
∥∥

Hs � ‖ε0‖Hs + c(a)

t∫
dτ

τ 2−α d
2

.

1/t0
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By computing the integral,

∥∥Φ(ε)(t)
∥∥

Hs � ‖ε0‖Hs + c(a)
|t−1+α d

2 − t
1−α d

2
0 |

|−1 + α d
2 | .

We are in the case α < 2
d

, so∥∥Φ(ε)
∥∥

Y
� ‖ε0‖Hs + c(a)t

1−α d
2

0 .

The smallness of ε0 in Hs in Y yield∥∥Φ(ε)
∥∥

Y
� |a|

8
+ c(a)t

1−α d
2

0 .

Then, for t0 = t0(a) small enough, Φ(ε) remains in Y . Moreover, by arguing similarly, we obtain that the operator
acts as a contraction on Y . Therefore the fixed point theorem ends the proof. �
3.2. Scattering properties

Lemma 3.2. Let s an integer such that s > d
2 .

(i) For all ε+ ∈ Hs with

‖ε+‖Hs � |a|
8

,

there exists a solution ε of (10) in Y such that

lim
t→+∞

∥∥ε(t) − e−it�ε+
∥∥

Hs = 0.

(ii) Let ε0 ∈ Hs with

‖ε0‖Hs � |a|
8

,

and let ε the solution given by Lemma 3.1. Then there exists a ε+ small in Hs such that

lim
t→+∞

∥∥ε(t) − e−it�ε+
∥∥

Hs = 0.

The wave operator of (i) is obtained by doing the same calculus as in the previous subsection, for a fixed point in
Y with the operator

Φ(ε)(x, t) = e−it�ε+(x) ± i

+∞∫
t

e−i(t−τ)�
(∣∣ε(x, τ ) + a

∣∣α − |a|α)(
ε(x, τ ) + a

) dτ

τ 2−α d
2

.

Since the Schrödinger operator is unitary on Hs , proving (ii) is equivalent to proving that

eit�ε(t)

has a limit in Hs as t goes to infinity, and also that

lim
t1,t2→+∞

∥∥eit1�ε(t1) − eit2�ε(t2)
∥∥

Hs = 0.

By using the Duhamel formulation, it is enough to show

lim
t1,t2→+∞

t2∫
t1

∥∥(∣∣ε(τ ) + a
∣∣α − |a|α)(

ε(τ ) + a
)∥∥

Hs

dτ

τ 2−α d
2

= 0.

The last assertion follows from calculus similar to the one in the proof of Lemma 3.1.
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3.3. Proof of Theorem 1.2

For u0 small in Σ = {(1 + |x|s)f ∈ L2}, let us define ε+ by the Fourier relation, ε̂+(x/2) = u0(x). Then ε+
is small in Hs and Lemma 3.2 ensures us that there exists a time t0 = t0(a) and a unique solution ε of (10) in
L∞((1/t0,∞),H s) behaving at infinity as the free evolution of ε+.

Therefore we have the existence of a solution of the equation

i∂tu + �u ± |u|αu = 0,

for all 0 < t < t0, given by

u(x, t) = ua,±α + ei |x|2
4t

(it)
d
2

e±iAa,α(t)ε

(
1

t
,
x

t

)
. (38)

Let us see now what happens with u at time 0. On one hand,

∥∥∥∥ ei |x|2
4t

(it)
d
2

e±iAa,α(t)

(
ε

(
1

t
,
x

t

)
− e− i

t
�ε+

(
x

t

))∥∥∥∥
2
� 1

t
d
2

∥∥∥∥ε

(
1

t
,
x

t

)
− e− i

t
�ε+

(
x

t

)∥∥∥∥
2

=
∥∥∥∥ε

(
1

t

)
− e− i

t
�ε+

∥∥∥∥
2
.

Then the decay of Lemma 3.2 allows us to say that

lim
t↓0

∥∥∥∥ ei |x|2
4t

(it)
d
2

e±iAa,α(t)

(
ε

(
1

t
,
x

t

)
− e− i

t
�ε+

(
x

t

))∥∥∥∥
2
= 0. (39)

On the other hand, using the free Schrödinger evolution,

ei |x|2
4t

(it)
d
2

e±iAa,α(t)e− i
t
�ε+

(
x

t

)
= ei |x|2

4t

(it)
d
2

e±iAa,α(t)c
e−i |x|2

4t

(−i/t)
d
2

∫
e−iy2 t

4 ei xy
2 ε+(y) dy.

So, taking in account limt↓0 Aa,α(t) = 0, u0 ∈ H 2, we have

lim
t↓0

∥∥∥∥ ei |x|2
4t

(it)
d
2

e±iAa,α(t)e− i
t
�ε+

(
x

t

)
− ε̂+

(
x

2

)∥∥∥∥
2
= 0. (40)

Therefore, in view of (38), (39) and (40), we conclude that u verifies the initial condition

u(0, x) = aδx=0 + u0(x),

so that u is a solution of Eq. (1).

4. The critical power, defocusing case

In order to treat the defocusing equation (28), for 1/t0 < t < ∞,{
−ivt + vxx − 1

t

(|v|2 − |a|2)v = 0,

v(1/t0, x) = a + ε0(x),

we shall consider instead the equation on ε = v − a,{
−iεt + εxx − 1

t

(|ε + a|2 − |a|2)(ε + a) = 0,

ε(1/t0, x) = ε0(x).
(41)
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4.1. A priori estimates

By multiplying Eq. (41) by ∂t ε, and then by taking its real part, we get

∂t

1

2

∫ ∣∣εx(t, x)
∣∣2

dx + 1

t

∫ (∣∣ε(t, x) + a
∣∣2 − |a|2)�(

ε(t, x) + a
)
∂t ε(t, x) dx = 0.

Therefore we obtain a nice conservation law, that is,

∂tE(t) + 1

4t2

∫ (∣∣ε(t, x) + a
∣∣2 − |a|2)2

dx = 0,

where

E(t) = 1

2

∫ ∣∣εx(t, x)
∣∣2

dx + 1

4t

∫ (∣∣ε(t, x) + a
∣∣2 − |a|2)2

dx.

By integrating from t ′ to t the energy law, we obtain

E(t) +
t∫

t ′

∫ (∣∣ε(τ, x) + a
∣∣2 − |a|2)2

dx
dτ

4τ 2
= E(t ′).

It follows in particular that for all t ′ � t∫ ∣∣εx(t, x)
∣∣2

dx � 2E(t ′), (42)

and that∫ (∣∣ε(t, x) + a
∣∣2 − |a|2)2

dx � 4tE(t ′). (43)

Finally, we shall get a control in time of the mass of ε. By multiplying Eq. (41) by ε and taking the imaginary part
we obtain the mass law

∂t

1

2

∫ ∣∣ε(t, x)
∣∣2

dx = −1

t

∫ (∣∣ε(t, x) + a
∣∣2 − |a|2)�aε̄(t, x) dx. (44)

By performing a Cauchy–Schwarz inequality in space, we obtain

∂t

∥∥ε(t)
∥∥2

2 � 2|a|
t

∥∥ε(t)
∥∥

2

∥∥∣∣ε(t) + a
∣∣2 − |a|2∥∥2.

Now we use the upper-bound (43) and get for all t ′ � t

∂t

∥∥ε(t)
∥∥2

2 � 4|a|√E(t ′)√
t

∥∥ε(t)
∥∥

2.

By integrating from t ′ to t it follows that for all t ′ � t ,∥∥ε(t)
∥∥

2 �
∥∥ε(t ′)

∥∥
2 + c

(
a, ε(t ′)

)(√
t − √

t ′
)
� c

(
a, t ′, ε(t ′)

)√
t, (45)

where the constant depends on a, on t ′, on the energy and L2 norms of ε(t ′).

4.2. Global existence in H 1

First, we solve Eq. (41) locally in time. We perform the classical argument of fixed point, done for the cubic
equation with constant coefficients (see for example [11], first part of Proposition 4.2). In the proof, every time that
the time t−1 appears in the nonlinear terms, we upper-bound it by t0. Therefore we can construct in X, the space
introduced in Section 2, a solution of (41) living on (1/t0, T ), where T has to verify

c(a)

(
T + T

1
2
(
2‖ε0‖2

)2
)

� 1
.

2
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So it is sufficient that T verifies

T � c(a)

1 + ‖ε0‖4
2

.

In the constant coefficient case, this is enough to infer global existence in L2, since the mass is conserved. In our case,
we shall use the control (45).

Suppose the maximum time of existence is a certain finite T . We shall prove that the solution can be defined also
after T , and therefore the global existence is implied. Let δ a small positive number, to be chosen later. By treating
the problem with initial value at time T − δ, we can extend the solution ε for all time h satisfying

h � c(a)

1 + ‖ε(T − δ)‖4
2

.

By using the control (45), it follows that we can choose such a h verifying furthermore

h � c(a, t0, ε0)

1 + (T − δ)2‖ε0‖4
2

.

Now, we can choose δ small enough, such that

c(a, t0, ε0)

1 + (T − δ)2‖ε0‖4
2

>
c(a, t0, ε0)

1 + T 2‖ε0‖4
2

> δ,

so it follows that h > δ and so we have extended ε after the time T .
Therefore we have global existence in L2, provided that the initial value ε0 is finite in energy and L2 norms. By

using the Gagliardo–Nirenberg inequalities in the energy definition, it is then enough to have ε0 in H 1. Finally, in
view of the observation (42), the gradient of the solution remains bounded in time, so the global existence is valid
in H 1.

5. A remark on the global existence for the Gross–Pitaevskii equation

By denoting in (35) u = ψ − 1, we have{
i∂tu + �u − (|u + 1|2 − 1

)
(u + 1) = 0,

u(0, x) = ψ0(x) − 1.

We multiply the equation with ∂tu, integrate in space and take the real part. We get that the energy

E(t) = 1

2

∫ ∣∣∇u(t, x)
∣∣2

dx + 1

4

∫ (∣∣u(t, x) + 1
∣∣2 − 1

)2
dx,

is conserved in time. Next, we multiply the equation by u, integrate in space and take the imaginary part. It follows
that

1

2
∂t

∥∥u(t)
∥∥2

2 = �
∫ (∣∣u(t, x) + 1

∣∣2 − 1
)(

u(t, x) + 1
)
ū(t, x) dx = �

∫ (∣∣u(t, x) + 1
∣∣2 − 1

)
ū(t, x) dx.

By performing a Cauchy–Schwarz inequality in space we get

∂t

∥∥u(t)
∥∥2

2 � 2
∥∥∣∣u(t) + 1

∣∣2 − 1
∥∥

2

∥∥u(t)
∥∥

2,

and so

∂t

∥∥u(t)
∥∥

2 �
∥∥∣∣u(t) + 1

∣∣2 − 1
∥∥

2.

The energy conservation allows us to conclude that

∂t

∥∥u(t)
∥∥

2 � 2
√

E(0).

Therefore we have obtained the claimed a priori bound on the mass∥∥u(t)
∥∥

2 � 2
√

E(0) t + ‖u0‖2,

which allows the passage to global existence.
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6. A technical lemma

Lemma 6.1. Let x, y be complex numbers, and r � 0. Then∣∣|x + y|r − |y|r ∣∣ � c
(|y|r−1|x| + |x|r).

Moreover, if 0 � r � 1 then∣∣|x + y|r − |y|r ∣∣ � c|y|r−1|x|.
Finally, if x is small with respect to y, then the last estimate is true for all r � 0.

Proof. By changing x = zy, we have to show for r � 0,∣∣|z + 1|r − 1
∣∣ � c

(|z| + |z|r),
and for 0 � r � 1, or for z small with respect to 1,∣∣|z + 1|r − 1

∣∣ � c|z|.
If |z| � 1

2 then

|z + 1| � |z| + 1 � 3|z|,
and since r � 0,

|z + 1|r � 3r |z|r .
In conclusion,∣∣|z + 1|r − 1

∣∣ � 3r |z|r � c
(|z| + |z|r).

If |z| � 1
2 then 0 is not in the interval I = [min{1, |z + 1|},max{1, |z + 1|}]. We consider the function f (x) = xr

defined on I and we get by the mean value theorem∣∣|z + 1|r − 1
∣∣ �

∣∣|z + 1| − 1
∣∣r sup

α∈{1,|z+1|}
αr−1 � |z|r(1 + |z + 1|r−1). (46)

If r � 1, then

|z + 1|r−1 �
(|z| + 1

)r−1 � 2r−1,

and we get from (46) that∣∣|z + 1|r − 1
∣∣ � c|z|.

If r < 1, then

|z + 1| � 1 − |z| � 1

2
,

and

|z + 1|r−1 � 2−(r−1),

and it follows again from (46) that∣∣|z + 1|r − 1
∣∣ � c|z|.

So, under smallness conditions on |z| with respect to 1, for r � 0, we have∣∣|z + 1|r − 1
∣∣ � c|z|.

Otherwise, for general z, we get only∣∣|z + 1|r − 1
∣∣ � c

(|z| + |z|r).
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Finally, let us treat the case 0 � r � 1. If |z + 1| � 1
2 then

|z + 1|r−1 � 2−(r−1),

and by (46) we get∣∣|z + 1|r − 1
∣∣ � c|z|.

If |z + 1| < 1
2 then on one hand |z + 1|r < 2−r < 1, and so∣∣|z + 1|r − 1

∣∣ < 1.

On the other hand,

|z| � 1 − |z + 1| > 1

2
,

and we get again∣∣|z + 1|r − 1
∣∣ < c|z|. �
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