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Abstract

We develop a variational theory to study the free boundary regularity problem for elliptic operators: Lu = Dj (aij (x)Diu) +
biui + c(x)u = 0 in {u > 0}, 〈aij (x)∇u,∇u〉 = 2 on ∂{u > 0}. We use a singular perturbation framework to approximate this free
boundary problem by regularizing ones of the form: Luε = βε(uε), where βε is a suitable approximation of Dirac delta function δ0.
A useful variational characterization to solutions of the above approximating problem is established and used to obtain important
geometric properties that enable regularity of the free boundary. This theory has been developed in connection to a very recent line
of research as an effort to study existence and regularity theory for free boundary problems with gradient dependence upon the
penalization.
© 2007 . .

Résumé

Nous développons une théorie variationnelle pour l’étude du problème de la régularité de la frontière libre pour des opérateurs
elliptiques : Lu = Dj (aij (x)Diu) + biui + c(x)u = 0 en {u > 0}, 〈aij (x)∇u,∇u〉 = 2 en ∂{u > 0}. Nous régularisons et ap-
proximons la frontière libre par une méthode de perturbation singulière de la forme : Luε = βε(uε), où βε est une approximation
adaptée de la fonction delta de Dirac δ0. Une caractérisation variationnelle des solutions du problème d’approximation ci-dessus
est établie et employée pour obtenir les propriétés géométriques importantes qui impliquent la régularité de la frontière libre. Cette
théorie a été développée en connection avec une ligne très récente de recherche comme effort pour étudier la théorie d’existence et
de régularité pour des problèmes de la frontière libre avec la dépendance de gradient sur la pénalisation.
© 2007
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1. Introduction

In this paper, we present a systematic variational approach to study existence and geometric properties of a rich
class of free boundary elliptic problems. Namely, we are concerned about finding a nonnegative function u satisfying

Dj

(
aij (x)Diu

) + biui + c(x)u = 0 in {u > 0},〈
aij (x)∇u,∇u

〉 = 2 on ∂{u > 0}. (1.1)

Our basic assumptions are: aij (x) is uniform elliptic and of class Cγ , bi, c are bounded measurable functions and
c � 0. Our ultimate goal is to study qualitative properties of the free boundary ∂{u > 0}.

We shall use a singular penalization method to generate smooth approximating solutions to our free boundary
problem. More specifically, let Ω be a smooth bounded domain in R

N and ϕ : ∂Ω → R+ a smooth nonnegative
function, ϕ �≡ 0. Consider β to be a smooth nonnegative function satisfying:

1. Support of β lies in [0,1] and it is positive in (0,1).
2.

∫ 1
0 β(s) ds := 1.

We then define

βε(s) := 1

ε
β

(
s

ε

)
and Bε(s) :=

s∫
0

βε(τ ) dτ. (1.2)

We will be interested in appropriated limiting functions, as ε goes to zero, of solutions to{
Dj(aij (x)Diuε) + bi(uε)i + c(x)uε = βε(uε) in Ω,

uε = ϕ on ∂Ω.
(1.3)

For each ε > 0 fixed, Eq. (1.3) models various problems in applied mathematics. For example, several problem in
biology, such as, population dynamics, gene developments, epidemiology, among others can be modeled in terms of
Eq. (1.3) (see [14]). Eq. (1.3) is also used to model, for instance, the flame propagation in a tube. For the combustion
problem, however, the model becomes more accurate as ε → 0, leading us to the free boundary problem (1.1). As one
could expect, the mathematical analysis involved in the study of this singular limiting problem is substantially more
challenging.

The problem 
uε = βε(uε) was fully studied in the late 70’s and early 80’s by Lewy–Stampacchia, Caffarelli,
Kinderlehrer and Nirenberg, Alt and Phillips, among others. Lederman and Wolanski in [17], gave a nice treatment
for the problem 
uε = βε(u

ε), with no sign restriction. Under nondegeneracy assumptions they manage to show that
if free boundary has an inward unit normal in the measure-theoretic sense at a point x0 ∈ Ω ∩ ∂{u > 0}, then the free
boundary is a C1,α surface in a neighborhood of x0.

Berestycki, Caffarelli and Nirenberg in [2] started the journey of analyzing uniform estimates for

Lu = aij (x)uij + bi(x)ui + c(x)u = βε(u), (1.4)

with C1 coefficients. Further regularity and geometric properties of the limiting free boundary could not be addressed,
though. The major difficult one encounters in trying to establish finer regularity properties of the limiting free boundary
problem arising as ε → 0 in either (1.1) or in (1.4), is a lack of reasonable nondegeneracy condition. Notice that, for
each ε > 0, in general, uniqueness does not hold for Eq. (1.3). Empirically speaking, it turns out that a suitable
nondegeneracy of a limiting function u0 := limuε can be obtained as long as we have a “stable” way of selecting
particular weak solutions to (1.3). The key strategy we suggest in this article is, that, even though, Eq. (1.3) does
not have an Euler–Lagrange Functional associated to it, due to the nonzero 1st order term, one should look for weak
solutions that satisfies a particular minimization property.

The parabolic version of approximating problems has been considered as well. For instance in [11], the authors
study the limit u(x, t) as ε → 0 of the solutions uε(x, t) of the two-phase parabolic equation 
uε − uε

t = βε(u
ε) in

D ⊂ R
n+1. The main concern is in what sense u(x, t) satisfies the limit equation (P) 
u − ut = 0 in D \ ∂{u > 0},

u = 0, (u+
ν )2 − (u−

ν )2 = 2 on D ∩ ∂{u > 0}.
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For a didactical reason, we have chosen to present our theory for the elliptic operator Lu = 
u − �v∇u, with
�v ∈ L∞(Ω,R

N). Basically because the main difficulty of dealing with complete elliptic operators lies, as we will
point out, in the fact that there is no Euler–Lagrange functional associated to the equation. The fact that we require
a low regularity of the matrix aij in (1.3), namely, aij is a merely Cγ elliptic matrix, certainly brings some technical
difficulties. However, in a companion work, [18], the authors present a rather complete description of the limiting
problem div(A(x)∇u) = βε(u), with A(x) Hölder continuous. Throughout the whole paper we shall point the corre-
sponding result one obtains for general operators of the form Dj(aij (x)Diu)+biui + c(x)u and we shall refer to [18]
for technical details.

Our paper is organized as follows. In Section 2 we present the heuristic principle that supports the paper. As we will
see in Section 4, if we can, somehow, obtain a useful variational characterization of solutions to the approximating
free boundary problem (1.3), it is possible to derive a linear growth away from the free boundary (Corollary 4.7).
A minimization property of solutions to Eq. (1.1) also allows, via a natural perturbation argument, uniform density of
the zero set {u > 0}C (Theorem 5.5).

In Section 3, we show for particular cases, how one can obtain a variational characterization proposed in Section 2.
Initially we discuss a fixed point argument that enables an interesting variational characterization of the form:∫

Ω

1

2
|∇uε|2 + (�v · ∇uε)uε + Bε(uε) dx = min

ξ∈H 1
ϕ

∫
Ω

1

2
|∇ξ |2 + (�v · ∇uε)ξ + Bε(ξ) dx.

We specifically apply this strategy for the flame propagation equation in cylinder domains: 
u − v(y)∂1u = βε(u)

in (−a, a) × ω. Here, a deep result from [3] is used to assure that, under natural conditions, there exists a solution
of this equation fulfilling the above variational characterization (Theorem 3.6). Afterwards we, motivated by physical
considerations, study the case when the vector field �v is a potential, i.e., �v = −∇φ. In this important physical situation,
show how to obtain a variational characterization like proposed in the heuristic principle (Proposition 3.7).

Lipschitz regularity and geometric measure properties of level sets of solutions uε of Eq. (1.3) are derived in
Section 4. Ellipticity is used together with perturbation arguments based on the variational characterization, to obtain,
among other geometric properties, linear growth away from the free boundary, nondegeneracy, local behavior of the
free boundary in terms of the HN−1 Hausdorff measure, uniform density. The fact that the regularity results obtained in
this section are uniform in ε is very important, since those are approximating equations for our original free boundary
problem.

In Section 5, we shall carry the information obtained in Section 4 over in the limit as ε → 0. Those geometric
properties are used, as done in [1], to assure that HN−1(F (u0)\F(u0)red) = 0. The free boundary condition is derived
in Section 6. In the last section, we analyze the limit of the blow-up sequence, uk(x) = ρ−1

k u0(xk +ρkx), with ρk → 0
and xk → x0, u0(xk) = 0. We show any blow-up sequence uk converges to the same linear function. This should be
interpreted as a result concerning the asymptotic behavior of u close to the free boundary. Higher regularity of the free
boundary, i.e. C1,α regularity of ∂red{u0 > 0}, for the case when Lu = 
u − �v · ∇u follows by a small variant of the
remarkable work of Luis A. Caffarelli [7,8]. For a general elliptic operator, i.e., Lu = Dj(aij (x)Diu)+ biui + c(x)u,
under the assumption of Lipschitz continuity of aij , such a regularity result will be a consequence of a very recent and
important work of Fausto Ferrari and Sandro Salsa [13].

2. A variational characterization: the heuristic principle

At the moment we are interested in studying the regularizing problem{

u − �v · ∇u = βε(u) in Ω,

u = ϕ on ∂Ω,
(2.1)

where �v ∈ L∞(Ω,R
N). The idea is that Eq. (2.1) approximates the free boundary problem


u − �v · ∇u = 0 in Ω+ := {
x ∈ Ω: u(x) > 0

}
,

|∇u|2 = 2 on ∂Ω+.
(2.2)

It is a fruitful idea to study free boundary problems like Eq. (2.2) via regularizing problems like (2.1). Information
about the original free boundary problem can often be obtained by establishing results for the approximating ones that
are uniform on ε.
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The key point of our strategy is to obtain a nice variational characterization of solutions of problem (2.1). In this
way we shall be able to deeply investigate regularity properties of problem (2.2), via perturbation arguments.

Before presenting the core of our approach, let us recall the basic ideas of the theory of Quasi-Minima introduced
by Mariano Giaquinta and Enrico Giusti in [15]. Our intention is to make a parallel between this theory and the
strategy we shall introduce to properly study regularity properties of problem (2.2).

Let F(x,u, z), F :Ω × R
m × R

mN → R+ be a nonnegative function. Let us consider the functional

F(u,ω) :=
∫
ω

F(x,u,Du)dx.

It is well known that, under natural assumptions on F , the functional F attains its minimum over certain Sobolev
spaces. Minimizers of the above functional turn out to be much more regular than mere Sobolev functions.

Definition 2.1. A function u ∈ W 1,p(Ω,R
m) is a quasi-minimum of the functional F , with constant Q � 1 (briefly:

a Q-minimum), if for every v ∈ W 1,p(Ω,R
m), with K := supp(u − v) � Ω , we have

F(u,K) � QF(v,K).

One of the main accomplishment of this theory is that, not only minimizers, i.e. 1-minima, are special functions,
but also Q-minima are regular functions as well. We will focus our attention in another property of the Q-minimum
theory, which probably is its main motivation. Consider the system of partial differential equations in divergence form

∂

∂xi

Ai
α

(
x,u(x),Du(x)

) − Bα

(
x,u(x),Du(x)

) = 0. (2.3)

We recall that a function u ∈ W
1,p

loc (Ω,R
m) is weak solution of Eq. (2.3) if for every ϕ ∈ W

1,p

0 (Ω,R
m) we have∫

Ω

Ai
α

(
x,u(x),Du(x)

)
Diϕ

α + Bα

(
x,u(x),Du(x)

)
ϕα dx = 0.

The most common way of finding a weak solution to Eq. (2.3) is to minimize, or more generally to obtain a critical
point of an associated functional. However, sometimes it is not possible to find such a functional. For instance, in
general, problem (2.1) does not (immediately) allow a minimization characterization. However, it can be proven that
a weak solution of Eq. (2.3) is a Q-minimum of

F(u,ω) :=
∫
ω

|Du|p + b(x)|u|γ + a(x) dx,

where a and b are intrinsically related to the behavior of the nonlinearities Aα and Bα . For more details see [15].
To summarize (and justify this apparent digression) let us highlight that, even though, in general, Eq. (2.3) does not

admit a variational characterization, weak solutions satisfy a sort of minimization property for a specific functional.
This information can be explored to prove regularity results for weak solutions of Eq. (2.3).

Let us return to our original purpose. Heuristically, our purpose is to find a solution to the regularizing free boundary
problem{


u − �v · ∇u = βε(u) in Ω,

u = ϕ on ∂Ω,

that has a useful variational characterization to be described now.

Definition 2.2. Let μ be a Radon measure. We denote by H 1(Ω,dμ) the set of functions ψ ∈ H 1(Ω) such that ψ

and its weak derivatives belong to L2(Ω,dμ). We also denote by H 1
ϕ (Ω,dμ) := {ψ ∈ H 1(Ω,dμ) | ψ ≡ ϕ on ∂Ω}.

For reason that will become clear later, we are driven to consider solutions to the above problem that minimize

Fε(ζ ) :=
∫ (

1

2
|∇ζ |2 + σε(x)ζ + Bε(ζ )

)
dμε, (2.4)
Ω
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among H 1
ϕ (Ω,dμε). Here σε :Ω → R is a bounded function and με is a positive Radon measure which is absolutely

continuous w.r.t. the Lebesgue measure. From the Radon–Nikodym Theorem, there exists an integrable function Fε ,
such that με = Fε dx. In general, the function σε and the measure με depend on ε and on the vector field �v. The
reasonable properties on σε and με are:

1. The functions σε is uniformly locally bounded, i.e., for any subset Ω̃ � Ω , there exists a constant C(Ω̃), inde-
pendently of ε, such that,

‖σε‖L∞(Ω̃) � C(Ω̃), ∀ε > 0.

2. There exist universal constants 0 < c < C < ∞ such that c � Fε � C for almost everywhere x ∈ Ω and {Fε} is
relatively compact in L2(dx).

The above conditions can be relaxed from the mathematical point of view; however, these properties are satisfied
by the physical problems we are concerned with, as we shall see in the next section.

3. Motivation and special cases

The intention of this section is to justify the variational characterization assumed in (2.4). Here we shall explore
two situations for which one can obtain a variational characterization as suggested in the preceding section. We point
out that the settings we shall explore in this section arise from very natural physical considerations.

In Subsection 3.1, we explore a fixed point idea, which can be widely applied, as long as the problem has some
special geometry that allows, in some sense, uniqueness results. In Subsection 3.2, we show how to obtain a useful
variational characterization like in (2.4) when the field �v is a potential. This is a quite natural assumption for many
physical problems equations (2.1) and (2.2) model.

3.1. Fixed point argument

The mathematical fundaments of this approach is the following. For each f ∈ H 1
ϕ (Ω) let us define the functional

Ef :H 1
ϕ (Ω) → R by

Ef (ξ) :=
∫
Ω

1

2
|∇ξ |2 + (�v · ∇f )ξ + Bε(ξ) dx.

Proposition 3.1. For each f ∈ H 1
ϕ (Ω) there exists a uf ∈ H 1

ϕ (Ω) such that

Ef (uf ) = min
H 1

ϕ (Ω)
Ef .

Furthermore uf ∈ H 2
ϕ (Ω) and

‖uf ‖H 2(Ω) � C
{‖βε(uf ) + �v · ∇f ‖2 + ‖uf ‖2 + Cϕ

}
. (3.1)

Proof. Initially, notice that Ef is coercive. Indeed,

Ef (ξ) � 1

2
‖∇ξ‖2

2 − CΩ

∥∥|�v · ∇f |∥∥2 · ‖∇ξ‖2 − C(Ω, �v,f,ϕ), (3.2)

where we have used Poincaré and Hölder inequalities. Furthermore, it is classical to show Ef is weakly lower semi-
continuous. It guarantees the existence of a minimizer uf . The fact that uf ∈ H 2

ϕ (Ω) as well as estimate (3.1) come
from standard elliptic regularity theory. �

Let E be a set. Recall 2E denotes the set of all subsets of E. We shall define the map F :H 1
ϕ (Ω) → 2H 1

ϕ (Ω) by

F(f ) :=
{
uf ∈ H 1

ϕ (Ω)
∣∣ Ef (uf ) = min

H 1(Ω)
Ef

}
.

ϕ
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Because, in principal, there is no uniqueness for minimizers of the functional Ef , the operator F as defined above is

indeed multi-valued, justifying therefore why its target space is 2H 1
ϕ (Ω). Notice that if we can find a fixed point uε

for the multi-valued map F, i.e., if we can obtain a uε such that uε ∈ F, simply by differentiating the functional Euε ,
we would see that uε is a solution to problem (2.1). More important than that is the fact that uε would satisfy the
variational characterization

Euε(uε) = min
H 1

ϕ

Euε .

Comparing the above variational characterization to (2.4), we obtain:

1. σε = �v · ∇uε ,
2. The estimate ‖σε‖L∞(Ω̃) � C(Ω̃), for any Ω̃ � Ω , comes from uniform Lipschitz estimate of solutions of

Eq. (2.1), to be established at the beginning of the next section.
3. dμε = dx.

The next proposition is a hope of finding a fixed point for F.

Proposition 3.2. The operator F is compact.

Proof. Let fn be a sequence in H 1
ϕ (Ω) converging to f in the weak-H 1

ϕ (Ω) sense. For any selection un ∈ F(fn),
we need to show, up to a subsequence, un → u strongly in H 1(Ω) and u ∈ F(f ). Notice, first of all, that by (3.2),
‖∇un‖2 � C. This information, together with estimate (3.1) implies ‖un‖H 2(Ω) is bounded. Thus, up to a subsequence,
we might suppose un → u strongly in H 1

ϕ (Ω). Finally, we have, for any ξ ∈ H 1
ϕ (Ω) and any n � 1.

Ef (ξ) =
∫
Ω

1

2
|∇ξ |2 + (�v · ∇f )ξ + Bε(ξ) dx

=
∫
Ω

1

2
|∇ξ |2 + (�v · ∇fn)ξ + Bε(ξ) dx + o(1)

�
∫
Ω

1

2
|∇un|2 + (�v · ∇fn)un + Bε(un) dx + o(1)

= Ef (u) + o(1),

which implies u ∈ F(f ) as desired. �
Unfortunately, well known fixed point results for maps does not work, in general, for multi-valued maps. At this

moment, some other information, that in general will come from the geometry of our problem, need to be used to
assure existence of a fixed point to the operator F. It could be the case that symmetries of the problem and special
properties of vector field �v enable to find a continuous section of the multi-valued map F. This is the case, for instance
when, for each f ∈ H 1

ϕ (Ω), the set F(f ) is convex. In this case, Michael’s Theorem can be applied to assure the
existence of a continuous, actually due to Proposition 3.2, a compact selection. Let us mention that, by scaling, we
might suppose, without lost of generality, that 2CΩ‖�v‖∞ = L < 1, where CΩ stands for the optimal constant in the
Poincaré inequality.

Theorem 3.3. Suppose, there exists a continuous selection F̂ of F. Then, for each ε > 0, there exists a fixed point uε

for F. Furthermore, such a fixed point is a solution to{

uε − �v · ∇uε = βε(uε) in Ω,

uε = ϕ on ∂Ω,
(3.3)

and it can be variationally characterized by

Euε(uε) = min
ξ∈H

Euε(ξ).
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Proof. For each f ∈ H 1
ϕ (Ω), it follows from the minimizing property of F̂(f ) that

Ef

(
F̂(f )

)
� Ef (ψ), ∀ψ ∈ H 1

ϕ (Ω).

From now on in this proof, let us fix a ψ ∈ H 1
ϕ (Ω). The above inequality implies∫

Ω

∣∣∇F̂(f )
∣∣2 �

∫
Ω

|∇ψ |2 + 2|�v||∇f |∣∣F̂(f ) − ψ
∣∣dx + |Ω|

� L‖∇f ‖2
(∥∥∇F̂(f )

∥∥
2 + ‖∇ψ‖2

) + (|Ω| + ‖∇ψ‖2
2

)
.

That is∥∥∇F̂(f )
∥∥2

2 � L‖∇f ‖2
(∥∥∇F̂(f )

∥∥
2 + ‖∇ψ‖2

) + (|Ω| + ‖∇ψ‖2
2

)
. (3.4)

Let us denote by ρ the positive root of the quadratic polynomial

P(t) := (L − 1)t2 + (‖∇ψ‖2 + Lt
)‖∇ψ‖2 + |Ω| = 0.

We claim that F̂ maps Bρ into itself, where Bρ := {ξ ∈ H 1
ϕ (Ω) | ‖∇ξ‖2 � ρ}. Indeed, suppose ‖∇f ‖2 � ρ. It follows

from inequality (3.4) that∥∥∇F̂(f )
∥∥2

2 � Lρ
(∥∥∇F̂(f )

∥∥
2 + ‖∇ψ‖2

) + (|Ω| + ‖∇ψ‖2
2

)
= Lρ

∥∥∇F̂(f )
∥∥

2 + (‖∇ψ‖2 + Lρ
)‖∇ψ‖2 + |Ω|. (3.5)

Now, if we assume, by contraction, ‖∇F̂(f )‖2 > ρ, we would obtain, from (3.5)∥∥∇F̂(f )
∥∥2

2 < L
∥∥∇F̂(f )

∥∥2
2 + (‖∇ψ‖2 + L

∥∥∇F̂(f )
∥∥

2

)‖∇ψ‖2 + |Ω|.
However, by the suitable choose of ρ,

(L − 1)t2 + (‖∇ψ‖2 + Lt
)‖∇ψ‖2 + |Ω| < 0,

for any t > ρ and the claim is proven. Finally, since F̂ is a compact operator, Schauder fixed point theorem applies.
This finishes the proof. �

Let us discuss another way of finding a fixed point to the operator F. Let S be the set of all solutions of Eq. (2.1).
It is simple to show, S is nonempty and compact in H 1

ϕ (Ω). Furthermore, as long as βε is regular, functions in S

are sufficiently regular. For each u ∈ S, consider the functional Eu as defined above. Our first observation is that u

is a critical point of Eu. Indeed, this follows from differentiating Eu and using the fact that u ∈ S. Furthermore, any
minimizer f of Eu is a solution of{


f − �v · ∇u = βε(f ) in Ω,

f = ϕ on ∂Ω.
(3.6)

After this comment, we notice that, if the geometry of our problem enables a solution u ∈ S such that either, Eu

has a unique critical point or Eq. (3.6) has a unique solution, then u ∈ F(u) and hence, u admits the variational
characterization as in Theorem 3.3. The former can be explored by critical point theory such as Morse theory in
infinite dimensional spaces, topological deformation arguments among others. We shall focus our attention to the
latter case, i.e., the geometry of our problem enables uniqueness to Eq. (3.6).

The “right” geometry for this approach is present in cylinders, where, Berestycki and Nirenberg have proven
several deep results about monotonicity, symmetry and antisymmetry of solutions of semi-linear elliptic equation in
cylindrical domains. See for instance [3–6]. The type of symmetry results provided in the above literature, may, at
least in our case, yield uniqueness for Eq. (3.6). Let us discuss a special case.

We shall use the following powerful result:

Theorem 3.4. (See Berestycki and Nirenberg [3].) Let Ω = (−a, a) × ω and u be a C2(Ω̄) solution of{

u − f (x,u,∇u) = 0 in (−a, a) × ω,

u = ϕ on ∂[(−a, a) × ω]. (3.7)
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Assume ϕ is continuous and

ϕ(x1, y) � ϕ(x′
1, y) for x1 � x′

1.

Assume also, f (x,u,p) is continuous, Lipschitz in the variables (u,p) and satisfies

f (x,u,p) is nondecreasing in x1 for p1 � 0.

Finally, suppose u satisfies{
ϕ(−a, y) � u(x1, y) � ϕ(a, y) for − a < x1 < a, y ∈ ω and
∀x1 in (−a, a),∃y ∈ ω such that ϕ(−a, y) < u(x1, y).

Then u is strictly increasing in x1 in Ω . Furthermore it is unique, i.e., if ū is another solution of (3.7) satisfying the
above conditions, then ū = u.

Here is the specific case we are interested in. Let Ω = (−a, a) × ω and ϕ(−a, y) ≡ 0 and ϕ(a, y) ≡ A, where A is
a positive constant. Consider the following special case of Eq. (2.1).{


u − v(y)∂1u = βε(u) in (−a, a) × ω,

u = ϕ on ∂[(−a, a) × ω], (3.8)

where v is a positive function. This equation models the flame propagation in the cylinder (−a, a) × ω.

Proposition 3.5. Eq. (3.8) has a unique solution for any ε small enough.

Proof. Let ε be small enough such that βε(A) = 0. The idea is to show that 0 < u < A. Let M = maxu. Suppose
initially M > A. Thus, in some ball B ⊂ Ω ,


u − v(y)∂1u = 0 in B.

By the maximum principle, u ≡ M in B . By connectedness of Ω , we find u ≡ M in Ω , which is a contradiction. Let
us now define ζ := u − A. Notice that ζ � 0. Furthermore


ζ − v(y)∂1ζ = βε(u)

= β ′
ε(θ)ζ,

once βε(A) = 0. By Serrin’s maximum principle (see, for instance, [16] Theorem 2.10), either ζ < 0 or ζ ≡ 0. Since
the latter cannot happen, we conclude u < A. Analogously we can show u > 0. The proposition is proven with the aid
of Theorem 3.4. �

Notice that the solution of problem (3.8) is a subharmonic function. We now can state the following result

Theorem 3.6. Let u be the solution of problem (3.8). Suppose u is convex in the x1 direction. Then u ∈ F(u) and thus
it satisfies the desired variational characterization.

Proof. The proof follows the same steps of Proposition 3.5. Indeed, let f be a minimizer of the functional Eu. As we
have commented before, f satisfies


f − v(y)∂1u = βε(f ).

Since u is convex in the x1 direction, we still can apply Theorem 3.4 to conclude, as we did on Proposition 3.5,
uniqueness result for the above equation. Thus f ≡ u. �
3.2. The potential case

Motivated by well known physical assumptions, we are guided to study the case when the vector field �v is a
potential, i.e.,

�v = −∇φ, (3.9)

for some φ ∈ W 1,∞(Ω). In the variational characterization proposed in (2.4), let
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1. σε ≡ 0,
2. dμε = dμ := eφ dx.

Thus, the functional we consider for the potential case is

Fε(ζ ) :=
∫
Ω

(|∇ζ |2 + Bε(ζ )
)
eφ dx. (3.10)

Next proposition provides the existence of solutions of (2.1) that satisfies a nice variational characterization in the
spirit of (2.4).

Proposition 3.7. The above functional has a minimizer in H 1
ϕ (Ω,dμ). Furthermore such a minimizer is a solution to

problem (2.1).

Proof. The fact that Fε has a minimizer follows from the same step as Proposition 3.1. Let u be a minimizer, h ∈
C∞

0 (Ω) and consider

j (γ ) := Fε(u + γ h).

From the fact that j ′(0) = 0 we obtain∫
Ω

(∇u∇h + βε(u)h
)
dμ = 0. (3.11)

We now compute

div
(
heφ∇u

) = eφ∇u∇h + eφ[∇φ∇u]h + [eφ
u]h.

Thus (3.11) can be rewritten, using integration by parts and taking into account (3.9),∫
Ω

[
eφ
u − eφ �v · ∇u − eφβε(u)

]
hdx = 0. (3.12)

Since (3.12) is true for every h ∈ C∞
0 (Ω) and eφ > 0, we conclude u satisfies the partial differential Eq. (2.1). �

4. Uniform Lipschitz regularity and some geometric measure properties of level sets

In this section we shall explore some geometric properties of solutions of{

uε − �v · ∇uε = βε(uε) in Ω (PDE),
uε = ϕ on ∂Ω,

that admit a variational characterization as in (2.4) i.e.,

Fε(uε) = min
ξ∈H 1

ϕ (Ω,dμε)
Fε(ξ),

where

Fε(ζ ) :=
∫
Ω

(
1

2
|∇ζ |2 + σε(x)ζ + Bε(ζ )

)
dμε.

From now on, we shall denote Lξ = 
ξ − �v · ∇ξ . Notice that Luε = 0 in {uε � 0}, and since, uε > 0 on ∂Ω , by
the maximum principle, uε � 0 in Ω .

Remark 4.1 (Lipschitz Renormalization). Suppose u is a solution the PDE Lu = βε(u) in some ball Br(x0). Then the
function w :Br/ε(0) → R, defined as

w(y) = 1
u(x0 + εy),
ε
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satisfies


w − ε(�vε · ∇w) = β1(w) in Br/ε(0),

with �vε := �v(x0 + εx). Furthermore, ∇w(0) = ∇u(x0).

Let us point out that Remark 4.1 suggests that we should expect to get a uniform Lipschitz estimate, since proving
u is Lipschitz in Br(x0) is equivalent to proving w in Lipschitz in Br/ε .

The next lemma takes care of Lipschitz estimate in a region where uε is small.

Lemma 4.2. Let x ∈ Ω̃ � Ω satisfy 0 � uε(x) � ε. Then∣∣∇uε(x)
∣∣ � C,

where C does not depend on ε.

Proof. Let 2δ = dist(x, ∂Ω) � dist(∂Ω̃, ∂Ω) = c > 0. Consider the Lipschitz renormalization suggested in Re-
mark 4.1, w :Bδ/ε(0) → R,

w(y) = 1

ε
u(x + εy).

Applying Schauder’s estimate for the elliptic operator Lw = 
w − ε(�v · ∇w), we find, in particular, that∣∣∇w(0)
∣∣ � C

(‖w‖L∞(Bδ/2ε(0)) + 1
)
.

However, by Harnack inequality

‖w‖L∞(Bδ/2ε(0)) � Cw(0) = C.

Hence,∣∣∇w(0)
∣∣ = ∣∣∇uε(x)

∣∣ � C,

where C depends only on dimension, Ω̃ and ‖�v‖∞. �
Hereafter, for any 0 < α < sup∂Ω ϕ, Ωα , will stand for the set {uε > α}, i.e.,

Ωα := {
x ∈ Ω | uε(x) > α

}
.

Next lemma provides uniform Lipschitz estimate over Ωε .

Lemma 4.3. Let x0 ∈ Ωε . If we denote by r = dist(x0, ∂Ωε), then

∣∣∇uε(x0)
∣∣ � C

r
,

where C depends only on dimension, ‖�v‖∞ and ‖ϕ‖∞.

Proof. Since βε is supported in [0, ε], we have that

Luε = 
uε − �v · ∇uε = 0 in Ωε.

We then apply interior Schauder estimate to the elliptic operator L and obtain

∣∣∇uε(x0)
∣∣ � C

(
sup |uε|

r

)
.

Finally, by the maximum principle, we have sup |uε| � ‖ϕ‖∞. �
We now have to care about a universal bound of the gradient of uε for points x ∈ Ωε that are close to Γε :=

{x ∈ Ω: uε(x) = ε}, since the estimate given by Lemma 4.3 could blow up when x approaches Γε . If is worthwhile
to comment that, for each ε > 0, we can find a 1 � cε � 2, so that Γcεε is smooth (Sard’s Theorem) and thus we can



E.V. Teixeira / Ann. I. H. Poincaré – AN 25 (2008) 633–658 643
control the Lipschitz norm of uε up to the boundary of Ωcεε . However, since we do not know yet any smoothness of
the limiting free boundary, such a control could deteriorate as ε → 0.

The idea will be to obtain an estimate of uε(x) in terms of the distance of dist(x,Γε) and afterwards employ
Schauder estimate and Harnack inequality. Here are the details:

Let χ ∈ Γε , r be small enough so that B(χ, r) ⊂ Ω . Fix x0 ∈ B(χ, r) and call h = dist(x0,Γε). Set λ so that
uε(x0) = λ · h. We now consider the Lipschitz renormalization

w(y) := 1

h
uε(x0 + hy).

Notice that

1. w(0) = λ;
2. w � ε/h in B1;
3. There exists a Y1 ∈ ∂B1 such that w(Y1) = ε/h;
4. 
w − h(�vh · ∇w) = 0 in B1, for �vh(x) := �v(x0 + hx);
5. ∇w(y) = ∇uε(x0 + hy);
6. From Lemma 4.2, |∇w(Y1)| � C and C is universal.

By Harnack inequality, there exists a universal constant c > 0 such that

w(y) � cλ ∀y ∈ B1/2.

Consider z to be the following function{

z − h(�v · ∇z) = 0 in B1 \ B1/2,

z|∂B1 = 0, z|∂B1/2 = 1.
(4.1)

By Hopf’s Lemma and C1,1 regularity up to the boundary, there exists a δ > 0 such that

zν � δ on ∂B1,

where ν denotes the inward normal vector −x. From maximum principle, w � cλz in B1 \ B1/2; therefore

C �
∣∣∇w(Y1)

∣∣ � wν(Y1) � cλzν(Y1) � δcλ.

We have concluded that uε(x0) � C · dist(x0,Γε), for a universal constant C > 0. Finally by Schauder estimate and
Harnack inequality,

∣∣∇u(x0)
∣∣ � C

u(x0)

dist(x0,Γε)
� C.

Combining the above with Lemmas 4.2 and 4.3, we obtain

Theorem 4.4 (Uniform Lipschitz Estimate). Let Ω̃ � Ω . Then there exists a constant C depending only on dimension,
‖�v‖∞, ‖ϕ‖∞ and Ω̃ , such that

sup
Ω̃

|∇uε| � C.

Remark 4.5. For a general elliptic operator like in (1.3), we exchange in (4.1) 
z − h(�v · ∇z) by Lhu = Dj(aij (x0 +
hx)Diu) + bi(x)ui + c(x)u. In this case, the best we can assure is C1,α regularity up to the boundary. However, this
is enough to carry out the same computation above.

Let us turn our attention to nondegeneracy. The next theorem implies, as we will see in its corollary, linear growth
way from the free boundary. We remark that this is an important geometric property that allows a deeper understanding
of regularity properties of the free boundary. Here the variational characterization plays a crucial role.
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Theorem 4.6 (Linear Growth). There exist universal constants c1 > 1 and c2 such that, if x0 ∈ Ω̃ � Ω and uε(x0) =
λ � c1ε, then

dist(x0, ∂Ωε) � c2λ.

Proof. Let us call d = dist(x0, ∂Ωε). Suppose λ = αd . We want to show α � c > 0. To this end, let us make a
Lipschitz renormalization

w(y) := 1

d
uε(x0 + dy).

If we define �ν :B1(0) → R
N by �ν(y) := d �v(x0 + dy), w satisfies

w � ε/d and 
w − (�ν · ∇w) = βε/d(w) = 0 in B1(0),

because βε/d is supported in [0, ε/d].
Furthermore w(0) = α. By Harnack inequality we have

cα � w � c̄α in B1/2.

Now, let ψ be a cut-off function fulfilling ψ ≡ 0 in B1/4, ψ ≡ 1 in B1 \ B1/2 and define

ζ =
{

min(w, c̄αψ) in B1/2,

w in B1 \ B1/2.

Notice that, by the Change of Variables Theorem, w minimizes the functional

E(ξ) :=
∫
B1

{
1

2

∣∣∇ξ(y)
∣∣2 + dσ(x0 + d · y)ξ(y) + Bε

(
d · w(y)

)}
Fε(x0 + d · y)dy,

among all ξ ∈ w + H 1
0 (B1, dμε). Hence, since ζ competes against w in the above problem, we have

E(ζ ) � E(w).

Writing this down, we find∫
B1

1

2

(
|∇ζ |2 − 1

2
|∇w|2

)
dμε +

∫
B1

(
d · σ(ζ − w)

)
dμε �

∫
B1

(
Bε(d · w) − Bε(d · ζ )

)
dμε. (4.2)

However,∫
B1

1

2

(|∇ζ |2 − 1

2
|∇w|2)dμε = 1

2

∫
B1/2∩{c̄αψ�w}

(
c̄2α2|∇ψ |2 − 1

2
|∇w|2

)
dμε � Cα2,

∫
B1

(
d · σ(ζ − w)

)
dμε = 1

2

∫
B1/2∩{c̄αψ�w}

(
d · σ(c̄αψ − w)

)
dμε � Cα,

and, since w � ζ and Bε is an increasing function,∫
B1

(
Bε(d · w) − Bε(d · ζ )

)
dμε �

∫
B1/4

(
Bε(d · w) − Bε(d · ζ )

)
dμε

=
∫

B1/4

Bε(d · w)dμε

� με(B1/4)Bε(dcα)

= cBε(cλ)

� cBε(cc1ε)

� c > 0.

Putting those inequalities together, we finish the proof. �
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Corollary 4.7. Let x ∈ Ωc1ε := {y ∈ Ω | uε(x) > c1ε}. Then there exists a universal constant C, such that

C−1 dist(x, ∂Ωε) � uε(x) � C dist(x, ∂Ωε).

Proof. The first inequality follows immediately Theorem 4.6. The estimate by above is consequence of uniform
Lipschitz continuity. Indeed, from the definition of Ωc1ε and Theorem 4.4, we have

c1ε � uε(x) � C dist(x, ∂Ωε) + ε.

Thus,

uε(x) � c1

c1 − 1
C dist(x, ∂Ωε). �

Regarding nondegeneracy, making use only of the ellipticity of the operator Lu = 
u− �v∇u, the uniform Lipschitz
regularity (Theorem 4.4) and the linear growth away from the free boundary (Corollary 4.7) we obtain (see, for
instance, [9], page 593, Lemma 7) the following strong nondegeneracy result.

Theorem 4.8 (Strong Nondegeneracy). Let Ω̃ � Ω . There exist constants c1 and c2 which depend only on dimension,
‖�v‖∞ and Ω̃ such that, if x0 ∈ Ω̃ and

uε(x0) � c1ε,

then

sup
Bρ(x0)

uε � c2ρ.

Corollary 4.9. Let Ω̃ � Ω . There exist constants c1, c2 and c3, depending only on dimension, ‖�v‖∞ and Ω̃ , such that
if x0 ∈ Ω̃ with

uε(x0) = λ � c1ε and ρ � c2λ,

then ∣∣Bρ(x0) ∩ {uε > λ}∣∣ � c3ρ
N.

Proof. Let y ∈ Bρ/2(x0) be such that uε(y) � cρ. Such a point exists by Theorem 4.8. Then, by continuity, we may
assume, for ε small enough,

dist(y, ∂Ωε) � c1ρ.

By Harnack inequality, for c̄ small enough so that Bρc̄(y) ⊂ Bc1ρ(y) ∩ Bρ(x0), there holds

uε(x) � cρ

2
� cc2λ

2
> λ, in Bc̄ρ(y),

if c2 is taken large enough. Thus,

Bc̄ρ(y) ⊂ Bρ(x0) ∩ {uε > λ}.
This finishes the proof. �
Definition 4.10. Let δ > 0 and E be a set in R

N . We define the δ-strip of E by

Nδ(E) := {
x ∈ R

N : dist(x,E) < δ
}
.

As we shall see, some geometric information of the limiting free boundary will be concluded in terms the of δ-strip
of Ωc(ε), for some convenient modulus of continuity c(ε).
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Theorem 4.11. If x0 ∈ ∂Ωcε, λ > 3cε and 1 � R � c1λ, then∣∣Nλ(∂Ωcε) ∩ BR(x0)
∣∣ � c3λRN−1,

where all constants are universal.

Proof. Let G := Ωcε ∩ BR(x0) and define w := min{(uε − cε)+, λ − cε}. If we multiply (PDE) by w and integrate
over G we obtain

−
∫
G


uεw + wβε(uε) =
∫
G

(�v · ∇uε)w.

However, if we take c > 1, βε(uε) ≡ 0 in G. Furthermore, by Green’s formula

−
∫
G


uεw =
∫
G

∇uε∇w −
∫
∂G

w(uε)μ dσ,

where μ is the outward unit normal vector on ∂G. Hence∫
{cε<uε<λ}∩BR(x0)

|∇uε|2 �
∫
G

∇uε∇w

=
∫
∂G

w(uε)μ dσ +
∫
G

(�v · ∇uε)w

� C1λRN−1 + C2λRN

� C0λRN−1.

Our next step is to compare∫
{cε<uε<λ}∩BR(x0)

|∇uε|2 with
∣∣{cε < uε < λ} ∩ BR(x0)

∣∣.

Let {Bj } be a finite overlapping covering of ∂Ωcε by balls of radius c1λ and centered at ∂Ωcε . In every Bj there are
sub balls B1

j and B2
j of radius rj of order λ for which

uε � 3

4
λ in B1

j and uε � 2

3
λ in B2

j .

Indeed, this follows from Lipschitz continuity and strong nondegeneracy (r1
j = 1

8 Lip(uε)
λ and r2

j = 1
3 Lip(uε)

λ). There-

fore, if mj := −
∫

Bj
uε , then |uε − mj | � cλ at least on one of the two sub balls. Indeed, if not, there would exist

sequences xk
n ∈ Bk

j , k = 1,2, such that |uε(x
k
n) − mj | < λ

n
, ∀n, what would imply |uε(x

1
n) − uε(x

2
n)| → 0, contradict-

ing the construction of the sub balls. Thus, by Poncaré inequality

cλ2 � −
∫
Bj

(uε − mj)
2 � c̄r2

j −
∫
Bj

|∇uε|2.

Therefore ∫
Bj ∩{cε<uε<λ}

|∇uε|2 � c|Bj |.

By nondegeneracy,

BR(x0) ∩ {cε < uε < λ} ⊂
⋃

Bj .

Finally, this implies
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∫
B4R(x0)∩{cε<uε<λ}

|∇uε|2 dx �
∫

(
⋃

Bj )∩{cε<uε<λ}
|∇uε|2 dx

� 1

m

∑ ∫
Bj ∩{cε<uε<λ}

|∇uε|2 dx

� c

m

∑
|Bj |

� c
∣∣BR(x0) ∩ {cε < uε < λ}∣∣.

We have proven, so far,∣∣{cε < uε < λ} ∩ BR(x0)
∣∣ � c3λRN−1.

Now, making use of Corollary 4.9 we obtain∣∣Nλ(∂Ωcε) ∩ BR(x0)
∣∣ � c

∣∣Nλ(∂Ωcε) ∩ BR(x0) ∩ Ωcε

∣∣ + CδRN−1.

By Lipschitz regularity, for some universal large constant A,

Nλ(∂Ωcε) ∩ BR(x0) ∩ Ωcε ⊂ {cεuε < Aλ} ∩ BR(x0).

This finishes the prove of the theorem. �
5. Letting ε → 0

In this section we shall study the free boundary problem (2.2) by letting ε → 0. The strategy to be used is based on
the following observation. If we let ε → 0, then, up to a subsequence, we may assume

1. uε ⇀ u0 in H 1
ϕ (Ω).

2. uε → u0 uniformly over compacts.
3. ∇uε → ∇u0 locally uniformly in {x ∈ Ω | u0(x) > 0}.
4. σε ⇀ σ in L2(Ω).
5. Fε → F in L2(Ω).

The function u0 is our natural candidate to solve problem (2.2). We shall denote Ω0 := {x ∈ Ω | u0(x) > 0} and
F(u0) := ∂Ω0 ∩ Ω .

Theorem 5.1 (Properties of u0). If Ω0 := {x ∈ Ω | u0(x) > 0}, then

1. u0 is locally Lipschitz in Ω and


u0 − �v · ∇u0 = 0 in Ω0.

2. u0 is nondegenerated away from ∂Ω0 ∩ Ω̃ for any Ω̃ � Ω. That is, there exists a constant c = c(Ω̃,N,‖�v‖∞)

such that for any Bρ(x) ⊂ Ω̃ centered at the free boundary ∂Ω0,

sup
Bρ(x)

u0 � cρ.

3. Ω0 is the limit in the Hausdorff distance of Ωcε = {uε > cε}. That is, given δ > 0, for ε small enough,

Ω̃ ∩ Ωcε ⊂Nδ(Ω0) ∩ Ω̃,

Ω̃ ∩ Ω0 ⊂Nδ(Ωcε) ∩ Ω̃.

4. |Nδ(∂Ω0) ∩ BR| � cδRN−1, for every δ > 0. In particular

Hn−1(∂Ω0 ∩ BR) � CRN−1.
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5. There exists a universal constant C depending

C−1 dist
(
x0, {u0 = 0}) � u0(x) � C dist

(
x0, {u0 = 0}).

6. There exist a constant μ = μ(Ω̃) such that for x0 ∈ F(u0) ∩ Ω̃ ,

|Bρ(x0) ∩ Ω0|
|Bρ(x0)| � μ.

Proof. The fact that u0 is locally Lipschitz in Ω follows from uniform Lipschitz continuity of uε . Furthermore, in
Ω0, uε converges locally to u0, say, in the C1,1 topology. Thus, one can carry the limit over the equation (PDE) and
conclude


u0 − �v · ∇u0 = 0 in Ω0.

We have justified item (1).
Let us turn our attention to strong nondegeneracy. Let x0 ∈ Ω̃0 � Ω̃1 � Ω0. We know there exists a sequence of

points xε → x0, as ε → 0, with xε ∈ Ωcε ∩ Ω̃1. By Theorem 4.8, the fact that uε(xε) > cε implies, for any � > 0,
there exists a y

�
ε ∈ ∂B�/4(xε), so that

uε(y
�
ε ) � c�.

Now, for ε small, B�/4(xε) ⊂ B�(x0), and, up to a subsequence, y
�
ε converges to some y� ∈ B�(x0) as ε → 0. Finally,

since uε converges uniformly to u0, there holds

c� � uε(y
�
ε ) −→ u0(y

�) � sup
B�(x0)

u0.

Let us prove item (3). Suppose the first inclusion is not true. Therefore, there would exist a sequence of points xε and
a positive real number α > 0, satisfying

1. dist(xε,Ω0) � α > 0.
2. xε ∈ Ωcε ∩ Ω̃ .
3. xε converges to some x0 that is α away from Ω0.

Item (3) means, u0(x0) = 0, while uε(xε) � cε. By Theorem 4.8, there exists points yε ∈ Bα
8
(xε) so that

uε(yε) � c
α

8
.

But, again, for |xε − x0| < α
8 , we have Bα/8(xε) ⊂ Bα/2(x0). Finally, up to a subsequence, yε → y0 ∈ Bα(x0), and,

since uε(yε) → u0(y0), we would conclude 0 > cα. By a similar argument, we conclude the second inequality. Indeed,
suppose the inclusion does not hold. It means, there exists a sequence xε ∈ Ω0 ∩ Ω̃ such that dist(xε,Ωcε ∩ Ω̃) � α,
for some fixed α > 0. In particular, uε(x) � cε for any x ∈ Bα/2(xε). Assume xε → x0; then, for |xε − x0| � α

8 , we
have Bα/8(x0) ⊂ Bα/2(xk) and thus, Bα/8(x0) ⊂ Ω̃ \ Ω0.

Item (4) follows from item (3) together with Theorem 4.11. Item (5) follows immediately from Corollary 4.7.
Finally, item (6) follows as Corollary 4.9. �

We can also prove the following finer convergence result, which will be employed in the proof of the free boundary
condition. This is the content of the next lemma.

Lemma 5.2. Let Ω̃ � Ω . Then uε → u0 in H 1(Ω̃).

Proof. Let us fix Ω̃ � Ω . We may assume Ω̃ is smooth. We already know uε ⇀ u0 in H 1(Ω̃). Thus is it sufficient to
show, by uniform convexity of H 1, that

lim sup
ε→0

∫
|∇uε|2 dx �

∫
|∇u0|2 dx. (5.1)
Ω̃ Ω̃
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To this end, let us multiply (PDE) by uε and integrate over Ω̃ . By doing that, we find

0 � −
∫

Ω̃

βε(uε)uε =
∫

Ω̃

|∇uε|2 + (�v · ∇uε)uε −
∫

∂Ω̃

uε(uε)μ dσ.

Hence∫

Ω̃

|∇uε|2 �
∫

∂Ω̃

uε(uε)μ dσ −
∫

Ω̃

(�v · ∇uε)uε.

Notice, however,∫

∂Ω̃

uε(uε)μ dσ −
∫

Ω̃

(�v · ∇uε)uε →
∫

∂Ω̃∩{u0>0}
u0(u0)μ dσ −

∫

Ω̃∩{u0>0}
(�v · ∇u0)u0,

since ∇uε → ∇u0 locally uniformly in {u0 > 0}. Now, for any δ > 0, we have, since 
u0 − �v · ∇u0 = 0 in {u0 > 0},∫

Ω̃∩{u0>δ}
|∇u0|2 =

∫

∂[Ω̃]∩{u0>δ}
u0(u0)μ dσ −

∫

Ω̃∩{u0>δ}
(�v · ∇u0)u0.

Letting δ → 0 we conclude (5.1). �
Our next step is to obtain a variational characterization for the limiting function u0. As we have anticipated, this

information shall yield uniform density of Ω0 and Ωc
0 and thus the Hausdorff measure totality of the reduced free

boundary.

Definition 5.3. Let μ := F dx, where F is the L2 limit of Fε . For each ball B ⊆ Ω , we consider the functional

E0(B, ξ) :=
∫
B

{
1

2
|∇ξ |2 + σ(x)ξ + χ{ξ>0}

}
dμ, (5.2)

where σ is the weak limit of σε in L2.

Theorem 5.4 (Variational Characterization of u0). The function u0 is a local minimizer of E0 over H 1, i.e., for any
ξ ∈ H 1

loc with ξ = u0 on ∂B , for some ball B ⊆ Ω , there holds E0(B, ξ) � E0(B,u0).

Proof. Suppose by contraction there is a ball Br � Ω and a function ξ ∈ H 1 with ξ ≡ u0 on ∂Br and

E0(Br, ξ) � E0(Br , u0) − δ,

for some δ > 0. Fix h > 0 and define

ξh
ε :=

⎧⎨
⎩

u0 + |x| − r

h
(uε − u0) in Br+h \ Br,

ξ in Br.

In Br+h \ Br , we have ∇ξh
ε = ∇u0 + |x|−r

h
(∇uε − ∇u0) + (uε−u0)x|x|h . Therefore,

|∇ξh
ε |2 � C + 2

|uε − u0|2
h2

in Br+h \ Br.

Thus,

Ξε
h :=

∫
Br+h\Br

{ |∇ξh
ε |2

2
+ σε · ξh

ε + Bε(ξ
h
ε )

}
Fε dx

� Cμ(Br+h \ Br) + 1

h2

∫
Br+h\Br

|uε − u0|2 dμε + o(1)

� CrN−1h + o(1).
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Now we can estimate

Eε(Br+h, ξ
h
ε ) :=

∫
Br+h

{ |∇ξh
ε |2

2
+ σε · ξh

ε + Bε(ξ
h
ε )

}
Fε dx

= Ξε
h +

∫
Br

{ |∇ξ |2
2

+ σ · ξ + Bε(ξ)

}
F dx + o(1)

� CrN−1h + o(1) + E0(Br , ξ),

since Bε(ξ) � χ{ξ>0}. Thus

lim sup
ε→0

Eε(Br+h, ξ
h
ε ) � E0(Br , ξ) + CrN−1h. (5.3)

On the other hand,

Eε(Br+h, ξ
h
ε ) = Eε(Br, ξ) + ω1(ε) + ω2(h) � Eε(Br,uε) + ω1(ε) + ω2(h), (5.4)

where ω1 and ω2 are modulus of continuity. Furthermore, since, uε → u0 almost everywhere, we have

μ
({u0 > 0} ∩ Br

)
� lim inf

ε→0
μ

({uε > 0} ∩ Br

)
.

Moreover,∫
Br

Bε(uε)Fε dx � με

({uε > 0} ∩ Br

) = μ
({uε > 0} ∩ Br

) + o(1).

We then conclude,

E0(Br , u0) � lim inf
ε→0

Eε(Br,uε). (5.5)

Combining inequalities (5.3), (5.4) and (5.5), we obtain

E0(Br , u0) � E0(Br , ξ) + ω(h),

for some modulus of continuity ω. This finally implies the theorem. �
The next theorem provides the last geometric measure property we shall need. It gives a uniform density of the

zero phase of the solution u0 along the free boundary points x0 ∈ ∂{u0 > 0}. It is worthwhile to notice that by non-
degeneracy and Lipschitz continuity, we already know |Ω0 ∩ Br(x0)| ∼ rN , for any ball Br(x0) centered at a generic
free boundary point.

Theorem 5.5. Let Ω̃ � Ω and x0 ∈ ∂Ω0 ∩ Ω̃ . Then there exists a constant c = c(Ω̃,N,‖�v‖∞) such that∣∣ΩC
0 ∩ Br(x0)

∣∣ � crN

for r � dist(Ω0, ∂Ω) small enough.

Proof. Consider the auxiliary function h given by{

h = 0 in Br(x0),

h = u0 on ∂Br(x0).

By the Variational Characterization of u0 established in Theorem 5.4, we have
∫ { |∇u0|2

2
+ σu0 + χ{u0>0}

}
dμ �

∫ { |∇h|2
2

+ σh

}
dμ + μ

(
Br(x0)

)
.

Br (x0) Br (x0)
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From the above inequality we derive

1

2

∫
Br(x0)

{|∇u0|2 − |∇h|2}dμ � μ
({u = 0} ∩ Br(x0)

) −
∫

Br(x0)

σ (u0 − h)dμ. (5.6)

We also have, by Poincaré inequality for balls,∫
Br (x0)

{|∇u0|2 − |∇h|2}dμ � c

∫
Br(x0)

∣∣∇(u0 − h)
∣∣2

dx � c

r2

∫
Br (x0)

(u0 − h)2 dx. (5.7)

Furthermore, since u0(x), h(x) � Cr in Br(x0), we have∣∣∣∣
∫

Br(x0)

σ (u0 − h)dμ

∣∣∣∣ � C

∫
Br (x0)

|u0 − h|dx � CrN+1. (5.8)

We also have, by nondegeneracy and Lipschitz continuity, there exists a universal 0 < κ < 1 and a point y ∈ Br(x0)

so that Bκr(y) ⊂ Br(x0) and there holds

u > cr in Bκr(y).

In this way, we obtain

h(x0) = −
∫

∂Br (x0)

u0 � cr,

and thus, by Harnack inequality,

h(x) � cr in Br/2(x0). (5.9)

Finally, by Lipschitz regularity,

u0(x) � cδr in Bδr(x0). (5.10)

From (5.9) and (5.10) we conclude

h − u0 � cr in Bδr(x0), (5.11)

for a uniform δ small enough. Combining (5.6)–(5.8) and (5.11) we obtain
∣∣{u = 0} ∩ Br(x0)

∣∣ � cμ
({u = 0} ∩ Br(x0)

)
� c

r2

∫
Br (x0)

(u0 − h)2 dx − CrN+1

� crN − CrN+1

� crN ,

if r is small enough. �
This is the final ingredient we needed to state

Theorem 5.6. Let F(u0) denote the free boundary ∂{u0 > 0}. Then there holds:

1. The N − 1 Hausdorff measure of F(u0) is finite. Moreover, there exists positive constants c and C, such that, for
any ball B(x, r) centered at F(u0), there holds

crN−1 �HN−1(F(u0) ∩ B(x, r)
)
� CrN−1.

2. HN−1(F (u0) \ F(u0)red) = 0.



652 E.V. Teixeira / Ann. I. H. Poincaré – AN 25 (2008) 633–658
3. There is a Borel function qu0 such that


u0 − �v · ∇u0 = qu0HN−1�F(u0),

in the sense that, for any ζ ∈ C∞
0 (Ω),

−
∫
Ω

〈∇u0,∇ζ + ζ �v〉dx =
∫

Ω∩F(u0)

ζ qu0 dHN−1.

Furthermore, there exists positive constants c and C, such that,

c � qu0 � C.

Proof. Item (1) follows from Theorem 5.1 and isoperimetric inequality. Item (2) follows from a standard argument in
Geometric Measure Theory. Item (3) is a representation of 
u0 − �v · ∇u0 as a measure supported in F(u0). This is
derived as in [1], Theorem 4.5. �
6. Free boundary condition

At this point we have found a local minimizer of the functional

E0(ξ) :=
∫
Ω

{
1

2
|∇ξ |2 + σ(x)ξ + χ{ξ>0}

}
dμ.

Such a minimizer is locally Lipschitz in Ω and nondegenerated in its set of positively Ω0. We also know u0 satisfies


u0 − �v · ∇u0 = 0 in Ω0 := {u0 > 0}.
Furthermore, Theorem 5.6 assures that the reduced free boundary F(u0)red has total measure. The advantage of deal-
ing with F(u0)red rather than the whole free boundary F(u0) is that, the former encloses all the important geometric
measure properties needed to give sense most of the classical computations. Our next step, therefore, is to study the
behavior of ∇u0 on F(u0)red. This is the contents of the next theorem.

Theorem 6.1 (Free boundary condition). Let B = Br(x0) be a ball centered at the free boundary ∂{u > 0}. Then for
any field �Ψ ∈ H 1

0 (B,R
N) there holds

lim
δ→0

∫
B∩{u0=δ}

[|∇u0|2 − 2
] �Ψ · ν dS = 0, (6.1)

where ν denotes the outward normal vector on {u = δ} and δ is a sequence of regular values approaching 0.

Proof. Let Br(x0) be a ball centered at the free boundary F and denote by G = Br(x0) ∩ {u0 > 0}. Let us denote
u = uε and ψ ∈ C∞

0 (Br) be arbitrary. If we multiply equation (PDE)


u − �v · ∇u = βε(u)

by ψuj and afterward integrate it over Br we obtain

0 =
∫
Br

∇u∇(ψuj ) + (�v · ∇u)ψuj + βε(u)ψuj dx. (6.2)

On the other hand, using integration by parts,∫
βε(u)ψuj dx = −

∫
Bε(u)ψj dx, (6.3)
Br Br
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and ∫
Br

|∇u|2ψj dx = −
∫
Br

∂j

(|∇u|2)ψ dx. (6.4)

Combining (6.2), (6.3) and (6.4), we end up with∫
Br

Bε(uε)ψj dx =
∫
Br

−1

2
|∇uε|2ψj + (∇uε · ∇ψ)(uε)j + (�v · ∇uε)ψ(uε)j . (6.5)

By reflexivity, we may assume Bε(uε) ⇀ φ for some function 0 � φ � 1 in L2(Br). But, since Bε(s) = 1 for s � ε

we conclude φ ≡ 1 in G. Now, letting ε → 0 in (6.5) we find, taking into account Lemma 5.2,∫
Br

φψj =
∫

Br∩{u0>δ}
−1

2
|∇u0|2ψj + (∇u0 · ∇ψ)(u0)j + (�v · ∇u0)ψ(u0)j dx + ρ(δ), (6.6)

where limδ→0 ρ(δ) = 0. Using, once more, Green’s formula, taking into account that 
u0 − �v · ∇u0 = 0 in
Br ∩ {u0 > δ}, we find∫

Br∩{u0>δ}
∇u0 · ∇(

ψ(u0)j
) + (�v · ∇u0)ψ(u0)j dx =

∫
{u0=δ}∩Br

ψ(u0)j∇u0 · ν dS. (6.7)

However, since on the right-hand side on (6.7), we are integrating over a level set of u0, (u0)i = −νi |∇u0|, thus (6.7)
can be rewritten as∫

Br∩{u0>δ}
∇u0 · ∇(

ψ(u0)j
) + (�v · ∇u0)ψ(u0)j dx =

∫
{u0=δ}∩Br

ψ |∇u0|2νj dS. (6.8)

Furthermore,∫
Br∩{u0>δ}

∇u0 · ∇(
ψ(u0)j

)
dx =

∫
Br∩{u0>δ}

∇u0 · ∇ψ(u0)j dx + 1

2

∫
Br∩{u0>δ}

∂j

(|∇u0|2
)
ψ dx. (6.9)

Using integration by parts again, we find,∫
Br∩{u0>δ}

∂j

(|∇u0|2
)
ψ dX = −

∫
Br∩{u0>δ}

|∇u0|2ψj dX +
∫

Br∩{u0=δ}
|∇u0|2ψνj dS. (6.10)

Combining (6.6), (6.8), (6.9) and (6.10) we finally obtain∫
Br

φψj = 1

2

∫
Br∩{u0=δ}

|∇u0|2ψνj dS + ρ(δ). (6.11)

It follows, in particular, that if we take ψ supported in the interior of Br \ G, then∫
Br

φψj = 0.

Thus, φ is also constant in Br \ G, say φ ≡ Λ in Br \ G.
We claim Λ = 0. Indeed, let Δ = B(ζ,�) be a ball in Br \ G and denote by Δσ := B(ζ,� + σ). Here we assume

σ > 0 is small enough so that Δσ is still contained in Br \ G. Let η be a nonnegative C∞(Ω) function satisfying

• η ≡ 0 in Δ.
• η ≡ 1 in Ω \ Δσ .
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The function ηuε competes with uε in the variational problem (2.4), and therefore, by the minimization property of
uε , we know,

Fε(uε) �Fε(ηuε).

Writing this down, we find,∫
Δσ

Bε(uε) dμε �
∫

Δσ

{
1

2

[
(η2 − 1)|∇uε|2 + |∇η|2u2

ε

] + ηuε∇η∇uε

}
dμε +

∫
Δσ

{
(η − 1)σεuε + Bε(ηuε)

}
dμε

= O(ε) +
∫

Δσ

Bε(ηuε) dμε

� O(ε) + με(Δσ \ Δ). (6.12)

Letting ε → 0 in (6.12), we obtain

μ(Δσ )Λ � μ(Δσ \ Δ),

and finally, letting σ → 0 in the above inequality we conclude the claim.
As consequence of the claim, for any ψ ∈ C∞

0 (Br) we have∫
Br

φψj dx =
∫

{u0�δ}∩Br

ψj dx + ρ̃(δ)

=
∫

{u0=δ}∩Br

ψνj dS + ρ̃(δ).

Finally, this together with (6.11) finally implies the theorem. �
Notice that, at any C1 peace of the free boundary, the free boundary condition actually holds in the strong sense

|∇u0|2 = 2.

Free boundary condition (6.1), even in its weak sense, gives us a hint as to who q0 provided by Theorem 5.6 is. Indeed,
if we come back to expression (6.6), knowing already that φ = χ{u0>0}, we obtain qu0 = √

2 at any C1 part of the free
boundary. In the next section we will obtain a characterization of qu0 via a blow-up analysis.

7. Blow-up analysis and C1,α regularity of the free boundary

Let Ω̃ � Ω be fixed and B(xk,ρk) ⊂ Ω̃ be a sequence of balls satisfying

(i) xk → x0 ∈ Ω , u0(xk) = 0,∀k.
(ii) ρk → 0.

Inspired by the homogeneity observed in Remark 4.1 and by the optimal regularity, i.e., Lipschitz continuity, we
are driven to consider the blow-up sequence

uk(x) := 1

ρk

u0(xk + ρkx) in B
(
x0, d

(
ρk

−1 − o(1)
))

,

where d = dist(x0, ∂Ω). Notice that, since |∇uk| is uniformly bounded, up to a subsequence, we might assume

• uk → u∞ locally uniform, as k → ∞.

• ∇uk
∗
⇀ ∇u∞ in L∞(RN), when k → ∞.

• u∞ � 0.
• u∞ is globally Lipschitz.
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Furthermore, since


uk − ρk(�v · ∇uk) = 0 in {uk > 0}, (7.1)

we obtain, by letting k → ∞, that u∞ is harmonic in {u∞ > 0}. The next lemma provides further information about
the blow-up sequence.

Lemma 7.1. With the notation above, there holds

1. F(uk) → F(u∞) locally in the Hausdorff distance, where F(uk) denotes ∂{uk > 0} for k = 1,2, . . . ,∞.
2. χ{uk>0} → χ{u∞>0} in L1

loc(R
N).

3. ∇uk → ∇u∞ almost everywhere in R
N .

Moreover, if xk ∈ ∂{uk > 0} for all k � 1, then x0 ∈ ∂{u∞ > 0}.

Proof. The first assertion follows from uniform nondegeneracy of uk and fact that uk converges uniformly to u∞. Let
us skip the technical details.

Let α ∈ F(u∞) be a arbitrary free boundary point. Then, there exists a sequence αk ∈ F(uk), such that, αk → α

and

sup
Bραk

uk � cρ.

Therefore, carrying the limits

sup
Bρα

u∞ � cρ.

We have verified, u∞ is nondegenerated along F(u∞). This implies in particular that∣∣{u∞ > 0} ∩ BR(α)
∣∣ � cR.

The above, together with item (1), implies item (2).
Let us turn our attention to item (3). By (1), for any compact set E of {u∞ > 0} ∪ Int({u∞ = 0}), uk satisfies

an elliptic equation in E if k is large enough, thus ∇uk → ∇u∞ uniformly in any such set as k → ∞. However,
∂{u∞ = 0} has Lebesgue measure zero. This finishes the proof of the lemma. �

In addition, arguing as in Theorem 5.4, we also obtain a variational characterization to u∞.

Lemma 7.2. Let uk be a blow-up sequence with respect to a sequence of balls B(xk,ρk), with xk and ρk satisfying
conditions (i) and (ii) described above. Then the limiting function u∞ in an absolute minimizer of J in any ball, where
J is the functional

J(ξ,B) :=
∫
B

1

2
|∇ξ |2 + χ{ξ>0} dx. (7.2)

We are ready to characterize the blow-up limit u∞, which, in particular, will allow a flatness improvement of the
free boundary in the spirit of Alt and Caffarelli [1] and also in the viscosity sense [8].

Theorem 7.3 (Characterization of u∞). Suppose x0 ∈ ∂{u0 > 0}red and let ν(x0) denote the inward unit normal vector
on ∂{u0 > 0}red at x0. Then, for any blow-up sequence uk with xk → x0, we have

u∞(x) = √
2
〈
x, ν(x0)

〉+
.

Proof. Let us suppose, without loss of generality, ν(x0) = eN . We know the blow-up limits of Ω0 and ΩC
0 are the

half planes

{xN > 0} and {xN < 0},
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respectively. Thus, u∞(x) = 0 if xN � 0. However, since u∞ is harmonic in xN > 0 and globally Lipschitz, Liouville’s
Theorem assures u∞ is a linear function. Hence

u∞(x) = αx+
N, for some α > 0.

Now, it is not hard to show, using the minimization property provided by Lemma 7.2, that α = √
2. Indeed, we will

show that any local minimizer of functional (7.2) satisfies the same free boundary condition established in Theo-
rem 6.1. For that, consider the strip

S(M,b) := {
x = (x′, xn)

∣∣ |x′| < M, b < xn < 1
}
,

with M > 0, |b| < 1, We perform a simple perturbation argument as follows: let ψ(x ′) be a smooth function,
0 � ψ � 1, satisfying, ψ(x′) ≡ 1 in |x′| < M − 1 and ψ(x′) ≡ 0 in |x′| > M . Define

W(x) :=
[

α

1 − b
(xn − b)ψ(x′) + αx+

n

(
1 − ψ(x′)

)]+
.

Notice that W agrees with V on the boundary of S(M,b). From Lemma 7.2,

1

2

∫
S(M,b)

∣∣∇W(x)
∣∣2 − ∣∣∇V (x)

∣∣2
dx � −Mn−1b.

Now, ∫
S(M−1,b)

∣∣∇W(x)
∣∣2 − ∣∣∇V (x)

∣∣2
dx = Mn−1

(
α2

1 + b
− α2

)
.

Certainly, ∫
S(M,b)\S(M−1,b)

∣∣∇W(x)
∣∣2 − ∣∣∇V (x)

∣∣2
dx � |b|C,

for a universal constant C. Putting these information together, we obtain

|b|C − Mn−1α2 b

1 + b
+ 2Mn−1b � 0.

Dividing the above expression by Mn−1 and letting M → ∞, we find

−α2 b

1 + b
+ 2b � 0.

Finally diving the this inequality by |b| and letting b → 0 from both sides, we conclude −α2 + 2 = 0 and the theorem
is proven. �

Let us summarize the geometric properties we have proven so far about the free boundary ∂{u0 > 0}:

1. Elliptic equation satisfied on Ω0: In Ω0 := {u0 > 0}, there holds


u0 − �v · ∇u0 = 0.

2. Linear growth away from the free boundary and Lipschitz continuity:

c dist
(
x,F (u0)

)
� u0(x) � C · dist

(
x,F (u0)

)
.

3. Nondegeneracy:

sup
Bρ

u0 � cρ.

4. N − 1 Hausdorff measure property of the free boundary: For any ball B(x,R) centered at F(u0)

cRN−1 �HN−1(F(u0) ∩ B(x,R)
)
� CRN−1.
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5. Uniform density of Ω0 and ΩC
0 : If x0 ∈ F(u0),∣∣ΩC

0 ∩ B(x0,R)
∣∣ ∼ RN and

∣∣Ω0 ∩ B(x0,R)
∣∣ ∼ RN.

6. Classification of global profiles: If ν(x0) denote the inward unit normal vector on F(u0)red at x0, then the blow-up
sequence converges to

u∞(x) = √
2
〈
x, ν(0)

〉+
.

In particular, the Borel function qu0 provided by Theorem 5.6 is constant. Indeed, qu0 ≡ √
2.

Higher regularity of the free boundary, i.e., C1,α regularity of ∂red{u0 > 0}, follows now by a small variant of the
last section in [1], where it is done for the Laplacian. At this stage, the term �v · ∇u0 does not add any substantial
difficult anymore. It is simple to carry it out through the arguments in [1] and therefore we skip the details.

Here it is important to point out that if we are working with the elliptic operator Lu = 
u − �v · ∇u, then a similar
argument as the one used in [8] permits us to interpret our free boundary condition in the sense of the celebrated
works of Luis Caffarelli [7–9] (free boundary condition in the viscosity sense). In [7,8], it is proven, for the Laplacian
operator, that, under the hypotheses above listed, the free boundary is C1,α (flatness implies Lipschitz regularity [8]
and Lipschitz free boundaries are C1,α , [7]). Again, the term �v · ∇u0 is simple carried out through the arguments in
[7,8] and thus we skip the details.

For a general elliptic operator as in (1.3), following the lines of Theorem 6.1, we obtain the following free boundary
condition in the integral sense:

lim
δ→0

∫
B∩{u0=δ}

[〈
aij (x)Du,Du

〉 − 2
] �Ψ · ν dS = 0, (7.3)

for any field �Ψ ∈ H 1
0 (B,R

N). It is also possible to show, such a free boundary condition also holds in the viscosity
sense.

Let us re-emphasize, our approach can be successfully applied for any general elliptic operators of the form

Lu = Dj

(
aij (x)Diu

) + biui + cu,

with aij Hölder continuous, b, c ∈ L∞ and c � 0, as long as we can find solutions of the approximating free boundary
problem{

Dj

(
aij (x)Diu

) + biui + cu = βε(u) in Ω,

u = ϕ on ∂Ω,
(7.4)

that satisfy a useful variational characterization of the form

Fε(uε) = min
ζ∈G

Fε(ζ ) (7.5)

for some appropriated functional space G, where

Fε(ζ ) :=
∫
Ω

(
1

2

〈
aij (x)Dζ,Dζ

〉 + σε(x)ζ + Bε(ζ )

)
dμε (7.6)

and σε and με are like in (2.4). The generalization of the regularity theory developed in [7,8] for free boundary
problems with general elliptic operators as (1.1) is much more involved. However, C. Cerutti, F. Fausto and S. Salsa,
in [12] showed C1,α regularity of Lipschitz free boundaries for operators of the form

Lu = aij (x)Diju + bi(x)ui,

with Hölder continuous coefficients. In a work under preparation, F. Fausto and S. Salsa complete the bridge (at
least for a large class of problems we are particularly interested in) between Flatness and C1,α regularity for elliptic
operators in divergence form. In this paper, they study the implication Flat free boundaries are Lipschitz for operators
of the form

Lu = Dj

(
aij (x)Diu

) + biui,
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with Lipschitz coefficients. Thus, if we assume, aij , bi ∈ Lip(Ω), c = 0, the free boundary obtained as the limiting
process described in this present paper is C1,α smooth around any point of the reduced free boundary.

In connection to the regularity theory for our free boundary problem, it would be interesting to try to derive a
similar monotonicity formula as in [20]. We intend to come back to this issue in a future project.

To finish, let us register that it seems our approach would naturally generalize to study nonisotropic singular
equations, that is, when the singular term also depends upon direction, as long as some variational characteriza-
tion can be established. The simplest generalization would be to consider free boundary problems that are limit of
∂j (aij (x)ui)+ biui + cu = Q(x)βε(u)H(Du), where Q is a bounded and positive function and, say, H(t) = o(t2) as
t → ∞. Uniform Lipschitz regularity of a family of solutions to


u = βε(u)H(Du),

has been established by Caffarelli, Jerison and Kenig in [10], with aid of a rather powerful monotonicity formula
developed there. D. Moreira has recently studied this problem by a least supersolution method, obtaining a nice geo-
metric description of the limiting free boundary. The complete study of nonisotropic singular perturbation problems
for more general (non-linear) elliptic equations is currently in progress. The first advances on fully nonlinear singular
elliptic equations have been recently obtained in [19].
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