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Abstract

Given a bounded open set Ω ⊂ R
n and a continuous convex function Φ :L2(Ω) → R, let us consider the following damped

wave equation

utt − �u + ∂Φ(ut ) � 0, (t, x) ∈ (0,+∞) × Ω, (S)

under Dirichlet boundary conditions. The notation ∂Φ refers to the subdifferential of Φ in the sense of convex analysis. The
nonlinear term ∂Φ allows to modelize a large variety of friction problems. Among them, the case Φ = | · |L1 corresponds to a
Coulomb friction, equal to the opposite of the velocity sign. After we have proved the existence and uniqueness of a solution to (S),
our main purpose is to study the asymptotic properties of the dynamical system (S). In two significant situations, we bring to light
an interesting phenomenon of dichotomy: either the solution converges in a finite time or the speed of convergence is exponential
as t → +∞. We also give conditions which ensure the finite time stabilization of (S) toward some stationary solution.
© 2006

Résumé

Etant donné un ouvert borné Ω ⊂ R
n et une fonction convexe continue Φ :L2(Ω) → R, considérons l’équation des ondes

amorties suivante :

utt − �u + ∂Φ(ut ) � 0, (t, x) ∈ (0,+∞) × Ω, (S)

avec conditions de Dirichlet au bord. La notation ∂Φ désigne le sous-différentiel de Φ au sens de l’analyse convexe. Le terme
non-linéaire ∂Φ permet de modéliser une grande variété de problèmes avec frottement. Le cas Φ = | · |L1 correspond au frotte-
ment de Coulomb, égal à l’opposé du signe de la vitesse. Après avoir établi l’existence et l’unicité d’une solution de (S), notre
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principal objectif est d’étudier les propriétés asymptotiques du système dynamique (S). Dans deux situations significatives, on met
en évidence un phénomène intéressant de dichotomie : la solution converge en temps fini, ou bien la vitesse de convergence est
exponentielle lorsque t → +∞. On donne également des conditions qui garantissent la stabilisation en temps fini de (S) vers une
solution stationnaire.
© 2006
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1. Introduction

Throughout the paper, we denote by Ω a bounded open set in R
n with smooth boundary Γ . Given a continuous

convex function Φ :L2(Ω) → R, let us consider the following damped wave equation

utt − �u + ∂Φ(ut ) � 0, (t, x) ∈ (0,+∞) × Ω, (S)

under Dirichlet boundary conditions

u(t, x) = 0, t � 0, x ∈ Γ, (1.1)

and satisfying the following initial conditions

u(0, x) = u0(x), ut (0, x) = v0(x), x ∈ Ω. (1.2)

The operator ∂Φ :L2(Ω) → P(L2(Ω)) is the subdifferential of Φ in the sense of convex analysis: for every
u ∈ L2(Ω),

ξ ∈ ∂Φ(u) ⊂P
(
L2(Ω)

) ⇐⇒ ∀v ∈ L2(Ω), Φ(v) � Φ(u) + 〈ξ, v − u〉L2 .

The nonlinear term ∂Φ allows to modelize a large variety of friction problems. The question of existence and unique-
ness of a solution u satisfying (S) and (1.1)–(1.2) was settled in the thesis of Brézis [6], over an arbitrary finite time
horizon. The problem of the asymptotic convergence when t → +∞ is delicate and has interested many authors. The
linear case, corresponding to Φ = | · |2

L2 (up to a constant) has given rise to a very abundant literature and the reader

is referred to the classical textbooks [12,15,19,22] for further details. The nonlinear problem is more subtle and one
can distinguish at least two classes of interesting situations.

For the first one, let us introduce the convex function j : R → R and let us assume that j (v) ∈ L1(Ω) for every
v ∈ L2(Ω). We define the convex function Φ :L2(Ω) → R by Φ(v) = ∫

Ω
j (v(x))dx. Following a classical result,

we have f ∈ ∂Φ(v) if and only if f (x) ∈ ∂j (v(x)) for almost every x ∈ Ω (see for example [7, Proposition 2.16] or
also [4, Proposition 2.7]). Setting β := ∂j , Eq. (S) can then be rewritten as

utt − �u + β(ut ) � 0. (1.3)

Given μc, μv � 0, let us consider the particular case where the function j is defined by j (r) = μc|r|+ μv

2 r2 for every
r ∈ R. The differential inclusion (1.3) then becomes

utt − �u + μc sgn(ut ) + μvut � 0, (1.4)

where sgn : R → P(R) is the set-valued sign function, defined by sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and
sgn(0) = [−1,1]. In this equation, the term μc sgn(ut ) corresponds to the Coulomb friction while the term μvut

represents a possible viscous component of the friction.
Coming back to the dynamical system (1.3), results of convergence were obtained by Haraux [17,18], who used an

argument of Dafermos and Slemrod [13]. Provided that 0 /∈ int(β−1(0)), he proved the convergence in H 1
0 (Ω) of the

solution u toward some stationary solution u∞, along with the convergence in L2(Ω) of the velocity ut toward 0.
Another class of interest is given by the functions Φ which are positively homogeneous and convex. Such functions

are not differentiable at the origin, and then induce a “nonsmooth” friction. Without extra difficulty, we can add a
differentiable component in this model. For example, consider the function Φ :L2(Ω) → R defined by

Φ = μr | · |L2 + μv | · |2 2 ,
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for some μr , μv � 0. In this case, the dynamical system (S) can be rewritten as the following global equation{
utt − �u + μrut/|ut |L2 + μvut = 0 if ut 
= 0,

utt − �u + μrBL2 � 0 if ut = 0,
(1.5)

where BL2 is the closed unit ball of L2(Ω) centered at 0. In this model the radial friction ut/|ut |L2 has a nonlocal
nature, due to the term |ut |L2 which is computed on the whole space Ω . For that reason, system (1.5) will be referred
to as the globally damped wave equation.

In Classical Mechanics there are many examples of finite-dimensional systems for which dry friction implies the
stabilization in finite time of the underlying dynamics. At the beginning of the seventies, Haïm Brézis proposed
the conjecture that the equilibrium position of a system like (1.4) is reached after a finite time (at least if μv = 0).
Motivated by the book of Bogolioubov and Mitropolski [5], this conjecture can be found also in Haraux’s thesis
[16] which was the starting point of Cabannes and Bamberger–Cabannes’s works on the subject. When the set Ω

is one-dimensional (e.g. Ω = ]0,1[), Eq. (1.4) modelizes the motion of a vibrating string subject to a friction. In
this case, Cabannes [9,10] obtained some partial results on finite time stabilization corresponding to particular initial
data. The case of arbitrary initial data seems to be still an open problem. Motivated by this, and also suggested by
the numerical approach of solutions, some easier formulations were considered in the literature, as for instance, the
spatially discretized vibrating string via a finite difference scheme (see for example [3,14]).

In this paper, we prove first that every solution u to (S) converges in H 1
0 (Ω) toward some map u∞ ∈ H 2(Ω)

satisfying �u∞ ∈ ∂Φ(0). If, in addition, �u∞ belongs to the interior of the set ∂Φ(0), the dynamics is shown to stop
definitively after a finite time. Counterexamples to finite time convergence exist when the Laplacian �u∞ belongs to
the boundary of ∂Φ(0). We then focus our attention on this delicate case. For that purpose, we exhibit two types of
asymptotic behaviors, for which we are able to evaluate the speed of convergence when finite time stabilization fails.

The first one, that we denote by (AE) (from “Asymptotic Expansion”), consists in assuming that the solution u

to (S) can be asymptotically decomposed as the product of a time-dependent function by a space-dependent one, up
to a negligible term. This hypothesis is satisfied in the overdamped linear case, for example. The second behavior
(NV) (“Normal Velocity”) is observed when the velocity vector ut (t) is normal to the set ∂Φ(0) at �u∞ for t large
enough. A careful examination of (NV) shows that it is equivalent to a condition of uniform boundedness in time (see
Section 6.1).

Due to the structural differences of (AE) and (NV), the estimates of the convergence rate rely on distinct arguments
in each case. We prove in both situations a curious phenomenon of dichotomy: either the solution converges in a
finite time or the speed of convergence is exponential. Our results are slightly more precise under (AE). We establish
in this case that, if the excess of the set ∂Φ(v) over the set ∂Φ(0) tends to 0 sufficiently fast when |v|L2 → 0, then
every solution to (S) stabilizes in a finite time. In concrete situations (cf. for example Eqs. (1.4) or (1.5)), we obtain the
existence of a critical coefficient for the viscous component, below which every solution stops definitively after a finite
time. This critical coefficient is intimately connected with the first eigenvalue of the Laplacian Dirichlet operator −�.

We point out that, as it can be easily shown, most of the results of this paper remain true in a more general
framework (case of a general second order elliptic operator, different boundary conditions, etc.) but we shall not
present it here for the sake of the exposition.

The paper is organized as follows. In Section 2 we start with a general result of existence and uniqueness of solution
for the inclusion (S) under the conditions (1.1)–(1.2). Section 3 is devoted to some spatially discretized version of (S).
In this finite dimensional framework, we recall the main results of stabilization in finite time. We conclude the section
by some numerical experiments illustrating the motion of a vibrating string (resp. membrane). In Section 4 we prove
that, if the function u∞ fulfills some interior-like conditions, then the solution u stabilizes in a finite time. Sections 5
and 6 are devoted to the asymptotic analysis of (S), respectively in cases (AE) and (NV). These sections contain the
major results of the paper, specially the phenomenon of dichotomy between finite time convergence and exponential
decay rate.

2. General framework

Throughout the paper, we use the standard notations of convex analysis and the reader is referred to [21] for the
general features relative to these notions.



1012 B. Baji et al. / Ann. I. H. Poincaré – AN 24 (2007) 1009–1028
2.1. Existence and uniqueness

Let Ω be a bounded open set in R
n with smooth boundary Γ . Given a continuous convex function Φ :L2(Ω) → R,

let us consider the following damped wave equation

utt − �u + ∂Φ(ut ) � 0, (t, x) ∈ (0,+∞) × Ω, (S)

under Dirichlet boundary conditions (1.1) and initial conditions (1.2). Any solution u to (S) can be considered, either
as a function u : [0,+∞) × Ω → R or as a function of time taking its values in a suitable functional space (such as
H 2(Ω) or H 1

0 (Ω) for example). Throughout the paper, we will essentially adopt the second point of view, so that the
dependence with respect to the space variable x will be often omitted. We start with a general result of existence and
uniqueness for the inclusion (S) under the conditions (1.1)–(1.2). Recall that, if C is a closed convex set of L2(Ω),
then C0 denotes the element of minimal norm of C.

Theorem 2.1. Let Φ :L2(Ω) → R be a continuous convex function. Assume that the initial data satisfy respectively
u0 ∈ H 2(Ω) ∩ H 1

0 (Ω) and v0 ∈ H 1
0 (Ω). Then, the following assertions hold true:

(i) There exists a unique map u ∈ C([0,+∞) : H 1
0 (Ω)), with ut ∈ C([0,+∞) : L2(Ω)), such that:

(a) ut ∈ L∞(0,+∞ : H 1
0 (Ω)) and utt ∈ L∞(0,+∞ : L2(Ω)). More precisely, the following estimate holds for

almost every t ∈ (0,+∞)∣∣∇ut (t)
∣∣2
L2 + ∣∣utt (t)

∣∣2
L2 � |∇v0|2L2 + ∣∣(−�u0 + ∂Φ(v0)

)0∣∣2
L2 .

(b) (S) is satisfied for almost every t ∈ (0,+∞).
(c) u(0) = u0 and ut (0) = v0.

(ii) The map u satisfies u ∈ L∞(0,+∞ : H 2(Ω)).
(iii) The map ut is right differentiable on (0,+∞) and we have, for almost every t ∈ (0,+∞)

d+ut

dt
(t) + (−�u(t) + ∂Φ

(
ut (t)

))0 = 0.

Proof. (i) is an immediate consequence of [6, Theorem III.1]. Recall that, since the function Φ is continuous on
L2(Ω), we have D(Φ) = D(∂Φ) = L2(Ω), so that the condition v0 ∈ D(∂Φ) is automatically satisfied.

(ii) Since ut ∈ L∞(0,+∞ : H 1
0 (Ω)) and since the embedding H 1

0 (Ω) ↪→ L2(Ω) is compact, the set {ut (t),

t ∈ [0,+∞)} is relatively compact in L2(Ω). On the other hand, we recall that the maximal monotone operator
∂Φ is bounded on every compact set of L2(Ω) (see for example Brézis [7, §II. 5]). Then, we derive that the set
∂Φ(ut (t)) is uniformly bounded in L2(Ω) when t ∈ [0,+∞). Since utt ∈ L∞(0,+∞ : L2(Ω)), we conclude in view
of (S) that �u ∈ L∞(0,+∞ : L2(Ω)).

(iii) is an immediate consequence of [6, Remark III.2]. �
We denote by I the subset of [0,+∞) on which the map ut is derivable and the inclusion (S) is satisfied. Since

the function ut is absolutely continuous, it is clear that the set [0,+∞) \ I is negligible. A key tool in the asymptotic
analysis of (S) is the existence of a Lyapunov function emanating from the mechanical interpretation of (S). Indeed,
we define the energy-like function E by

E(t) = 1

2

∣∣ut (t)
∣∣2
L2 + 1

2

∣∣∇u(t)
∣∣2
L2 . (2.1)

The function E is nonincreasing as shown by the following proposition.

Proposition 2.2. Let Φ :L2(Ω) → R be a continuous convex function such that 0 ∈ argminΦ . Let u be the unique
solution to (S) defined at Theorem 2.1. Then for every t ∈ I , we have

Ė(t) � −(
Φ

(
ut (t)

) − Φ(0)
)
� 0. (2.2)

Proof. By differentiating the expression of E, we find
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∀t ∈ I, Ė(t) = 〈
ut (t), utt (t)

〉
L2 + 〈

ut (t),−�u(t)
〉
L2 = 〈

ut (t), utt (t) − �u(t)
〉
L2 .

Since −utt (t) + �u(t) ∈ ∂Φ(ut (t)), it suffices now to write the adequate subdifferential inequality. �
2.2. Convergence toward a stationary solution

We are going to prove that the solution u to (S) converges in H 1(Ω) and that its limit u∞ is a stationary solution
to (S), i.e. �u∞ ∈ ∂Φ(0). In a finite dimensional setting, a similar result has been established in [1, Theorem 3.1].

Theorem 2.3. Let Φ :L2(Ω) → R be a continuous convex function such that argminΦ = {0}. Let u be the unique
solution to (S) defined at Theorem 2.1. Then, the following assertions hold true

(i) There exists u∞ ∈ H 1
0 (Ω) such that

lim
t→+∞

∣∣u(t) − u∞
∣∣
H 1 = 0 and lim

t→+∞
∣∣ut (t)

∣∣
L2 = 0.

(ii) We have limt→+∞ u(t) = u∞ weakly in H 2(Ω).
(iii) The limit u∞ is a stationary solution to (S), i.e. �u∞ ∈ ∂Φ(0).

Proof. (i) Let us set H = H 1
0 (Ω) × L2(Ω) and let us define the operator A :H →P(H) by

D(A) = (
H 2(Ω) ∩ H 1

0 (Ω)
) × H 1

0 (Ω), A(u, v) = (−v,−�u + ∂Φ(v)
)
.

Setting U(t) = (u(t), ut (t)), it is immediate that the inclusion (S) can be rewritten as the following first-order in time
system

Ut (t) + AU(t) � 0, t � 0. (2.3)

Let us recall that, from Theorem 2.1 we have

u ∈ L∞(
0,+∞ : H 2(Ω)

)
and ut ∈ L∞(

0,+∞ : H 1
0 (Ω)

)
.

This implies that the set {U(t), t � 0} is precompact in the space H . By using an argument of Dafermos–Slemrod
(see for example [13, Theorem 1] or [17, Theorem 1]), we derive the existence of some almost periodic solution ξ to
(2.3) such that

lim
t→+∞

∣∣U(t) − ξ(t)
∣∣
H

= 0. (2.4)

By arguing as in [17, proof of Theorem 5], it is easy to check that

ξt (t) ∈ argminΦ = {0} a.e. on (0,+∞).

It ensures that ξt ≡ 0 and hence the vector function ξ is constant on [0,+∞). The conclusion is then an immediate
consequence of (2.4).

(ii) Since u ∈ L∞(0,+∞ : H 2(Ω)), there exists ū ∈ H 2(Ω) along with a sequence (sn) ⊂ (0,+∞) tending to
+∞ such that limn→+∞ u(sn) = ū weakly in H 2(Ω), hence weakly in H 1(Ω). From (i) and the uniqueness of the
limit, we derive that u∞ = ū ∈ H 2(Ω). Since u∞ is the unique limit point of the map t �→ u(t) for the weak topology
of H 2(Ω), we conclude that limt→+∞ u(t) = u∞ weakly in H 2(Ω).

(iii) Let us argue by contradiction and assume that the set ∂Φ(0) − �u∞ does not contain 0. It is then possible
to strictly separate the convex compact set {0} from the closed convex set ∂Φ(0) − �u∞. More precisely, there exist
p ∈ L2(Ω) and m > 0 such that

∀ξ ∈ ∂Φ(0) − �u∞, 〈ξ,p〉 > m. (2.5)

Recall that the set {utt (t), t ∈ I } is bounded for the norm topology of L2(Ω). Let h ∈ L2(Ω) and let (tn) ⊂ I be a
sequence tending to +∞ such that limn→+∞ utt (tn) = h weakly in L2(Ω). Since u is solution to (S), we have

−utt (tn) + �u(tn) ∈ ∂Φ
(
ut (tn)

)
.
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In view of (ii), the left-hand side of the above inclusion weakly converges to −h + �u∞ in L2(Ω). On the other
hand, we have limn→+∞ ut (tn) = 0 strongly in L2(Ω) and using the graph-closedness property of the operator ∂Φ in
s −L2(Ω)×w −L2(Ω), we conclude that −h+�u∞ ∈ ∂Φ(0). In view of (2.5) we derive that 〈h,p〉L2 < −m. This
shows that the limit points of the map t �→ 〈utt (t),p〉L2 when t → +∞ are contained in the interval ]−∞,−m[. We
deduce the existence of t∗ � 0 such that, for almost every t � t∗, 〈utt (t),p〉L2 � −m. By integrating this inequality, we
immediately infer that limt→+∞〈ut (t),p〉L2 = −∞, a contradiction with the fact that ut ∈ L∞(0,+∞ : L2(Ω)). �

When ∂Φ(0) = {0} the stationary condition of Theorem 2.3(iii) gives �u∞ = 0 and since u∞ ∈ H 1
0 (Ω), we

conclude that u∞ = 0. Suppose now that the function Φ is defined by Φ(v) = ∫
Ω

j (v(x))dx for every v ∈ L2(Ω).
In this case, the set ∂Φ(0) equals {f ∈ L2(Ω), f (x) ∈ ∂j (0) for a.e. x ∈ Ω}, so that Theorem 2.3(iii) implies that
�u∞(x) ∈ ∂j (0) for almost every x ∈ Ω . Finally, in the case of the globally damped wave equation (1.5), we have
∂Φ(0) = μrBL2 and the stationary condition becomes |�u∞|L2 � μr .

3. Stabilization in finite time via some discretized problem. Numerical illustrations

Motivated by the numerical approach of solutions, we consider in this section some discretized version of (S). To
fix the ideas, suppose that we deal with the following one-dimensional equation, modelizing the motion of a vibrating
string under friction:

utt − uxx + μ sgn(ut ) + g(ut ) � 0, (t, x) ∈ (0,+∞) × (0,1), (3.1)

where μ > 0, sgn : R → P(R) is the set-valued sign function and g : R → R is a Lipschitz continuous function such
that rg(r) � 0 for every r ∈ R. The term μ sgn(ut ) represents the Coulomb friction while g(ut ) represents another
type of friction such as the one due to the viscosity of a possible surrounding fluid. The reader is referred to [8,20] for
general features about the Coulomb model. By using a finite differencing scheme, the spatial discretization of (3.1)
leads to

üi − ui+1 − 2ui + ui−1

h2
+ μ sgn(u̇i) + g(u̇i) � 0, t ∈ (0,+∞), i = 1,2, . . . , n, (3.2)

where h = 1/(n + 1) denotes the space step. The previous inclusion can be rewritten as a vectorial problem by setting
U(t) := (u1(t), . . . , un(t))

T. For that purpose, let us define the function Sgn : Rn → P(Rn) by Sgn(u1, . . . , un) :=
(sgn(u1), . . . , sgn(un))

T and the function G : Rn → R
n by G(u1, . . . , un) := (g(u1), . . . , g(un))

T. We also define the
symmetric positive definite matrix A ∈ Mn(R) by

A := 1

h2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1 0
...

0
. . .

. . .
. . . 0

... 0 −1 2 −1
0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠ .

With these notations, inclusion (3.2) is equivalent to

Ü(t) + AU(t) + μSgn
(
U̇(t)

) + G
(
U̇(t)

) � 0, t ∈ (0,+∞). (3.3)

This system also arises in the study of the vibration of n particles of equal mass. In fact, it was by passing to the limit
in the number of particles (in absence of any friction) how the wave equation was obtained in 1746 by Jean Le Rond
d’Alembert. The stabilization in a finite time, in absence of viscous friction (G = 0) was proved by Bamberger and
Cabannes [3]. It was shown by Díaz and Millot [14] that the presence of a viscous friction (with a suitable behavior of
G near 0) may originate a qualitative distinction among the orbits in the sense that the state of the system may reach an
equilibrium state in a finite time or merely in an asymptotic way (as t → +∞), according to the initial data U(0) = U0
and U̇(0) = U̇0. In the recent work [11], the author studies the general case of a friction equal to −∂Ψ (U̇(t)), for some
convex function Ψ : Rn → R satisfying 0 ∈ int(∂Ψ (0)). The same phenomenon of dichotomy as above is observed
and it is shown that either the solution converges in a finite time or the speed of convergence is exponential. Let us
finally mention that a fully discretized version of (S) has been studied by Baji and Cabot [2], thus giving rise to an
inertial proximal algorithm.
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Fig. 1. Vibrating string under Coulomb friction. Plotting of the solution x �→ u(t, x) at successive instants: t = 0,0.1,0.2, . . . .

Fig. 2. Vibrating membrane under Coulomb friction. Plotting of the map (x, y) �→ u(t, x, y) at different instants: t = 0, t = 0.25, t = 0.5 and
t → +∞.

We end this paragraph with a few numerical experiments in the case of a pure dry friction (see Eq. (3.1) with
g = 0). We use a finite differencing scheme, both in time and space. The plotting on Fig. 1 corresponds to the initial
conditions u0(x) = 3x(1 − x)2 and v0(x) = 0; the friction coefficient is taken equal to μ = 3. We observe that the
map t �→ u(t) stabilizes after t = 1 toward a stationary solution satisfying |u′′∞|L∞ � 3.

Let us now turn to a two-dimensional example with Ω = (0,1)×(0,1). We choose the initial conditions u0(x, y) =
9xy(1 − x)2(1 − y)2 and v0(x, y) = 0, and the friction coefficient equals μ = 2. Fig. 2 shows the evolution of the
map t �→ u(t) and it suggests the finite time convergence of u(t) toward some stationary solution u∞ satisfying
|�u∞|L∞ � 2.
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Remark 3.1. As pointed out in [14], the finite time stabilization can be also observed by using the finite element
method.

4. Stabilization in a finite time under some interior-like conditions

In this section, we will assume that, for large values of t , the Laplacian �u(t) satisfies some interior condition with
respect to the set ∂Φ(0). In a finite dimensional setting [1], this kind of condition implies the finite time stabilization
of the dynamics. The extension of such a result to the damped wave equation leads us to the following theorem.

Theorem 4.1. Let Φ :L2(Ω) → R be a continuous convex function and let u be the unique solution to (S) defined at
Theorem 2.1. Assume that there exists ε > 0 and t0 � 0 such that

�u(t) + εBL2 ⊂ ∂Φ(0), for a.e. t � t0. (4.1)

Then u(t) = u∞ for every t � t0 + |ut (t0)|L2/ε.

Proof. For almost every t � t0 and for every v ∈ BL2 , we have �u(t) + εv ∈ ∂Φ(0). Thus, for almost every t � t0,
we deduce

Φ
(
ut (t)

) − Φ(0) �
〈
�u(t) + εv,ut (t)

〉
L2, ∀v ∈ BL2 .

Taking the supremum over v ∈ BL2 , we obtain for almost every t � t0,

Φ
(
ut (t)

) − Φ(0) �
〈
�u(t), ut (t)

〉
L2 + ε

∣∣ut (t)
∣∣
L2 . (4.2)

On the other hand, the inequality (2.2) of energy decay can be rewritten as:

1

2

d

dt

∣∣ut (t)
∣∣2
L2 − 〈

�u(t), ut (t)
〉
L2 + Φ

(
ut (t)

) − Φ(0) � 0 a.e. on (0,+∞[. (4.3)

By combining (4.2) and (4.3), we get

1

2

d

dt

∣∣ut (t)
∣∣2
L2 + ε|ut (t)|L2 � 0. (4.4)

By setting h(t) := |ut (t)|2L2 , it is clear that relation (4.4) can be rewritten as the following differential inequality:

ḣ(t) + 2ε
√

h(t) � 0 a.e. on (t0,+∞[. (4.5)

The solution of the differential equation ẏ + 2ε
√

y = 0 on (t0,+∞[ takes the zero value for t = t0 + √
y(t0)/ε. In

view of (4.5), a simple comparison argument then shows that there exists t1 ∈ [t0, t0 + √
h(t0)/ε] such that h(t1) = 0.

From (4.5), we deduce that ḣ(t) � 0 almost everywhere and hence h(t) � h(t1) = 0, for every t � t1. We conclude
that |ut (t)|L2 = 0 for every t ∈ [t1,+∞[, i.e. u(t) = u∞ for every t ∈ [t1,+∞[. �

We now derive two corollaries from the previous theorem. In the first one, we impose some interior-like condition
on the limit u∞. In the second one we will find suitable initial conditions ensuring that (4.1) is satisfied.

Corollary 4.2. Let Φ :L2(Ω) → R be a continuous convex function and let u be the unique solution to (S) defined at
Theorem 2.1. Assume that limt→+∞ |u(t) − u∞|H 2 = 0 for some u∞ ∈ H 2(Ω). If �u∞ ∈ intL2(∂Φ(0)), then there
exists t1 � 0 such that u(t) = u∞ for every t � t1.

Proof. The assumption �u∞ ∈ intL2(∂Φ(0)) implies the existence of ε > 0 such that

�u∞ + 2εBL2 ⊂ ∂Φ(0).

On the other hand, since limt→+∞ |u(t) − u∞|H 2 = 0, there exists t0 � 0 such that for every t � t0, we have

�u(t) ∈ �u∞ + εBL2 .

Hence,

�u(t) + εBL2 ⊂ �u∞ + 2εBL2 ⊂ ∂Φ(0).

It suffices then to use Theorem 4.1. �
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Let us now apply the previous corollary to the situation corresponding to Φ = μr | · |L2 + μv

2 | · |2
L2 (see Eq. (1.5)).

Recall that in this case we have ∂Φ(0) = μrBL2 . Under the hypotheses of Corollary 4.2, we deduce that

|�u∞|L2 < μr �⇒ u stabilizes in a finite time.

Suppose now that the function Φ is defined by Φ(v) = ∫
Ω

j (v(x))dx for every v ∈ L2(Ω). In this case, the interior
of the set ∂Φ(0) = {f ∈ L2(Ω), f (x) ∈ ∂j (0) for a.e. x ∈ Ω} is empty, so that Corollary 4.2 cannot be applied.

Let us now state another consequence of Theorem 4.1, which is more specifically devoted to the globally damped
wave equation (cf. inclusion (1.5)).

Corollary 4.3. Given μr > 0, μv � 0, we define the function Φ :L2(Ω) → R by Φ = μr | · |L2 + μv

2 | · |2
L2 . Let u be the

unique solution to (S) defined at Theorem 2.1. If the initial conditions (u0, v0) satisfy |�u0|L2 + |∇v0|L2 < μr , then
we have u(t) = u∞ for every

t � |v0|L2

μr − (|�u0|L2 + |∇v0|L2)
.

Proof. From [6, Theorem III.2], the following estimate holds true for almost every t � 0∣∣�u(t)
∣∣
L2 � |�u0|L2 + |∇v0|L2 .

Recalling that ∂Φ(0) = μrBL2 , we deduce that condition (4.1) is satisfied with

ε = μr − (|�u0|L2 + |∇v0|L2

)
> 0 and t0 = 0.

It suffices then to apply Theorem 4.1. �
5. On the dichotomy phenomenon under some expansion condition

5.1. Illustration of the dichotomy phenomenon

Given μc, μv > 0, let us consider the following damped wave equation

utt − �u + μc sgn(ut ) + μvut � 0, (5.1)

where the friction term is decomposed as the sum of a dry component and a viscous one. Let us assume that
μv � 2

√
λ1, with λ1 > 0 the first eigenvalue of the Dirichlet–Laplacian operator −�. Then we can find some so-

lutions to (5.1) which exponentially converge toward their limit and also some solutions which stabilize in a finite
time. We construct the first type of solutions in the form

u(t, x) = ξ(x) + a(t)e1(x),

where e1 ∈ H 1
0 (Ω) is an eigenfunction of −� associated to λ1 such that e1 > 0 in Ω , the function ξ ∈ H 1

0 (Ω) is the
solution to �ξ = μc in Ω and a(t) is a solution of the ODE

ä + μvȧ + λ1a = 0, (5.2)

such that ȧ(t) > 0 for every t � 0 (which is possible since μv � 2
√

λ1 ). Then, we get a solution u which tends toward
u∞ = ξ and the convergence rate is exponential. By the contrary, if we choose b(t) as a solution of (5.2) such that
ḃ(t) > 0 for all t ∈ [0,1), ḃ(1) = 0 and b(1) = K > 0 with K � μc/(λ1|e1|L∞) and take a(t) = b(t) if t � 1 and
a(t) = K for t � 1 we get a solution which attains the stationary state u∞(x) = ξ(x) + Ke1(x) after t = 1.

5.2. Assumption (AE) and preliminary results

Inspired by the previous paragraph, we assume from now on that the solution u to (S) admits the following asymp-
totic expansion when t → +∞

u(t, x) = u∞(x) + a(t)w(x) + R(t, x), (AE)
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where the functions a, u∞, w and R satisfy the following set of hypotheses:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

• The map a : [0,+∞) → [0,+∞) is differentiable, nonincreasing and
limt→+∞ a(t) = limt→+∞ ȧ(t) = 0.

• The map u∞ satisfies u∞ ∈ H 1
0 (Ω) ∩ H 2(Ω).

• The map w satisfies w ∈ H 1
0 (Ω) \ {0}.

• The map R is such that R ∈ W 1,∞(0,+∞ : H 1
0 (Ω)) and

|R(t)|H 1 = o(a(t)) and |Rt(t)|L2 = o(ȧ(t)) when t → +∞.

(H)

The terminology (AE) stands for “Asymptotic Expansion”. Let us justify the assumption (AE) in the case of the
following linear damped wave equation with the forcing term h ∈ L2(Ω)

utt − �u + μut = h, μ > 0.

We assume that μ > 2
√

λ1 (overdamped case), where λ1 > 0 is the first eigenvalue of the Dirichlet–Laplacian op-
erator −�. Let e1 ∈ H 1

0 (Ω) be an eigenfunction of −� associated to λ1 and define the function ξ ∈ H 1
0 (Ω) as

the solution to −�ξ = h in Ω . By using the Fourier decomposition of solutions on the basis of the eigenfunctions
associated to the Laplacian operator, one can check that

u(t, x) = ξ(x) + Ae(−μ+
√

μ2−4λ1 ) t
2 e1(x) + R(t, x),

where A ∈ R and the function R satisfies∣∣R(t)
∣∣
H 1 = o

(
e(−μ+

√
μ2−4λ1 ) t

2

)
and

∣∣Rt(t)
∣∣
L2 = o

(
e(−μ+

√
μ2−4λ1 ) t

2

)
.

Therefore assertion (AE) holds true with u∞(x) = ξ(x), a(t) = e(−μ+
√

μ2−4λ1 ) t
2 and w(x) = Ae1(x) (provided that

A 
= 0).
Coming back to the general case, let us now study the topological structure of the set

D = {
t ∈ (0,+∞),

∣∣ut (t)
∣∣
L2 = 0

}
.

Proposition 5.1. Let Φ :L2(Ω) → R be a continuous convex function and let u be the unique solution to (S) defined at
Theorem 2.1. Then, either the set D equals the interval [t0,+∞[ for some t0 � 0 or the set D is discrete and countable
(hence of zero measure).

Proof. Assume that D is not equal to any interval [t0,+∞[ with t0 � 0. Consider any t∗ > 0 satisfying |ut (t∗)|L2 = 0
(if such an element does not exist, the conclusion is trivial) and let us prove that it is an isolated point of D. Let us
first remark that we necessarily have �u(t∗) /∈ ∂Φ(0). Indeed, if �u(t∗) ∈ ∂Φ(0), then the constant function equal to
u(t∗) on [t∗,+∞[ is solution to (S), and from the uniqueness property we derive that u(t) = u(t∗) for every t � t∗, a
contradiction.

Since �u(t∗) /∈ ∂Φ(0), it is possible to strictly separate the convex compact set {0} from the closed convex set
∂Φ(0) − �u(t∗). More precisely, there exist p ∈ L2(Ω) and m > 0 such that:

∀ξ ∈ ∂Φ(0) − �u(t∗), 〈ξ,p〉 > m. (5.3)

From Theorem 2.1(i), the set {utt (t), t ∈ I } is bounded for the norm topology of L2(Ω). Let h ∈ L2(Ω) and let
(tn) ⊂ I be a sequence tending to t∗ such that limn→+∞ utt (tn) = h weakly in L2(Ω). Since u is solution to (S), we
have

−utt (tn) + �u(tn) ∈ ∂Φ
(
ut (tn)

)
.

It is immediate to check that limt→t∗ �u(t) = �u(t∗) weakly in L2(Ω). Hence the left-hand side of the above inclu-
sion weakly converges to −h + �u(t∗) in L2(Ω). On the other hand, we have limn→+∞ ut (tn) = ut (t∗) = 0 strongly
in L2(Ω) and using the graph-closedness property of the operator ∂Φ in s − L2(Ω) × w − L2(Ω), we conclude that
−h + �u(t∗) ∈ ∂Φ(0). In view of (5.3) we derive that 〈h,p〉L2 < −m. This shows that the limit points of the map
t �→ 〈utt (t),p〉L2 when t → t∗ are contained in the interval ]−∞,−m[. We deduce the existence of ε > 0 such that,
for almost every t ∈ ]t∗ − ε, t∗ + ε[, 〈utt (t),p〉L2 � −m. Let us integrate this inequality on [t∗, t] to obtain:

∀t ∈ ]t∗ − ε, t∗ + ε[, ∣∣〈ut (t),p
〉

2

∣∣ � m|t − t∗|.
L
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Therefore, we have |ut (t)|L2 
= 0 for every t ∈ ]t∗ − ε, t∗ + ε[ and hence D ∩ ]t∗ − ε, t∗ + ε[ = {t∗}, i.e. t∗ is isolated
in D. Since this is true for every t∗ ∈D, the set D is discrete. On the other hand, the set D is clearly closed in view of
the continuity of the map t �→ |ut (t)|L2 . We infer that every bounded subset of D is finite. We conclude that the set D
is countable as a countable union of finite sets. �

By differentiating expression (AE) with respect to time, we obtain ut (t) = ȧ(t)w + Rt(t). Since |Rt(t)|L2 =
o(ȧ(t)), it is immediate that for t large enough, |ut (t)|L2 = 0 if and only if ȧ(t) = 0. If the solution u does not
converge in a finite time, we infer from Proposition 5.1 that the set D = {t ∈ (0,+∞), ȧ(t) = 0} is discrete and
countable. In this case, we have

lim
t→+∞,t /∈D

ut (t)

ȧ(t)
= w strongly in L2(Ω). (5.4)

We now establish that the function w must be normal to the set ∂Φ(0) at �u∞. Let us recall that, for a convex subset
C ⊂ L2(Ω) and u ∈ C, the normal cone of C at u is defined by NC(u) = {ξ ∈ L2(Ω), 〈ξ, v −u〉L2 � 0 for all v ∈ C}.

Proposition 5.2. Let Φ :L2(Ω) → R be a continuous convex function and let u be the unique solution to (S) defined
at Theorem 2.1. Assume that assertion (AE) holds with the functions a, u∞, w and R satisfying hypotheses (H). If
the solution u does not converge in a finite time, then we have −w ∈ N∂Φ(0)(�u∞).

Proof. First recall that, since the solution u does not converge in a finite time, the set

D = {
t ∈ (0,+∞),

∣∣ut (t)
∣∣
L2 = 0

}
is discrete and countable (see Proposition 5.1). Let us argue by contradiction and assume that −w /∈ N∂Φ(0)(�u∞).
This implies the existence of ξ ∈ ∂Φ(0) such that the quantity m := 〈ξ − �u∞,−w〉L2 is positive. From Theo-
rem 2.1(i), the set {utt (t), t ∈ I } is bounded for the norm topology of L2(Ω). Let h ∈ L2(Ω) and let (tn) ⊂ I \D be a
subsequence tending to +∞ such that limn→+∞ utt (tn) = h weakly in L2(Ω). Since −utt (tn)+�u(tn) ∈ ∂Φ(ut (tn))

and ξ ∈ ∂Φ(0), we deduce from the monotonicity of ∂Φ that 〈−utt (tn) + �u(tn) − ξ,ut (tn)〉L2 � 0. Recalling that
ȧ(t) < 0 for every t ∈ (0,+∞) \D, we derive that〈

−utt (tn) + �u(tn) − ξ,
ut (tn)

ȧ(tn)

〉
L2

� 0.

Since limt→+∞ �u(t) = �u∞ weakly in L2(Ω), the first term of the above bracket weakly converges in L2(Ω)

toward −h+�u∞ − ξ . In view of (5.4), the right member of the same bracket strongly converges in L2(Ω) toward w.
Hence, we obtain at the limit when n → +∞

〈−h + �u∞ − ξ,w〉L2 � 0,

or equivalently 〈h,w〉L2 � m > 0. This shows that the limit points of{〈utt (t),w〉L2 , t ∈ I \D}
when t → +∞

are contained in the interval [m,+∞[. Since the set D is negligible, we deduce the existence of t∗ � 0 such
that, for almost every t � t∗, 〈utt (t),w〉L2 � m/2. By integrating this inequality, we immediately infer that
limt→+∞〈ut (t),w〉L2 = +∞, a contradiction with the fact that ut ∈ L∞(0,+∞ : L2(Ω)). �
5.3. Convergence rate estimates

The next result shows that under assumption (AE), either the solutions to (S) converge in a finite time or the
convergence rate is exponential. This result is an extension of [11, Theorem 5.2], which has been established in
a finite dimensional setting. Given a subset A ⊂ L2(Ω), we denote by d(·,A) the distance function to the set A:
d(x,A) = infy∈A |x − y|L2 for every x ∈ L2(Ω). Given another subset B ⊂ L2(Ω), we define the excess e(A,B) of
A over B by: e(A,B) = supx∈A d(x,B).
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Theorem 5.3. Let Φ :L2(Ω) → R be a continuous convex function and suppose that there exist η > 0 and α � 0 such
that

|v|L2 � η �⇒ e
(
∂Φ(v), ∂Φ(0)

)
� α|v|L2 . (5.5)

Let u be the unique solution to (S) defined at Theorem 2.1. Assume that assertion (AE) holds with the functions a,
u∞, w and R satisfying hypotheses (H). Then, one of the following cases holds:

(i) There exists t0 � 0 such that u(t) = u∞ for every t � t0.
(ii) There exist t1 � 0, A, B > 0, and γ , δ > 0 such that for every t � t1,

∣∣u(t) − u∞
∣∣
L2 � Ae−γ t and

+∞∫
t

∣∣u(s) − u∞
∣∣
L2 ds � B e−δt . (5.6)

Denoting by λ1 the first eigenvalue of the operator −�, any positive exponent γ (resp. δ) such that γ > α (resp.
δ < λ1/α) satisfies the previous estimate. If moreover α <

√
λ1, then case (i) necessarily occurs.

Proof. Let us assume that case (i) does not hold, i.e. the solution u does not converge toward u∞ in a finite time. For
every t ∈ I , we have: −utt (t) + �u(t) ∈ ∂Φ(ut (t)). Let us define ξ(t) as the unique element of ∂Φ(0) such that

d
(−utt (t) + �u(t), ∂Φ(0)

) = ∣∣ξ(t) + utt (t) − �u(t)
∣∣
L2 .

Let us write that〈
utt (t),w

〉
L2 = 〈

ξ(t) + utt (t) − �u(t),w
〉
L2 + 〈

ξ(t) − �u∞,−w
〉
L2 + 〈

�u(t) − �u∞,w
〉
L2 , (5.7)

and let us evaluate each term of the right member. From the definition of ξ(t) we have for every t ∈ I :∣∣ξ(t) + utt (t) − �u(t)
∣∣
L2 � sup

v∈∂Φ(ut (t))

d
(
v, ∂Φ(0)

) = e
(
∂Φ

(
ut (t)

)
, ∂Φ(0)

)
.

Since limt→+∞ |ut (t)|L2 = 0, there exists t0 � 0 such that |ut (t)|L2 � η for every t � t0. Hence we deduce from
assumption (5.5) and the previous inequality that

∀t ∈ [t0,+∞[ ∩ I, |ξ(t) + utt (t) − �u(t)|L2 � α|ut (t)|L2 . (5.8)

In view of Proposition 5.2, we have −w ∈ N∂Φ(0)(�u∞) and since ξ(t) ∈ ∂Φ(0), we infer〈
ξ(t) − �u∞,−w

〉
L2 � 0. (5.9)

Let us evaluate the term 〈�u(t) − �u∞,w〉L2 by using the assumption (AE)〈
�u(t) − �u∞,w

〉
L2 = −〈∇u(t) − ∇u∞,∇w

〉
L2 = −|∇w|2

L2a(t) − 〈∇R(t),∇w
〉
L2

� −λ1|w|2
L2a(t) − 〈∇R(t),∇w

〉
L2 . (5.10)

The last inequality is a consequence of the Poincaré inequality |∇v|2
L2 � λ1|v|2

L2 for every v ∈ H 1
0 (Ω). By assumption,

we have |∇R(t)|L2 = o(a(t)) when t → +∞ and therefore inequality (5.10) can be rewritten as:〈
�u(t) − �u∞,w

〉
L2 � −λ1|w|2

L2a(t) + o
(
a(t)

)
. (5.11)

In view of (5.7), we deduce from (5.8), (5.9) and (5.11) that〈
utt (t),w

〉
L2 � α|w|L2

∣∣ut (t)
∣∣
L2 − λ1|w|2

L2a(t) + o
(
a(t)

)
.

Since the differentiation of expression (AE) gives

ut (t) = ȧ(t)w + Rt(t) with
∣∣Rt(t)

∣∣
L2 = o

(
ȧ(t)

)
, (5.12)

the above inequality yields〈
utt (t),w

〉
2 � −α|w|2 2 ȧ(t) + o

(
ȧ(t)

) − λ1|w|2 2a(t) + o
(
a(t)

)
. (5.13)
L L L
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Observing that
∫ +∞

0 a(s)ds < +∞, let us integrate inequality (5.13) on [t,+∞[ to find:

−〈
ut (t),w

〉
L2 � α|w|2

L2a(t) + o
(
a(t)

) − λ1|w|2
L2

( +∞∫
t

a(s)ds

)
+ o

( +∞∫
t

a(s)ds

)
.

From equality (5.12), we infer that

−|w|2
L2 ȧ(t) + o

(
ȧ(t)

) + λ1|w|2
L2

( +∞∫
t

a(s)ds

)
+ o

( +∞∫
t

a(s)ds

)
� α|w|2

L2a(t) + o
(
a(t)

)
.

Since a(t) � 0 and ȧ(t) � 0 for every t � 0, the previous inequality entails

−ȧ(t) + o
(
ȧ(t)

)
� αa(t) + o

(
a(t)

)
, (5.14)

λ1

( +∞∫
t

a(s)ds

)
+ o

( +∞∫
t

a(s)ds

)
� αa(t) + o

(
a(t)

)
. (5.15)

Consider some positive exponents γ and δ such that γ > α and δ < λ1/α. In view of (5.14)–(5.15), there exists t1 � t0
such that for every t � t1

−ȧ(t) � γ a(t) and δ

( +∞∫
t

a(s)ds

)
� a(t).

An elementary integration of the previous inequalities on [t1, t] yields respectively:

a(t) � a(t1)e
−γ (t−t1) and

( +∞∫
t

a(s)ds

)
�

( +∞∫
t1

a(s)ds

)
e−δ(t−t1).

Inequalities (5.6) immediately follow from the equivalence |u(t) − u∞|L2 ∼ |w|L2a(t) when t → +∞.
Let us now prove the last assertion of the theorem. Let us argue by contradiction and assume that case (ii) holds.

An immediate integration of the first inequality of (5.6) on [t,+∞[ shows that

∀t � t1,

+∞∫
t

∣∣u(s) − u∞
∣∣ds � A

γ
e−γ t .

In view of the second inequality of (5.6), the exponents must satisfy the following relation: δ � γ . Since this is true
for every γ > α and δ < λ1/α, we conclude that λ1 � α2, which contradicts the assumption. �

In this theorem, condition (5.5) plays a central role. We are now going to show that this condition is satisfied in at
least two interesting situations.

Corollary 5.4. Let j : R → R be a convex function and assume that there exists α � 0 such that

∀r ∈ R, e
(
∂j (r), ∂j (0)

)
� α|r|. (5.16)

Suppose that j (v) ∈ L1(Ω) for every v ∈ L2(Ω), and define the function Φ :L2(Ω) → R by Φ(v) = ∫
Ω

j (v(x))dx.
Let u be the unique solution to (S) defined at Theorem 2.1. If assertion (AE) holds, then we have the same conclusions
as in Theorem 5.3.

Proof. Given v ∈ L2(Ω), let us compute the excess e(∂Φ(v), ∂Φ(0)). For every g ∈ ∂Φ(v) and for almost every
x ∈ Ω , let us define g̃(x) as the unique element of the set ∂j (0) such that |g(x) − g̃(x)| = d(g(x), ∂j (0)). Since
g̃(x) ∈ ∂j (0) for almost every x ∈ Ω , we have g̃ ∈ ∂Φ(0). Hence we deduce

d
(
g, ∂Φ(0)

)
� |g − g̃|L2 =

(∫
d
(
g(x), ∂j (0)

)2
dx

)1/2

. (5.17)
Ω
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Since g ∈ ∂Φ(v), we have g(x) ∈ ∂j (v(x)) for almost every x ∈ Ω . It ensues that d(g(x), ∂j (0)) � e(∂j (v(x)), ∂j (0))

and by taking into account assumption (5.16), we infer that d(g(x), ∂j (0)) � α|v(x)| for almost every x ∈ Ω . In
view of (5.17), we deduce that d(g, ∂Φ(0)) � α|v|L2 . Since this is true for every g ∈ ∂Φ(v), we conclude that
e(∂Φ(v), ∂Φ(0)) � α|v|L2 . Hence condition (5.5) is satisfied and we can now apply Theorem 5.3. �

Recall that the support function σC :L2(Ω) → R ∪ {+∞} of a set C ⊂ L2(Ω) is defined by σC(u) =
supv∈C〈u,v〉L2 for every u ∈ L2(Ω). Assume that the set C ⊂ L2(Ω) is closed, convex and bounded for the norm
topology of L2(Ω). We let the reader check that the function σC is then positively homogeneous, convex and finite-
valued (hence continuous). Observe that the support function σB

L2 coincides with the norm | · |L2 . Given a convex

function Ψ :L2(Ω) → R of class C1, we define the function Φ : L2(Ω) → R by Φ = σC + Ψ . In this particular
framework, condition (5.5) takes a simplified form, as shown by the following corollary.

Corollary 5.5. Let C ⊂ L2(Ω) be a closed convex subset which is bounded for the strong topology of L2(Ω). Consider
a convex function Ψ :L2(Ω) → R of class C1 such that there exist η > 0 and α � 0 satisfying

|v|L2 � η �⇒ ∣∣∇Ψ (v)
∣∣
L2 � α|v|L2 . (5.18)

Defining the function Φ :L2(Ω) → R by Φ = σC + Ψ , let u be the unique solution to (S) given by Theorem 2.1. If
assertion (AE) holds, then we have the same conclusions as in Theorem 5.3.

Proof. Let us compute the excess e(∂Φ(v), ∂Φ(0)). It is immediate to check that ∂σC(0) = C and ∂σC(v) ⊂ C for
every v ∈ L2(Ω). Hence,

e
(
∂Φ(v), ∂Φ(0)

)
� e

(∇Ψ (v) + C,C
) = sup

w∈C

d
(∇Ψ (v) + w,C

)
� sup

w∈C

∣∣∇Ψ (v) + w − w
∣∣
L2 = ∣∣∇Ψ (v)

∣∣
L2 � α|v|L2 .

Hence condition (5.5) is satisfied and we can now apply Theorem 5.3. �
Assume that the term Ψ corresponds to a viscous friction, i.e. Ψ = μv

2 | · |2
L2 for some μv � 0. Under assump-

tion (AE), Corollary 5.5 shows that, if μv ∈ [0,
√

λ1[ then the solution u stabilizes in a finite time. This means that the
dynamics stops after a finite time when the viscous component of the friction is small enough.

6. On the dichotomy phenomenon under some condition of normal velocity

In this section, we study the asymptotic properties of (S) under the following assumption:

ut (t) ∈ N∂Φ(0)(�u∞) for t large enough. (NV)

Assertion (NV) says that the velocity ut (t) is normal to the set ∂Φ(0) when t → +∞.
Suppose that we look for a solution u to (S) satisfying

u(t, x) = u∞(x) + a(t)w(x) (6.1)

where the functions a, u∞ and w fulfill the hypotheses (H), cf. Section 5. This amounts to assuming assertion (AE)
with R = 0. From Proposition 5.2, either the solution u converges in a finite time or we have −w ∈ N∂Φ(0)(�u∞).
In the first case, we find ut (t) = 0 for t large enough. In the second case, we have ut (t) = ȧ(t)w and since ȧ(t) � 0,
we derive that ut (t) ∈ N∂Φ(0)(�u∞) for every t � 0. As a conclusion, every solution to (S) of the form (6.1) satisfies
assumption (NV). We refer the reader to Section 5.1, where we built solutions of the form (6.1) in order to bring to
light a dichotomy phenomenon.

Let us finally remark that, if ∂Φ(0) = {0}, we have �u∞ = 0 and hence N∂Φ(0)(�u∞) = N{0}(0) = L2(Ω). It
ensues that (NV) is automatically satisfied in this case.
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6.1. Interpretation of assumption (NV)

Let j : R → R be a convex function and let us assume that, for every v ∈ L2(Ω), we have j (v) ∈ L1(Ω). The
function Φ :L2(Ω) → R is defined by Φ(v) = ∫

Ω
j (v(x))dx, for every v ∈ L2(Ω). Let us set β := ∂j and assume

that 0 ∈ int(β(0)). Suppose that

lim
t→+∞�u(t, x) = �u∞(x) for almost every x ∈ Ω.

Let us fix x̄ ∈ Ω such that the previous relation is satisfied. Let us write the inclusion (1.3) with x = x̄

utt (t, x̄) − �u(t, x̄) + β
(
ut (t, x̄)

) � 0.

By arguing as in [14, Lemma 2], we deduce the existence of tx̄ � 0 such that

∀t � tx̄ , ut (t, x̄) ∈ Nβ(0)

(
�u∞(x̄)

)
.

Without loss of generality, we can assume that tx̄ is the smallest time such that the previous inclusion holds true.
Suppose moreover that x̄ �→ tx̄ is essentially bounded on Ω and let T := ess-supx̄∈Ω tx̄ < +∞. We then have

for every t � T , for almost every x̄ ∈ Ω, ut (t, x̄) ∈ Nβ(0)

(
�u∞(x̄)

)
.

Recalling that ∂Φ(0) = {f ∈ L2(Ω), f (x) ∈ β(0) for almost every x ∈ Ω} and using a classical result relative to
the subdifferential of convex integral functionals (see for example [7, Proposition 2.16]), we deduce that ut (t) ∈
N∂Φ(0)(�u∞) for every t � T , which is exactly (NV).

6.2. Minorization by an exponential decay rate

Let us define the energy-like function F by

F(t) = 1

2

∣∣ut (t)
∣∣2
L2 + 1

2

∣∣∇u(t) − ∇u∞
∣∣2
L2 . (6.2)

The function F is related to the energy function E by the following formula

F(t) = E(t) + 〈
u(t),�u∞

〉
L2 + 1

2
|∇u∞|2

L2 .

The map F is nonincreasing; indeed, from (2.2) we deduce that

∀t ∈ I, Ḟ (t) � −(
Φ

(
ut (t)

) − Φ(0)
) + 〈

ut (t),�u∞
〉
L2 .

In view of Theorem 2.3(iii), we have �u∞ ∈ ∂Φ(0). It ensues that 〈ut (t),�u∞〉L2 � Φ(ut (t)) − Φ(0) and the
announced result follows. The Lyapunov function F will play an essential role throughout this section. The next
result asserts that under assertion (NV), either the solutions to (S) converge in a finite time or the convergence rate is
minorized by some negative exponential. Given two subsets A,B ⊂ L2(Ω), we recall that the excess of A over B is
defined by e(A,B) = supv∈A d(v,B).

Theorem 6.1. Let Φ :L2(Ω) → R be a continuous convex function such that argminΦ = {0}. Suppose that there exist
η > 0 and α � 0 such that

|v|L2 � η �⇒ e
(
∂Φ(v), ∂Φ(0)

)
� α|v|L2 . (6.3)

Let u be the unique solution to (S) defined at Theorem 2.1 and let u∞ denote its limit in H 1(Ω) as t → +∞. If
assertion (NV) is satisfied, then one of the following cases holds:

(i) There exists t0 � 0 such that u(t) = u∞ for every t � t0.
(ii) There exist t1 � 0 and A > 0 such that

∀t � t1,

+∞∫
t

∣∣ut (s)
∣∣2
L2 ds � A e−2αt .
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If moreover α = 0 then case (i) necessarily holds, i.e. the solution u is stabilized in a finite time.

Proof. Let us first remark that, if |ut |L2 /∈ L2(0,+∞ : R) then
∫ +∞
t

|ut (s)|2L2 ds = +∞ for every t � 0, so that item

(ii) is trivially satisfied. Hence we can assume without loss of generality that |ut |L2 ∈ L2(0,+∞ : R). Consider the
function F defined by (6.2); we have for every t ∈ I

Ḟ (t) = 〈
ut (t), utt (t) − �u(t) + �u∞

〉
L2 . (6.4)

For every t ∈ I , we have −utt (t) + �u(t) ∈ ∂Φ(ut (t)). Let us define ξ(t) as the unique element of ∂Φ(0) such that

d
(−utt (t) + �u(t), ∂Φ(0)

) = ∣∣ξ(t) + utt (t) − �u(t)
∣∣
L2 .

It is then clear that, for every t ∈ I∣∣ξ(t) + utt (t) − �u(t)
∣∣
L2 � sup

y∈∂Φ(ut (t))

d
(
y, ∂Φ(0)

) = e
(
∂Φ

(
ut (t)

)
, ∂Φ(0)

)
.

Since limt→+∞ |ut (t)|L2 = 0, there exists t0 � 0 such that |ut (t)|L2 � η for every t � t0. Hence we deduce from
assumption (6.3) and the previous inequality that

∀t ∈ [t0,+∞[ ∩ I,
∣∣ξ(t) + utt (t) − �u(t)

∣∣
L2 � α

∣∣ut (t)
∣∣
L2 . (6.5)

From assertion (NV), there exists t1 � t0 such that for every t � t1, we have ut (t) ∈ N∂Φ(0)(�u∞). Since ξ(t) ∈
∂Φ(0), we infer that〈

ut (t), ξ(t) − �u∞
〉
L2 � 0. (6.6)

In view of (6.4), (6.5) and (6.6), we conclude that

∀t ∈ [t1,+∞[ ∩ I, Ḟ (t) � −α
∣∣ut (t)

∣∣2
L2 .

Recalling that |ut |L2 ∈ L2(0,+∞ : R), we can integrate the previous inequality on [t,+∞[. Since limt→+∞ |ut (t)|L2

= 0 and limt→+∞ |∇u(t) − ∇u∞|L2 = 0, we obtain:

∀t � t1,
1

2

∣∣ut (t)
∣∣2
L2 + 1

2

∣∣∇u(t) − ∇u∞
∣∣2
L2 � α

+∞∫
t

∣∣ut (s)
∣∣2
L2 ds,

and hence |ut (t)|2L2 � 2α
∫ +∞
t

|ut (s)|2L2 ds, for every t � t1. An immediate integration on [t1, t] shows that

∀t � t1,

+∞∫
t

∣∣ut (s)
∣∣2
L2 ds �

( +∞∫
t1

∣∣ut (s)
∣∣2
L2 ds

)
e−2α(t−t1).

If
∫ +∞
t1

|ut (s)|2L2 ds = 0, then clearly |ut (t)|L2 = 0 for every t � t1. If
∫ +∞
t1

|ut (s)|2L2 ds > 0, the expected formula is

obtained by setting A := (
∫ +∞
t1

|ut (s)|2L2 ds)e2αt1 .
Now assume that α = 0. Let us argue by contradiction and assume that case (ii) holds, i.e. there exists A > 0 such

that
∫ +∞
t

|ut (s)|2L2 ds � A for t large enough. This clearly contradicts the fact that limt→+∞
∫ +∞
t

|ut (s)|2L2 ds = 0
and we conclude that u(t) = u∞ for t large enough. �

It is immediate to apply Theorem 6.1 to the situations corresponding respectively to Eqs. (1.3) and (1.5).

6.3. Majorization by an exponential decay rate

We are going to prove that under suitable conditions the convergence rate of |u(t)−u∞|H 1 toward 0 is majorized by
some negative exponential. The key assumption of the next theorem is the existence of a symmetric positive operator
L such that1

e
(
∂Φ(v), ∂

[
Φ ′(0; ·)](v) + Lv

) = O
(|v|2

L2

)
when |v|L2 → 0. (6.7)

1 Let us recall that the directional derivative Φ ′(u; ·) of Φ at u ∈ L2(Ω) is defined by Φ ′(u;h) = limt→0+ (Φ(u + th) − Φ(u))/t for every
h ∈ L2(Ω).
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Suppose that the function Φ equals Φ := σC + Ψ for some convex set C ⊂ L2(Ω) and some convex function
Ψ :L2(Ω) → R of class C3 such that ∇Ψ (0) = 0. In this case, equality (6.7) is satisfied with L := ∇2Ψ (0). This
can be easily obtained from a second-order Taylor expansion of the function ∇Ψ in the neighborhood of 0.

Theorem 6.2. Let L :L2(Ω) → L2(Ω) be a symmetric operator satisfying

∀v ∈ L2(Ω), m|v|2
L2 � 〈Lv,v〉L2 � M|v|2

L2 , (6.8)

for some m, M > 0. Assume that Φ :L2(Ω) → R is a continuous convex function satisfying (6.7) and such that
argminΦ = {0}. Let u be the unique solution to (S) defined at Theorem 2.1 and let u∞ denote its limit in H 1(Ω) as
t → +∞. If assertion (NV) holds, then there exist C,γ > 0 and t0 � 0 such that

∀t � t0,
∣∣ut (t)

∣∣2
L2 + ∣∣∇u(t) − ∇u∞

∣∣2
L2 � Ce−γ t .

Denoting by λ1 the first eigenvalue of the Dirichlet–Laplacian operator −�, any positive exponent γ such that

γ <
m(

√
M2 + 4λ1 − M)

m +
√

M2 + 4λ1 − M

satisfies the previous estimate.

Proof. For every t ∈ I , we have: −utt (t) + �u(t) ∈ ∂Φ(ut (t)). Let us define ξ(t) as the unique element of the set
∂[Φ ′(0; ·)](ut (t)) + Lut (t) such that

d
(−utt (t) + �u(t), ∂

[
Φ ′(0; ·)](ut (t)

) + Lut (t)
) = ∣∣ξ(t) + utt (t) − �u(t)

∣∣
L2 .

In view of assumption (6.7) we have, for every t ∈ I∣∣ξ(t) + utt (t) − �u(t)
∣∣
L2 � e

(
∂Φ

(
ut (t)

)
, ∂

[
Φ ′(0; ·)](ut (t)

) + Lut(t)
) = O

(∣∣ut (t)
∣∣2
L2

)
. (6.9)

Let us define the auxiliary function G by:

G(t) := 〈
ut (t), u(t) − u∞

〉
L2 + 1

2

〈
L

(
u(t) − u∞

)
, u(t) − u∞

〉
L2 .

An elementary computation shows that for every t ∈ I

Ġ(t) = ∣∣ut (t)
∣∣2
L2 + 〈

utt (t) + Lut(t), u(t) − u∞
〉
L2

= ∣∣ut (t)
∣∣2
L2 + 〈

utt (t) + ξ(t) − �u(t), u(t) − u∞
〉
L2 − 〈

ξ(t) − Lut (t) − �u∞, u(t) − u∞
〉
L2

+ 〈
�u(t) − �u∞, u(t) − u∞

〉
L2 .

Since 〈�u(t) − �u∞, u(t) − u∞〉L2 = −|∇u(t) − ∇u∞|2
L2 , the previous inequality can be rewritten as

Ġ(t) + 2F(t) = 2
∣∣ut (t)

∣∣2
L2 + 〈

utt (t) + ξ(t) − �u(t), u(t) − u∞
〉
L2

− 〈
ξ(t) − Lut(t) − �u∞, u(t) − u∞

〉
L2 , (6.10)

where the function F is defined by (6.2). Let us fix some η ∈ ]0,m[. Since limt→+∞ u(t) = u∞ strongly in L2(Ω),
we obtain in view of inequality (6.9) that there exists t1 � 0 such that, for every t ∈ [t1,+∞[ ∩ I∣∣〈utt (t) + ξ(t) − �u(t), u(t) − u∞

〉
L2

∣∣ � η
∣∣ut (t)

∣∣2
L2 . (6.11)

From the definition of ξ(t), we have for every t ∈ I

ξ(t) − Lut (t) ∈ ∂
[
Φ ′(0; ·)](ut (t)

) ⊂ ∂Φ(0). (6.12)

From assertion (NV), there exists t2 � t1 such that ut (t) ∈ N∂Φ(0)(�u∞) for every t � t2. An immediate integration
on [t,+∞[ shows that u(t) − u∞ ∈ −N∂Φ(0)(�u∞) for every t � t2. In view of (6.12), this implies that, for every
t ∈ [t2,+∞[ ∩ I ,〈

ξ(t) − Lut (t) − �u∞, u(t) − u∞
〉

2 � 0. (6.13)

L
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By combining (6.10), (6.11) and (6.13), we find

∀t ∈ [t2,+∞[ ∩ I, Ġ(t) + 2F(t) � (2 + η)
∣∣ut (t)

∣∣2
L2 . (6.14)

Let us now differentiate the function F ; we find for every t ∈ I

Ḟ (t) = 〈
utt (t), ut (t)

〉
L2 − 〈

�u(t) − �u∞, ut (t)
〉
L2

= 〈
utt (t) − �u(t) + ξ(t), ut (t)

〉
L2 + 〈

�u∞ − ξ(t) + Lut(t), ut (t)
〉
L2 − 〈

Lut (t), ut (t)
〉
L2 . (6.15)

In view of (6.9), we have∣∣〈utt (t) − �u(t) + ξ(t), ut (t)
〉
L2

∣∣ = O
(∣∣ut (t)

∣∣3
L2

)
when t → +∞. (6.16)

From the definition of ξ(t), we have ut (t) ∈ N∂Φ(0)(ξ(t)−Lut (t)) for every t ∈ I . Since �u∞ ∈ ∂Φ(0), we infer that〈
�u∞ − ξ(t) + Lut (t), ut (t)

〉
L2 � 0. (6.17)

From (6.15), (6.16) and (6.17), we conclude that

Ḟ (t) � −〈
Lut (t), ut (t)

〉
L2 + O

(∣∣ut (t)
∣∣3
L2

)
.

Since 〈
Lut (t), ut (t)

〉
L2 � m

∣∣ut (t)
∣∣2
L2 and lim

t→+∞
∣∣ut (t)

∣∣
L2 = 0,

there exists t3 � t2 such that for every t ∈ [t3,+∞[ ∩ I ,

Ḟ (t) � −(m − η)
∣∣ut (t)

∣∣2
L2 . (6.18)

Let us multiply (6.14) by Aη := (m − η)/(2 + η) and add to (6.18); we obtain

Ḟ (t) + AηĠ(t) + 2AηF(t) � 0. (6.19)

Our purpose now is to deduce from (6.19) a differential equation involving a single function. This is made possible
owing to the following relations between the functions G and F

∀t � 0, G(t) � −F(t)/m and F(t) � BG(t), (6.20)

where B is a positive real that we are going to determine. We classically have, for all θ > 0,

∣∣〈ut (t), u(t) − u∞
〉
L2

∣∣ �
|ut (t)|2L2

2θ
+ θ

2

∣∣u(t) − u∞
∣∣2
L2 .

In view of assumption (6.8), we infer that

−|ut (t)|2L2

2θ
+ −θ + m

2

∣∣u(t) − u∞
∣∣2
L2 � G(t) �

|ut (t)|2L2

2θ
+ θ + M

2
|u(t) − u∞|2

L2 . (6.21)

Taking θ = m in the first inequality of (6.21), we obtain G(t) � −|ut (t)|2L2/(2m) � −F(t)/m, which is the first

inequality of (6.20). On the other hand, since λ1 > 0 is the first eigenvalue of the operator −�, we have |∇v|2
L2 �

λ1|v|2
L2 for every v ∈ H 1

0 (Ω) and hence

F(t) � 1

2

∣∣ut (t)
∣∣2
L2 + λ1

2

∣∣u(t) − u∞
∣∣2
L2 . (6.22)

Setting τ(θ) := min{θ,λ1/(θ + M)}, we deduce from the second inequality of (6.21) and (6.22) that

F(t) � τ(θ)G(t). (6.23)

We let the reader check that the function τ : (0,+∞) → R achieves its maximum at B := (
√

M2 + 4λ1 − M)/2 and
that τ(B) = B . Taking θ = B in inequality (6.23), we obtain the second inequality of (6.20). We deduce from (6.19)
and the second inequality of (6.20) that

Ḟ (t) + AηĠ(t) + 2AηBG(t) � 0. (6.24)
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Let us multiply (6.19) by B and (6.24) by Aη; adding the two inequalities and setting H(t) := F(t) + AηG(t), this
yields:

∀t ∈ [t3,+∞[ ∩ I, (Aη + B)Ḣ (t) + 2AηBH(t) � 0.

An elementary integration on [t3, t] gives:

∀t ∈ [t3,+∞[, H(t) � H(t3)e
− 2AηB

Aη+B
(t−t3)

. (6.25)

From the first inequality of (6.20), we have H(t) � F(t) − Aη/mF(t). Since Aη � m/2, we finally obtain

H(t) � 1

2
F(t) = 1

4

∣∣ut (t)
∣∣2
L2 + 1

4

∣∣∇u(t) − ∇u∞
∣∣2
L2 .

Setting C := 4H(t3)e
2AηB

Aη+B
t3 , we deduce in view of (6.25) that

∀t ∈ [t3,+∞[, ∣∣ut (t)
∣∣2
L2 + ∣∣∇u(t) − ∇u∞

∣∣2
L2 � Ce

− 2AηB

Aη+B
t
.

Since

lim
η→0

2AηB

Aη + B
= mB

m/2 + B
= m(

√
M2 + 4λ1 − M)

m +
√

M2 + 4λ1 − M
,

any positive exponent γ such that

γ <
m(

√
M2 + 4λ1 − M)

m +
√

M2 + 4λ1 − M

satisfies the estimate of the statement. �
Remark 6.3. Assume that ∂Φ(0) = {0}. We have already noticed at the beginning of this section that assertion (NV)
automatically holds in this case. On the other hand, we have Φ ′(0; ·) ≡ 0 and hence condition (6.7) can be rewritten
as

e
(
∂Φ(v),Lv

) = O
(|v|2

L2

)
when |v|L2 → 0.

Finally, since �u∞ ∈ ∂Φ(0) = {0}, we have �u∞ = 0 and hence the vector u∞ ∈ H 1
0 (Ω) satisfies u∞ = 0. Therefore,

the conclusion of Theorem 6.2 becomes: |ut (t)|2L2 + |∇u(t)|2
L2 � Ce−γ t for t large enough. This remark applies in

particular to the case where the map Φ is defined by Φ(v) = 1
2 〈Lv,v〉L2 . In this case, the dynamical system (S)

reduces to the linearly damped wave equation utt (t) − �u(t) + Lut (t) = 0.

Let us notice that the key condition (6.7) of Theorem 6.2 entails condition (6.3) of Theorem 6.1. This remark gives
rise to the following corollary.

Corollary 6.4. Under the assumptions of Theorem 6.2, one of the following cases holds:

(i) There exists t0 � 0 such that u(t) = u∞ for every t � t0.
(ii) There exist t1 � 0 and C, D, γ , δ > 0 such that for every t � t1,

∣∣ut (t)
∣∣2
L2 + ∣∣∇u(t) − ∇u∞

∣∣2
L2 � Ce−γ t and

+∞∫
t

∣∣ut (s)
∣∣2
L2 ds � De−δt . (6.26)

Any positive exponent γ (resp. δ) such that

γ <
m(

√
M2 + 4λ1 − M)

m +
√

M2 + 4λ1 − M

(resp. δ > 2M) satisfies the previous estimate.
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Proof. The first inequality of (6.26) results immediately from Theorem 6.2. Since ∂[Φ ′(0; ·)](v) ⊂ ∂Φ(0) for every
v ∈ L2(Ω), we have

e
(
∂Φ(v), ∂Φ(0)

)
� e

(
∂Φ(v), ∂

[
Φ ′(0; ·)](v)

)
. (6.27)

For every w ∈ ∂Φ(v), we have

d
(
w,∂

[
Φ ′(0; ·)](v)

)
� |Lv|L2 + d

(
w,∂

[
Φ ′(0; ·)](v) + Lv

)
and taking the supremum when w ∈ ∂Φ(v), we infer that

e
(
∂Φ(v), ∂

[
Φ ′(0; ·)](v)

)
� |Lv|L2 + e

(
∂Φ(v), ∂

[
Φ ′(0; ·)](v) + Lv

)
. (6.28)

In view of condition (6.7), inequalities (6.27), (6.28) and the fact that |Lv|L2 � M|v|L2 for every v ∈ L2(Ω), we
conclude that

e
(
∂Φ(v), ∂Φ(0)

)
� M|v|L2 + O

(|v|2
L2

)
.

Hence condition (6.3) of Theorem 6.1 is satisfied with α := M +ε/2 for any ε > 0. We deduce that, either the solution
u to (S) converges in a finite time or

∫ +∞
t

|ut (s)|2L2 ds � De−(2M+ε)t for some positive D and t large enough. �
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