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Abstract

We propose a free boundary shallow water model for which we give an existence theorem. The proof uses an original Lagrangian
discrete scheme in order to build a sequence of approximate solutions. The properties of this scheme allow to treat the difficulties
linked to the boundary motion. These approximate solutions verify some compactness results which allow us to pass to the limit in
the discrete problem.
© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous proposons un modele de shallow water a frontiere libre pour lequel nous donnons un théoréme d’existence. La preuve
utilise un schéma de discrétisation lagrangien original afin de construire une suite de solutions approchées. Les propriétés de
ce schéma permettent de traiter les difficultés liées au mouvement de la frontiere. Ces solutions approchées vérifient certaines
estimations qui nous permettent de passer a la limite dans le probleme discrétisé.
© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the behavior of a fluid defined in a domain depending on time. The model we propose can be
used in various applications such as fluid-structure interaction problems [12] or the simulation of propagation prob-
lems, for instance the simulation of a spilled oil slick [15] or a fire spread [1]. To characterize the fluid motion we
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consider a shallow water problem with free boundary, the motion of the boundary being characterized by a bound-
ary operator A (some boundary operators are used in V.A. Solonnikov [19], J.T. Beale [2]). This operator allows
to conserve a smooth enough domain and consequently to use classical properties of Sobolev spaces. To solve the
bi-dimensional fluid equations (PP), we propose a Lagrangian scheme. Euler scheme is not appropriate for the dis-
cretization of this kind of problem since we work on a noncylindrical domain. Moreover the Lagrangian description
allows to follow each particle in its motion and thus to take naturally into account the boundary variations. Numerous
papers propose to solve Navier—Stokes equations in a moving domain by using the Arbitrary Lagrangian Eulerian
method. We can cite for instance J. Donéa et al. [7] who give a survey of this method. Let us mention on the subject
our recent work [15] in which we deal with a shallow water problem with free boundary by using the ALE method
and considering that the operator A is zero (the case A = 0 is considered in V.A. Solonnikov [18]). In particular we
use this method to describe the behavior of a pollutant slick at the sea surface.

Our survey follows a series of papers [9—12], dealing with models defined on a domain depending on time. To
solve the problem, the above papers use a method based on a fixed point theorem. The originality of our new approach
is to circumvent the use of such a fixed point. Numerically it allows to decrease drastically the computational time.
Our purpose is to solve the shallow water problem by using a very simple linear scheme where the total derivative
is approached with a finite difference approximation to which we add a regularizing operator B depending on the
discretization step and vanishing as this step goes to 07 [10]. The Lagrangian description is well adapted to describe
the boundary motion. The operator B gives the necessary compactness to justify all the calculations and to pass to the
limit inside the equations. Moreover, this operator gives a meaning to the discretization since it allows to show that a
particle does not leave the domain from a time step to another. The Lagrangian discretization allows us to circumvent
the difficulties linked to the nonlinear terms (advection) and leads us to solve a “nice” linear stationary problem.

At time 7, the fluid occupies a bounded domain £2; of R? with boundary y;. We denote by yp the boundary of
the fluid at initial time. Assuming that yp is smooth enough, we define the deformed boundary as follows: y; :=
{x=X+d(X,t), X € y}, where d corresponds to the displacement d(X,t) = I'(t,0, X) — X, where I'(¢,s, x)
denotes the Lagrangian flow, i.e. the position at time ¢ of the particle located at x at time s. This deformation has
a meaning if the corresponding Lagrangian flow X — I'(¢,0, X) = X 4+ d(X, t) is a diffeomorphism from y, onto
yr :=1T(¢,0, 1), so that all what follows will hold as long as det 7 (X, ¢) # 0 on yp, (where J (X, t) is the Jacobian
matrix associated to the transformation X + I'(¢,0, X)), and I" is one-to-one on yp. Thus we define I"(0, ¢, x) by
r,t.)=r,0, .)’1 and I'(t,s,x) =I'(¢,0,I(0,s,x)). Thanks to operator A, we shall see afterwards that d
is bounded in W1-*°(0, T; W*(y0)) by a bound depending proportionally on the initial data. Thus, if we consider
small data, I" verifies the previous conditions and the deformation has a meaning (see P.G. Ciarlet [4], B. Desjardins
et al. [6]).

We set O = Ute(O,T) 2, x {t}, ¥ = Ute(O,T) ¥; x {t} and n the exterior unit normal to £2; on y;. We suppose that
the fluid is governed by the following shallow water problem

u . _ —0 i
P a;l 4+ - -V)u—puAu+Vh=0 1inQ,
3+ div(hu) =0 in Q,

where u is the velocity, # is the fluid thickness and u is the diffusion coefficient. In order to set the boundary condi-
tions, we introduce the Lagrangian description of the velocity, U : yp x (0, T) — R2, (X, T)+— u(I'(t,0,X),1). On
boundary yy we have

ad(X,1t)
U(X,t):u(X+d(X,t),t):T, (1)
and we characterize the boundary motion y; by a condition on the normal component of the fluid stress tensor o
o(X+d(X,0),0)n(X+d(X,1),1)|detT|(X,1) = A(dU (X, 1)/dt) onyy x (0,T), 2)

where A is an operator defined on yg and vector valued, which takes into account the stress applied to the fluid on the
boundary. We assume that A is the square of the Laplace—Beltrami operator which ensures that

/A(v)-v=fA”2(v)-A”2(v>=||v||i,z<yo>.

Yo Yo
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Notice that this assumption on the mathematical operator A is necessary to keep a smooth free boundary (for more
details about this kind of boundary operator see V.A. Solonnikov [19] and R. Dautray, J.L.. Lions [5]).
The equations are completed by the initial conditions

hologho € L' (20), ho >0, 3)
uo € H*(820). 4)

2. Preliminary results
2.1. Energy estimates
In this section we are going to state and prove some a priori estimates for the problem (P).
Lemma 1. Let (u, h) be a classical solution of problem (P). As P.L. Lions in [14] or P. Orenga in [16], we assume

that
Mo = luolZaqy, + [ hologho + - U @)+ b, <pmin((22) (22
0= = |lUo Lz(.Q) olognop — meas t —|[UQ H2(V)< min B N s
2 0 e e re0.T) 2 0 Con TCon
(5

. H o
<min{ 2——:2 ’ 6
lluoll 22 ( Con CGNT> .

where a and B are two positive numbers such that o + B = 1/2, e is the classical Neper constant and Cgy is the best
constant satisfying Gagliardo—Niremberg inequality

2
||M||L4(Qt) < CGN”””LZ(.Q,)”u”Hl(Q,)' (7)

Then, under assumptions (3), (4) on the data, and for a finite time T, h, u, and d verify the following a priori estimates

ueL*(0,T; H' (2,)) NL™®(0,T; L*(£2))), ®)
hloghe L=(0,T; L' (2))), h=>0, 9)
U e L™(0,T; H*(y)). (10)
de W' (0,T; H*(y)), detJ #0, (11)
helL*(Q). (12)

Proof. We multiply equation (P); by # and we use Leibniz formula. We obtain
1d 1 1 1
EE”””iz(ﬂn - 5/|u|2u.n— §/|u|2divu+§/|u|2u n
Vi £2; Vi

ou
FulDuls g+ [ Vw3
2 Vi

-u=0.

The term | o, VI - u is treated as follows
/Vh-u:/Vlogh~hu
2 2

=—/10ghdiv(hu)+/hloghu~n
2, Vi

oh
= loghg + [ hloghu -n

2 Vi
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d
:/E(hlogh—h)—i—/hloghuon

£2; Vi

—d/hloh d/h /hloh +/h +/hloh

= g T ghu -n u-n ghu - n.
2 2 Vi Vi Vi

Thus, noticing that the continuity equation gives % / 2, h =0, we obtain

/Vh u——/hlogh—i—/hu n.

§2 Vi

We estimate || 2, |u|? div u using the Gagliardo—Niremberg inequality

2 3 2
/ jul divu < Conllull 2o 12 o -
2

So, writing the boundary terms f hu-n—pu ‘U= f u - on on yy and using the boundary condition (2), we

obtain

4 3’1

1 d
Tl 32 g, + 1 Dl g, + dfhogh+ /|A‘/2U| < Conllull 2 el g -

2 Yo

Then, we integrate over (0, t), t € (0, T'). We write

Con [ Mullizqe (g, + DUl q)
0

2 3
g CGN”” ”LOO(OJ;LZ(_QI)) ” Du ”Lz(O,t;LZ(Q,)) + CGNT ”M ”LOO(O,I;LZ(Q;))'

Furthermore, noticing that f 2, h(t)logh(t) > —meas(|J, c0.1) $21) /e, we obtain

Con 2 2 I
o — TTHMHLOO(O;I;LZ(Q,)) ||u||L°°(0,t;L2(Q,)) + ﬁ”M”Lm(O;t;LZ(Qt)) + E”U”LOO(OJ;HZ(}/()))
Con 5
+ (M - ||u||L°O(O,t;L2(Q,))> Nllz200.1.12¢2,) F 17108 AN L 0.1, L1 (2,

1, 1 1,
X EHMO”LZ(QO) +/h010gh0 + zmeas< U Qt) + EHMOHHZ(VO) - MOs (13)

2 10, T)

with ¢+ B = 1/2. Now, we have to verify that @ — ConT /2||ull oo 0:1: 1.2(2,)) > 0 and u—Con/2lull oo r:12(s2,)) > O-
To show this last point, we recall that ug verifies ||“0||L2(.(20) <min(2u/Cgn; 20/(CgnT)). In finite dimension (at
least), there exists #; > 0 such that for all 7 € ]0, 71[, lu(1)]l 120,y < min(2u/Cen; 20/ (ConT)). Supposing that there
exists 71 such that [lu(71) [l ;2(g,) = min(2u/Con; 2a/(ConT)), for instance [lu(t1)ll 12,y = 21/ Con, then estimate
(13) at time ¢1 leads to

21 2
2 —
ﬂ||u||L°°(0,l;L2(Q,)) _:8<—> <M0,

Con

which contradicts (5). We obtain a similar contradiction if ||u(z1)|| 22 = 20/(CgnT)), thus estimates (8)—(10) are
proved.

Remark 2. From relation (1) and estimate on U, we deduce that d € W' (0, T; H 2()/0)) and consequently that the
boundary is of class C!. Thus, for all ¢, we can give a meaning to the trace of a function of H'(£2,). Notice also that
the bound on d allows to ensure that det 7 # 0 and to give a meaning to the deformation.
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To obtain the bound L? on /z, we introduce the gradient operator V in Q and we set W = Z?:l w; with

9t ot
( odivu dcurlu ddivu Odcurlu
wy=p(— —~ +

d 0
w1=< ”‘,ﬂ’()), wy = (uVuy,uVus,0),

’

,0), Wy = (0, 0, div(hu)).

0x1 d0x7 dx7 ax1

With these notations, (P) can be formulated under the form Vi + W = 0. We have u € L2(0, T: H(§2,)), then w; €
H‘l(Q) and w3 € H_I(Q). Moreover, w» € L4/3(Q) C H‘l(Q), since u € L4(Q) N L20, T; H'(£2,)). Moreover
hlogh e L*°(0, T; L'(£2,)), thenh € L2(0, T; H~'(£2,)) and div(hu) = — % € H~'(Q) from which we deduce that
wy € H1(Q). Thus,

Vh=-We H (0)
and so h € L*(Q) if h € L2 _(Q). The bound on A in leoc(Q) can be obtained as in P.L. Lions [13] or in

FJ. Chatelon [3]. In these ré%érences, notice that the authors establish this bound in a simple cylinder domain
(0, T) x £2. This result is still valid in a domain such as Q, since we can apply the reasoning used by F. Flori and
B. Giudicelli [8]. Indeed, since the boundary is smooth enough, we can define K C Uze[O,T] §2; such that K, = K N $2;
is compact for all z. We introduce a cut-off function ¢ € C*°([0, T']; C§°(§2,)) (for instance) such that ¢ = 1 on K and
0<p<1lon Ute[O,T] £2;. Then, we can apply the arguments used by P.L. Lions or FJ. Chatelon on ¢/ and finally

we obtain a bound L2(Q) on ¢ph. O
2.2. Regularization of the problem

We approach the problem (P) by regularizing the continuity equation with the term 842
) W (u-Vyu—pAu+Vh=0 in$2;,
3+ div(hu) +8h> =0 in £2;,

with the previous boundary condition (2). This regularization is an argument allowing us to construct the approximate
solutions in the following sections and in particular to pass to the limit in the discrete equations in Section 5.

Remark 3. The bound on % in L2(Q) obtained in Lemma 1 allows to pass to the limit on § in (P?%) and consequently
to recover the solutions of (P).

In view of the numerical scheme and to conserve the positivity of 4, we renormalize the continuity equation as
follows: dlogh/dt 4+ u - Vlogh + divu + 8h = 0. Thus (P?) can be formulated as

s {%Jr(u-vm-umurwzo in £2;,

Mogh 4 uVlogh +divu+8h=0 in 2.

Notice that this renormalization has a meaning since i € L*(Q)andu € L?(0, T; H'(£2,)) (R.J. Di Perna and PL. Li-
ons [17], P.L. Lions, Lemma 2.3 [13]).

3. Lagrangian discretization

To prove an existence result for the problem (P%), we build a sequence of approximate solutions by using a
Lagrangian scheme. In Section 4, we shall show that these approximate solutions verify some estimations which
allow to pass to the limit in the time-discretized problem in Section 5.

The Lagrangian scheme is well adapted since it allows to follow each particle in its motion and thus naturally takes
into account boundary variations. First, we propose a time-discretization for the domain and we define the approximate
domains 2. Then we introduce the stationary problems solved on each 2. As mentioned in the introduction, to pass
to the limit inside the equations, we introduce in the discretization an operator At* Bu, where 0 < o < 1, such that
D(B) = H3(82,;) for almost all t € (0, T) and Ar* Bu A=0, ) in the sense of distributions.
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3.1. Domain Lagrangian discretization

For the boundary motion we consider the following discretization: for all k € [1, ..., m], with At =T /m, we set
dy(X)=0 (14)
and
di(X) = dp—1(X) + ur—1 (X + dr—1(X)) At, (15)
I (X)=X+dr(X), (16)

where uy is defined afterwards. In the same way we consider the characteristic curves defined by the equation
dx(t)/dt = u(x(t),t) which is discretized using the relation
T
Xprl =Xk +ur(xp)At, kel{0,....m—1}, At=—.
m

By recurrence, we build m approximate domains §2; = {x; € Rz/xk =Xp—1+ Up—1(xg—1)At, xx—1 € 2x—1}. We set

Oar = {(x, 1) e R? x AL, T[/x(t) = xt,
telkAt, (k+ DAL x; € 2, kefl,...,m—1}}
30a = {(y.1) e R? x 1AL, T[/y(t) = Tk(X),
telkAr, (k+ DA, X €eyo.kefl,...,m—1}}
Onr ={(x,1) €R? X 1AL, T[/x(1) = x¢ + (1 — kADuk(xp),
telkAt, (k+ DAt xj € 2, ke{l,....,m—1}}
0 = {0 € R? x |AL, T[/y(t) = Tk(X) + (t — kADux (I (X)),
te[kAr, (k+ DA, X ey, ke{l,....m—1}}.

3.2. Approximate problem

Let us denote by Xy = x;—; the position in £2;_; of the particle located in x; at time t = kAt. We approach
the Lagrangian derivative in the momentum equation by (ux — itx—1)/ At + At® Buy, where ty = kAt, uy = u(xg, ty,),
p—1 = u(F, ti—1) = u(xg —iix_1At, tx_1), 0 < a < 1, B is an operator such that D(B) = H>(£2;) and At® Buy — 0
in the distribution sense when At — 0. We endow Ar*Bu; with good boundary conditions to ensure that

2
At? f-Qk Buy - uy = Ata”uk”H3(Qk)'
Remark 4. The condition on the normal stress tensor is “disturbed” by the Lagrangian derivative approximation, thus
this condition becomes

o(X+dX,0),1)n(X +d(X,0),t)|det T (X, 1) + A1 Tr(Bu) (X +d(X,1),1)
=AU (X,1)/dt) onyyx (0, 7). (17)

Using these notations, we define the stationary problem

up — wALAug + AtVhy + A" Bug = iig_ in £2,
5 loghy + Atdivug + §Athy =loghg_; in 2,
(PO Y ou (T (X))ni (T (X)) |det T | (X) + At Tr(Bug) (Tk (X))

— A(”k(rk(x))*”k—l(rk—l(x))

" ) + boundary conditions for the operator Ar* Buy, on yp,

where Jy is the Jacobian matrix associated to the transformation X +— I (X) = X 4 dy(X), allowing to pass from yy
to yx. We shall see in the following section that Supgc i, ldicllw1.0 () < v/2Ko T, where K depends proportionally
on initial data. Then, if we consider small data, we deduce that det 7; # 0 and I} is one to one on )y, and this
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transformation has a meaning. In the same way, we set J; the Jacobian matrix of the transformation x;4+1 = x; +
Atuy (xx) allowing to pass from £2; to $2x41:

ou du
(1+Atw’: Aty )
Jir = .

ugy ugy
At R 14+ At

0xi2

In this case, we shall see that the term Az® Buy allows us to establish that At Duy is bounded in L°°(£2;) by a bound
which depends proportionally on initial data and Ar'=*)/2, Thus if we choose At small enough, det J; > 0 and the
transformation defined by xj+1 = xx + Atui(xx) has a meaning.

4. Compactness results

We are going now to state and prove some compactness results on the stationary solutions of the M problems
(’P,f ) which allow us to pass to the limit in Section 5. To establish the estimates, we introduce the sequence M}
(k=1,...,m), defined by recurrence by M; = Dy and My = My_; + QuAt + CoAt'"2* At)My_1, where Dy =

fﬂo ho|det Jo| +1/2 f-‘?o u3|det Jo| + 1/2]| A2 (ug o Iy) ||iz(y0) and C; is defined in the proof of the following lemma.

Notice that the sequence (M), >1 (Where m = T /At) converges to DoetT when m — 400 (At — 07). Then for
all At < «, there exists K, such that M,, < K.

Lemma 5. If At is chosen small enough (At < «) and if we assume the condition

2
Ka<2<L> , (18)
Con
we have
W a % 2
sup il 2, < 2, i — i1 12y <2<—) ,
I<i<k LINLA(82) CGN ; i [} LZ(_QZ) X CGN

k k
2 2
A Al o, <C 0 Y At g, < C

i=1 i=1

2 k
H 2 /"
sup |hillz1 (o, <2(—) , At L < CY (6,
(o Milliven S 2\ eay ; iz S

n
sup |lu; o I3 || g2 <V2Ky <2—,
ik T “ =T Con

k 2
"

§ luj o I} —ui_y o 1> <2(—> ,

P 1 L l l HZ(VO) X CGN

where C, C' and C"(8) are independent of At.
Proof. We give the estimates for k = 1, k = 2 and we generalize for all .
Estimates for k =1

We multiply the momentum equation (Pf)l by u; and we integrate over £2;. Taking into account the boundary
conditions described in the previous section (Eq. (17)) we obtain

1 1 5 .
Sutlgagy + 5l = doliza g ) + HALIDullgs g, = At/m divay + A ur 35 g,
2

1 - 1
+/[A<u1 oI = Alwgo Iy)] w0 I =5 / jiol” = > / Juol*| det Jo|.

Yo 21 20
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We have

/[A(u] o) — Augo )] -1 o I =/|A%(u1 or1)|2—/A%(uooro).A%(u1 oY)

Yo Yo Yo

|A%(M0°FO)”§‘2

(vo)”

LAt 2 Lyl 2 1
- 5||A2(u1 OFl)”LZ(yo)"'E”AZ(“l ol —MOOFO)”LZ(VO) B §|

The term — At |, 2 h1divu is estimated by using the continuity equation

. hy 2 hi 2

—At | hidivu; = | hilog=— —8At | h = h110g~—+8At||h1||L2(Q),

ho ho :
21 2 21 2

and we write
hy 2 ~ 2
/hllogﬁ— 5NV g > /(m — o) + 8 At 2 g .
0
21 21

Moreover the continuity equation shows that /1| = hge =214V =0Ath1 > () Finally we obtain

1 1 -
SalGagy + 5l = foliz g, + HALIDuLl G2 g + 11 12

2
v T L2(0)

Dy. (19)

1 1
+8At”h1”iz((21) + EHA%(LH o F])”iz EHA%(ul ol —upo F())H

1 2
+ At +(¥||u1 ”H?(Ql) g

Since 221 € R?, then H3(£2) < W1 (§2)), thus there exists a constant K such that

e =
Atllu oo,y < KA utll g3, <KAL 2 v2——.

Con
This estimate shows that we can always choose At small enough such that detJ; > 0 and the transformation x, =
X1 + u1 At has a meaning.

Estimates for k =2

In the same way, we have

1 2 1 ~ 12 2 . 1+a 2
EHMZHLZ(-QZ) + 5””2 _u1||L2(_Ql) +/"LAIHD”[2”L2(91) — At hzleM2+Af ”u2||H3(.Qz)

§2;
Ly 1 2 Ly 1 2
+3Azwa 0 )|, +5[A47 20 D —uro T,
1 2 L, 1 2
<§ lui | |det~ll|+§”A2(M1°F1)”Lz(y0)~ (20)
29
Gagliardo—Niremberg inequality leads to
1 2 L At 2 K 20 2
5 [l Pldet il < Sl g, + 5 Conllurllzgy lun i g, + 5 AN 2oy Ity 2D

2,

. . d d d d .
since H3c Wl anddetJ, =1+ Atdivu; + At%ﬁﬁ - ﬁﬁ). To handle the term — At fﬂz hodivu,, we
write

. ha 2 hy 2

—At | haodivup = | holog—= —8§At | h5 = h210g~—+6At||h2||L2 @)’

hy hy (822
2 §2 2 2
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and we obtain

s )
[ 2 log 22+l x> [ 2=+ s8tialR

27 2

moreover
/hudew </m + Ar/hl divay + K2 A2 [l iy il o, - (22)
21 21 21

with
Ar/m diviny < il g g ATV L g0,
29

where L 4(p,) is the Orlicz space defined by the N-function A(t) = exp(t?) — 1 and L A'(£2)) its dual defined by a
N-function A’(¢) equivalent to ¢1/log™ (¢). Since Arlte || div uq ||%m(91) < K Dy, then if At is small enough

/A(At divur) = 1+ Ar? divu1||iQ(91) + (AT 1,

2

Thus since

1
1 2 1
1L o) < ||h1||z1(91)(/h110g+h1> < ||h1||L1(g.>+Z/hllog+h1
2 2

1 2
< ”hl ||Ll(f21) + Z”}ll ”Lz(Ql)’

then
3
2

at [ hndivin < CLa Iy g W12 g

2

+ AP il 10, + AP 1117 g - (23)

Thus, from (19) and (20)—(23), and by adding pAt|ju; ||2L2 @) Ve deduce easily the following inequality

1 1 . 1 . Con
SN2l 3ag,) + 5l = dolza gy + 5z = 12, + A (u -l ||Lz(91>) et 131,

+ pADualGa g ) + 1h2ll L1y + ATGS = C3AL ) [hil172 g )+ 8ALIR20175 g

(822)

1 1
+ EHA%au o I — g o )| 72, + 5HA%(uz o o =11 0 T a0y + A AL 1 s g

I, 1 2 _
+ Al ) + 5 [ A2 W2 0 o) [, < Do+ 2081 Do + C2 AL 2 AL Do = Mo,
where
11—« % l—a 2 1—« K2 2
Ai = 1 - At Cl ”hi”Lz(.Qi) - Al K ”hi“Ll(Qi) - At 2 ”ui”Lz(.Q,’)

I—a g2y A% 2 s
— At %K ||A2u,-||L2(yi), withi=1,...,m— 1.
Since we have the condition (18), u — Cgn/2llu1ll 2o,y > 0. Moreover for At small enough § — C3 Atl=22 5 0,
A1 > 0 and the term on the left hand side is positive. Notice also that the properties induced by the operator Ar* B

allow us to show that det J, > 0.
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Estimates for all k

In the same way, we obtain:
k—1

Z CGN 2
(/"L_ 2 ”ul||L2(.Q,))At”ul”H1(Ql)
i=1

k—1
+ WAL Dugl 7o g + 1kl + G = C3 AL ) Y " AtllhillF o g, + 8 A IAkI T g,

i=1

k
1 1 ~
ShuelZaggy + 5 Do = diilza g, +
i=1

k k—1
1
+ 52 A w0 I —uisi 0 L)y + D0 Aid i lys
i=1

i=1
+ ALY g ) +1HA%( or)||2 <M, (24)
Ml T R 1A TN L26) S Mk

Moreover, as for k = 2, the terms A; and u — Con/2||uill 12(g,) are positive. Thus for all k € {1,2,...,m}, we obtain
the announced estimates.

Remark 6. From the discretized continuity equation (P,f)1 and the previous Eq. (24) we have

=)
lo <C.
g<hi—1

Remark 7. From classical results on Sobolev’s spaces we deduce

m

>/

l:l_Qk

1+a 4o

IHa Ita Ita
VX €, ¥y e, AT up(x) — AT up(y)| < A2 [lugllyrooglx — -

2

113(2,, 1 bounded independently of k. In dimension 2, H 3(82p) =

However, inequality (24) shows that A [Ju |
W1 (2,), thus

1—
Vx € 2, Vy €02k, |Atug(x) — Atug(y)| < Ar72 Clx — yl.
If we choose At such that AU~®/2C < 1, this inequality shows that the distance variation from a point to one on the
boundary between two consecutive time steps is lower than the same distance at the previous time step. Thus there are
no point leaving the domain from a time step to the next one. O

5. Passage to the limit on A¢

Here, we show that the approximate solutions have the necessary compactness to pass to the limit in the time-
discretized domain and inside the equations.

5.1. In the time-discretized domain

We introduce the following notations for all k € {0, ..., m — 1}, € [kAt, (k + 1) At[

d(X,t)=di(X), forallse [kAt, (k+1)At] (25)
and

d(X,t) =di(X) +ur(X + de(X))(t —kAt) forallt € [kAt, (k+ DAt (26)
We have

Idill g2¢yy) < Atlluo o Toll 2y
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and
ldiell 52 y) < k=11l 2y + At llttk—1 0 Tie—1ll g2y1)
then
k—1
ldkll g2y < Y Atllui 0 il r2yp)-
i=0
Thus, from Lemma 5, we deduce that
A T
sup kg2
0<k<m H (VO) CGN
Then we obtain
||d||LOO(H2()/0)) vV 2K T N

||d||L°0(H2(y0)) < sup ||dk||H2(y0) + Ar sup lug o Il g2y
0<k<

km <k<m

2uT 2
V2K, T + Aty2K, < K2 4 ar 2
Con Con

and since a[ (X ) =ur(X +dip (X)) forall t € kA, (k + 1)At],

ad
ot
Thus, we deduce that d is bounded in W (0, T’; H?%(yp)). So, there exists d € W0, T; H*(yp)) C W->(0, T;

C'(y)) such that
g Ao g WLOO(O’ T: H2(y0)) weak star.

2p
2Ke <

L*®(H2(n)) GN

Moreover since the embedding of W1’°°(O, T; Hz(yo)) into CO""(O, T:C! (10)), 0 <@ < 1, is compact
d2=% 4 in C%%(0,T; C'(yv)) strong.

Moreover, since ”d“WI"’o(O,T;WI’OO()/())) < limian,%() ||d~||W1’°°(O,T;H2()/())) < (1 + T)\/ 2Ka, we deduce that
detJ(X,1) #0, X € y, t € [0, T], for small data. Moreover, from Lemma 5, we have

Id —d|l g2 < At sup g o Tkl 2y < CAL

(vo) (vo) =

thus
d—d2=%0 in L>(0,T; C](yo)) strong,

then we have Q At At=0, 0.

5.2. In the time-discretized problem

In this section, we give some elements for the passage to the limit in the time-discretized equations. We introduce
the following notations, for all k € {1, ...,m — 1}, ¢t € [kAt, (k + 1) At]

A(R(1), 1) =a(R(t — A0, 1 — Ar) + 4@, 0 _MA(Z_ Af.t— A1) (t — kA1),

h(3(0), 1) = h(3(r — Ar), 1 — Ar) + h(f(t)’t)_h(i(tt_m)’t_At) (t — kA?).

i(x(@),t ) u(xy, ty = kAt) = up (x), IAz()?(t),t)=h(xk,tk=kAt)=hk(xk),
)
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In Q At» the time-discretized solutions verify the problem
- WRWDD _  AGE(1), 1) + A1YBA(R(1), 1) + VAE(1), 1) =0,
* { BEDD | (% (1), 1) divaE (), 1) + Sh(E (1), 1) =0,
with the boundary conditions
&(X +d(X,0),0)iA(X +d(X,1),1)|det T|(X, 1)
+ At Te(Bi) (X +d(X, 1), 1) = —A(dU (X, 1)/dt) on yy, 27)
where ﬁ(X, Hy=u(X + c?(X, 1),t). We set £2; ar = @A, N{(x,t);x € Rz}. The compactness results obtained in

Lemma 5 allow to deduce that

L 1
”u(x(t), t) ”LOO(LZ(_QI’AI)) < Oil;'lgk ”Ml “LZ(.Q,-) < 2C—GN

and

Ja(z @, t)”Lz(Hl(.Q,A,)) /“ (*o, I)HHI(Q,A,) ZAt”uk”Hl(.Q) <CAr.
2 k=1

Then, there exists u € L0, T; L*>($2,)) N L?(0, T; H'(£2;)) such that

i —u in L0, T; L%(£2,)) weak star,
4—u inL%0,T; H'(£2,)) weak.

In addition

m
Al A Al A 2
/”u(x(t), 1) =ik — AN, 1= A) |12 =C > Atflug —ug— ”iz(ﬂn < CAt.
' k=1
So we deduce that i (x(2), ) —u(x(t — A1), t — At) A=0, (i L?(Q) strong. Moreover, according to the estimates

on uy, we show that

”ﬁ(’%(t)’ t) ”LZ(QA,) <C

and
m
la(k@), 1) — a(Z( — A, t — Ar) HLz(QA) ZAtHuk Uj 1||L2(9) CAt.
k=1

We thus deduce the following convergence results:

{IZ 42=9%0 in L?(Q) strong, (28)
i A=0, in L2(Q) weak.
In the same way there exists h € LZ(Q) such that

hA2=% hin L2(0, T; L*(82,)) weak. (29)

Moreover from Remark 6 we deduce

1

T N
h(z(@),1) '"/
log( - =A
(/f‘og(h(i(t—At),t—At)>D ’.Z
At 2t Ar =l

=1
k

hi
log< ) ' < CAt
hi—1

) 2120, 0 in L'(Q) strong.

thus

. ( h(G(0),1)
hR(t — A1), t — At
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As /1 is bounded in L?(Q), we deduce from this strong convergence that
h(E(0),1) = (k@ — A, 1 — A1) 22% 0 in LP(Q) strong, p <2,

and so consequently that

h—h2=%0 in L?(Q) strong, p < 2. (30)

We show now that di /9ot Ai=0, du /9t +u - Vu in the sense of distributions. Since QAt Ai=0, Q,forall ¢ € D(Q),

there exists At such that VA7 < At, supp ¢ € Q Ar- Considering a time step At < At, we multiply du/dt by ¢ €
D(Q), we obtain

/ u(x(),t) — ﬁ()%A(t — At),t — At) -¢(}2(t), t)
t
Oni
u(x(),t) . u(x(t — Ar),t — Ar) .
:A/ TEOD (0.0 _Af N B(R(0).1). (31)
Onar Onar

In the last term we introduce the following variable change: t* = ¢ — At. We notice J the Jacobian matrix associated
to this variable change and det J its determinant

detJ = 1+ Ardiva(£(r*), 1) + A2 (Da(3 %), 1))

where (D)% = 3;1 9% _ 34 38 Thig determinant is strictly positive and bounded if A¢ is small enough according
X] 0x2 dxp 0x1

to the compactness of Lemma 5. Thus we obtain, using that [5 = [ T Qun

T—At

3 = / u(x(t) D, (2@, 1) / / u(x(t*) ) PR+ A, t* + At) det J
O At 2 p
T—At
= / u(x(t) 28 (2@, 1) / / M(x(t*) ) PR+ A, 1+ Ar)
@ At Q2px Ay
T—At
/ / divia (R(*), r*)a (@), ) - ¢(£@* + Ar), t* + Ar)
At Q2px py
T—At
— At / / |Da(R*), ) P2 (R(*), %) - p(R(* + Ar), * + A1),
At Qpx py

Using that fT At _fATt'_fTT_AZ',We find
G = / ﬁ()?(t),t)-¢(x(l)’t)_¢(X(I+Al),t+At)

. At
Oar
T A ~
u(x(),t n
+ / / %t))~¢(x(t+m),r+m)
T—At ¢ A
A[——>O>0 see Remark (8)
T—At

/ / divii(£(), 1) (£(t), 1) - ¢(R( + An), t + Ar)

At 24 Ar
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T—At

— Af / / |Di(2(), 1) "4 (2(), 1) - p(R(t + AD), t + At).

21, A1

Atj—oé 0 see Remark (9)

To simplify we do not make appear the terms going to 0 as Az goes to 0T, so (31) can be written under the form

(31) = / a0, 1) PEOD =BG, 1+ A1

At
Oar
/ ﬁ()?(t),t) . d(x(t),t 4+ At) — p(X(t + At), t + Ar)
At
Onr
T—At
/ /dwu 20, 1)a(£@). 1) - p(X(r 4+ A1), t + At)
At Q2 A
__ / ﬁ()m),t).¢(X(t),t+At)—¢>(X(t),t)
At
O
R QX () + Aru(x(t),1),t + At) — ¢ (X(t), t + Ar)
—/u(x(t),t)- X
t
T—At
/ /dlvu 2@, 0)a(X(0), 1) - ¢ + A1), t + Ar).
At 24 A

We pass to the limit on At in each term V¢ € D(Q)

¢(X(t),t+AAt: —¢(x@),1) =<u(x(t)’t)’ 99 (x(1), 1)

lim u(x@,t) - ,
AI=0 (£).1) ot >D’(Q),D(Q)
Oar

¢(x(t) + At (x(2),1),t + At) — p(x(1), t + At)

limO a(x(),1)-

At— At
O
2 N nn A
. A i (x(@) + Atu(x(t),t),t + At) — ;i (x(1),t + At)
= tim 3 [ e iy
=0

2 2
- ZZ<“I‘(X<’>’ O (e, 1), 22ED-D

dx; >D/(Q>,D<Q)

and

lim / /dlvu @), 1) x(t),t)~<b()?(t+At),t+At)=(u(x(t),t)divu(x(t),t),qb(x(t),t))D,(Q))D(Q).

At—0
At .Q; At

Finally we obtain

w(x(),t) —u(x( — A, t — Ar)
/ ¥

-p(X(0), 1)
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0P (x(2),1)
_<M(X(t)’ % ot >D’(Q)’D(Q)

2 2

8 i ,
ZZ< X(t) u] x(t) t) %>
- y D'(0),D(Q)

(u x(1), t) dlvu(x(t), t), ¢(x(t), t))D,(Q),D(Q)

= <w’ ¢(x(t), l‘)>
! D'(Q),D(Q)

+ ((u(x(0), 1).Vu(x(),1)), ¢(x @), t))D/(Q)’D(Q)

+{u(x @), 1) divae(x(0), 1), $(x(1). 1)) ). (o)
(u(x(t), t) divu(x(t), t), ¢(x(t), t))D/(Q),D(Q)’ (32)
thus
lim / M~¢()?(t),t)=<M+(u(x(t),t)-V)u(x(t),t),¢(x(t),t)> . (33)
At—0 ot ot D'(Q).D(Q)
O
Remark 8. According to the definition of the support of ¢, there exists At such that
|: U £ a1 X {t}] Nsuppp =, forall At < At.
te[T—At,T]
Remark 9. We have
T—At
¢ / / ||Da (%), t)|2ﬁ()2(t), t)-p(R@). 1)
At QI,A[
m—1
<2arsup ||uk||Lz(Qk)< > At g, )) sup [l 2o<(2,)-
k=1
according to estimates obtained in Lemma 5
T—At
At / / |Da@), 1) (k@) 1) - o), 1)] < C'Ar'~
0 £
thus since 0 < o < 1
T—At
AlimO At / / |Di (%), t)|212(£(t), 1) - (%), 1) =0.
t—
At $2t A
We use the same method to pass to the limit in
/ 810gh8(x(t), t)(p()?(t), t),
t
Oar
we obtain
<w +u(x(t),t)~Vlogh(x(t),t),¢(x(t),t)> ) (34)
ot D'(0).D(Q)

Finally, in the sense of distributions, when At goes to 0T, (’5) leads to (P?).
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5.3. Passage to the limit in the boundary conditions

To obtain estimates of the first section and pass to the limit in the regularized problem (P?), we have to show the
boundary condition (2). To do this, we formulate the time-discretized problem under the following variational form

ol N
/ a_L; P+ / Vi Vo — / hdive + Ar / BY()- B} ()
aAt QAT @Ar @At
0 ~
+<—A‘/2<U>,A1/2(¢>> =0, V$eD(0,T;CORY), (35)

ot D/(0.T: L2 ()
where @(X,t) = ¢p(X + c?(X, t), t). The relation (32) is still valid if we take ¢ € D(0, T C*(R?)), but we cannot at
this point apply directly the Green formula and write the relation (33) for ¢ € D(0, T; C*°(RR?)). Thus, by noticing
thatd 229 ¢ in L>(C!) and U is bounded in L°(H?2(y)), we only deduce that, at the limit,

a¢ 2 2 3(25‘
/u~5—ZZ/uiujg;—/divuu~¢+/Vu~V¢—/hdiv¢
0 i=lj=lg 0 0 0
9
+<—A1/2(U),A1/2(q>)> =0, V¢eD(0,T;C®[RY). (36)
ot D/(0.T: L2 ()

Moreover, in the previous section we have shown that
ou Ly
§+uVu—Au+Vh=0 in D'(Q).

Since uVu € L*3(Q), then ‘3—’; — Au+Vhe L*3(0Q). So considering a function ¢ € D(0, T'; C*°(£2;)) we have
0
/(B—I:—Au+Vh>-¢+/((M-V)u)-¢=0. (37)
0 0

Jup

To apply the Green formula, we introduce ®; = (_W + h,0,u1) and ®, = (0, —% + h,uy). Thus, (37) can be
formulated under the form

2
> [@eis + [ (w-vu)-s=0.
i=lo 0

where div represents the divergence operator in Q. Then we can apply the Green formula in Q and we obtain

2 2 2
a9
/M'¥+[V'4'V¢+2/ui¢i1\b—X;/fﬁivm~Nx+Z/¢ihiNx,-
0 i=ly i=l%

0 i=ly
2 2 ¢, 2
—ZZ/uiujg;—/divuu~¢+Z/ui¢iu~NX=0, (38)
i=1 /ZlQ Q l:lE
where N = (Ny,, Nx,, N;) is the unitary outward normal of Q. So, noticing that u - Ny = —N, and fz YNy, =

jOT J,, ¥ni, we obtain the relation (2) in W10, T; H~%(yp)) by combining (36) and (38).
6. Concluding remark
This survey follows a series of papers [9-12] dealing with fluid structure interaction problems in which a thin

structure (plate or shell) surrounds a domain occupied by a compressible fluid. In these papers, we give existence
results in which the proofs are based on approximate solutions constructed by using a fixed point method which
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connects the fluid problem and the structure equation. Numerically, the method proposed in the present survey allows
to avoid the use of such a fixed point and consequently to decrease the computational time. Notice also the essential
role of the boundary operator A since it ensures some physical properties and the regularity of the boundary, which is
necessary to pass to the limit inside the equations.
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