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Strong solutions for a compressible fluid model of Korteweg type
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Abstract

We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by
J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem
in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem
leads to model problems in full and half space, which are treated by Dore–Venni Theory, real interpolation and H∞-calculus. For
these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient.
© 2007

Résumé

Nous prouvons l’existence et l’unicité de fortes solutions locales pour un modèle de fluides compressibles isothermes avec
capillarité, dérivé par J.E. Dunn et J. Serrin (1985). L’idée de la démonstration consiste à montrer la régularité maximale d’un
problème linéaire apparenté, afin de formuler un problème de point fixe, résolu par la suite par le principe de la contraction. Le
problème linéaire est transféré par le principe de la localisation aux problèmes de modèle correspondants sur l’espace entier et sur
le demi-espace. Ceux-là peuvent être traités à l’aide de la théorie de Dore–Venni, de l’interpolation réelle et du calcul des H∞.
Pour ces étapes, il est essentiel de trouver les conditions nécessaires et suffisantes pour les inhomogénéités.
© 2007 . .
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1. Introduction

In this paper we study a nonlinear system of partial differential equations that describes the dynamics of a non-
thermal, compressible fluid exhibiting viscosity and capillarity. The density ρ > 0 of the fluid and its velocity field
u ∈ R

n are governed by the equations

∂t (ρu) + ∇ · (ρu ⊗ u + P(ρ)I
) = ∇ · (S + K) + ρf,

∂tρ + ∇ · (ρu) = 0, (1.1)

where the viscous stress tensor S and the Korteweg stress tensor K are
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S = λ∇ · uI + 2μD(u),

K = κ

2

(
�ρ2 − |∇ρ|2)I − κ∇ρ ⊗ ∇ρ (1.2)

with D(u) = (∇u + (∇u)T )/2 the strain and I the unit tensor, λ and μ are viscosity coefficients, κ is a capillarity
coefficient, and P(ρ) and f denote pressure and external forces. The purpose of the paper is to prove existence and
uniqueness of strong solutions to (1.1) in both bounded and unbounded domains locally in time, with initial and
boundary conditions

u = 0, (t, x) ∈ [0, T0] × ∂Ω,

∂νρ = 0, (t, x) ∈ [0, T0] × ∂Ω,

u = u0(x), (t, x) ∈ {0} × Ω,

ρ = ρ0(x), (t, x) ∈ {0} × Ω. (1.3)

To prepare for stating our main result, we compute ∇ · K and ∇ · S as

∇ · K = κρ∇�ρ + (
ρ�ρ + |∇ρ|2/2

)∇κ + ∇κ · ∇ρ ⊗ ∇ρ,

∇ · S = μ�u + (λ + μ)∇∇ · u + ∇ · u∇λ + 2D(u) · ∇μ,

and rewrite (1.1) in the form

ρ∂tu − μ�u − (λ + μ)∇∇ · u − κρ∇�ρ = H(u,ρ), (t, x) ∈ [0, T0] × Ω,

∂tρ + ρ∇ · u + u · ∇ρ = 0, (t, x) ∈ [0, T0] × Ω, (1.4)

with

H(u,ρ) = ρf − ρ∇u · u − ∇P(ρ) + (
ρ�ρ + |∇ρ|2/2

)∇κ + ∇κ · ∇ρ ⊗ ∇ρ + ∇ · u∇λ + 2D(u) · ∇μ.

In the case of constant coefficients, H(u,ρ) = ρf − ρ∇u · u − ∇P(ρ).
The main result of this paper ensures existence and uniqueness on a maximal interval [0, tmax), with 0 < tmax � T0

depending on the initial value (u0, ρ0):

Theorem 1.1. Let Ω be a bounded domain in R
n, n � 2, with C3-boundary, Γ := ∂Ω , and J0 denote the compact

time interval [0, T0], T0 > 0. Let n + 2 < p < ∞ and suppose that

(1) μ,λ, κ ∈ C(J0;C1(Ω)) and μ(t, x) > 0, κ(t, x) > 0, 2μ(t, x) + λ(t, x) > 0 for (t, x) ∈ J0 × Ω ;
(2) P ∈ C2−(R+;R);
(3) f ∈ X = Lp(J0;Lp(Ω;Rn));

(4) u0 ∈ B2−2/p
pp (Ω;R

n), ρ0 ∈ B3−2/p
pp (Ω), ρ0(x) > 0 for all x ∈ Ω ;

(5) compatibility conditions: u0 = 0 in B2−3/p
pp (Γ ;R

n), ∂νρ0 = 0 in B2−3/p
pp (Γ ).

Then there exists tmax ∈ (0, T0] such that for any T < tmax the nonlinear problem (1.4), (1.3) admits a unique solution
(u,ρ) on J = [0, T ] in the maximal regularity class Z1(J ) × Z2(J ) with

Z1(J ) := H1
p

(
J ;Lp(Ω;R

n)
) ∩ Lp

(
J ;H2

p(Ω;R
n)

)
,

Z2(J ) := H3/2
p

(
J ;Lp(Ω)

) ∩ Lp

(
J ;H3

p(Ω)
)
.

In particular, if f ∈ C(J0 × Ω;R
n) we have

u ∈ C1((0, tmax);C(Ω;R
n)

) ∩ C
(
(0, tmax);C2(Ω;R

n)
)
,

ρ ∈ C3/2((0, tmax);C(Ω)
) ∩ C

(
(0, tmax);C3(Ω)

)
.

Moreover, the map (u0, ρ0) → (u,ρ)(t) defines a local semiflow on the natural phase space B2−2/p
pp (Ω;R

n) ×
B3−2/p

pp (Ω) in the autonomous case.
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Remark 1.1. The condition on p, which is used to guarantee that nonlinear terms, such as

ρ∂tu, ρ∇u · u, ρ∇�ρ, etc.,

are defined in certain Lp-spaces, is chosen rather generous and could still be weakened by means of more refined
considerations all nonlinear terms, for instance, in order to further minimise the smoothness assumptions on the initial
data. But this is not our goal here. We thus require p > n + 2 several times. The importance of this restriction relies
on the following considerations. Assuming that v belongs to Z1(J ) = H1

p(J ;Lp(p)Ω;R
n) ∩ Lp(J ;H2

p(Ω;R
n)),

with J = [0, T ] (or R+) and Ω a bounded or unbounded domain with sufficiently smooth boundary. Then, by the
mixed derivative theorem which is due to Sobolevskij [19], see also [17], we obtain for all p ∈ (1,∞) and θ ∈ (0,1)

the embedding Z1(J ) ↪→ Hθ
p(J ;H2(1−θ)

p (Ω;R
n)) for 0 < θ < 1. For instance, choosing θ = 1/2 we conclude v ∈

H1/2
p (J ;H1

p(Ω;R
n)) and this means that ∇v still possesses time regularity. Starting from this general embedding one

can address the validity of

Hθ
p

(
J ;H2(1−θ)

p (Ω;R
n)

)
↪→ Cα

(
J ;Cβ(Ω;R

n)
)
, with pair (α,β) ∈ R

2+.

If p > n + 2, Sobolev embeddings show that v ∈ C1/2(J ;C(Ω;R
n)) ∩ C(J ;C1(Ω;R

n)) and thus

‖v‖C1/2(J ;C(Ω;Rn))∩C(J ;C1(Ω;Rn)) � C‖v‖Z1(J ).

For the case of a compact time interval J = [0, T ], T > 0, the constant C can be chosen uniformly in T , for all v that
vanish at t = 0; this can be easily seen by an extension argument. The above embeddings also show that for p > n+ 2
the regularity class Z1(J ) forms a Banach algebra. Similar investigations for the regularity class Z2(J ) lead to

Z2(J ) ↪→ Hθ3/2
p

(
J ;H3(1−θ)

p (Ω)
)
↪→ C1(J ;C(Ω)

) ∩ C1/2(J ;C1(Ω)
) ∩ C

(
J ;C2(Ω)

)
, θ ∈ (0,1),

where p > n + 2 is again needed to prove embeddings in continuous spaces.

In the following Section 2, we derive a linear problem corresponding to (1.4) and prove maximal Lp-regularity.
The proof primarily consists of solving related full and half space problems and is performed in detail. In Section 3
we solve the nonlinear problem (1.4) via the contraction mapping principle, after rearranging the problem into a fixed
point equation with the aid of maximal regularity of the linear problem. Only estimates showing self-mapping are
carried out, since the estimates for contraction are very similar to the case of self-mapping. Section 4 gathers various
remarks including arguments which show that and how Theorem 1 carries over to unbounded domains.

Model (1.1) can be found in the paper [8] by Dunn and Serrin as well as in [2,4] and [10]. For the whole-space
problem, Ω = Rn, Danchin and Desjardins in [5] proved existence and uniqueness in critical Besov spaces of type
Bn/2

21 (Rn). These spaces are close to L2(R
n) and have the advantage that the embedding Bn/2

21 (Rn) ↪→ L∞(Rn) holds.
The results of [5] comprise (i) global solutions for sufficiently small data and initial data close enough to stable
equilibria, and (ii) local well-posedness for initial densities bounded away from zero and without stability assumption
on the pressure law. Comparable earlier existence results for strong solutions in the whole space R

n due to Hattori
and Li [11,12] were restricted to the case of constant coefficients and very regular initial data (ρ0, u0) ∈ Hs

2(R
n) ×

Hs−1
2 (Rn;Rn) with s � n/2 + 4. In [3], Bresch, Desjardins, and Lin obtained existence of global weak solutions in a

periodic or strip domain and studied various dependencies of the viscosity and capillarity coefficients on the density
as well as related shallow water and lubrication models.

We now briefly comment on the regularity classes we use. Since we are interested in strong solutions, i.e., all
derivatives are supposed to be in Lp(J ;Lp(Ω)), our choices of Z1 and Z2 are probably obvious to the reader, with

the possible exception of the first part of the class Z2. To understand this constraint, i.e. ∂tρ ∈ H1/2
p (J ;Lp(Ω)) as

well as ∂tρ ∈ Lp(J ;H1
p(Ω)) being a consequence of the embedding Z2 ↪→ H1

p(J ;H1
p(Ω)), let us assume that ρ lies

in H1
p(J ;Lp(Ω)) ∩ Lp(J ;H3

p(Ω)) which firstly seems natural by the equations. But in this case, and for p > n + 2,
there holds

u · ∇ρ + ρ∇ · u ∈ H1/2
p

(
J ;Lp(Ω)

) ∩ Lp

(
J ;H1

p(Ω)
)

by virtue of the embeddings

H1
p

(
J ;Lp(Ω)

) ∩ Lp

(
J ;H2

p(Ω)
)
↪→ H1/2

p

(
J ;H1

p(Ω)
) ∩ Lp

(
J ;H2

p(Ω)
)
,

H1
p

(
J ;Lp(Ω)

) ∩ Lp

(
J ;H3

p(Ω)
)
↪→ H1/2

p

(
J ;H3/2

p (Ω)
) ∩ Lp

(
J ;H3

p(Ω)
)
,
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and the fact that all these spaces are Banach algebras. These embeddings arise from the mixed derivative theorem.
By maximal regularity, we might expect that ∂tρ also belongs to Z1/2 := H1/2

p (J ;Lp(Ω))∩ Lp(J ;H1
p(Ω)) due to the

conservation equation, which explains the choice of the regularity class Z2. Hence, for seeking (u,ρ) in Z1 × Z2 we
have to consider the momentum equation in X := Lp(J ;Lp(Ω;R

n)) and the conservation equation in Z1/2. Then, by
well-known trace theorems (cf. [1,6,15]) the data u0 and ρ0 necessarily satisfy

u0 ∈ B2−2/p
pp (Ω;R

n), ρ0 ∈ B3−2/p
pp (Ω).

As usual, here and in the sequel Hs
p denote the Bessel potential spaces and Bs

pq the Besov spaces which coincide
with the Slobodeckij spaces Ws

p for q = p, s /∈ N (fractional Sobolev spaces), see [20,21]. Furthermore, if F is any
function space then we set 0F := {v ∈ F : vt=0 = 0}, whenever traces exist.

We finally remark that the positivity of ρ persists from that of its data ρ0 at least for a sufficiently short time.

2. The linear problem

2.1. Linearisation

We are looking for a “good” linearisation approximating the nonlinear problem in some respects. For this purpose
we introduce the auxiliary function ρ̃(t, x) > 0, for all (t, x) ∈ J × Ω , satisfying ρ̃(0) = ρ0 ∈ B3−2/p

pp (Ω) and being

regular as needed, e.g. ρ̃ ∈ Z2 which implies ρ̃ ∈ C(J ;B3−2/p
pp (Ω)) and thus ρ̃ ∈ C(J × Ω) for p > (n + 2)/3 due to

Sobolev embedding. To assure positivity of ρ̃ we have to demand ρ0(x) > 0 in Ω . We rewrite the nonlinear problem
(1.4) as follows

∂tu − μ̃�u − (λ̃ + μ̃)∇∇ · u − κ∇�ρ = F(u,ρ) + b(u,ρ), (t, x) ∈ J × Ω,

∂tρ + ρ̃∇ · u = G(u,ρ), (t, x) ∈ J × Ω,

u = 0, (t, x) ∈ J × Γ,

∂νρ = 0, (t, x) ∈ J × Γ,

u = u0, (t, x) ∈ {0} × Ω,

ρ = ρ0, (t, x) ∈ {0} × Ω, (2.1)

where all nonlinear terms (both lower and higher order) were summarised into F(u,ρ) and G(u,ρ) reading as

F(u,ρ) = ρ̃−1[−ρ∇u · u − ∇P(ρ) − P(ρ)∇λ + (
ρ�ρ + |∇ρ|2/2

)∇κ

+ ∇κ · ∇ρ ⊗ ∇ρ + (ρ̃ − ρ)∂tu − (ρ̃ − ρ)κ∇�ρ
]
,

G(u,ρ) = −u · ∇ρ + (ρ̃ − ρ)∇ · u, (2.2)

and the linear terms of lower order are summed up to

b(u,ρ) = ρ̃−1[ρf + 2D(u) · ∇μ + ∇ · u∇λ
]
. (2.3)

The functions μ̃ := μρ̃−1 and λ̃ := λρ̃−1 denote the new viscosity coefficients, which inherit all properties of μ and λ,
i.e. μ̃, λ̃ ∈ C(J ;C1(Ω)) and μ̃, 2μ̃ + λ̃ are again bounded below.

2.2. Maximal regularity for the linearised system

In this section we show maximal regularity for the linear problem, that means, we provide necessary and sufficient
conditions for the inhomogeneities which entail existence and uniqueness of solutions in Z1 × Z2. Having in mind
the linearisation (2.1) the linear problem for (v, �) reads

∂tv − μ�v − (λ + μ)∇∇ · v − κ∇�� = f (t, x), (t, x) ∈ J × Ω,

∂t� + β∇ · v = g(t, x), (t, x) ∈ J × Ω,

v = h(t, x), (t, x) ∈ J × Γ,
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∂ν� = σ(t, x), (t, x) ∈ J × Γ,

v = u0(x), (t, x) ∈ {0} × Ω,

� = ρ0(x), (t, x) ∈ {0} × Ω, (2.4)

where the coefficients are again denoted by their original notations and ρ̃ has been replaced by a more general func-
tion β . The main theorem in this section is

Theorem 2.1. Let Ω be an open bounded domain in R
n with C3-boundary Γ . Let J = [0, T ], 0 < T < ∞, and

1 < p < ∞, p 	= 3/2. Suppose that μ, λ, κ ∈ C(J × Ω), β ∈ C1/2(J ;C(Ω)) ∩ C(J ;C1(Ω)) and μ > 0, 2μ + λ > 0,
κ > 0, β > 0 for all (t, x) ∈ J × Ω . Then problem (2.4) has exactly one solution (v, �) in

Z1 × Z2 = H1
p

(
J ;Lp(Ω;R

n)
) ∩ Lp

(
J ;H2

p(Ω;R
n)

) × H3/2
p

(
J ;Lp(Ω)

) ∩ Lp

(
J ;H3

p(Ω)
)
,

if and only if the data f , g, h, σ , u0, ρ0 satisfy the following conditions

(1) f ∈ Lp(J ;Lp(Ω;R
n));

(2) g ∈ Z1/2 := H1/2
p (J ;Lp(Ω)) ∩ Lp(J ;H1

p(Ω));

(3) h ∈ Y(Rn) := B1−1/2p
pp (J ;Lp(Γ ;R

n)) ∩ Lp(J ;B2−1/p
pp (Γ ;R

n));

(4) σ ∈ Y := B1−1/2p
pp (J ;Lp(Γ )) ∩ Lp(J ;B2−1/p

pp (Γ ));

(5) u0 ∈ B2−2/p
pp (Ω;R

n), ρ0 ∈ B3−2/p
pp (Ω);

(6) h|t=0 = u0|Γ in B2−3/p
pp (Γ ;R

n) and σ|t=0 = ∂νρ0|Γ in B2−3/p
pp (Γ ), in case p > 3/2.

Moreover, the linear operator L defined by the left-hand side of (2.4) is an isomorphism between the regularity class
Z1 × Z2 and the space of data including the compatibility conditions, i.e. L ∈ Lis(Z1 × Z2,D) with

D := {
ξ ∈ X × Z1/2 × Y(Rn) × Y × B2−2/p

pp (Ω;R
n) × B3−2/p

pp (Ω): ξ satisfies condition (6)
}

Proof. First step – the necessity part. Suppose (v, �) solves (2.4) and belongs to Z1 × Z2. Then it follows f =
∂tv − μ�v − (λ + μ)∇∇ · v − κ∇�� ∈ Lp(J ;Lp(Ω;R

n)) due to the regularities of v, � and the continuity of
coefficients. By virtue of the embeddings

Z1 ↪→ H1/2
p

(
J ;H1

p(Ω;R
n)

) ∩ Lp

(
J ;H2

p(Ω;R
n)

)
, Z2 ↪→ H3/2

p

(
J ;Lp(Ω)

) ∩ H1
p

(
J ;H1

p(Ω;R
n)

)
we see ∂t�,∇ · v ∈ Z1/2 and thus ∂t� +β∇ · v ∈ Z1/2 as well, since β lies in a multiplicator space of Z1/2. Conditions
(3)–(5) are obtained by well-known trace theorems (cf. [1,6,15]), which we shall encounter later on. Finally, for
p > 3/2 the compatibility conditions h|t=0 = u0 and σ|t=0 = ∂νρ0 on Γ must hold in B2−3/p

pp (Γ ;R
n) and B2−3/p

pp (Γ ),
respectively. The value p = 3/2 has been excluded since the trace theorems leading to 6 are not true for this value.

Second step – the sufficiency part. We follow the strategy for general parabolic problems. The starting point
is localisation w.r.t. space: we choose a partition of unity ϕj ∈ C∞

0 (Rn), j = 1, . . . ,N , with 0 � ϕj � 1 and
supp varphij =: Uj , such that the domain is covered

Ω ⊂
N⋃

j=1

Uj .

After multiplying all equations of (2.4) by each ϕj and commuting ϕj with differential operators we obtain local
problems for (uj , ρj ) := (ϕju,ϕjρ), j = 1, . . . ,N . Considering local coordinates in Ω ∩ Uj and coordinate trans-
formations θj which are C3-diffeomorphisms to smoothness assumptions on the boundary the original problem is
reduced to a finite number of so-called full-space problems related to Uj ⊂ Ω̊ (Uj ∩ ∂Ω = ∅) and half-space prob-
lems for Uj ∩ ∂Ω 	= ∅. Further, the transformed differential operators enjoy the same ellipticity properties etc. as
before, i.e. the principal part remains unchanged. Note that the transformation induces isomorphisms between Sobolev
spaces, i.e.

θj : Hk
p(Ω ∩ Uj ;E) −→ Hk

p

(
R

n+ ∩ θj (Uj );E
)
, E any Banach space,
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for each p ∈ [1,∞] and k = 0,1,2,3. For these (full- and half-space) problems unique solutions will be available,
and after summing up all local solutions we obtain a fixed point equation which can be solved first on a small time
interval (!). Proceeding in this way the problem can be solved on the entire interval [0, T ] after finitely many steps.
As to literature of localisation techniques for bounded domains, we refer to [15,6]; a very detailed description of these
techniques, with application to an example, can be found in [23] and [14]. We start with

(a) The full-space problem. In this case we are concerned with

∂tu − μ�u − (λ + μ)∇∇ · u − κ�∇ρ = f (t, x), (t, x) ∈ J × R
n,

∂tρ + β∇ · u = g(t, x), (t, x) ∈ J × R
n,

u = u0(x), (t, x) ∈ {0} × R
n,

ρ = ρ0(x), (t, x) ∈ {0} × R
n, (2.5)

in Lp(J ;Lp(Rn;R
n)) × H1/2

p (J ;Lp(Rn)) ∩ Lp(J ;H1
p(Rn)) with J = [0, T ], and look for unique solutions (u,ρ) in

the maximal regularity class Z1 × Z2 defined by

Z1 := H1
p

(
J ;Lp(Rn;R

n)
) ∩ Lp

(
J ;H2

p(Rn;R
n)

)
,

Z2 := H3/2
p

(
J ;Lp(Rn)

) ∩ Lp

(
J ;H3

p(Rn)
)
.

Theorem 2.2. Let J = [0, T ] and 1 < p < ∞. Assume that μ, 2μ + λ, κ , β are positive. Then problem (2.5) has
exactly one solution (u,ρ) in the space Z1 × Z2 if and only if the data f , g, u0, ρ0 satisfy the following conditions

(1) f ∈ Lp(J ;Lp(Rn;R
n));

(2) g ∈ Z1/2 := H1/2
p (J ;Lp(Rn)) ∩ Lp(J ;H1

p(Rn));

(3) u0 ∈ B2−2/p
pp (Rn;R

n) and ρ0 ∈ B3−2/p
pp (Rn).

Proof. (i) The necessity part. It is easy to verify the regularities of data the f and g. As regards the initial data, we
exemplarily show how to deal with ρ0. For this, we draw on a general trace theorem, which can be found in [17]
and [22], reading as follows. Assume that I = [0, T ] or R+, s > 1/p and B is an R-sectorial operator1 in a Banach
space X of class HT ,2 i.e. the Hilbert transform is bounded on Lq(R;X) for some (and then all) q ∈ (1,∞) or
equivalently X belongs to the class UMD (unconditional martingale differences), with R-angle φR

B < π . Then there
holds

Hs
p(I ;X) ∩ Lp

(
I ;D(Bs)

)
↪→ C

(
I ;DB(s − 1/p,p)

)
,

with DB(s − 1/p,p) := (X,D(B))s−1/p,p , for 0 < s − 1/p < 1, denoting real interpolation between Banach
spaces X and D(B), and in case of 1 + α > s − 1/p > 1, α > 0, we set DB(s − 1/p,p) := {x ∈ X :Bαx ∈
(X,D(B))s−α−1/p,p}. Applying this result with B = 1 − � and s = 3/2 we then obtain ρ0 ∈ DB(3/2 − 1/p,p)

which is equivalent to B1/2ρ0 ∈ DB(1 − 1/p,p) = (Lp(Rn),H2
p(Rn))1−1/p,p = B2−2/p

pp (Rn). However this means

ρ0 ∈ B−1/2B2−2/p
pp (Rn) = B3−2/p

pp (Rn), which finishes the necessity part of the proof.
(ii) The sufficiency part. Suppose that the data belong to the prescribed spaces. Further on, we may assume w.l.o.g.

that β = 1 as in the other case we can set ũ := βu and κ̃ = βκ . Multiplying the momentum equation with β we obtain
a problem for (ũ, ρ) having the precisely identical form of (2.5), but with β = 1 and κ̃ in place of κ . Next, we define
γ := 2μ + λ and set w := ∇ · u. We then deduce an equation for the auxiliary function w by applying the divergence
operator to the first equation and z�, with z ∈ C\{0}, to the second one. This leads to a problem for (w,ρ) reading as

∂tw − γ�w − κ��ρ = ∇ · f (t, x), (t, x) ∈ J × R
n,

∂t z�ρ + z�w = z�g(t, x), (t, x) ∈ J × R
n,

w = ∇ · u0(x), (t, x) ∈ {0} × R
n,

ρ = ρ0(x), (t, x) ∈ {0} × R
n.

1 In the notion of sectorial operators one replaces the condition of boundedness by means of R-boundedness.
2 Let 1 < q < ∞ and (Ω,Σ,dμ) a measure space, then Lq (Ω,dμ;Y ), Y any Hilbert space, is a Banach space of class HT .



M. Kotschote / Ann. I. H. Poincaré – AN 25 (2008) 679–696 685
Summing up both differential equations entails

∂tw − (γ − z)�w + ∂t (z�ρ) − κ

z
�(z�ρ) = ∇ · f + z�g, (t, x) ∈ J × R

n.

Next, we are looking for a complex number z, such that γ − z = κ/z holds. This condition leads to an equation for z

solved by

z1,2 = 2μ + λ

2
±

√
(2μ + λ)2

4
− κ.

It is easy to see that by the assumptions 2μ + λ > 0 and κ > 0 we have z1,2 ∈ Σφ with φ < π/2. In the following we
take z = z1 and thus z2 = γ − z1 = κ/z1. Now, we are able to solve the problem for q := w + z1�ρ with initial value
q0 = ∇ · u0 + z1�ρ0. Note that q0 lies in B1−1/p

pp (Rn) because of the regularities of u0 and ρ0. Then, the problem for
q takes the form

∂tq − z2�q = ∇ · f + z1�g, (t, x) ∈ J × R
n,

q = q0, (t, x) ∈ {0} × R
n.

Set G = ∂t with domain D(G) = 0H1
p(J ;Lp(Rn)) and let A denote the natural extension of −� to Lp(J ;Lp(Rn))

with domain D(A) = Lp(J ;H2
p(Rn)); then G is invertible and belongs to BIP(Lp(J ;Lp(Rn))) 3 with power angle

θG � π/2, and z2A ∈ BIP(Lp(J ;Lp(Rn))) with power angle θz2A = φz2 < π/2. Since both operators commute, the
Dore–Venni Theorem, see [7,17,18], yields that G + z2A with domain D(G) ∩ D(A) is invertible and belongs to
BIP(Lp(J ;Lp(Rn))) with power angle θG+z2A � π/2. Thus the unique solution is given by

q = w + z1�ρ = e−z2A·t (∇ · u0 + z1�ρ0) + ∇ · (G + z2A)−1(f + z1∇g)

and belongs to the regularity class Z1/2. To see this for the last term, you have to take into account the regularity
assumptions of f and g as well as the embedding

Z1 ↪→ H1/2
p

(
J ;H1

p(Rn;R
n)

) ∩ Lp

(
J ;H2

p(Rn;R
n)

)
.

Since q0 lies in B1−1/p
pp (Rn), we have (1+A)−1/2q0 ∈ B2−1/p

pp (Rn) = DzA(1−1/p,p) and this gives rise to e−zA·t (1+
A)−1/2q0 ∈ Z1. Using the above embedding once more we conclude (1 + A)1/2e−zA(1 + A)−1/2q0 = e−zAq0 ∈ Z1/2.
At length, we are in the position to solve the problem of ρ reading as

∂tρ − z1�ρ = g − q, (t, x) ∈ J × R
n,

ρ = ρ0, (t, x) ∈ {0} × R
n,

where the inhomogeneity g − q ∈ Z1/2 is given. This problem is solved by ρ = e−z1Atρ0 + (G + z1A)−1(g − q) and
it lefts to verify ρ ∈ Z2. We have already seen that q ∈ Z1/2 and this leads to (G + z1A)−1(g − q) ∈ Z2. To prove

e−z1Atρ0 ∈ Z2, we first set ρ1 := e−z1At (1 + A)1/2ρ0 which lies in Z1 as (1 + A)1/2ρ0 ∈ B2−2/p
pp R

n. Hence, we have

e−z1Atρ0 ∈ H1
p(J ;H1

p(Rn)) ∩ Lp(J ;H3
p(Rn)) ↪→ H1/2

p (J ;H2
p(Rn)) and Ae−z1Atρ0 ∈ H1/2

p (J ;Lp(Rn)). In virtue of

the identity ∂te−z1Atρ0 = −z1Ae−z1Atρ0 and remarks before, we get ∂te−z1Atρ0 ∈ H1/2
p (J ;Lp(Rn)).

Since ρ is completely determined, we are able to solve the problem for u, which can be written as follows

∂tu − μ�u = (λ + μ)∇(g − ∂tρ) + κ�∇ρ + f, (t, x) ∈ J × R
n,

u = u0 (t, x) ∈ {0} × R
n.

Here, the right-hand side, which we now call f̃ , is known and belongs to Lp(J ;Lp(Rn;R
n)). Thus, the solution u,

given by u = e−μA·t u0 + (G + μA)−1f̃ , lies in Z1. �
(b) The half-space problem. The next problem concerns with

3 Definition of class BIP : Suppose A ∈ S(X). Then A is said to admit bounded imaginary powers if Ais ∈ B(X, ) for each s ∈ R, and there is a
constant C > 0 such that |Ais | � C for |s| � 1.The class of such operators will be denoted by BIP(X).



686 M. Kotschote / Ann. I. H. Poincaré – AN 25 (2008) 679–696
∂tu − μ�u − (λ + μ)∇∇ · u − κ�∇ρ = f (t, x, y), (t, x, y) ∈ J × R
n+,

∂tρ + β∇ · u = g(t, x, y), (t, x, y) ∈ J × R
n+,

u = h(t, x), (t, x, y) ∈ J × R
n−1 × {0},

∂yρ = σ(t, x), (t, x, y) ∈ J × R
n−1 × {0},

u = u0(x, y), (t, x, y) ∈ {0} × R
n+,

ρ = ρ0(x, y), (t, x, y) ∈ {0} × R
n+, (2.6)

in Lp(J ;Lp(Rn+;R
n)) × H1/2

p (J ;Lp(Rn+)) ∩ Lp(J ;H1
p(Rn+)) with R

n+ := R
n−1 × R+, and we look for unique solu-

tions (u,ρ) in the maximal regularity space Z1 × Z2 defined by

Z1 := H1
p

(
J ;Lp(Rn+;R

n)
) ∩ Lp

(
J ;H2

p(Rn+;R
n)

)
,

Z2 := H3/2
p

(
J ;Lp(Rn+)

) ∩ Lp

(
J ;H3

p(Rn+)
)
.

Theorem 2.3. Let J = [0, T ] and 1 < p < ∞, p 	= 3/2. Assuming that μ, 2μ + λ, κ , β are positive. Then problem
(2.6) has exactly one solution (u,ρ) in the regularity class Z1 × Z2 if and only if the data f , g, h, σ , u0, ρ0 satisfy
the following conditions

(1) f ∈ Lp(J ;Lp(Rn+;R
n));

(2) g ∈ Z1/2 := H1/2
p (J ;Lp(Rn+)) ∩ Lp(J ;H1

p(Rn+));

(3) h ∈ Y(Rn) := B1−1/2p
pp (J ;Lp(Rn−1;R

n)) ∩ Lp(J ;B2−1/p
pp (Rn−1;R

n));

(4) σ ∈ Y := B1−1/2p
pp (J ;Lp(Rn−1)) ∩ Lp(J ;B2−1/p

pp (Rn−1));

(5) u0 ∈ B2−2/p
pp (Rn+;R

n) and ρ0 ∈ B3−2/p
pp (Rn+);

(6) h|t=0 = u0|y=0 ∈ B2−3/p
pp (Rn−1; Rn) and σ|t=0 = ∂yρ0|y=0 ∈ B2−3/p

pp (Rn−1) in case p > 3/2.

Proof. (i) The necessity part. We only discuss the regularities of h and σ . Assume that (u,ρ) belongs to Z1 × Z2
satisfying problem (2.6). Extend u and ρ in t to R by any smooth extension to R+ and then by symmetry, i.e. u(t) =
u(−t) and ρ(t) = ρ(−t) for t � 0. Then ∇ρ also belongs to Z1 due to the embedding Z2 ↪→ H1

p(J ;H1
p(Rn+)), but

now with J = R. We employ the trace theorem, which was stated in the previous proof, with I = R+, s = 2 and B =
(G + A)1/2, G = ∂t with domain D(G) = H1

p(R) and A = 1 − � with domain D(A) = H2
p(Rn−1), and consider B in

X = Lp(J ;Lp(Rn−1)) with natural domain D(B) = D(G1/2) ∩ D(A1/2) = H1/2
p (J ;Lp(Rn−1)) ∩ Lp(J ;H1

p(Rn−1)).

We then obtain the embedding H2
p(R+;X)∩Lp(R+;D(B2)) ↪→ C(R+;DB(2−1/p,p)). Further, interpolation rules

provide

DB(2 − 1/p,p) = B−1DB(1 − 1/p,p) = B−1B1/2−1/2p
pp

(
J ;Lp(Rn−1)

) ∩ Lp

(
J ;B1−1/p

pp (Rn−1)
)

= B1−1/2p
pp

(
J ;Lp(Rn−1)

) ∩ Lp

(
J ;B2−1/p

pp (Rn−1)
)
,

and after restricting to t ∈ J this shows 4.
(ii) The sufficiency part. As in the proof of Theorem 2.3, we may assume w.l.o.g. β = 1. Next, we study the problem

∂tu − μ�u − (λ + μ)∇∇ · u − κ�∇ρ = f (t, x, y), (t, x, y) ∈ J × R
n−1 × R+,

∂tρ + ∇ · u = g(t, x, y), (t, x, y) ∈ J × R
n−1 × R+,

u = h0(t, x), (t, x, y) ∈ J × R
n−1 × {0},

∂yρ = σ0(t, x), (t, x, y) ∈ J × R
n−1 × {0},

u = 0, (t, x, y) ∈ {0} × R
n−1 × R+,

ρ = 0, (t, x, y) ∈ {0} × R
n−1 × R+, (2.7)

with the modified inhomogeneities h0(t, x) := h(t, x) − h̄(t, x), σ0(t, x) := σ(t, x) − σ̄ (t, x), which are supposed
to have the same regularity as h, σ as well as h0|t=0 = 0, σ0|t=0 to ensure compatibility. Later on, we shall see
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which functions h̄ and σ̄ can be chosen. Exactly as in the previous section, we set w := ∇ · u, γ := 2μ + λ, z1,2 =
γ /2 ± √

(γ /2)2 − κ and proceed to obtain an equation for q = w + z1�ρ. In fact, applying ∇· to the first equation,
z1� to the second equation, and summing up these new equations we arrive at

−∂2
yq + F 2

2 q = z−1
2 ∇ · (f + z1∇g), y > 0,

q = q0, y = 0.

Here, F 2
2 = z−1

2 G + A was set with domain D(F 2
2 ) = D(G) ∩ D(A) = 0H1

p(J ;Lp(Rn−1)) ∩ Lp(J ;H2
p(Rn−1)). Due

to the Dore–Venni Theorem, we know that F 2
2 belongs to the class BIP(Lp(J ;Lp(Rn−1))) with power angle θF 2 =

θ
z−1

2 G
� π/2 + | arg(z2)| < π and F 2 is invertible. Further, let B = ∂2

y with domain D(B) = H2
p(R), R : Lp(R+) →

Lp(R) denote the operator of odd extension, i.e. (Rf )(y) = −f (−y) for y < 0, and P+ : Lp(R) → Lp(R+) the
restriction operator to R+. Splitting f into tangential and normal components, i.e. setting

f = (f1, f2), f1 ∈ Lp

(
J ;Lp(Rn+;R

n−1)
)

and f2 ∈ Lp

(
J ;Lp(Rn+;R)

)
,

we can write the unique solution q as

q = q1 + e−F2·yq0, (2.8)

where q0 is not known yet and will be determined later, and

q1 = P+
1

z2
(F 2

2 + B)−1R∇ · (f + z1∇g) = P+
1

z2
F−1

2

∞∫
−∞

e−F2|y−s|R∇ · (f + z1∇g)ds

= ∇x · 1

2z2
F−1

2

∞∫
0

[
e−F2|y−s| − e−F2(y+s)

]
(f1 + z1∇xg) ds

+ ∂y

1

2z2
F−1

2

∞∫
0

[
e−F2|y−s| + e−F2(y+s)

]
(f2 + z1∂sg) ds. (2.9)

By virtue of the necessary assumptions on f and g we deduce q1 ∈ ∇ · [D(F 2
2 ) ∩ D(B)] = 0Z1/2 which includes

q1|t=0 = 0. To attain q ∈0 Z1/2 as well, we have to assure that q0 ∈ DF2(1 − 1/p,p) = 0B1/2−1/2p
pp (J ;Lp(Rn−1)) ∩

Lp(J ;B1−1/p
pp (Rn−1)). We now derive an equation for ρ by utilising the solution formula (2.8) to replace w = ∇ · u

in the second equation of (2.7). In doing so, we obtain

−∂2
yρ + F 2

1 ρ = z−1
1 (g − q1) − z−1

1 e−F2·yq0, y > 0,

∂yρ = σ0, y = 0, (2.10)

with F 2
1 = z−1

1 G + A and D(F 2
1 ) = D(F 2

2 ). This problem is uniquely solved by

ρ = −e−F1·yF−1
1 σ0 + 1

2z1
F−1

1

∞∫
0

[
e−F1·|y−s| + e−F1·(y+s)

](
g − q1 − e−F2·sq0

)
ds

:= ρ1 − 1

2z1
F−1

1

∞∫
0

[
e−F1·|y−s| + e−F1·(y+s)

]
e−F2·sq0 ds. (2.11)

Observe that the solution belongs to the regularity class 0H3/2
p (J ;Lp(Rn+)) ∩ Lp(J ;H3

p(Rn+)) as long as F−1
1 σ0 ∈

DF1(3 − 1/p,p) = 0B3/2−1/2p
pp (J ;Lp(Rn−1)) ∩ Lp(J ;B3−1/p

pp (Rn−1)) and g − q1 − e−F2·yq0 ∈ Z1/2. Note that g

and q1 satisfy this regularity by assumption and formula (2.9), respectively. To determine the unknown function q0,
we consider the trace at y = 0 of ∂tρ + ∇ · u = g, i.e. we study the equation

∂tρ|y=0 + ∂yu2|y=0 = g|y=0 − ∇x · h01, (t, x) ∈ J × R
n−1 (2.12)
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in

Y1/2 := B1/2−1/2p
pp

(
J ;Lp(Rn−1)

) ∩ Lp

(
J ;B1−1/p

pp (Rn−1)
)
, (2.13)

which follows due to the regularity of g, h. Here we have set u = (u1, u2), u1 comprising the first n − 1 components
of u and u2 the last one, and in the same manner h0 = (h01, h02) was decomposed. In order to solve this equation in
question for q0, we still need a solution formula for u2. Therefore we consider the equation for u

∂tu − μ�u = f + κ�∇ρ + (λ + μ)∇w, (2.14)

and simplify the right-hand side as follows

κ�∇ρ + (λ + μ)∇w = ∇(
κ�ρ + (γ − μ)

[−z1�ρ + q1 + e−F2·yq0
])

= ∇
((

κ

z1
− γ + μ

)
z1�ρ + (γ − μ)

[
q1 + e−F2·yq0

])

= ∇(
(μ − z1)z1�ρ + (γ − μ)

[
q1 + e−F2·yq0

])
= ∇(

(μ − z1)
(
∂tρ − g + q1 + e−F2·yq0

) + (γ − μ)
[
q1 + e−F2·yq0

])
= (z1 − μ)∇g + (μ − z1)∇∂tρ + z2∇q1 + z2∇e−F2·yq0.

There, we exploited the identities w + z1�ρ = q1 + e−F2·yq0 and z1�ρ = ∂tρ − g + q1 + e−F2·yq0, see (2.10), and
used several times the relations between z1, z2, γ , κ . Eq. (2.14) is eventually equivalent to

∂tu − μ�u = f̄ − (z1 − μ)∇∂tρ + z2∇e−F2·yq0,

with f̄ := (f̄1, f̄2) := f + (z1 − μ)∇g + z2∇q1 ∈ Lp(J ;Lp(Rn+;R
n)). Then the problem for the last component of u

takes the form

−∂2
yu2 + F 2

μu2 = μ−1f̄2 − μ−1(z1 − μ)∂y∂tρ − z2F2e−F2·yq0, y > 0,

u2 = h02, y = 0,

with F 2
μ := μ−1G + A and D(F 2

μ) = D(F 2
2 ). Putting

ū2 := e−Fμ·yh02 + 1

2μ
F−1

μ

∞∫
0

[
e−Fμ·|y−s| − e−Fμ·(y+s)

]
f̄2 ds,

which is completely known, the solution can be represented in the following way

u2 = ū2 − 1

2μ
F−1

μ

∞∫
0

[
e−Fμ·|y−s| − e−Fμ·(y+s)

](
(z1 − μ)∂s∂tρ + z2F2e−F2·sq0

)
ds.

Note that ū2 lies in 0Z1 by the regularity assumptions of h0, f . Now, we are able to compute ∂yu2|y=0 to find a
determining equation for q0. It holds

∂yu2|y=0 = ∂yū2|y=0 − z2

μ
F2(F2 + Fμ)−1q0 − z1 − μ

μ

∞∫
0

e−Fμ·s∂s∂tρ(t, s) ds,

and by formula (2.11) the expression ∂s∂tρ(t, s) can be computed, resulting in

∂s∂tρ(t, s) = ∂s∂tρ1(t, s) + z−1
1 κ

z1 − z2
F2

[
e−F1·s − e−F2·s]q0.

Note that by the Dore–Venni Theorem the operator Fμ +F2 is invertible and belongs to BIP(Lp(J ;Lp(Rn−1))) with
power angle θFμ+F2 = θF2 � π/4 + | arg(z−1)|/2 < π/2. Thus we have
2
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∂yu2|y=0 = ∂yū2|y=0 − z1 − μ

μ

∞∫
0

e−Fμ·s∂s∂tρ1(t, s) ds − z2

μ
F2(F2 + Fμ)−1q0

− z−1
1 κ

μ

z1 − μ

z1 − z2
F2

∞∫
0

e−Fμ·s[e−F1·s − e−F2·s]q0 ds

= u22 − z2

μ
F2(F2 + Fμ)−1q0 − z−1

1 κ

μ

z1 − μ

z1 − z2
F2

(
(F1 + Fμ)−1 − (F2 + Fμ)−1)q0,

u22 ∈ Y1/2 comprising the first two terms of ∂yu2|y=0. Owing to the above remark, the operators (F1 + F2)
−1 and

(Fμ + F1)
−1 are bounded as well. Using

∂tρ|y=0 = ∂tρ1|y=0 − z−1
1 F−1

1 (F1 + F2)
−1Gq0

and the above computations we obtain, due to constraint (2.12), an equation for q0 reading

−z−1
1 F−1

1 (F1 + F2)
−1Gq0 − z2

μ
F2(F2 + Fμ)−1q0 − z−1

1 κ

μ

z1 − μ

z1 − z2
F2

(
(Fμ + F1)

−1 − (Fμ + F2)
−1)q0

= g|y=0 − ∇x · h1 − ∂tρ1|y=0 − u22.

By virtue of the identities

(Fμ + F1)
−1 − (Fμ + F2)

−1 = z1 − z2

κ
G(F1 + F2)

−1(Fμ + F1)
−1(Fμ + F2)

−1

and

F−1
1 − (Fμ + F1)

−1(Fμ + F2)
−1F2 = Fμ(Fμ + F1 + F2)F

−1
1 (Fμ + F1)

−1(Fμ + F2)
−1

as well as z1z2 = κ , the equation for q0 is equivalent, with setting

ψ := −μz1[g|y=0 − ∇x · h1 − ∂tρ1|y=0 − u22], (2.15)

to

S(F1 + F2)
−1q0 = z

−1/2
1 (Fμ + F2)(Fμ + F1 + F2)

−1ψ, (2.16)

where

S := μz
−1/2
1 FμF−1

1 (Fμ + F1)
−1G + κz

−1/2
1 F2(F1 + F2)(Fμ + F1 + F2)

−1

+ z
1/2
1 F2(Fμ + F1 + F2)

−1(F1 + F2)
−1G.

Let us first remark that ψ belongs to Y1/2 = B1/2−1/2p
pp (J ;Lp(Rn−1)) ∩ Lp(J ;B1−1/p

pp (Rn−1)). Further, the operator
(Fμ + F2)(Fμ + F1 + F2)

−1 is an isomorphism in Lp(J ;Lp(Rn)), which can be seen by the Dore–Venni Theorem,
and after using a shift argument also in Hs

p(J ;Hr
p(Rn)), r, s ∈ R. Finally, real interpolation between these spaces

gives rise to isomorphy in Bs
pp(J ;Hr

p(Ω)) as well as in Hs
p(J ;Br

pp(Ω)). Thus, it can be shown that R := z
−1/2
1 (Fμ +

F2)(Fμ + F1 + F2)
−1 is an isomorphism in Y1/2.

The next purpose is to prove boundedness of the operator (F1 + F2)S−1 with the aid of the joint functional
calculus, the natural analogue of McIntosh’s H∞-calculus. For proofs and details we refer to [16] and [13]. For
X = Lp(J ;Lp(Rn−1)) the pair (G,A) admits a bounded joint H∞-calculus, more precisely, for each δ ∈ (0,π/2),

there exists Cδ > 0 such that for all f ∈ H∞(Σπ/2+δ × Σδ), f (G,A) ∈ B(X) and |f (G,A)|B(X) � Cδ|f |π/2+δ,δ∞ .
Looking at the symbol(

(z−1
1 ζ + η)1/2 + (z−1

2 ζ + η)1/2)s(ζ, η)−1,

i.e. G = ∂t and A = −� are replaced by the complex numbers ζ and η, respectively, we have to show∣∣s(ζ, η)
∣∣ � C

(|ζ | + |η|)1/2
, (ζ, η) ∈ Σπ/2+δ × Σδ (2.17)
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entailing∣∣((z−1
1 ζ + η)1/2 + (z−1

2 ζ + η)1/2)s(ζ, η)−1
∣∣ � C, (2.18)

which in turn gives rise to boundedness of (F1 + F2)S−1 in Lp(J ;Lp(Rn−1)). Observe that the symbol of S can be
written as s(ζ, η) = ζ 1/2s0(λ), with λ := η/ζ in Σπ/2+2δ and s0 given by

s0(λ) = s01(λ) + s02(λ) + s03(λ)

= z
−1/2
1

μ(μ−1 + λ)1/2

(z−1
1 + λ)1/2([μ−1 + λ)1/2 + (z−1

1 + λ)1/2] + z
−1/2
1

κ(z−1
2 + λ)1/2[(z−1

1 + λ)1/2 + (z−1
2 + λ)1/2]

(μ−1 + λ)1/2 + (z−1
1 + λ)1/2 + (z−1

2 + λ)1/2

+ z
1/2
1 (z−1

2 + λ)1/2

[(z−1
1 + λ)1/2 + (z−1

2 + λ)1/2][(μ−1 + λ)1/2 + (z−1
1 + λ)1/2 + (z−1

2 + λ)1/2] .

The next step is to establish a lower estimate for s0(λ) of the form∣∣s0(λ)
∣∣ � C

(
1 + |λ|)1/2

, λ ∈ Σπ/2+2δ, (2.19)

which implies (2.17). It is easy to check that for λ ∈ Σπ/2+2δ and δ < π/2 − | arg(zi)| it holds

C1
(
1 + |λ|)−1/2 �

∣∣s0i (λ)
∣∣ � C2

(
1 + |λ|)−1/2

, i = 1,3,

C1
(
1 + |λ|)1/2 �

∣∣s02(λ)
∣∣ � C2

(
1 + |λ|)1/2

.

Note that μ,κ > 0, z2 = z1, and z1 lies in Σθ\{0} ∩ {z ∈ C: Im z � 0}, θ < π/2. Further, the constants C1 and
C2 are independent of δ. Next, observe that for λ ∈ C+ we have | arg s0i (λ)| < π/2, i = 1,2,3. By continuity of
the argument function we also attain these results for λ ∈ Σπ/2+2δ , provided that |λ| � M . The bound M depends
on δ, more precisely, if δ tends to zero then M goes to infinity. Taking into account these considerations we infer
| arg(s0(λ))| < π for λ ∈ Σπ/2+2δ , |λ| � M . These observations imply the lower estimate∣∣s0(λ,μ)

∣∣ � C
[∣∣s01(λ)

∣∣ + ∣∣s02(λ)
∣∣ + ∣∣s03(λ)

∣∣] � C
[(

1 + |λ|)−1/2 + (
1 + |λ|)1/2]

� C
(
1 + |λ|)1/2

, λ ∈ Σπ/2+2δ, |λ| � M. (2.20)

On the other hand, i.e. for λ ∈ Σπ/2+2δ and |λ| � M , we accomplish∣∣s0(λ)
∣∣ �

∣∣s02(λ)
∣∣ − ∣∣s01(λ)

∣∣ − ∣∣s03(λ)
∣∣ � C1

(
1 + |λ|)1/2 − 2C2

(
1 + |λ|)−1/2

� C1

2

(
1 + |λ|)1/2 + C1

2
− 2C2

(1 + M)1/2
� C

(
1 + |λ|)1/2

,

if M is chosen large enough, which is possible for a sufficiently small δ. Hence, we have established a lower estimate
of the same type as for |λ| � M , and together with (2.20) this yields (2.19). Then, the joint functional calculus for G

and A supplies

(F1 + F2)S−1 ∈ Lis
(
Lp

(
J ;Lp(Rn−1)

))
,

and by using shift arguments and real interpolation we get (F1 + F2)S−1 ∈ Lis(Y1/2). Incorporating the mapping
behaviour of R we eventually obtain

K := (F1 + F2)S−1R ∈Lis(Y1/2) and q0 =Kψ ∈ Y1/2, (2.21)

with ψ defined in (2.15). After all, we have found a unique solution ρ ∈0 Z2 given by (2.11) and (2.21). This enables
us to solve the problem for u, now reading as

−∂2
yu + F 2

μu = μ−1(f̄ − (z1 − μ)∇∂tρ + z2∇e−F2·yq0
)
, y > 0,

u = h0, y = 0.

The unique solution u is given by

u = e−Fμ·yh0 + 1

2μ
F−1

μ

∞∫ [
e−Fμ|y−s| + e−Fμ(y+s)

](
f̄ − (z1 − μ)∇∂tρ + z2∇e−F2·yq0

)
ds,
0
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where all terms belong to 0Z1, since f̄ − (z1 − μ)∇∂tρ + z2∇e−F2·yq0 lies in Lp(J ;Lp(Rn+)) and h0 ∈ DFμ(2 −
1/p,p) = 0B1−1/2p

pp (J ;Lp(Rn−1)) ∩ Lp(J ;B2−1/p
pp (Rn−1)).

Finally, with the aid of this solution, providing a solution operator L0 in case of vanishing initial data, we are
able to construct a solution of the starting problem (2.6) and give an answer for a choice of the inhomogeneities
h0 and σ0. For this purpose we set B = −�x with domain D(B) = H2

p(Rn−1) and A = −∂2
y + B with domain

D(A) = H2
p(R+;Y)∩ 0H1

p(R+;Y)∩ Lp(R+;D(B)). Then A is sectorial, belongs to BIP(Lp(R+;Lp(Rn−1))) with
power angle θA = 0, and generates an analytical semigroup. Using these definitions, we put

(u1, ρ1) := e−B·te−B1/2·y(u00, ρ00), u00(x) := u0(x,0), ρ00(x) := ρ0(x,0),

(u2, ρ2) := (
e−μA·t [u0 − u1|t=0 ] + e−μA· ∗ [

κ�∇ρ2 − (λ + μ)∇∂tρ2
]
,

e−z1A·t [ρ0 − ρ1|t=0 ] + e−z1A· ∗ e−z1A·t[∇ · (u0 − u1|t=0) + z1�(ρ0 − ρ1|t=0)
])

,

where (u2, ρ2) solves the differential equations of (2.6) with right-hand side zero, initial value (u0 − u1|t=0 ,
ρ0 − ρ1|t=0 ), and, above all, trace zero for y = 0. This fact results from the semigroups generated by −z1A, −z2A,
and −μA. If we further define

h0(t, x) := h(t, x) − u1|y=0 , σ0(t, x) := σ(t, x) − ∂yρ1|y=0 − ∂yρ2|y=0 ,

here have in mind h0|t=0 = 0 as well as σ0|t=0 = 0 due to compatibility, the solution of (2.6) eventually takes the form

(u,ρ) = (u1, ρ1) + (u2, ρ2) +L0(f, g,h0, σ0,0,0)

−L0
(
∂tu1 − μ�u1 − (λ + μ)∇ · ∇u1 − κ∇�ρ1, ∂tρ1 + ∇ · u1,0,0,0,0

)
,

which finishes the proof of Theorem 2.3. �
3. The nonlinear problem – Proof of Theorem 1.1

3.1. Unique existence on [0, T ] for T sufficiently small

Firstly, we define the nonlinear operator F(u,φ) being composed of the right-hand side of the nonlinear problem
(2.1) by means of

F(u,ρ) := (
F(u,ρ) + b(u,ρ),G(u,ρ),0,0

)
.

It is an immediate consequence of the definition of F , b, G, see (2.2) and (2.3) in Section 2.1, that the nonlinear
operator F(u,ρ) is a mapping from Z := Z1 × Z2 to X × Z1/2 × Y(Rn) × Y . In the following we want to associate
(2.1) with the abstract equation

L(u,ρ) = (
F(u,ρ),u0, ρ0

)
in M, (3.1)

where the space of data M is given by

M := X × Z1/2 × Y(Rn) × Y × B2−2/p
pp (Ω;R

n) × B3−2/p
pp (Ω).

By Theorem 2.1 maximal regularity of the linear problem has been proved, i.e. L is a continuous one-to-one mapping
from the space of data to the class of maximal regularity, more precisely, we have

L−1 ∈ Lis(Mc,Z1 × Z2), (3.2)

with Mc: = {ω ∈ M: ω satisfies compatibility condition (4)}. Exploitation of this fact allows a fixed point formu-
lation of (3.1) whenever the given data lie in Mc. Before solving this problem locally in time via the contraction
mapping principle, a suitable set in Z1 ×Z2 is required in which contraction and self-mapping can be proved. For this
purpose we introduce a reference function (w,�) defined as the solution of the linear problem

L(w,�) = (
F(ũ, ρ̃), u0, ρ0

)
in Mc. (3.3)

The functions ũ ∈ Z1 and ρ̃ ∈ Z2, the same ρ̃ used in the linearisation, play the role of approximations, i.e. ũt=0 =
u0 and ρ̃t=0 = ρ0. Note that the right-hand side (F(ũ, ρ̃), u0, ρ0) belongs to Mc, in particular, the compatibility
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conditions are satisfied. So, according to Theorem 2.1, we obtain a unique solution (w,�) which belongs to the space
of maximal regularity. Next we introduce a ball in Z1 × Z2 with radius δ and centre (w,�) as follows

Σδ,T := {
(u,ρ) ∈ ZT

1 × ZT
2 : (u,ρ)t=0 = (u0, ρ0),

∥∥(u,ρ) − (w,�)
∥∥

ZT
1 ×ZT

2
� δ

}
,

which is a closed subset of Z1 × Z2. The superscript T indicates to the considered time interval J = [0, T ]. By
the contraction mapping principle we have to verify L−1F(Σδ,T ) ⊂ Σδ,T and contraction of L−1F in the norm of
ZT

1 × ZT
2 . These two properties can be shown, provided the parameters T ∈ (0, T0] and δ > 0 are chosen properly.

For the forthcoming estimates it will be useful to introduce the auxiliary function ψ(T ) defined by

ψ(T ) := ‖ũ − w‖
0Z

T
1

+ ‖ρ̃ − ρ‖
0Z

T
2
.

Apparently, ψ(T ) is bounded and tends to zero for T → 0, which is caused by (ũ−w)t=0 = 0 and (ρ̃ −�)t=0 = 0. At
length, we come to self-mapping and contraction. Let (u,ρ), (ū, ρ̄) ∈ Σδ,T be given. By using L−1 ∈Lis(MT

c ,ZT
1 ×

ZT
2 ) we may estimate as follows∥∥L−1(F(u,ρ),u0, ρ0

) −L−1(F(ū, ρ̄), u0, ρ0
)∥∥

0Z
T
1 ×0Z

T
2

� C
∥∥(F + b)(u,ρ) − (F + b)(ū, ρ̄)

∥∥
XT + ∥∥G(u,ρ) − G(ū, ρ̄)

∥∥
0Z1/2

T

and very similar in case of self-mapping∥∥L−1(F(u,ρ),u0, ρ0
) − (w,�)

∥∥
0Z

T
1 ×0Z

T
2

= ∥∥L−1(F(u,ρ) −F(ũ, ρ̃),0,0
)∥∥

0Z
T
1 ×0Z

T
2

� C
∥∥(F + b)(u,ρ) − (F + b)(ũ, ρ̃)

∥∥
XT + ∥∥G(u,ρ) − G(ũ, ρ̃)

∥∥
0Z1/2

T .

Subsequently, it is decisive that the operator norm of L−1, i.e. the constant C, is independent of the time interval. This
can only be achieved in case of null initial data, which is satisfied by considering differences. This fact will also be
used in the upcoming estimates in which constants occur due to embedding and interpolation inequalities.

Below, only the case of self-mapping will be carried out, since this part is more sophisticated and comprehensive
compared to contraction. The forthcoming procedure can be adopted to the case of contraction, which only needs
few modifications that we leave to the reader. Before proving self-mapping we collect some useful inequalities and
embeddings, of which some were already used before. By using Sobolevskij’s mixed derivative theorem and Sobolev’s
embeddings, see Remark 1.1, we have

Z1 ↪→ H1/2
p

(
J ;H1

p(Ω;R
n)

)
, Z2 ↪→ H1

p

(
J ;H1

p(Ω)
) ∩ H1/2

p

(
J ;H2

p(Ω)
)
,

and for p > n + 2

Z1 ↪→ U1 := C1/2(J ;C(Ω;R
n)

) ∩ C
(
J ;C1(Ω;R

n)
)
,

Z2 ↪→ U2 := C1(J ;C(Ω)
) ∩ C1/2(J ;C1(Ω)

) ∩ C
(
J ;C2(Ω)

)
. (3.4)

Next, let us consider the differences ρ − ρ̃ and u − ũ which will appear several times in different norms. In case of
C(J × Ω) the notation ‖ · ‖∞ is used. Further, by C, Ci , i ∈ N, we denote various constants which may differ from
line to line, but which are always independent of the solution (u,ρ) and, by the remarks above, independent of T .
Having in mind the additional regularity we see

‖ρ − ρ̃‖∞ =
∥∥∥∥1 ∗ d

dt
(ρ − ρ̃)

∥∥∥∥∞
� T ‖ρ − ρ̃‖C1(J ;C(Ω)) � CT ‖ρ − ρ̃‖

0Z2
T ,

‖ρ − ρ̃‖
0U1

T � CT 1/2‖ρ − ρ̃‖
0U2

T � CT 1/2‖ρ − ρ̃‖
0Z2

T ,

‖∇ρ − ∇ρ̃‖
0Z1/2

T � CT 1/2‖∇ρ − ∇ρ̃‖
0Z2

T ,

and
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‖u − ũ‖XT =
∥∥∥∥1 ∗ d

dt
(u − ũ)

∥∥∥∥
XT

� T ‖u − ũ‖H1
p(J ;Lp(Ω;Rn)) � T ‖u − ũ‖

0Z
T
1
,

‖u − ũ‖
0Z1/2

T � CT 1/2‖u − ũ‖
H1

p(J ;Lp(Ω;Rn))∩H1/2
p (J ;H1

p(Ω;Rn))
� CT 1/2‖u − ũ‖

0Z
T
1
,

and

‖u − ũ‖
0Z

T
1

+ ‖ρ − ρ̃‖
0Z2

T �
(
δ + ψ(T )

)
.

In the following, we shall always apply these estimates without pointing out any note of usage. Starting with the linear
part b(u,ρ) we get∥∥b(u,ρ) − b(ũ, ρ̃)

∥∥
XT �

(
4‖ρ̃−1∇μ‖∞ + ‖ρ̃−1∇λ‖∞

)‖u − ũ‖Lp(J ;H1
p(Ω;Rn))

+ ‖f ‖Lp(J ;Lp(Ω;Rn))‖ρ̃−1‖∞‖ρ − ρ̃‖∞
� C

(‖u − ũ‖
0Z1/2

T + ‖ρ − ρ̃‖∞
)
� C(T 1/2 + T )

(
δ + ψ(T )

)
.

Next, we are concerned with the nonlinearity G in Z1/2. It is easy to verify that∥∥G(u,ρ) − G(ũ, ρ̃)
∥∥

0Z1/2
T �

∥∥(ρ − ρ̃)∇ · u∥∥
0Z1/2

T + ‖∇ρ · u − ∇ρ̃ · ũ‖
0Z1/2

T

�
∥∥(ρ − ρ̃)

∥∥
0U1

T ‖∇ · u‖ZT
1/2

+ ‖∇ρ − ∇ρ̃‖
0Z1/2

T ‖u‖UT
1

+ ‖∇ρ̃‖UT
1
‖u − ũ‖

0Z1/2
T

� C1T
1/2(δ + ψ(T )

)(
δ + ‖∇ · w‖ZT

1/2

) + C2T
1/2(δ + ψ(T )

)(
δ + ‖w‖UT

1

)
+ C3T

1/2(δ + ψ(T )
)

� CT 1/2(δ + ψ(T )
)
.

In the end, it is left to observe F in XT . A first estimate gives∥∥F(u,ρ) − F(ũ, ρ̃)
∥∥

XT � C1‖ρ − ρ̃‖∞
∥∥(u,ρ)

∥∥
ZT

1 ×ZT
2

+ C2‖ρ∇u · u − ρ̃∇ũ · ũ‖XT

+ C3
∥∥∇P(ρ) − ∇P(ρ̃)

∥∥
XT + C4

∥∥|∇ρ|2 − |∇ρ̃|2∥∥
XT

+ C5‖ρ�ρ − ρ̃�ρ̃‖XT + C6
∥∥|∇ρ|∇ρ − |∇ρ̃|∇ρ̃

∥∥
XT ,

where the constants Ci , i = 1, . . . ,7, contain various norms of the given functions ρ̃−1, κ , ∇κ and ∇λ. To hold down
the effort we consider the first three terms and the fifth one only, but the remaining terms can be dealt in the same
manner. Proceeding as before we achieve for the first term

‖ρ − ρ̃‖∞
∥∥(u,ρ)

∥∥
ZT

1 ×ZT
2

� CT
(
δ + ψ(T )

)(
δ + ∥∥(w,q)

∥∥
ZT

1 ×ZT
2

)
� CT

(
δ + ψ(T )

)
,

and for the second one

‖∇u · ρu − ∇ρ̃ũ · ũ‖XT � ‖u‖C(J ;C1(Ω;Rn))‖ρu − ρ̃ũ‖XT + ‖ρ̃ũ‖∞‖u − ũ‖Lp(J ;H1
p(Ω;Rn))

� ‖u‖UT
1

(‖ρ − ρ̃‖∞‖u‖XT + ‖ρ̃‖∞‖u − ũ‖XT t
) + C‖u − ũ‖

0Z1/2
T

� C1‖u‖UT
1

[
T

(
δ + ψ(T )

)(
T δ + ‖w‖XT

) + T
(
δ + ψ(T )

)] + C2T
1/2(δ + ψ(T )

)
� C

((
δ + ‖w‖UT

1

)
T + T 1/2)(δ + ψ(T )

)
� C(T + T 1/2)

(
δ + ψ(T )

)
.

In order to treat ∇P(ρ) − ∇P(ρ̃), we have to take into account the local Lipschitz condition (P 2) for P ′ leading to∥∥P ′(ρ)∇ρ − P ′(ρ̃)∇ρ̃
∥∥

XT � ‖∇ρ‖∞
∥∥P ′(ρ) − P ′(ρ̃)

∥∥
XT + ∥∥P ′(ρ̃)

∥∥∞‖∇ρ − ∇ρ̃‖XT

� C1
(
δ + ‖∇q‖∞

)
T 2‖ρ − ρ̃‖

0Z
T
2

+ C2T
3/2‖ρ − ρ̃‖

0Z
T
2

� C
(
δ + ψ(T )

)
(T 2 + T 3/2).

At last, we tackle the lower order term ρ�ρ − ρ̃�ρ̃ in XT . Using the techniques as before, we achieve
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‖ρ�ρ − ρ̃�ρ̃‖XT � ‖ρ − ρ̃‖XT ‖ρ‖C(J ;C2(Ω)) + ‖ρ̃‖∞‖ρ − ρ̃‖Lp(J ;H2
p(Ω))

� C1T
2‖ρ − ρ̃‖

0Z
T
2

(
δ + ‖q‖C(J ;C2(Ω))

) + C2T
1/2‖ρ − ρ̃‖

0H1/2
p (J ;H2

p(Ω))

� C(T 2 + T 1/2)
(
δ + ψ(T )

)
.

All in all, we have shown∥∥L−1(F(u,ρ),u0, ρ0
) − (w,�)

∥∥
0Z

T
1 ×0Z

T
2

= C(T 1/2 + T + T 3/2 + T 2)
(
δ + ψ(T )

)
.

If we choose T ∈ (0, T0] sufficiently small, we succeed in estimating the above inequality by δ, i.e. L−1F is a self-
mapping. Hence, the contraction mapping principle yields a unique fixed point of the nonlinear equation (3.1) in Σδ,T ,
which is the unique strong solution on J = [0, T ] in the regularity class ZT

1 × ZT
2 .

3.2. Continuation and regularity

In order to carry out the process of continuation, we have to ensure that (u(T ),ρ(T )) belongs to B2−2/p
pp (Ω;R

n)×
B3−2/p

pp (Ω) and ρ(T , x) > 0, ∀x ∈ Ω . Note that the regularity follows directly from the trace theorem included in
Theorem 2.1. The positivity of ρ(T ) is required to guarantee the positivity of the coefficients of partial differential
operators in the linearisation (2.1). Hence, the maximal interval of existence [0, tmax) is characterised by the conditions
limt→tmax(u(t), ρ(t)) does not exist in B2−2/p

pp (Ω;R
n) × B3−2/p

pp (Ω;R+) or ρ(tmax, x) > 0 is not fulfilled for all
x ∈ Ω , since otherwise we may apply Theorem 1.1 once again with initial value(

u(tmax), ρ(tmax)
) = lim

t→tmax

(
u(t), ρ(t)

)
to obtain a contradiction to maximality. If λ, μ, κ , f are constant in t , problem (1.1) is autonomous, hence translation
is invariant, which by uniqueness of solution shows that the map (u0, ρ0) → (u,ρ)(t) is a local semiflow in the phase
space B2−2/p

pp (Ω;Rn) × B3−2/p
pp (Ω).

Employing the results and methods of Escher, Prüss and Simonett [9] provides classical solutions in (0, tmax) × Ω

if f ∈ C(J0 × Ω), since in that case the right-hand side ρf lies in C(0, tmax) × Ω due to ρ ∈ Z2(J ) ↪→ U2, see (3.4).
Thus, the proof of Theorem 1.1 is complete. �
4. Extensions and remarks

We first remark that our method to prove strong well-posedness extends to problem (1.1) with coefficients depend-
ing sufficiently smooth on the unknown functions ρ and ∇ρ. In fact, due to the embeddings (3.4) these functions are
continuous and the gradients of μ, λ, and κ , which appear in the nonlinearity F(u,ρ), remain of lower order; e.g.
assuming that κ depends on ρ, ∇ρ then we have

κ
(
t, x, ρ(t, x),∇ρ(t, x)

) ∈ C(J × Ω) for ρ ∈ Z2 ↪→ C
(
J ;C2(Ω)

)
, p > n + 2,

∇κ
(
t, x, ρ(t, x),∇ρ(t, x)

) = ∇xκ + ∂ρκ∇ρ + ∂∇ρκ · ∇2ρ ∈ C(J × Ω;R
n).

Notice that a dependency on u of the coefficients, which could be possible from a mathematical viewpoint, infringes
upon the Galilean invariance. In view of these remarks, the linearisation in Section 2.1 can be applied, but now, with
nonlinearity

F(u,ρ) = ρ̃−1{−u∇u − ∇P(ρ) − P(ρ)∇λ(ρ,∇ρ) + 2D(u) · μ(ρ,∇ρ) + ∇ · u∇λ(ρ,∇ρ)

+ (
ρ�ρ + |∇ρ|2/2

)∇κ(ρ,∇ρ) + ∇κ(ρ,∇ρ) · ∇ρ ⊗ ∇ρ − [
μ(ρ̃,∇ρ̃) − μ(ρ,∇ρ)

]
�u

− [
λ(ρ̃,∇ρ̃) − λ(ρ,∇ρ)

]∇∇ · u + [ρ̃ − ρ]∂tu − [
κ(ρ̃,∇ρ̃)ρ̃ − κ(ρ,∇ρ)ρ

]∇�ρ
}
.

The coefficients of the left-hand side of (2.1) take the form μ̃(t, x) := μ(t, x, ρ̃,∇ρ̃)/ρ̃, λ̃(t, x) := λ(t, x, ρ̃,∇ρ̃)/ρ̃,
and κ̃(t, x) := κ(t, x, ρ̃,∇ρ̃). As to proving contraction and self-mapping in Section 3, some additional estimates
have to be carried out, where the Lipschitz continuity has to be taken into account. Therefore, we obtain the following
result
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Theorem 4.1. Let Ω be a bounded domain in R
n, n � 2, with C3-boundary, Γ := ∂Ω , and J0 denote the compact

time interval [0, T0]. Let n + 2 < p < ∞ and suppose that

(1) μ, λ, κ ∈ C(J0;C1(Ω;C2−(R+ × R
n))),

(2) μ(z) � μ > 0, κ(z) � κ > 0, 2μ(z) + λ(z) � λ > 0 for all z ∈ J0 × Ω × R+ × R
n,

and the assumptions (2)–(5) of Theorem 1.1 are satisfied. Then, the same assertions of Theorem 1.1 hold true for
problem (2.1).

Further, in problem (1.1) we prescribe zero boundary conditions for u and ρ. In the proof of existence and unique-
ness for the linearisation (2.4) these conditions do not play any role, for we have studied the linear problem with
general inhomogeneities on the boundary. This makes considering inhomogeneous or nonlinear boundary conditions
possible, e.g. bD(t, x,u) = 0 and bN(t, x,∇ρ) = 0 on Γ , whose linearisations lead to boundary conditions of type
u = BD(t, x,u) and ∂νρ = BN(t, x,∇ρ), but now with new “good” nonlinearities BD and BN . As to solving this
nonlinear problem, similar estimates as for the nonlinear operator F(u,ρ), see in Section 3.1, have to be carried out
for BD and BN , but now, in the trace spaces Y(Rn) and Y , respectively. For more detail of treating nonlinear boundary
conditions we refer to [22] and [14].

Now, we will briefly perform how one can tackle unbounded domains Ω with compact boundary (or R
n). In this

case, the assumption ρ0 ∈ B3−2/p
pp (Ω) with ρ0(x) > 0 for all x ∈ Ω does not imply the existence of a constant c0 > 0

such that ρ0(x) � c0 > 0 for all x ∈ Ω . On the other hand, such a lower estimate does not go with the regularity
class B3−2/p

pp (Ω) as we require for Theorem 1.1. Thus, we assume that there exist constants ρ̄ > 0 and c0 > −1 such

that ρ0 − ρ̄ ∈ B3−2/p
pp (Ω) and (ρ0(x) − ρ̄)/ρ̄ � c0 for all x ∈ Ω . This implies, for p large enough, ρ0 ∈ C(Ω) and

ρ0(x) � 1 + c0 > 0 for all x ∈ Ω . Introducing the density fluctuation �(t, x) = (ρ(t, x) − ρ̄)/ρ̄ we study the problem
(1.4) for (u,�), which takes the form

(� + 1)∂tu − μ�u − (λ + μ)∇ · ∇u − κ(� + 1)∇�� = H(u,�), (t, x) ∈ J × Ω,

∂t� + (� + 1)∇ · u = −u · ∇�, (t, x) ∈ J × Ω,

u = 0, ∂ν� = 0, (t, x) ∈ J × Γ,

u = u0, (t, x) ∈ {0} × Ω,

� = (ρ0 − ρ̄)/ρ̄, (t, x) ∈ {0} × Ω. (4.1)

Here we used the notations μ = μ/ρ̄, λ = λ/ρ̄, κ = κρ̄, and

H(u,�) = (� + 1)f − ∇P
(
ρ̄(� + 1)

) − (� + 1)u · ∇u + [
(� + 1)�� + |∇�|2/2

]∇κ

+ ∇κ · ∇� ⊗ ∇� + [∇ · u − P
(
ρ̄(� + 1)

)]∇λ + 2D(u) · ∇μ.

Of course, boundary conditions are omitted in case Ω = R
n. If we now take a look at the highest order terms containing

the factor (� + 1), it becomes clear why the second condition for ρ0 is needed. In fact, �|t=0 + 1 = (ρ0 − ρ̄)/ρ̄ + 1 �
1 + c0 > 0 and so the linearisation in Section 2.1 is applicable. Further, coefficients depending on t and x as well as
on ρ and ∇ρ can be admitted by means of supplementing the conditions

lim|x|→∞a
(
t, x, v(t, x),∇v(t, x)

) =: lim|x|→∞b(t, x) = b∞(t), ∀t ∈ J, v ∈ C
(
J ;C1(Ω)

)
,

a ∈ {μ,λ, κ} ⊂ C
(
J ;C1(Ω;C2−(R+ × R

n)
))

, b∞ ∈ {μ∞, λ∞, κ∞} ⊂ C(J ), (4.2)

which are required for the process of localisation. These investigations lead to

Theorem 4.2. Let Ω be R
n or an unbounded domain in R

n, n � 2, with compact C3-boundary, Γ := ∂Ω . Let J0
denote the compact time interval [0, T0] and n + 2 < p < ∞. Suppose that

(1) μ, λ, κ ∈ C(J0;C1(Ω;C2−(R+ × R
n))) and satisfy (4.2);

(2) μ(z) � μ > 0, κ(z) � κ > 0, 2μ(z) + λ(z) � λ > 0 for all z ∈ J0 × Ω × R+ × R
n;
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(3) f ∈ X = Lp(J0;Lp(Ω;R
n));

(4) u0 ∈ B2−2/p
pp (Ω;R

n), ρ0 − ρ̄ ∈ B3−2/p
pp (Ω), with a positive constant ρ̄, and there exists c > 0, so that ρ0(x) � c

for all x ∈ Ω ;

and in case Ω 	= R
n:

(5) compatibility conditions: u0 = 0 in B2−3/p
pp (Γ ;R

n), ∂νρ0 = 0 in B2−3/p
pp (Γ ).

Then the same assertions of Theorem 1.1 hold true for problem (4.1).

A forthcoming paper treats a model with temperature where the balance equations for mass and momentum are
supplemented by one for energy.
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