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Abstract

Motivated by many applications (geophysical flows, general relativity), we attempt to set the foundations for a study of entropy
solutions to non-linear hyperbolic conservation laws posed on a (Riemannian or Lorentzian) manifold. The flux of the conservation
laws is viewed as a vector-field on the manifold and depends on the unknown function as a parameter. We introduce notions of
entropy solutions in the class of bounded measurable functions and in the class of measure-valued mappings. We establish the well-
posedness theory for conservation laws on a manifold, by generalizing both Kruzkov’s and DiPerna’s theories originally developed
in the Euclidian setting. The class of geometry-compatible (as we call it) conservation laws is singled out as an important case of
interest, which leads to robust Lp estimates independent of the geometry of the manifold. On the other hand, general conservation
laws solely enjoy the L1 contraction property and leads to a unique contractive semi-group of entropy solutions. Our framework
allows us to construct entropy solutions on a manifold via the vanishing diffusion method or the finite volume method.
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1. Introduction

The theoretical work on discontinuous solutions to non-linear hyperbolic conservation laws has been restricted
so far to problems set in the Euclidian space R

n. Motivated by numerous applications, to geophysical fluid flows
(shallow-water equations on the surface on the Earth) and general relativity (Euler–Einstein equations describing neu-
tron stars and black holes) in particular, we attempt in the present paper to set the foundations for a study of weak
solutions (including shock waves) to hyperbolic conservation laws posed on a Riemannian or Lorentzian manifold.
Recall that Kruzkov’s theory [6] deals with equations posed in the Euclidian space R

n and provides existence, unique-
ness, and stability of L1 ∩L∞ entropy solutions to non-linear hyperbolic balance laws in several space dimensions. In
addition, in the case of conservation laws with “constant flux”, depending solely on the conservative variable but not
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on the time and space variables, solutions are known to satisfy the maximum principle as well as the L1 contraction
and total variation diminishing (TVD) properties.

The above stability features play a central role in the theory and numerical analysis of hyperbolic conservation
laws. The purpose of this paper is to introduce a suitable generalization of Kruzkov’s theory when solutions are
defined on a manifold rather than on R

n. An investigation of the interplay between the geometry of manifolds with
limited regularity and the analysis of hyperbolic partial differential equations (for non-smooth functions) appears to
be particularly challenging. We hope that the framework initiated here will lead to further works on this important
subject.

Let (Mn, g) be an oriented, compact, n-dimensional Riemannian manifold. One of our tasks will be to define a suit-
able class of conservation laws posed on Mn to which the stability properties of the Euclidian space could possibly
ex tend. It should be observed that, on a manifold, there is no concept of “constant flux” – in the sense that the flux
would be “independent” of the space (and time) variable, since as we will see below the flux is a section of the tangent
bundle T Mn. Indeed, the flux at a point x ∈ Mn belongs to the tangent space TxMn to the manifold at that point. The
Euclidian space is special in that it is possible to choose the flux f (u) at an arbitrary point x ∈ R

n and to parallel-
transport it to the whole space R

n; the vector field generated in this fashion remains constant in x and, therefore,
smooth. By contrast, if a tangent vector is selected at one point of the manifold one cannot, in general, associate with
it by parallel-transport a unique smooth vector field on the manifold; this is a consequence of the curvature of Mn. As
an example, we recall that any vector field on S2 (the unit sphere in R

3, an important example arising in geophysical
flows and motivating our study) must have two critical points, at least, or else must be discontinuous.

An outline of this p aper is as follows. In Section 3, we introduce the class of geometry-compatible conservation
laws on Mn based on divergence-free flux, which we single out as a class of particular interest. We then define the
notions of entropy pair and entropy solution in the function space L∞(R+ ×Mn). In Section 4, we show the existence
of entropy solutions via the so-called vanishing diffusion method, and establish that solutions to geometry-compatible
conservation laws enjoy Lp stability properties (for all p) that are independent of the geometry of the manifold. Next,
Section 5 is devoted to the general well-posedness theory on a Riemannian manifold, and covers both L∞ solutions
(following Kruzkov [6]) and measure-valued solutions (following DiPerna [3]).

In turn, we obtain a versatile framework allowing us to establish the convergence toward the unique entropy solution
of any sequence of approximate solutions satisfying all of the entropy inequalities (possibly up to some small error).
Our geometry-independent bounds should be useful for the numerical analysis of stable and robust, shock-capturing
schemes adapted to hyperbolic equations posed on manifolds. In this direction, the follow-up paper [1] will cover the
convergence of finite volume methods based on non-Cartesian meshes, and the derivation of total variation diminishing
(TVD) estimates.

The remaining of the paper contains several generalizations of interest. In Section 6 we show that the well-
posedness theory can be developed in the function space L1 for general conservation laws that need not be geometry-
compatible; we prove that the L1 contraction property hold at this level of generality, but that for p > 1 the Lp stability
properties may be violated. Finally, in Section 7 we discuss the well-posedness theory for conservation laws posed on
a Lorentzian manifold, including for instance the Schwarzschild spacetime.

2. Preliminaries

In this preliminary section, we briefly review some key concepts and results from Kruzkov’s theory in the Euclidian
space. Consider the hyperbolic conservation law

∂tu +
n∑

j=1

∂j

(
f j (u, ·)) = 0, u = u(t, x) ∈ R, t > 0, x ∈ R

n, (2.1)

where ∂j := ∂/∂xj and f : R × R
n → R

n is a given smooth mapping, referred to as the flux of (2.1). Observe that
in (2.1) (as well as in (2.3) below) the divergence operator acts on the x-coordinate and takes into account the depen-
dence in x = (xj ) of both the solution u = u(t, x) and the flux f = (f j (ū, x)), that is

n∑
∂j

(
f j

(
u(t, x), x

)) =
n∑((

∂uf
j
)(

u(t, x), x
)
∂ju(t, x) + (

∂jf
j
)(

u(t, x), x
))

.

j=1 j=1
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As is well known [2,5–7,9,12], solutions of (2.1) are generally discontinuous and must be understood in the weak
sense of distributions. In addition, for the sake of uniqueness one should restrict attention to entropy solutions charac-
terized by an infinite family of inequalities. For simplicity, assume first that the flux is divergence-free, that is

n∑
j=1

(
∂jf

j
)
(ū, x) = 0, ū ∈ R, x ∈ R

n. (2.2)

(This assumption is motivated by Lemma 2.1 below.) When the condition (2.2) is imposed, the entropy inequalities
associated with Eq. (2.1) take the form

∂tU(u) +
n∑

j=1

∂j

(
Fj (u, ·)) � 0,

U ′′ � 0,

F j (ū, x) :=
ū∫
∂uU(u′)∂uf

j (u′, x)du′, x ∈ R
n, ū ∈ R, j = 1, . . . , n. (2.3)

Relying on Kruzkov’s theory [6] and the arguments given later in this paper, one can check that, given any divergence-
free flux and initial data u0 ∈ L1(Rn) ∩ L∞(Rn), the initial value problem (2.1),

u(0, x) = u0(x), x ∈ R
n, (2.4)

admits a unique entropy solution u ∈ L∞(
R+,L1(Rn) ∩ L∞(Rn)

)
which, moreover, satisfies the Lp stability proper-

ties ∥∥u(t)
∥∥

Lp(Rn)
� ‖u0‖Lp(Rn), t � 0, p ∈ [1,∞], (2.5)

together with the L1 contraction property: for any two entropy solutions u,v∥∥v(t) − u(t)
∥∥

L1(Rn)
�

∥∥v(t ′) − u(t ′)
∥∥

L1(Rn)
, 0 � t ′ � t. (2.6)

Furthermore, one has the following regularity property: If the initial data has bounded total variation, that is u0 ∈
BV(Rn), then the solution has bounded variation for all times, that is u ∈ L∞(R+,BV(Rn)).

In the Euclidian setting, the condition (2.2) arises in the following way.

Lemma 2.1. A necessary and sufficient condition for every smooth solution of (2.1) to satisfy the infinite list of
additional conservation laws (2.3) is that the divergence-free condition (2.2) holds.

Proof. This follows readily by multiplying the conservation law (2.1) by the derivative ∂uU(u) of an arbitrary function
U(u), using the chain rule, and taking advantage of the fact that the function U is arbitrary. Namely, we have

n∑
j=1

∂j

(
Fj (u, ·)) =

n∑
j=1

(
∂uF

j
)
(u, ·)∂ju + (

∂jF
j
)
(u, ·)

=
n∑

j=1

(
∂uU∂uf

j
)
(u, ·)∂ju + (

∂jF
j
)
(u, ·),

so that

∂tU(u) + ∂j

(
Fj (u, ·)) =

n∑
j=1

(
∂jF

j
)
(u, ·) − ∂uU(u)

(
∂jf

j
)
(u, ·).

Now, by imposing that the right-hand side of the above identity vanishes for all entropy U and by differentiating in u

the corresponding relation while using the definition of Fj in (2.3), we obtain

∂uuU(u)
(
∂jf

j
)
(u, ·) = 0.

Since U is arbitrary, the desired claim follows. �
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Observe that Kruzkov’s theory in R
n also covers flux that need not satisfy our condition (2.2), and actually applies

to balance laws of the general form

∂tu +
n∑

j=1

∂j

(
f j (u, ·)) = h(u, ·), u = u(t, x) ∈ R, (2.7)

where f = (f j (ū, t, x)) and h = h(ū, t, x) are given smooth mappings. Provided h is Lipschitz continuous in the
u-variable (uniformly in t, x), the initial value problem associated with (2.7) admits a globally defined, unique, en-
tropy solution u ∈ L∞

loc(R+ × R
n). Note, however, that the general equation (2.7) does not enjoy the Lp stability,

L1 contraction and TVD properties. Most of the literature on scalar conservation laws is restricted to the case of
a constant flux f = f (ū) which, clearly, arises as a special case of (2.2). As pointed out earlier, there is no such con-
cept as a “constant flux” in the context of manifolds, and a suitable generalization of (2.2) will arise in our analysis.

3. Geometry-compatible conservation laws

3.1. Background and notation

Throughout this paper, (Mn, g) is a compact, oriented, n-dimensional Riemannian manifold. As usual, the tangent
space at a point x ∈ Mn is denoted by TxMn and the tangent bundle by T Mn := ⋃

x∈Mn TxMn, while the cotangent
bundle is denoted by T �Mn = T �

x Mn. The metric structure is determined by a positive-definite, 2-covariant tensor
field g, that is, at each x ∈ Mn, gx is a inner product on TxMn.

In local coordinates x = (xj ), the derivations ∂j := ∂
∂xj form a basis of the tangent space TxMn, while the dif-

ferential forms dxj determine a basis of the cotangent space T �
x Mn. Here and below, we use Einstein’s summation

convention on repeated indices so, for instance, in local coordinates

g = gij dxi dxj , gij = g(∂i, ∂j ).

The notation 〈Xx,Yx〉gx := gx(Xx,Yx) may also be used for the inner product of Xx,Yx ∈ TxMn.
We denote by (gij ) the inverse of the positive definite matrix (gij ). The metric tensor will be used to raise and

lower indices, so that to each vector X = (Xj ) one associates the covector (Xj ) via

Xj := gijX
i.

Recall that the differential df of a function f : Mn → R is the section of the cotangent bundle T �
x Mn, that is

dfx ∈ T �
x Mn, defined by

dfx(Xx) = Xx(f ), Xx ∈ TxMn.

We denote by dVg the volume form on Mn, which in local coordinates reads

dVg = √|g|dx1 · · ·dxn,

with |g| := det(gij ) > 0. The gradient of a function h is obtained from dh by using the isomorphism between T Mn

and T ∗Mn via the Riemannian scalar product. In local coordinates, the gradient of a function h is the vector field

gradg h = (∇jh
) = ∂

∂xj
:= gij ∂ih

∂

∂xj
.

To the metric tensor g one associates a covariant derivative operator ∇ , characterized by the condition ∇g = 0. In
particular, the covariant derivative of a vector field X = Xj ∂

∂xj is the (1,1)-tensor field whose coefficients in local
coordinates are

∇jX
i := ∂jX

i + Γ i
kjX

k, i, j = 1, . . . , n,

where the Christoffel’s symbols are determined from the metric tensor by

Γ i
kj := 1

gil(∂kglj + ∂jgkj − ∂lgkj ).

2
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The divergence of the vector field X is the function

divg X := ∇jX
j = ∂jX

j + Γ
j
kjX

k. (3.1)

Recall the duality relation

n∫
M

g(gradg h,X)dVg = −
∫

Mn

hdivg X dVg, (3.2)

which is valid for any smooth function h and vector field X, at least. Interestingly enough, it follows from (3.2) that,
in local coordinates,

divg X =
(√|g|

)−1
∂j

(√|g|Xj
)
, (3.3)

which shows that the divergence operator on vector fields depends upon |g|, only.

3.2. A class of conservation laws

The observation made earlier in Lemma 2.1 in the Euclidian setting provides us the motivation for the definition
that we now introduce. As was already pointed out in the introduction, although Kruzkov’s theory applies to general
balance laws (2.7), the subclass defined by (2.1) and the condition (2.2) leads to many properties (maximum principle,
L1 contraction, Lp stability) which are very desirable features that we attempt to guarantee on the manifold Mn.
At this stage of the discussion, we restrict attention to smooth functions satisfying in a classical sense the partial
differential equations under consideration.

Definition 3.1.

(1) A flux on the manifold Mn is a vector field f = fx(ū) depending upon the parameter ū (the dependence in both
variables being smooth).

(2) The conservation law associated with the flux f on Mn is

∂tu + divg

(
f (u)

) = 0, (3.4)

where the unknown is the scalar-valued function u = u(t, x) defined for t � 0 and x ∈ Mn and the divergence
operator is applied, for each fixed time t , to the vector field x �→ fx(u(t, x)) ∈ TxMn.

(3) A flux is called geometry-compatible if it satisfies the condition

divg fx(ū) = 0, ū ∈ R, x ∈ Mn. (3.5)

We will also refer to (3.4)–(3.5) as a geometry-compatible conservation law. Let us emphasize that (3.4) is a geo-
metric partial differential equation which depends on the geometry of the manifold, only, and is independent of
any particular system of local coordinates on M . In particular, all estimates derived for solutions of (3.4) must take
a coordinate-independent form, while, in the proofs, it will often be convenient to introduce a particular chart.

Observe that, by the divergence theorem on Riemannian manifolds ([11], for instance), all sufficiently smooth
solutions of (3.4) satisfy the balance law

d

dt

∫
S

u(t, x)dVg(x) =
∫
∂S

gx

(
fx

(
u(t, x)

)
, νx

)
dV∂S(x),

for every smooth, n-dimensional sub-manifold S ⊆ Mn with boundary ∂S. Here, ν denotes the outward unit normal
to S, and V∂S is the volume form induced on the boundary by restricting the metric g to the tangent space T (∂S).

In local coordinates, the flux components f
j
x (ū) depend upon ū, x and we will denote by ∂uf

j
x (ū) and ∂kf

j
x (ū) its

ū- and xk-derivatives, respectively. Before we proceed, observe that:
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Lemma 3.2. Let f = fx(ū) be a geometry-compatible flux on Mn. In local coordinates the conservation law (3.4)
takes the (nonconservative) form

∂tu(t, x) + (
∂uf

j
x

)(
u(t, x)

)
∂ju(t, x) = 0. (3.6)

Proof. It follows from the definition of the divergence operator (3.1) that the conservation law (3.4) can be written as

∂tu(t, x) + ∂j

(
f

j
x

(
u(t, x)

)) + Γ
j
kj (x)f k

x

(
u(t, x)

) = 0.

The function ∂j (f
j
x (u(t, x)) is the sum of partial derivatives with respect to the local coordinate x of the composite

map x �→ fx(u(t, x)), that is

∂j

(
f

j
x

(
u(t, x)

)) = (
∂uf

j
x

)(
u(t, x)

)
∂ju(t, x) + (

∂jf
j
x

)(
u(t, x)

)
.

On the other hand, the condition in Definition 3.1 yields(
∂jf

j
x

)
(ū, x) + Γ

j
kj (x)f k

x (ū) = 0, ū ∈ R, x ∈ Mn.

Writing this identity with ū = u(t, x) and combining it with the above observations lead us to (3.6). �
3.3. Weak solutions

We will be interested in measurable and bounded functions u ∈ L∞(R+ × Mn) satisfying (3.4) in the sense of
distributions and assuming a prescribed initial condition u0 ∈ L∞(Mn) at the time t = 0:

u(0, x) = u0(x), x ∈ Mn. (3.7)

For the sake of uniqueness, we need an analogue of the entropy inequalities (2.3) proposed by Kruzkov in the Euclidian
space R

n. These inequalities are derived as follows.
First of all, consider smooth solutions u = u(t, x) of (3.4) and multiply the conservation law by the derivative

∂uU(u) of an arbitrary function U . We obtain

∂tU
(
u(t, x)

) + ∂uU
(
u(t, x)

)
divg

(
fx

(
u(t, x)

)) = 0,

which suggests to search for a vector field F = Fx(ū) such that

∂uU
(
u(t, x)

)
divg

(
fx

(
u(t, x)

)) = divg

(
Fx

(
u(t, x)

))
.

This relation should hold for all functions u = u(t, x), and is equivalent to impose that the flux components f
j
x (ū)

satisfy the two partial differential equations

∂uU(ū)∂uf
j
x (ū) = ∂uF

i
x(ū), 1 � j � n,

∂uU(ū)
(
∂jf

j
x (ū) + Γ

j
kj (x)f k

x (ū)
) = ∂jF

j
x (ū) + Γ

j
kj (x)F k

x (ū), (3.8)

for all ū ∈ R and x ∈ Mn. The first equation implies that Fx is given by

Fx(ū) :=
ū∫
∂wU(w)∂wfx(w)dw ∈ TxMn. (3.9)

Differentiating the second equation with respect to ū and using (3.9) we find

∂uuU(ū)
(
∂jf

j
x (ū) + Γ

j
kj (x)f k

x (ū)
) = 0.

Since U is arbitrary, a necessary and sufficient condition for (3.8) to hold is that fx(ū) satisfies (3.5). Note in passing
that necessarily Fx(ū) satisfies also this condition.

This derivation provides us with an analogue of the definition (2.3) of the Euclidian case. In turn, smooth solutions
of any geometry-compatible conservation law (3.4) satisfy the additional conservation laws

∂tU
(
u(t, x)

) + divg

(
Fx

(
u(t, x)

)) = 0, (3.10)
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where U is arbitrary and F is given by (3.9).
We are now in position to introduce the notion of entropy solution which generalizes Kruzkov’s notion to the case

of manifolds. We require the equalities (3.10) to hold as inequalities only, as this arises naturally by the vanishing
diffusion method. (See Section 4.)

Definition 3.3. Let f = fx(ū) be a geometry-compatible flux on the Riemannian manifold (M,g).

(1) A convex entropy/entropy-flux pair is a pair (U,F ) where U : R → R is a convex function, and F = Fx(ū) is the
vector field depending on the parameter ū defined by

Fx(ū) :=
ū∫
∂u′U(u′)∂u′fx(u

′)du′, ū ∈ R, x ∈ Mn. (3.11)

(2) A function u0 ∈ L∞(Mn) being given, a function u ∈∞ (
R+,L∞(Mn)

)
is called an entropy solution to the initial

value problem (3.4)–(3.7) if the following entropy inequalities hold∫∫
R+×Mn

(
U

(
u(t, x)

)
∂t θ(t, x) + gx

(
Fx

(
u(t, x)

)
,gradg θ(t, x)

))
dVg(x)dt

+
n∫

M

U
(
u0(x)

)
θ(0, x)dVg(x) � 0, (3.12)

for every convex entropy/entropy flux pair (U,F ) and all smooth functions θ = θ(t, x) � 0 compactly supported
in [0,∞) × Mn.

4. Vanishing diffusion method on manifolds

In the present section, we construct solutions of the conservation law (3.4) via the vanishing diffusion method. We
establish the existence of smooth solutions to a regularized version of (3.4) taking into account a small diffusion term,
and then establish that these solutions converge to an entropy solution in the sense of Definition 3.3 as the diffusion
tends to zero. For convenience, we provide a proof that is based on a uniform total variation bound, and refer the
reader to the forthcoming section for an alternative approach based on the concept of measure-valued solution.

Recall that Mn endowed with the metric tensor g is a compact, oriented, n-dimensional Riemannian manifold.
We denote by Lp(Mn;dVg) the usual Lebesgue spaces on the manifold (Mn, g). The Sobolev space H 1(Mn;dVg) is
the space of all functions h ∈ L2(Mn;dVg) such that gradg h ∈ L2(Mn;dVg) – where the gradient is defined in the
distributional sense, via the formula (3.2). The spaces Hk(Mn;dVg) for k � 2 are defined similarly.

The total variation of a function h ∈ L1(Mn;dVg) is defined by

TV(h) := sup
‖ψ‖L∞(Mn)�1

n∫
M

hdivg ψ dVg,

where ψ describes all C1 vector fields on the manifold. We denote by BV(Mn;dVg) ⊂ L1(Mn;dVg) the space of all
functions h with finite total variation, endowed with the norm ‖h‖L1(Mn;dVg) + TV(h). For material on BV functions

we refer to [4,12]. In particular, it is well known that the inclusion map of BV(Mn;dVg) in L1(Mn;dVg) is compact.
It is clear that, for all smooth functions h : Mn → R,

TV(h) =
n∫

M

|gradg h|g dVg,

where | · |g denotes the Riemannian norm associated with g. Observe also that, by taking a partition of unity deter-
mining a finite covering of Mn by coordinate patches we can easily “localize” the concept of total variation on the
manifold, as follows.



996 M. Ben-Artzi, P.G. LeFloch / Ann. I. H. Poincaré – AN 24 (2007) 989–1008
Lemma 4.1. There exist finitely many (smooth) vector fields X(1), . . . ,X(L) on Mn, a constant C0 � 1 (depending
only on the manifold), and a chart covering the manifold such that:

(i) each vector field X(l) is supported in a coordinate patch and

Span
{
X(1)

x , . . . ,X(L)
x

} := TxMn, x ∈ Mn;
(ii) and for every smooth function h : Mn → R

1

C0

L∑
l=1

n∫
M

∣∣X(l)(h)
∣∣
g

dVg � TV(h) � C0

L∑
l=1

n∫
M

∣∣X(l)(h)
∣∣
g

dVg.

An initial data u0 being given in L∞(Mn) ∩ BV(Mn;dVg), we want to find a solution uε = uε(t, x) to the initial
value problem

∂tu
ε + divg

(
fx(u

ε)
) = ε	gu

ε, x ∈ Mn, t � 0, (4.1)

uε(0, x) = uε
0(x), x ∈ Mn, (4.2)

where 	g denotes the Laplace operator on the manifold Mn,

	gv := divg gradg v

= gij

(
∂2v

∂xi∂xj
− Γ k

ij

∂v

∂xk

)
.

In (4.2), uε
0 : Mn → R is a sequence of smooth functions satisfying

‖uε
0‖Lp(Mn) � ‖u0‖Lp(Mn), p ∈ [1,∞],

TV(uε
0) � TV(u0),

ε‖uε
0‖H 2(Mn;dVg) � CTV(u0), for some C > 0 depending only on Mn,

uε
0 → u0 a.e. on Mn. (4.3)

In the following, we use the notation u(t) instead of u(t, ·). We begin with:

Theorem 4.2 (Regularized conservation law). Let f = fx(ū) be a geometry-compatible flux on a Riemannian man-
ifold (Mn, g). Given uε

0 ∈ C∞(Mn) satisfying (4.3) there exists a unique solution uε ∈ C∞(R+ × Mn) to the initial
value problem (4.1)–(4.2). Moreover, for each 1 � p � ∞ the solution satisfies∥∥uε(t)

∥∥
Lp(Mn;dVg)

�
∥∥uε(t ′)

∥∥
Lp(Mn;dVg)

, 0 � t ′ � t (4.4)

and, for any two solutions uε and vε ,∥∥vε(t) − uε(t)
∥∥

L1(Mn;dVg)
�

∥∥vε(t ′) − uε(t ′)
∥∥

L1(Mn;dVg)
, 0 � t ′ � t. (4.5)

In addition, for every convex entropy/entropy flux pair (U,Fx) the solution uε satisfies the entropy inequality

∂tU(uε) + divg

(
F(uε)

)
� ε	gU(uε). (4.6)

All proofs are postponed to the end of this section.
Our next goal is to prove the strong convergence of the family {uε}ε>0 to an entropy solution of (3.4)–(3.7), as

ε → 0. We will assume here that the initial data has bounded total variation, and we refer to the forthcoming section
for a more general argument which does not require this assumption. From the estimates for the solutions obtained in
Theorem 4.2 we can deduce a uniform total variation bound in space and time.

Lemma 4.3 (BV bounds for diffusive approximations). There exists a positive constant C1 depending on the geometry
of Mn and ‖u0‖L∞(Mn), only, such that the solutions uε given by Theorem 4.2 satisfy
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TV
(
uε(t)

)
� eC1t

(
1 + TV(u0)

)
, t ∈ R+, (4.7)∥∥∂tu

ε(t)
∥∥

L1(Mn;dVg)
� TV(u0) + ε

∥∥	gu
ε
0

∥∥
L2(Mn;dVg)

, t ∈ R+. (4.8)

Observe that the right-hand side of (4.7) is independent of ε, while the term εC1‖	gu
ε
0‖L2(Mn) arising in (4.8) is

dominated by CTV(u0) thanks to our assumption (4.3). At this juncture, we refer to [1] in which a sharp version of
the above estimates is derived with a specific constant C1 depending on the geometry of the manifold.

We are now in a position to state and prove the main result of this section.

Theorem 4.4 (Convergence of the vanishing diffusion method on a Riemannian manifold). Let f = fx(ū) be
a geometry-compatible flux on a Riemannian manifold (Mn, g). Given any initial condition u0 ∈ L∞(Mn) ∩
BV(Mn;dVg) there exists an entropy solution u ∈ L∞(R+ × Mn) to the initial value problem (3.4)–(3.7) in the
sense of Definition 3.3, which is the limit of the sequence uε constructed in Theorem 4.2 by vanishing diffusion.

Moreover, this solution has the following properties:∥∥u(t)
∥∥

Lp(Mn;dVg)
� ‖u0‖Lp(Mn;dVg), t ∈ R+, 1 � p � ∞,

and, for some constant C1 > 0 depending on ‖u0‖L∞(Mn) and the geometry of Mn only,

TV
(
u(t)

)
� eC1t

(
1 + TV(u0)

)
, t ∈ R+,∥∥u(t) − u(t ′)

∥∥
L1(Mn;dVg)

� TV(u0)|t − t ′|, 0 � t ′ � t. (4.9)

Furthermore, if u,v are entropy solutions associated with some initial data u0, v0, respectively, it hold∥∥v(t) − u(t)
∥∥

L1(Mn;dVg)
� ‖v0 − u0‖L1(Mn;dVg), t ∈ R+. (4.10)

Proof of Theorem 4.2. By introducing a local chart of coordinates and using the condition (3.5), one can reduce
Eq. (4.1) to a parabolic equation in the Euclidian space R

n:

∂tu
ε + (

∂uf
j
x

)
(uε)∂ju

ε = εgij
(
∂i∂ju

ε − Γ k
ij ∂ku

ε
)
. (4.11)

The local in time existence, uniqueness, and regularity of the solution uε follows as in the Euclidian setting. By putting
together several charts to cover the whole manifold, one arrives at the local in time well-posedness for the diffusive
conservation law (4.1). Next, in order to extend the solution to arbitrary times, one needs a uniform estimate on the
sup norm of the solution. This indeed follows in the form stated in (4.4) for p = ∞, from the standard maximum
principle for parabolic equations.

Next, in every strip [0, T ] × Mn the dual equation associated with (4.1) reads

∂tϕ + gx

(
fx(u

ε),gradg ϕ
) + ε	gϕ = 0,

for which a “terminal value” problem with data given at t = T is now considered. This equation satisfies the maximum
principle and, by duality, the inequality (4.4) for p = 1 follows. The inequality for intermediate values p ∈ (1,∞) is
then obtained by straightforward interpolation.

We next proceed with the derivation of (4.5). The function wε := vε − uε satisfies the equation

∂tw
ε + divg

(
bε
x wε

) = ε	gw
ε, (4.12)

where

bε
x := fx(v

ε) − fx(u
ε)

vε − uε

is a smooth vector field on Mn. As in the argument above, the dual equation associated with (4.12) satisfies the
maximum principle and so, by duality,∥∥wε(t)

∥∥
L1(Mn;dVg)

�
∥∥wε(t ′)

∥∥
L1(Mn;dVg)

, 0 � t ′ � t,

which is precisely (4.5).
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Finally, to show (4.6) we multiply (4.1) by ∂uU(uε), where (U,F ) is a convex entropy pair in the sense of Defini-
tion 3.3. We get

∂tU(uε) + divg Fx(u
ε) = ε∂uU(uε)	gu

ε.

In view of the definition of 	g we can write in local coordinates

∂uU(uε)	gu
ε = 	gU(uε) − ∂2

uU(uε)gjk∂ju
ε∂ku

ε. (4.13)

Since ∂2
uU is non-negative (U being convex) and the matrix (gjk) is positive definite (since g is a Riemannian

metric tensor), the second term in the right-hand side of (4.13) is non-positive. This establishes the desired inequal-
ity (4.6). �
Proof of Lemma 4.3. To establish (4.7) we rely on Lemma 4.1 which shows that, without loss of generality, it is suffi-
cient to estimate ‖∂1(ψuε(t))‖L1(Mn;dVg) for every smooth ψ supported in a coordinate patch O with ‖ψ‖L∞(Mn) � 1.

Multiplying (4.11) by ψ and differentiating with respect to x1, the function wε := ∂1(ψ uε) is found to satisfy

∂tw
ε(t, x) + ∂j

((
∂uf

j
x

)(
uε(t, x)

)
wε(t, x)

) = A(x,uε,gradg uε)(t, x) + ε	gw
ε(t, x),

where A depends linearly on gradg uε and smoothly upon x,uε (and is supported in O). We now multiply the identity
above by sgn(wε) and integrate over Mn. At this juncture we note that, since wε ∈ H 2(Mn;dVg) at least,

sgn(wε)∂tw
ε = ∂t |wε |, sgn(wε)∂jw

ε = ∂j |wε |, sgn(wε)	gw
ε � 	g|wε |,

where the latter inequality must be understood in the sense of distributions.
Relying on the bound ‖uε(t)‖L∞(Mn) � ‖u0‖L∞(Mn) which follows from (4.4), we then deduce that there exists

a constant C1 > 0 (depending on both ‖u0‖L∞(Mn) and the geometry of Mn) such that

d

dt

n∫
M

∣∣wε(t)
∣∣dVg � C1 + C1

n∫
M

∣∣gradg uε(t)
∣∣
g

dVg.

This estimate can now be repeated for each of the (finitely many) vector fields X(1), . . . ,X(L), and the desired con-
clusion (4.7) finally follows from Gronwall’s lemma.

To establish (4.8) we differentiate (4.11) with respect to t and note that

divg

(
∂tfx(u

ε)
) = ∂t divg

(
fx(u

ε)
)
,

	g

(
∂tfx(u

ε)
) = ∂t	g

(
fx(u

ε)
)
.

Also, the vector field ∂tfx(u
ε(t, x)) satisfies the condition (3.5) (with respect to the explicit dependence on x).

It therefore follows that the function zε = ∂t (u
ε) satisfies

∂t z
ε(t, x) + ∂

∂yj

((
∂uf

j
x

)(
uε(t, y)

)
zε(t, y)

)
y=x

= ε	gz
ε(t, x). (4.14)

(In other words, the explicit dependence of (∂uf
j
x )(uε(t, x)) on x is not differentiated.) Note that

sgn(zε)
∂

∂yj

((
∂uf

j
x

)(
uε(t, y)

)
zε(t, y)

)
y=x

= ∂

∂yj

((
∂uf

j
x

)(
uε(t, x)

)∣∣zε(t, x)
∣∣)

y=x
.

Defining the vector field rx := (∂ufx)(u
ε(t, x))|zε(t, x)| we have, by the condition (3.5), that the second term in the

left-hand side of (4.14) satisfies

∂j

((
∂uf

j
x

)(
uε(t, x)

)∣∣zε(t, x)
∣∣) = divg rx.

Multiplying (4.14) by sgn(zε) and integrating over Mn, we obtain

d

dt

n∫ ∣∣zε(t)
∣∣dVg � 0.
M



M. Ben-Artzi, P.G. LeFloch / Ann. I. H. Poincaré – AN 24 (2007) 989–1008 999
In turn, we can write
n∫

M

∣∣zε(t)
∣∣dVg �

n∫
M

∣∣zε(0)
∣∣dVg.

Alternatively, this inequality can be derived from (4.5) by choosing v(t, x) = v(t + α,x) with α → 0. Using (4.1) we
can estimate the above term at t = 0:

n∫
M

∣∣zε(0)
∣∣dVg � ‖gradg uε

0‖L1(Mn;dVg) + ε‖	gu
ε
0‖L2(Mn;dVg)

� TV(uε
0) + ε‖	gu

ε
0‖L2(Mn;dVg).

Finally, applying this estimate to each of the vector fields X(1), . . . ,X(L), we arrive at the estimate (4.8). This com-
pletes the proof of Lemma 4.3. �
Proof of Theorem 4.4. In view of the sup norm estimate (4.4) and the uniform, space L1 estimates (4.7), we see that
the sequence uε(t) is uniformly bounded in BV(Mn;dVg) for every time t and is therefore compact in L1(Mn;dVg).
Applying this argument at all rational times t and then picking up a diagonal sequence we can ensure that a subse-
quence uεj (t) converges to some limit u(t) in the L1 norm, as εj → 0, for all rational t . Next, in view of the uniform
time estimate (4.8), the limit u(t) extends to all values of the time variable, with uεj (t) → u(t) in L1(Mn;dVg).
Letting εj → 0 in the inequalities (4.6) one then deduces that u satisfies all of the entropy inequalities

∂tU(u) + divg

(
F(u)

)
� 0

in the weak sense (3.12).
In fact, by working in a localized coordinate patch and using the entropy formulation (4.6) with U(u) = |u − k|,

Fx(u) = sgn(u − k)(fx(u) − fx(k)), one can repeat the Kruzkov classical theorem in order to obtain a “localized”
L1 contraction property. By patching together (finitely many) coordinate patches we obtain a global estimate of the
form ∥∥v(t) − u(t)

∥∥
L1(Mn;dVg)

� C‖v0 − u0‖L1(Mn;dVg), t ∈ [0, T ], (4.15)

where C > 0 depends on T (and Mn). This is sufficient to imply uniqueness of the entropy solution u(t), hence
the convergence of the whole family uε . At this point we can invoke the parabolic estimate (4.5) and conclude that
C = 1, thus establishing the L1 contraction property (4.10). All the other estimates now follow from Theorem 4.2 and
Lemma 4.3. �
5. The well-posedness theory

Theorem 4.4 assumes that the initial data has bounded variation and provides the existence of (locally BV) entropy
solutions constructed by vanishing diffusion. In the present section, we obtain a generalization to L∞ initial data and
also establish the uniqueness of the entropy solution in this larger class. We emphasize that the class of L∞ solutions is
completely natural for geometry-compatible conservation laws, since the L∞ estimate is independent of the geometry
while the BV estimate (4.9), in general, depends upon it.

Our generalization of Kruzkov’s theory to manifolds is as follows.

Theorem 5.1 (Well-posedness theory in L∞ for geometry-compatible conservation laws). Let f = fx(ū) be
a geometry-compatible flux on a compact, oriented, Riemannian manifold (Mn, g). Given any initial data
u0 ∈ L∞(Mn) there exists a unique entropy solution u ∈ L∞(R+ × Mn) to the initial value problem (3.4)–(3.7)
in the sense of Definition 3.3. Moreover, for each 1 � p � ∞ the solution satisfies∥∥u(t)

∥∥
Lp(Mn;dVg)

� ‖u0‖Lp(Mn;dVg), t ∈ R+, (5.1)

and, given any two entropy solutions u,v associated with some initial data u0, v0, respectively,∥∥v(t) − u(t)
∥∥

L1(Mn;dVg)
� ‖v0 − u0‖L1(Mn;dVg), t ∈ R+. (5.2)
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Furthermore, we will see in the proof that the following inequality holds in the sense of distributions

∂t |v − u| + divg

(
sgn(u − v)

(
fx(v) − fx(u)

))
� 0. (5.3)

Following DiPerna [3] we introduce the (larger) class of entropy measure-valued solutions and, in fact, establish
a much stronger version of Theorem 5.1. As observed in [3], Kruzkov’s arguments take a simpler form in the measure-
valued setting. We consider measure-valued maps ν = νt,x , that is, weakly measurable mappings (t, x) ∈ R+ ×Mn �→
νt,x taking their values in the space of probability measures on R with support included in a fixed compact interval
of R. The action of the measure ν on a function U will be denoted by

〈νt,x,U 〉 :=
∫
R

U(ū)dνt,x(ū).

The weak measurability property means that the map 〈νt,x,U 〉 is measurable in (t, x) for each U .

Definition 5.2. Let f = fx(ū) be a geometry-compatible flux on a Riemannian manifold (Mn, g). Given any initial
condition u0 ∈ L∞(Mn), a measure-valued map (t, x) ∈ Mn×R+ �→ νt,x is called an entropy measure-valued solution
to the initial value problem (3.4)–(3.7) if, for every convex entropy/entropy flux pair (U,Fx) (see (3.11)),

∫∫
R+×Mn

(〈νt,x,U 〉∂t θ(t, x) + gx

(〈νt,x,Fx〉,gradg θ(t, x)
))

dVg(x)dt +
n∫

M

U
(
u0(x)

)
θ(0, x)dVg(x) � 0, (5.4)

for every smooth function θ = θ(t, x) � 0 compactly supported in [0,+∞) × Mn.

We will now prove that:

Theorem 5.3 (The well-posedness theory in the measure-valued class for geometry-compatible conservation laws).
Let f = fx(ū) be a geometry-compatible flux on a compact, oriented, Riemannian manifold (Mn, g). Let u0 be in
L∞(Mn) and ν be an entropy measure-valued solution (in the sense of Definition 5.2) to the initial value problem
(3.4)–(3.7). Then, for almost every (t, x), the measure νt,x is a Dirac mass, i.e. of the form

νt,x = δu(t,x),

where the function u ∈ L∞(R+ × Mn) is the unique entropy solution to the problem (3.4)–(3.7) in the sense of
Definition 3.4. Moreover, the solution satisfies the properties (5.1)–(5.3), and the initial data is assumed in the strong
sense

lim sup
t→0+

n∫
M

∣∣u(t, x) − u0(x)
∣∣dVg(x) = 0. (5.5)

We have already shown in Section 4 that, provided the initial data have bounded variation, entropy solutions can
be constructed via vanishing diffusion. The proof relies on the compactness the inclusion of BV into L1. Thanks to
Theorem 5.3, we can now provide an alternative, more general proof which is valid for L∞ initial data. In view of
the uniform L∞ estimate (i.e., the maximum principle which only requires the initial data to be in L∞), vanishing
diffusion approximations uε generate a measure-valued solution ν. Moreover, ν can be easily checked to satisfy all of
the entropy inequalities and, in turn, Theorem 5.1 follows from Theorem 5.3.

Finally, we also have the following generalization of Theorem 4.4.

Corollary 5.4. The convergence result of the vanishing diffusion approximations in Theorem 4.4 remains valid if the
initial data u0 is solely in L∞(Mn). All estimates therein, except for the total variation estimate, still hold.

In the course of proving Theorem 5.3, we will need some a priori regularity of measure-valued solutions, especially
the fact that the initial data u0 is automatically assumed in a strong sense.
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Lemma 5.5. Let ν = νt,x be an entropy measure-valued solution of (3.4)–(3.7), where it is assumed that u0 ∈ L∞(Mn)

and the supports of the measures νt,x are all included in a fixed common interval. Then:

(a) For every convex function U = U(u) and every smooth function θ = θ(x), the function

t �→
n∫

M

〈νt,x,U 〉θ dVg(x) (5.6)

has locally bounded total variation and admits a trace as t → 0+.
(b) For every function U = U(u,x), which is convex in u, measurable in x, and such that |U(u,x)| � c|u| + |Ũ (x)|

with Ũ ∈ L1(Mn;dVg) and c � 0,

lim sup
t→0+

n∫
M

〈
νt,x,U(·, x)

〉
dVg(x) �

n∫
M

U
(
u0(x), x

)
dVg(x). (5.7)

(c) In particular, ν assumes its initial data u0 in the following strong sense:

lim sup
t→0+

n∫
M

∫
R

∣∣ū − u0(x)
∣∣dνt,x(ū)dVg(x) = 0. (5.8)

Proof of Lemma 5.5. Using in the weak formulation (5.4) a function θ(t, x) = θ1(x)θ2(t), compactly supported in
[0,∞) × Mn and having θ1, θ2 � 0, we obtain

∞∫
0

dθ2

dt

n∫
M

〈ν,U〉θ1 dVg(x)dt + θ2(0)

n∫
M

U(u0)θ1 dVg(x) � −
∞∫

0

θ2

n∫
M

gx

(
gradg θ1, 〈ν,Fx〉

)
dVg(x)dt

� −C1

∞∫
0

θ2 dt,

for some constant C1 > 0 depending on θ1 (and the common support of νt,x ). Thus the function

V1(t) := −C1t +
n∫

M

〈νt,x,U 〉θ1 dVg(x)

satisfies the inequality

−
∞∫

0

V1(t)
dθ2

dt
dt � θ2(0)

n∫
M

U(u0)θ1 dVg(x). (5.9)

Using a test-function θ2 � 0 compactly supported in (0,∞), we find

−
∞∫

0

V1(t)
dθ2

dt
dt � 0.

That is, the function V1(t) is decreasing and, therefore, has locally bounded total variation. Since it is uniformly
bounded, V1(t) has a limit as t → 0+. This proves (a).

To establish the item (b), we fix a time t0 > 0 and consider the sequence of continuous functions

θε
2 (t) =

{1, t ∈ [0, t0],
(t0 + ε − t)/ε, t ∈ [t0, t0 + ε],

0, t � t0 + ε.
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Relying on the property (a) above, we see that

−
∞∫

0

V1(t)
dθε

2

dt
dt → V1(t0+).

Since θε
2 (0) = 1 and t0 is arbitrary, (5.9) yields

V1(t0) = −C1t0 +
n∫

M

〈νt0,x,U 〉θ1 dVg(x) �
n∫

M

U(u0)θ1 dVg(x)

for all t0 > 0 and, in particular, for all θ1 = θ1(x) � 0

lim
t→0+

n∫
M

〈νt,x,U 〉θ1 dVg(x) �
n∫

M

U(u0)θ1 dVg(x). (5.10)

Note that the left-hand limit exists, in view of (a).
Next, consider the set of all linear, convex and finite combinations of the form∑

j

αj θ1,j (x)Uj (u),

where αj � 0,
∑

j αj = 1, the functions Uj are smooth and convex in u and the functions θ1,j (x) � 0 are smooth and
compactly support, with moreover∣∣Uj (u)θ1,j (x)

∣∣ � c|u| + ∣∣Ũj (x)
∣∣

with c � 0 and Ũj ∈ L1(Mn;dVg). This set is dense (for the uniform topology in u and the L1 topology in x) in the
set of all functions U = U(u,x) that are convex in u and measurable in x and satisfy∣∣U(u,x)

∣∣ � c|u| + ∣∣Ũ (x)
∣∣

for some c > 0 and Ũ ∈ L1(Mn;dVg). Therefore, by density, (b) follows from (5.9).
Finally, (c) follows from (b) by choosing U(u,x) = |u − u0(x)|. �

Proof of Theorem 5.3. In all of the following arguments, the inequalities should be understood in the sense of
distributions. All steps can be justified rigorously by introducing test-functions in the usual way. Restricting attention
in (5.4) to functions θ with compact support, we deduce that

∂t 〈ν,U〉 + divg〈ν,F 〉 � 0 (5.11)

and so, after introducing the Kruzkov’s entropies

Ũ (ū, v̄) = |v̄ − ū|, F̃ (ū, v̄) = (
f (v̄) − f (ū)

)
sgn(v̄ − ū),

we obtain

∂t

〈
ν, Ũ(·, v̄)

〉 + divg

〈
ν, F̃ (·, v̄)

〉
� 0, v̄ ∈ R. (5.12)

Let μ be another entropy measure-valued solution to (3.4). We are going to combine (5.12) together with a similar
statement for μ, that is,

∂t

〈
μ, Ũ(ū, ·)〉 + divg

〈
μ, F̃ (ū, ·)〉 � 0, ū ∈ R. (5.13)

Introducing the tensor product ν ⊗ μ = νt,x ⊗ μt,x with, for instance,

〈νt,x ⊗ μt,x, Ũ〉 :=
∫∫
R2

Ũ (ū, v̄)dνt,x(ū)dμt,x(v̄),

we can write (in the sense of distributions)

∂t 〈ν ⊗ μ, Ũ〉 + divg〈ν ⊗ μ, F̃ 〉 = 〈
ν, ∂t 〈μ, Ũ〉 + divg〈μ, F̃ 〉〉 + 〈

μ,∂t 〈ν, Ũ〉 + divg〈ν, F̃ 〉〉
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and we deduce from (5.12) and (5.13) that, in the sense of distributions

∂t 〈ν ⊗ μ, Ũ〉 + divg〈ν ⊗ μ, F̃ 〉 � 0. (5.14)

Next, integrating (5.14) over the manifold Mn we find that, for all 0 � t ′ � t ,
n∫

M

〈νt,x ⊗ μt,x, Ũ〉dVg(x) �
n∫

M

〈νt ′,x ⊗ μt ′,x, Ũ〉dVg(x). (5.15)

Letting t ′ → 0 in (5.15) and using that the two measure-valued solutions assume the same (Dirac-mass) initial data
δu0(x) at the time t = 0 in the strong sense established in Lemma 5.5, we find

n∫
M

〈νt,x ⊗ μt,x, Ũ〉dVg(x) = 0, t ∈ R+.

Therefore, 〈νt,x ⊗ μt,x, Ũ〉 vanishes for almost every (t, x), which is equivalent to saying that νt,x and μt,x coincide
with the same Dirac mass, say δu(t,x) for some value u(t, x). Since ν and μ are both entropy measure-valued solutions,
the function u = u(t, x) is an entropy solution of the problem (3.4)–(3.7) in the sense of Definition 3.3.

We establish some additional properties of the entropy solution u, as follows. Taking U(u) := |u|p in (5.11) and
integrating over the manifold Mn yields

d

dt

n∫
M

U
(
u(t, x)

)
dVg(x) = d

dt

n∫
M

〈νt,x,U 〉dVg(x) � 0,

which leads to (5.1). Using (5.15) with two distinct solutions νt,x = δu(t,x) and μt,x = δv(t,x) gives the L1 contraction
property (5.3). This completes the proof of Theorem 5.3. �
6. General conservation laws and balance laws

6.1. L1 semi-group of entropy solutions on manifolds

Consider first the case of a conservation law posed on the one-dimensional torus T 1 = [0,1]
∂tu + 1

k
∂x

(
kf (u)

) = 0, u = u(t, x) ∈ R, t ∈ R+, x ∈ [0,1], (6.1)

where k = k(x) is a given, positive function and f : R → R is a convex function. In [10], a suitable generalization
of Lax’s explicit formula [7] was introduced for (6.1). When k is not a constant, the characteristics of (6.1) are not
straight lines but curves s �→ X(s) = X(s;y) (s � 0, y ∈ R), given by

∂sX(s) = ∂uf
(
u
(
s,X(s)

))
, X(0) = y.

It was observed that along a characteristic the function v = v(s;y) := u(s,X(s;y)) is such that the “weighted flux”
k(X)f (v) is constant. By introducing suitable left- and right-inverses of the function f , say f −1± and then solving the
equation k(X)f (v) = c, it follows that the whole family of all characteristic curves is described by

∂sX(s) = (
∂uf ◦ f −1±

)( c

k(X)

)
, X(0) = y. (6.2)

The following result was derived from a detailed analysis of this family of curves:

Theorem 6.1 (See [8,10]). The periodic, entropy solutions with bounded variation to the conservation law (6.1) are
given by a generalization of Lax’s explicit formula via a minimization problem along the curves (6.2). Moreover, any
two solutions u,v satisfy the L1 contraction property∥∥v(t) − u(t)

∥∥
L1(0,1)

�
∥∥v(t ′) − u(t ′)

∥∥
L1(0,1)

, 0 � t ′ � t.
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In view of the discussion in the previous sections, this result may seem surprising since the geometry-compatibility
condition is not satisfied here (except in the trivial case where k is a constant). Theorem 6.1 motivates us to extend
now our theory on Riemannian manifolds to general conservation laws that need not be geometry-compatible.

From now on we consider a general conservation law (3.4) associated with an arbitrary flux fx . First of all, we
stress that the notion of entropy pair (U,Fx) should still be defined by the same conditions (3.11) as in the geometry-
compatible case, but now we no longer have (3.12). Instead, an entropy solution should be characterized by the entropy
inequalities

∂tU(u) + divg

(
F(u)

) − (divg F )(u) � 0 (6.3)

in the sense of distributions, for every entropy pair (U,Fx). The term (divg F )(ū) is defined by applying the divergence
operator to the vector field x → Fx(ū), for every fixed ū.

Theorem 6.2. Let f = fx(ū) be an arbitrary (not necessarily geometry-compatible) flux on a Riemannian manifold
(Mn, g), satisfying the linear growth condition (for some constant C0 > 0)∣∣fx(ū)

∣∣
g

� C0
(
1 + |ū|), ū ∈ R, x ∈ Mn. (6.4)

Then there exists a unique contractive, semi-group of entropy solutions

u0 ∈ L1(Mn
) �→ u(t) := Stu0 ∈ L1(Mn

)
to the initial value problem (3.4)–(3.7).

The condition (6.4) is required for the flux term (3.4) to be an integrable function on Mn. Note that no uniform
Lp estimate is now available, not even in the L1 norm, since the trivial function u ≡ 0 need not be a solution of the
conservation law. The L1 norm of a solution is finite for each time t , but generally grows as t increases. This result
shows that the contraction property is more fundamental than all of the other stability properties derived earlier for
geometry-compatible conservation laws.

For general conservation laws, the stationary solutions ũ, determined by

divg

(
fx

(
ũ(x)

)) = 0, x ∈ Mn,

represent possible asymptotic states of time-dependent solutions.

Proof. The semi-group is constructed first over functions with bounded variation and then extended by density to the
whole of L1. To this end, we re-visit the proof of Theorem 5.3, and check that the key inequality (5.14), needed in
the derivation of the L1 contraction property, remains true regardless of the geometry-compatibility property. Note in
passing that the stronger statement (5.11) is no longer valid under the present assumptions, and was precisely needed
to ensure the stability in all Lp spaces, which is no longer true here.

It thus remains to establish (5.14) for solutions u, v of (3.4) with bounded variation. We rely on standard regularity
results (Federer [4], Volpert [12]) for such functions: pointwise values u±, v± can be defined almost everywhere
with respect to the Hausdorff measure Hn on R+ × Mn. These pointwise values coincide at points of approximate
continuity. We compute the entropy dissipation measure

μ := ∂t Ũ (u, v) + divg

(
F̃ (u, v)

)
,

and distinguish between the set Cu,v of points of approximate continuity for both u and v, and the set Su,v of points
where u has an approximate jump and v is approximately continuous, or vice-versa. The Hn-Hausdorff measure of
the set Nu,v := R+ × Mn \ Cu,v ∪ Su,v is zero. Using standard calculus for BV functions we can write

μ|Cu,v
:= sgn(u − v)(∂tu − ∂tv) + sgn(u − v)

(
divg

(
f (u)

) − divg

(
f (v)

)) = 0.

On the other hand, if B ⊂ Su,v is a Borel subset consisting of points where (for instance) v is approximately continuous
then

μ(B) :=
∫
B

(
nt |u+ − v| + gx

(
nx, sgn(u+ − v)

(
fx(u+) − fx(v)

))
− nt |u− − v| − gx

(
nx, sgn(u− − v)

(
fx(u−) − fx(v)

)))
dHn(t, x),
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where n = (nt (t, x), nx(t, x) ∈ R×TxMn is the propagation speed vector associated with the discontinuity in u. Now,
by relying on the entropy inequalities, μ{(t, x)} can easily be checked to be non-positive. In turn, the measure μ is
also non-positive on Su,v and, in turn, on the whole of R+ × Mn. The argument is complete. �
6.2. General balance laws

It is not difficult to generalize the well-posedness theory to the balance law

∂tu + divg

(
f (u, ·)) = h(u, ·),

where f = fx(ū, t) is a family of vector fields on Mn depending (smoothly) on the time variable t and on the pa-
rameter ū, and h = h(ū, t, x) is a smooth function. Our previous results should be modified to take into account the
dependence of f in t and the effect of the source-term h. For instance, for L∞ initial data, the Lp estimate (5.1)
should be replaced with∥∥u(t)

∥∥
Lp(Mn;dVg)

� Cp(T )
∥∥u(t ′)

∥∥
Lp(Mn;dVg)

+ C′(T ), 0 � t ′ � t � T ,

where the constant Cp(T ) � 1 in general depends on T and C′(T ) also depends upon g. Similarly, the contraction
property should be replaced by∥∥v(t) − u(t)

∥∥
L1(Mn;dVg)

� C0(T )‖v0 − u0‖L1(Mn;dVg), t ∈ R+.

for some constant C0(T ). We omit the details.

7. Conservation laws on Lorentzian manifolds

7.1. Globally hyperbolic Lorentzian manifold

Motivated by the mathematical developments in general relativity, we now extend our theory to Lorentzian mani-
folds.

Let (Mn+1, g) be a time-oriented, (n + 1)-dimensional Lorentzian manifold, g being a pseudo-Riemannian metric
tensor on Mn+1 with signature (−,+, . . . ,+). Recall that tangent vectors X on a Lorentzian manifold can be separated
into time-like vectors (g(X,X) < 0), null vectors (g(X,X) = 0), and space-like vectors (g(X,X) > 0). A vector field
is said to be time-like, null, or space-like if the corresponding property hold at every point. The null cone separates
time-like vectors into future-oriented and past-oriented ones; it is assumed here that the manifold is time-oriented,
i.e. a consistent orientation can be chosen throughout the manifold.

Let ∇ be the Levi-Cevita connection associated with the Lorentzian metric g so that, in particular, ∇g = 0. The
divergence divg operator is defined in a standard way which is formally similar to the Riemannian case.

Definition 7.1. A flux on the manifold Mn+1 is a vector field x �→ fx(ū) ∈ TxMn+1, depending on a parameter ū ∈ R.
The conservation law on (Mn+1, g) associated with f is

divg

(
f (u)

) = 0, u : Mn+1 → R. (7.1)

It is said to be geometry compatible if f satisfies the condition

divg fx(ū) = 0, ū ∈ R, x ∈ Mn+1. (7.2)

Furthermore, f is said to be a time-like flux if

gx

(
∂ufx(ū), ∂ufx(ū)

)
< 0, x ∈ Mn+1, ū ∈ R. (7.3)

Note that our terminology here differs from the one in the Riemannian case, where the conservative variable was
singled out.

We are interested in the initial-value problem associated with (7.1). We fix a space-like hypersurface H0 ⊂ Mn+1

and a measurable and bounded function u0 defined on H0. Then, we search for a function u = u(x) ∈ L∞(Mn+1)

satisfying (7.1) in the distributional sense and such that the (weak) trace of u on H0 coincides with u0:

u|H = u0. (7.4)
0
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It is natural to require that the vectors ∂ufx(ū), which determine the propagation of waves in solutions of (7.1), are
time-like and future-oriented.

We assume that the manifold Mn+1 is globally hyperbolic, in the sense that there exists a foliation of Mn+1 by
space-like, compact, oriented hypersurfaces Ht (t ∈ R):

Mn+1 =
⋃
t∈R

Ht .

Any hypersurface Ht0 is referred to as a Cauchy surface in Mn+1, while the family Ht (t ∈ R) is called an admissible
foliation associated with Ht0 . The future of the given hypersurface will be denoted by

Mn+1+ :=
⋃
t�0

Ht .

Finally we denote by nt the future-oriented, normal vector field to each Ht , and by gt the induced metric. Finally,
along Ht , we denote by Xt the normal component of a vector field X, thus Xt := g(X,nt ).

Definition 7.2. A flux F = Fx(ū) is called a convex entropy flux associated with the conservation law (7.1) if there
exists a convex function U : R → R such that

Fx(ū) =
ū∫

0

∂uU(u′)∂ufx(u
′)du′, x ∈ Mn+1, ū ∈ R.

A measurable and bounded function u = u(x) is called an entropy solution of the geometry-compatible conservation
law (7.1)–(7.2) if the following entropy inequality∫

Mn+1+

g
(
F(u),gradg θ

)
dVg +

∫
H0

g0
(
F(u0), n0

)
θH0 dVg0 � 0. (7.5)

for all convex entropy flux F = Fx(ū) and all smooth functions θ � 0 compactly supported in Mn+1+ .

In particular, in (7.5) the inequality

divg

(
F(u)

)
� 0

holds in the distributional sense.

Theorem 7.3. Consider a geometry-compatible conservation law (7.1)–(7.2) posed on a globally hyperbolic
Lorentzian manifold Mn+1. Let H0 be a Cauchy surface in Mn+1, and u0 :H0 → R be a measurable and bounded
function. Then, the initial-value problem (7.1)–(7.4) admits a unique entropy solution u = u(x) ∈ L∞(Mn+1). For
every admissible foliation Ht , the trace uHt

exists and belong to L1(Ht ), and the functions∥∥F t (uHt
)
∥∥

L1(Ht )
,

are non-increasing in time, for any convex entropy flux F . Moreover, given any two entropy solutions u, v, the function∥∥f t (uHt
) − f t (vHt

)
∥∥

L1(Ht )
(7.6)

is non-increasing in time.

We emphasize that, in the Lorentzian case, no time-translation property is available in general, contrary to the
Riemannian case. Hence, no time-regularity is implied by the L1 contraction property.

As the proof is very similar to the one in the Riemannian case, we will content with sketching the proof. Introduce
a local chart

x = (
xα

) = (
t, xj

)
, g := gαβ dxα dxβ,
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where by convention Greek indices describe 0,1, . . . , n and Latin indices describe 1, . . . , n. By setting f =: (f α
x (ū))

and using local coordinates, the conservation law (7.1) reads

∂α

(|gx |1/2f α
x

(
u(x)

)) = 0, (7.7)

where |g| := det(gαβ). Thanks to the assumption on f , for all smooth solutions (7.7) takes the equivalent form

gx

(
(∂ufx)

(
u(x)

)
,gradg u(x)

) := (
∂uf

α
x

)(
u(x)

)
(∂αu)(x) = 0. (7.8)

In other words, setting x = (t, x̄) and f = (f t , f j ),(
∂uf

t
x

)(
u(t, x̄)

)
∂tu(t, x̄) + (

∂uf
j
x

)(
u(t, x̄)

)
(∂ju)(t, x̄) = 0,

in which, since ∂uf is future-oriented and time-like, the coefficient in front of the time-derivative is positive

∂uf
0
x (ū) > 0, ū ∈ R, x ∈ Mn+1.

To proceed with the construction of the entropy solutions, we add a vanishing diffusion term, as follows:

divg

(
f (uε)

) = ε	̄ḡu
ε, (7.9)

where 	̄ḡ is the Laplace operator on the leaves Ht of the foliation, that is in coordinates(
∂uf

0
x

)(
uε(t, x̄)

)
∂tu

ε(t, x̄) + (
∂uf

j
x

)(
uε(t, x̄)

)
(∂ju

ε)(t, x̄) = εgij (t, x̄)
(
∂i∂ju

ε − Γ k
ij ∂ku

ε
)
(t, x̄). (7.10)

In view of (7.10), we see that all of the estimates follow similarly as in the Riemannian case. For instance, multi-
plying (7.10) by a convex function U , the entropy inequality now takes the form

∂t

(
F 0

x

(
uε(t, x̄)

)) + ∂j

(
F

j
x

(
uε(t, x̄)

))
= ∂uU

(
u(t, x̄)

)(
∂uf

0
x

)(
uε(t, x̄)

)
∂tu

ε(t, x̄) + ∂uU
(
u(t, x̄)

)(
∂uf

j
x

)(
uε(t, x̄)

)(
∂ju

ε
)
(t, x̄)

= ε∂uU
(
u(t, x̄)

)
gij (t, x̄)

(
∂i∂ju

ε − Γ k
ij ∂ku

ε
)
(t, x̄)

= ε	̄ḡU(uε) − ε∂2
uU(uε)gjk∂ju

ε∂ku
ε. (7.11)

The metric ḡ induced on the space-like leaves Ht is positive-definite and, therefore, the latter term above if non-
positive and we conclude that, given a geometry compatible flux f and for every convex entropy flux F

divg

(
F(uε)

) = ∂t

(
F 0

x

(
uε(t, x̄)

)) + ∂j

(
F

j
x

(
uε(t, x̄)

))
� ε	̄ḡU(uε).

Note that the regularization (7.9) does depend on the specific foliation under consideration. However, by the con-
traction property (7.6) the limiting solution is unique and independent of the chosen regularization mechanism.

7.2. Schwarzschild spacetime

In the context of general relativity, the Schwarzschild metric represents a spherically symmetric empty spacetime
surrounding a black hole with mass m and is one of the most important example of Lorentzian metrics. The outer
communication region of the Schwarzschild spacetime is a 1 +3-Lorentzian manifold with boundary, described in the
so-called Schwarzschild coordinates (t, r,ω) by

g = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2 dω2,

with t > 0 and r > 2m, while ω describes the 2-sphere. There is an apparent (but not a physical) singularity in
the metric coefficients at r = 2m, which corresponds to the horizon of the spacetime. This spacetime is spherically
symmetric, that is invariant under the group of rotations operating on the space-like 2-spheres given by keeping t and
r constant. The part r2 dω2 of the metric is the canonical metric on the 2-spheres of symmetry. The spacetime under
consideration is static, since the vector field ∂t is a time-like Killing vector. Moreover, this metric is asymptotic to the
flat metric when r → ∞. Theorem 7.3 extends to the exterior of the Schwarzschild spacetime, by observing that along
the boundary r = 2m the characteristics of the hyperbolic equation are outgoing.
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