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Abstract

Semiconcavity results have generally been obtained for optimal control problems in absence of state constraints. In this paper, we
prove the semiconcavity of the value function of an optimal control problem with end-point constraints for which all minimizing
controls are supposed to be nonsingular.
© 2007
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1. Introduction

The mathematical literature is rich of results that describe the regularity of the value function of optimal control
problems without state constraints, much less so if constraints are present.

For instance, given (t, x) ∈ [0,∞) × R
n, consider the optimal control problem which consists of minimizing, with

respect to u(·), the Bolza type functional

J
(
t, x;u(·))=

t∫
0

L
(
yu(s; t, x), u(s)

)
ds + �

(
yu(0; t, x)

)

where yu(·; t, x) is the solution of the state equation

ẏ(s) = f
(
y(s), u(s)

)
a.e. in (0, t), y(t) = x.

If f is sufficiently smooth, then the value function

v(t, x) := inf
{
J
(
t, x;u(·)) | u(·) ∈ L1} (t, x) ∈ [0,∞) × R

n
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can be shown to be, roughly speaking, as regular as the problem data L and �, where the term regular stands for
continuous, Lipschitz continuous, or semiconcave, see, e.g., [4] and [8].

We recall that a function g : Ω → R defined on an open set Ω ⊂ R
N is said to be locally semiconcave if for each

compact convex set K ⊂ Ω , there is a positive constant CK such that

μg(x) + (1 − μ)g(y) − g
(
μx + (1 − μ)y

)
� μ(1 − μ)CK |x − y|2

for any μ ∈ [0,1], any x, y ∈ K . The importance of semiconcavity in control theory is widely acknowledged. Initially
used as a tool for uniqueness in dynamic programmimg, it is nowadays mainly regarded as a property ensuring better
regularity than a.e. differentiability: indeed, the Hausdorff dimension of the singular set of a semiconcave function can
be sharply estimated, and the way how singularities propagate is fairly well understood, see [8]. Moreover, semicon-
cavity has been successfully applied to Lyapunov stability and feedback stabilization for nonlinear control systems,
see for example [18,19,23], and [20] for further references.

In the presence of state constraints, however, it turns out that the only semiconcavity results that are available are
restricted to optimal exit time problems, see [5–7], and [8]. In particular, for the above problems, no constraints can
be active on the interior of trajectories and terminal time must be free.

In the present paper, we are interested in obtaining the semiconcavity of the value function of a fixed terminal time
Bolza problem, with initial cost � replaced by an end-point constraint. More precisely, given x0 ∈ R

n, for any control
u(·) ∈ U := L1([0,∞);R

m), let us denote by xu(·) the solution of the Cauchy problem

ẋ(s) = f
(
x(s), u(s)

)
, s > 0 a.e., x(0) = x0, (1)

on the interval [0,∞).1 The value function V : (0,∞) × R
n → R ∪ {∞} is then defined as

V (t, x) := inf

{ t∫
0

L
(
xu(s), u(s)

)
ds

∣∣∣ u(·) ∈ U s.t. xu(t) = x

}
, (2)

with the convention that V (t, x) = ∞ if there is no control u(·) ∈ U such that xu(t) = x. This problem is much more
complicated that the one with an initial cost: to begin with, V may well be equal to ∞ on a large part of (0,∞) × R

n.
Also, in this case there may be abnormal extremals, which can be associated, roughly speaking, to non-Lipschitz
regularity points of the corresponding value function. To cope with such difficulties we will use the approach of
geometric control, assuming that our problem admits no singular optimal controls (see Section 2 for definitions).
Moreover, since our method is based on the Pontryagin Maximum Principle, we will restrict the class of control
system to affine systems of the form

ẋ = f (x,u) := f0(x) +
m∑

i=1

uifi(x), (3)

where f0, f1, . . . , fm are m vector fields on R
n, and where u = (u1, . . . , um) belongs to R

m. We will suppose that:

(A1) the family {f0, f1, . . . , fm} consists of vector fields of class C
1,1
loc on R

n with sublinear growth, i.e., such that∣∣fi(x)
∣∣� M

(|x| + 1
)
, ∀x ∈ R

n, ∀i = 0,1, . . . ,m,

for some constant M > 0;
(A2) the Lagrangian L satisfies the following conditions:

(i) for any x ∈ R
n, the function u 	→ L(x,u) is of class C2, and (x,u) 	→ D2

uL(x,u) is continuous on R
n ×R

m

with positive definite values;
(ii) there exist c0 � 0 and θ : R+ → R+ such that θ(q)/q → +∞ as q → +∞, and

L(x,u) � θ
(|u|m

)− c0, ∀x ∈ R
n,∀u ∈ R

m;
(iii) for all r > 0 there exists K(r) > 0 such that

|ζ | � K(r)θ
(|u|m

)
,

for all x ∈ Br,u ∈ R
m and ζ ∈ ∂xL(x,u);

1 Here, we assume for sake of simplicity that any solution xu(·) is defined on [0,∞).
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(iv) L is locally semiconcave in the x-variable uniformly for u in all compact sets of R
m, that is, for each

compact convex set K ⊂ R
n and each compact set U ⊂ R

m, there is a constant CK,U > 0 such that

μL(x,u) + (1 − μ)L(y,u) − L
(
μx + (1 − μ)y,u

)
� μ(1 − μ)CK,U |x − y|2,

for an y μ ∈ [0,1], any x, y ∈ K , and any u ∈ U .

In order to prove the semiconcavity of the value function of optimal control problems without of state constraints
one commonly applies PDE techniques based on comparison arguments, or else direct methods which use ad hoc
perturbations of optimal trajectories, see, e.g., [8]. In the present case, our technique is completely different: invoking
a nonsmooth version of Pontryagin’s Maximum Principle, we manage to represent optimal trajectories as a family
of arcs parametrized by the elements of a suitable compact set. Then, the smooth dependence of such a family on
parameters yields the required regularity.

As a corollary of our main result, we derive the semiconcavity of the distance function associated with a sub-
Riemannian structure. We note that the regularity of such a function has so far been investigated only in a subanalytic
set-up, see [1,13], and [24].

The outline of the paper is the following. In Section 2, we introduce the end-point mapping and the notion of
singular control. In Section 3, we derive regularity properties of the value function, and in Section 4 we prove opti-
mality conditions based on the regularity of V . Section 5 is devoted to a special class of problems associated with the
so-called fat distributions, while Section 6 studies the distance function in the general sub-Riemannian case.

Notation. Throughout this paper, we denote by 〈·, ·〉 and | · |, respectively, the Euclidean scalar product and norm in the
state space R

n. For any x ∈ R
n and any r > 0, we set B(x, r) := {y ∈ R

n: |y − x| < r}, and we use the abbreviations
Br := B(0, r), B := B1.

We denote by 〈·, ·〉m and | · |m, respectively, the Euclidean scalar product and norm in the control space R
m.

For any matrix M , we denote by M∗ the transpose of M , and by ‖M‖ its norm (with respect to Euclidean norm).
For any control u(·) ∈ U := L1([0,∞);R

m), we denote by ‖u(·)‖1 the L1 norm of u(·).

2. The end-point mapping

Let a point x0 ∈ R
n and some time t > 0 be fixed. The end-point mapping associated with system (3) (with initial

state x0 at time t ) is the function defined by

Ex0,t :U −→ R
n, u(·) 	−→ xu(t).

Recall that U is a Banach space with the L1-norm. The differential of the end-point mapping is described by the
following well-known result.

Proposition 2.1. Under assumption (A1), Ex0,t is of class C1 on U , and its differential at some control u(·) is given
by the linear operator

dEx0,t
(
u(·)) :U −→ R

n, v(·) 	−→ ζ(t),

where ζ(·) is the unique solution of the Cauchy problem

ζ̇ (s) = A(s)ζ(s) + B(s)v(s), s ∈ [0, t] a.e., ζ(0) = 0.

Here, matrices A(s) and B(s) are defined by

A(s) := ∂f

∂x

(
xu(s), u(s)

)
, B(s) := ∂f

∂u

(
xu(s), u(s)

)
,

for a.e. s ∈ [0, t].

The proof of Proposition 2.1 is straightforward, see [15] or [24].

Remark 2.2. Under assumption (A1), the function

Ex0 : (0,∞) × U −→ R
n,

(
t, u(·)) 	−→ xu(t),
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is indeed of class C
1,1
loc on (0,∞) × U . This fact will be useful in the sequel.

Notice that, by definition,

A(s) = df0
(
xu(s)

)+ m∑
i=1

ui(s) dfi

(
xu(s)

)
,

and

B(s) = (f1
(
xu(s)

)
, . . . , fm

(
xu(s)

))
for a.e. s ∈ [0, t]. So, by Proposition 2.1, the differential of Ex0,t at u(·) corresponds to the end-point mapping asso-
ciated with the system obtained linearizing (3) along (xu(·), u(·)), with initial condition 0 at time t = 0. Therefore we
can represent dEx0,t (u(·)) by

dEx0,t
(
u(·)) :U −→ R

n, v(·) 	−→ S(t)

t∫
0

S(s)−1B(s)v(s) ds, (4)

where S(·) is the solution of the Cauchy problem

Ṡ(s) = A(s)S(s), S(0) = In.

We now introduce a notion which is crucial for our approach.

Definition 2.3. A control u(·) ∈ U is said to be singular for Ex0,t if dEx0,t (u(·)) is not surjective. Otherwise, u(·) is
said to be nonsingular or regular.

Let us define the pre-Hamiltonian H0 : R
n × R

n × R
m → R by

H0(x,p,u) := 〈p,f (x,u)
〉

= 〈p,f0(x)
〉+ m∑

i=1

ui

〈
p,fi(x)

〉
, (5)

for any triple (x,p,u) ∈ R
n × R

n × R
m. Notice that H0 is of class C

1,1
loc in the x variable, and of class C∞ in p,u.

Adopting Hamiltonian formalism, we have the following well-known characterization of singular controls.

Proposition 2.4. A control u(·) ∈ U is singular for Ex0,t if and only if there exists an absolutely continuous arc
p(·) : [0, t] → R

n \ {0} such that{
ẋu(s) = ∇pH0(xu(s),p(s), u(s)),

−ṗ(s) = ∇xH0(xu(s),p(s), u(s))
(6)

and

∇uH0
(
xu(s),p(s), u(s)

)= 0, (7)

for a.e. s ∈ [0, t].

In particular, given a control u(·) ∈ U , along the associated trajectory xu(·) : [0, t] → R
n we have{∇xH0(xu(s),p,u(s)) = A(s)∗p,

∇pH0(xu(s),p,u(s)) = f0(xu(s)) + B(s)u(s),

∇uH0(xu(s),p,u(s)) = B(s)∗p,

for any s ∈ [0, t] and any p ∈ R
n. Consequently, a control u(·) ∈ U is singular for Ex0,t if and only if there exists an

absolutely continuous arc p(·) : [0, t] → R
n \ {0} such that

• (6) is satisfied a.e. on [0, t]
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• p(·) is orthogonal to each vector f1(xu(·)), . . . , fm(xu(·)) on [0, t].

Example 2.5. By Proposition 2.4, it can be easily seen that the control system, known as the “nonholonomic integra-
tor”,

ẋ = u1f1(x) + u2f2(x) = u1

(
c1
0
x2

)
+ u2

(
c0
1

−x1

)

does not admit nontrivial singular controls. In other terms, for each t > 0 and each u(·) ∈ L1([0, t];R
m) \ {0}, the

mapping dEx0,t (u(·)) is surjective. Actually, this property is satisfied by a general class of control systems which will
be studied later on in this paper (see Section 5).

3. Properties of the value function V

3.1. Existence of optimal controls

Recall that the value function V : (0,∞) × R
n → R ∪ {∞} is defined for each pair (t, x) ∈ (0,∞) × R

n as the
infimum of the cost functional

Ct

(
u(·)) :=

t∫
0

L
(
xu(s), u(s)

)
ds,

over all control u(·) ∈ U steering x0 to x in time t . If no such control exist, then we set V (t, x) = ∞.

Proposition 3.1. Assume (A1)–(A2) and let (t, x) ∈ (0,∞) × R
n. If there exists a control steering x0 to x in time t ,

then there also exists a control u(·) ∈ U , steering x0 to x in time t , which minimizes Ct(·).

The proof of the above result is based on the following lemma which will be very useful in the sequel.

Lemma 1. Let (A1)–(A2) be satisfied and let (uk(·))k be a sequence of controls in U such that {Ct(uk(·)}k is bounded.
Then, there exists a control u∞(·) ∈ U such that xuk

(·) converges uniformly to xu∞(·) on [0, t], and uk(·) converges to
u∞(·) in the weak-L1 topology.

The proofs of Proposition 3.1 and Lemma 1 being very classical, they are left to the reader.

3.2. Continuity of the value function

Let Ω be an open subset of (0,∞) × R
n. We state the following new assumption on our optimal control problem:

(A3) for every (t, x) ∈ Ω , we have V (t, x) < ∞, and for any control u(·) ∈ U steering x0 to x in time t which
minimizes Ct(·), the linear operator dEx0,t (u(·)) is surjective.

Proposition 3.2. Under assumptions (A1)–(A3), V is continuous on Ω .

Proof. As a first step, let us show that V is lower semicontinuous on Ω . Consider a sequence of points {(tk, xk)}k
in Ω which converges to (t, x) ∈ Ω and such that V (tk, xk) → λ as k → ∞. We have to prove that V (t, x) � λ. By
Proposition 3.1, for each k there exists a control uk(·) ∈ U such that V (tk, xk) = Ctk (uk(·)). Hence, {Ctk (uk(·))}k is
bounded (since it converges to λ) and such that xk(tk;x0, uk(·)) = xk → x as k → ∞. We note that, without loss of
generality, we can assume that {Ct+1(uk(·))}k is also bounded. This can be easily seen by possibly modifying uk(·)
on (tk, t + 1) for large enough k, that is, taking uk(s) := 0 on (tk, t + 1). Then, by (A1), |xuk

(s)| � (|xk| + M(t + 1 −
tk))e

M(t+1−tk) for any s ∈ (tk, t + 1). This implies that
∫ t+1

L(xuk
(s), uk(s)) ds is uniformly bounded in k.
tk
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Next, by Lemma 1, we deduce that up to a subsequence, there exists a control u∞(·) ∈ U such that xuk
(·) converges

uniformly to the absolutely continuous function x∞(·) := xu∞ on [0, t + 1], and uk(·) converges to u∞(·) in the
weak-L1 topology. By uniform convergence, x∞(0) = x0. Furthermore,∣∣x∞(t) − x

∣∣� ∣∣x∞(t) − xk(t)
∣∣+ ∣∣xk(t) − xk(tk)

∣∣+ |xk − x|.
The first and last terms above clearly tend to zero as k → ∞. The second one is bounded by

∫ t

tk
|ẋk(s)|ds which tends

to zero since (ẋk(·))k is equiabsolutely integrable. Hence, x∞(t) = x. By the same argument as in the end of the proof
of Proposition 3.1, one can show that limk→∞ Ctk (uk(·)) = Ct(u(·)). So, V (t, x) � λ. This proves that V is lower
semicontinuous in Ω .

Let us now prove that V is continuous in Ω . Let (t̄ , x̄) ∈ Ω . Since V (t̄, x̄) < ∞, there exists u(·) ∈ U such that

Ex0,t̄
(
u(·))= x̄ and V (t̄, x̄) =

t̄∫
0

L
(
xu(s), u(s)

)
ds.

Moreover, by assumption (A3), dEx0,t̄ (u(·)) is surjective. Hence, there exists n controls v1(·), . . . , vn(·) ∈ U such that
the linear mapping

dEx0,t̄
(
u(·)) : span

{
v1(·), . . . , vn(·)

}−→ R
n

is an isomorphism. In particular, the n vectors

dEx0,t̄
(
u(·))(v1(·)

)
, . . . , dEx0,t̄

(
u(·))(vn(·)

)
are linearly independent. Define F : (0,∞) × R

n × R
n → R

n by

F(t, x,λ) := Ex0,t

(
u(·) +

m∑
i=1

λivi(·)
)

− x,

for any triple (t, x, λ) ∈ (0,∞) × R
n × R

n. Then F is of class C1 (see Remark 2.2); moreover, F(t̄, x̄,0) = 0 and the
differential

DλF(t̄, x̄,0) = (dEx0,t̄
(
u(·))(v1(·)

)| · · · |dEx0,t̄
(
u(·))(vn(·)

))
is an isomorphism. Hence, by the Implicit Function Theorem, for some neighborhoods V of (t̄ , x̄) in (0,∞)×R

n and
V ′ of 0n in R

n, there exists a unique function g :V → R
n of class C1, with g(0,0) = 0, such that for any (t, x) ∈ V

and λ ∈ V ′,

F(t, x,λ) = 0 ⇐⇒ λ = g(t, x).

Therefore, for every (t, x) ∈ V , u(·) +∑m
i=1 g(t, x)ivi(·) steers x0 to x in time t . Thus, for any pair (t, x) ∈ V ,

V (t, x) � Ct

(
u(·) +

m∑
i=1

g(t, x)ivi(·)
)

.

Letting (t, x) → (t̄ , x̄), the last inequality yields that V is upper semicontinuous on Ω . This completes the proof. �
3.3. Semiconcavity of the value function

In this section we prove two semiconcavity results for the value function V of problem defined in (2). First we will
study system (3) with no drift term, since no additional assumptions will be needed in this case.

Theorem 1. If assumptions (A1)–(A3) hold and f0 ≡ 0, then V is locally semiconcave on Ω .

For the proof of Theorem 1 we consider the pseudo-Hamiltonian H̃ : Rn × R
n × R

m → R which is defined as
follows:

H̃ (x,p,u) := 〈p,f (x,u)
〉− L(x,u), ∀(x,p,u) ∈ R

n × R
n × R

m. (8)
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We notice that H̃ is locally Lipschitz in the x variable, of class C∞ in the p variable, and of class C2 in the u variable.
For each triple (x,p,u) ∈ R

n × R
n × R

m, we denote by ∇pH̃ (x,p,u) and ∇uH̃ (x,p,u) its classical gradients in the
p and u variables, and by ∂xH̃ (x,p,u) its partial generalized gradient in the x variable. We refer the reader to the
books [10,12] for calculus rules with generalized gradients. We have, for any (x,p,u),⎧⎨

⎩
∂xH̃ (x,p,u) =∑m

i=1 ui dfi(x)∗p − ∂xL(x,u),

∇pH̃0(x,p,u) =∑m
i=1 uifi(x),

∇ui
H̃0(x,p,u) = 〈p,fi(x)〉 − ∇ui

L(x,u)

which implies that for each pair (x,p) ∈ R
n × R

n,

∇uH̃ (x,p,u) = 0 ⇐⇒ ∇uL(x,u) = (〈p,f1(x)
〉
, . . . ,

〈
p,fm(x)

〉)∗
.

On the other hand, on account of assumption (A2), there exists a locally Lipschitz map Φ : R
n × R

m → R
m such that,

for every x ∈ R
n, Φ(x, ·) is a diffeomorphism of class C1 from R

m into itself, and, for any v ∈ R
m,

∇uL(x,u) = v ⇐⇒ u = Φ(x, v).

Let us set, for any pair (x,p) ∈ R
n × R

m,(
X(x,p)

)
i
= 〈p,fi(x)

〉
, ∀i = 1, . . . ,m.

Then, for any (x,p,u) ∈ R
n × R

n × R
m,

∇uH̃ (x,p,u) = 0 ⇐⇒ u = Φ
(
x,X(x,p)

)
. (9)

Hence, the Hamiltonian H(x,p) = maxu∈Rm{H̃ (x,p,u)} takes the form

H(x,p) = H̃ (x,p,Φ
(
x,X(x,p)

)
= 〈p,f

(
x,Φ
(
x,X(x,p)

))〉− L
(
x,Φ
(
x,X(x,p)

))
= 〈Φ(x,X(x,p)

)
,X(x,p)

〉
m

− L
(
x,Φ
(
x,X(x,p)

))
, (10)

for any pair (x,p) ∈ R
n × R

n. By construction, H is locally Lipschitz in the x variable and of class C1 in the p

variable. In addition, by (9)–(10),{
∂xH(x,p) = ∂xH̃ (x,p,Φ(x,X(x,p))),

∇pH(x,p) = ∇pH̃ (x,p,Φ(x,X(x,p))).

The version of Pontryagin’s Maximum Principle we give below is adapted from a recent fundamental result by
Clarke [11] to the problem of interest to this paper.

Proposition 3.3. Under assumption (A3), if ū(·) ∈ U is a minimizing control steering x0 to x in time t , then there exists
an absolutely continuous arc p(·) : [0, t] → R

n such that the pair (x̄(·) := xū(·),p(·)) is a solution of the Hamiltonian
differential inclusion{ ˙̄x(s) = ∇pH(x̄(s),p(s)),

−ṗ(s) ∈ ∂xH(x̄(s),p(s))
(11)

for almost every s ∈ [0, t], and such that the function

s 	−→ H
(
x̄(s),p(s)

)
is constant on [0, t]. (12)

In particular, x̄(·) is of class C1,1, while p(·) and ū(·) are Lipschitz on [0, t].

Proof. We will recast our problem in Mayer’s form introducing, as usual, an extra state variable. Given a control
u(·) ∈ U , let yu(·) be the solution of the Cauchy problem

ẏ(s) = L
(
xu(s), u(s)

)
, s ∈ [0,∞) a.e., y(0) = 0.
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If we set, for every (x, y,u) ∈ R
n × R × R

m,

X(x,y,u) :=
(

f (x,u)

L(x,u)

)
,

then ū(·) minimizes the terminal cost

g
(
xu(t), yu(t)

) := yu(t)

over all controls u(·) ∈ U and all absolutely continuous arcs (xu(·), yu(·)) : [0, t] → R
n × R satisfying(

ẋu(s)

ẏu(s)

)
= X
(
xu(s), yu(s), u(s)

)
, s ∈ [0, t] a.e.

and

xu(0) = x0, yu(0) = 0, xu(t) = x.

Let us write the above Mayer problem as an optimization problem for a differential inclusion with closed graph. Set,
for every (x, y, z) ∈ R

n × R × R
m,

F(x, y, z) :=
{(∑m

i=1 uifi(x)

L(x,u) + δ

u

) ∣∣∣ u ∈ R
m, δ � 0

}
.

By construction, the multifunction F has closed graph in (Rn × R × R
m)2, denote it by G. Besides, the trajectory

Z̄(·) :=
(

x̄(·), ȳ(·) := yū(·), z̄(·) :=
·∫

0

u(s) ds

)
: [0, t] −→ R

n × R × R
m

minimizes the terminal cost

�
(
x(t), y(t), z(t)

) := y(t)

over all trajectories of the differential inclusion(
ẋ(s), ẏ(s), ż(s)

) ∈ F
(
x(s), y(s), z(s)

)
, s ∈ [0, t] a.e. (13)

satisfying the constraints

x(0) = x0, y(0) = 0, z(0) = 0, x(t) = x. (14)

Our aim is now to apply Theorem 3.4.1 of [11]. Denoting by | · |∗ the Euclidean norm in R
n × R × R

m, we claim that,
for every R > 0, there exists a summable function kR : [0, t] → R, bounded below by a positive constant, such that for
almost all s ∈ [0, t], and every (Z,V ) ∈ G satisfying∣∣Z − Z̄(s)

∣∣∗ < R and
∣∣V − ˙̄Z(s)

∣∣∗ < R, (15)

one has

(α,β) ∈ NP
G(Z,V ) �⇒ |α|∗ � kR(s)|β|∗

(we refer the reader to [11,12] for the definition of the proximal normal cone NP
G(Z,V )). For let rR > R be such that

x̄(s) ∈ BrR−R for every s ∈ [0, t], and denote by K̃R a constant � K(rR) such that |dfi(x)| � K̃R for all x ∈ BrR .

By (A2)(ii), there exists C1 such that q � θ(q) for all r � C1. Let s ∈ [0, t] be such that ˙̄Z(s) exists, (Z,V ) :=
((x, y, z), (v,w,u)) ∈ G satisfies (15), and fix a vector

(α,β) = (α1, α2, α3, β1, β2, β3) ∈ NP
G(Z,V ).

Note that, necessarily,∣∣x − x̄(s)
∣∣< R and L(x,u) − L

(
x̄(s), ū(s)

)
< R. (16)

We need the following result whose proof is given in Appendix A.
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Lemma 2. For every (Z,V ) ∈ (Rn × R × R
m) × (Rn × R × R

m) and every (α = (α1, α2, α3), β = (β1, β2, β3)) ∈
NL

G(Z,V ), we have α2 = α3 = 0, β2 � 0. Moreover

β2 < 0 �⇒ 1

−β2

(
α1 +

(
m∑

i=1

ui dfi(x)

)∗
β1

)
∈ ∂xL(x,u), (17)

β2 < 0 �⇒ 1

−β2

(
β3 + (〈β1, f1(x)

〉
, . . . ,

〈
β1, fm(x)

〉)∗)= ∇uL(x,u), (18)

and

β2 = 0 �⇒ α1 +
(

m∑
i=1

ui dfi(x)

)∗
β1 = 0, (19)

β2 = 0 �⇒ β3 + (〈β1, f1(x)
〉
, . . . ,

〈
β1, fm(x)

〉)∗ = 0. (20)

Now, suppose β2 < 0. Then (16), (17) and (A2)(iii) yield

|α|∗ = |α1| �
∣∣∣∣∣α1 +

(
m∑

i=1

ui dfi(x)

)∗
β1

∣∣∣∣∣+
∣∣∣∣∣
(

m∑
i=1

ui dfi(x)

)∗
β1

∣∣∣∣∣
� K(rR)|β2|θ

(|u|m
)+ √

mK̃R|u|m|β1|
� K̃Rθ

(|u|m
)|β2| + √

mK̃R max
{
C1, θ

(|u|m
)}|β1|

�
√

mK̃R max
{
C1, θ

(|u|m
)}(|β1| + |β2|

)
�

√
mK̃R max

{
C1,L(x,u) + c0

}(|β1| + |β2| + |β3|m
)

�
√

mK̃R max
{
C1,L

(
x̄(s), ū(s)

)+ R + c0
}(|β1| + |β2| + |β3|m

)
� kR(s)|β|∗,

where

kR(s) := √
3
√

mK̃R max
{
C1,L

(
x̄(s), ū(s)

)+ R + c0
}
.

On the other hand, if β2 = 0, then (16), (19) and (A2)(ii) imply that

|α|∗ = |α1| �
∣∣∣∣∣
(

m∑
i=1

uidfi(x)

)∗
β1

∣∣∣∣∣
�

√
mK̃R|u|m|β1|

�
√

mK̃R max
{
C1, θ

(|u|m
)}|β1|

� kR(s)|β|∗.
Consequently, since

∫ t

0 L(x̄(s), ū(s)) ds < ∞, we have proved that, for every R > 0, there exists a summable function
kR : [0, t] → R, bounded below by a positive constant, such that for almost all s ∈ [0, t] and for every (Z,V ) ∈ G

satisfying (15),

(α,β) ∈ NP
G(Z,V ) �⇒ |α|∗ � kR(s)|β|∗.

This proves our claim. From the proof of Corollary 3.5.3 in [11], we deduce that the necessary conditions of
Theorem 3.4.1 in [11] hold. Therefore, there exist a number λ0 ∈ {0,1} and an absolutely continuous arc P(·) =
(p1(·),p2(·),p3(·)) : [0, t] → R

n × R × R
m such that:

(i) for every s ∈ [0, t], (λ0,P (s)) �= (0,0);
(ii) −p2(t) = λ0, p3(t) = 0;
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(iii) for almost every s ∈ [0, t], we have

Ṗ (s) ∈ co
{
w | (w,P (s)

) ∈ NL
G

(
Z̄(s), ˙̄Z(s)

)};
(iv) for almost every s ∈ [0, t], we have〈

P(s),V
〉
∗ �
〈
P(s), ˙̄Z(s)

〉
∗, ∀V ∈ F

(
Z̄(s)
)

where 〈·, ·〉∗ denotes the Euclidean scalar product in R
n × R × R

m;
(v) there exists a constant h such that〈

P(s), ˙̄Z(s)
〉
∗ = h, s ∈ [0, t] a.e.

Owing to Lemma 2, assertion (iii) can be written as

−ṗ1(s) ∈
m∑

i=1

ūi (s) dfi

(
x̄(s)
)∗

p1(s) + p2(s)∂xL
(
x̄(s), ū(s)

)
, (21)

and

ṗ2(s) = ṗ3(s) = 0, (22)

for almost every s ∈ [0, t]. Hence, (iv) implies that〈
p1(s),

m∑
i=1

uifi(x)

〉
− λ0L

(
x̄(s), u

)
�
〈
p1(s),

m∑
i=1

ūi (s)fi

(
x̄(s)
)〉− λ0L

(
x̄(s), ū(s)

)
, (23)

for almost every s ∈ [0, t]. Notice that, if λ0 = 0, then by (ii) and (23), we obtain that p2(s) = p3(s) = 0 for any
s ∈ [0, t] and〈

p1(s),

m∑
i=1

uifi(x)

〉
�
〈
p1(s),

m∑
i=1

ūi (s)fi

(
x̄(s)
)〉

,

for almost every s ∈ [0, t] and all u ∈ R
m. Thus, H0(x̄(s),p1(s)) = 0 for every s ∈ [0, t], and, by (21),

−ṗ1(s) = ∇xH0
(
x̄(s),p1(s), ū(s)

)
, s ∈ [0, t] a.e.

Since P(s) �= 0 for every s ∈ [0, t], this contradicts assumption (A3) in view of Proposition 2.4. Therefore, λ = 1.
This implies that p2(s) = −1 for every s ∈ [0, t], which yields, in turn, (11) and ( 12). �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let (t̄ , x̄) ∈ Ω and let δ > 0 be such that

G := [t̄ − δ, t̄ + δ] × B̄(x̄, δ) ⊂ Ω.

Let K ⊂ [t̄ − δ, t̄ + δ] × U be the set of all pairs (t, u(·)) for which there exists a pair of absolutely continuous arcs
(xu(·),pu(·)) : [0, t] → R

n × R
n satisfying the following properties:

(i) xu(0) = x0 and xu(t) ∈ B̄(x̄, δ);
(ii) (xu(·),pu(·)) is a solution of the Hamiltonian inclusion (11) on [0, t];

(iii) s 	→ H(xu(s),pu(s)) is constant on [0, t];
(iv) u(s) := Φ(xu(s),X(xu(s),pu(s))) for any s ∈ [0, t];
(v) u(s) = 0 for all s ∈ (t,∞);

(vi) V (t, xu(t)) = Ct(u(·)).

Proposition 3.3 ensures that, for any (t, x) ∈ G, there exists u(·) ∈ U such that (t, u(·)) ∈K and xu(t) = x. Moreover,
K has useful compactness properties, as our next result shows. �
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Lemma 3. There is a constant K > 0 such that, for every (t, u(·)) ∈ K,∣∣u(s)
∣∣
m

< K, ∀s ∈ [0, t], (24)

and ∣∣u(s) − u(s′)
∣∣
m

< K|s − s′|, ∀s, s′ ∈ [0, t]. (25)

Proof. First of all, since V is continuous on Ω , V is bounded on all compact subsets of Ω . Hence, by (vi), there is
C > 0 such that Ct(u(·)) � C for every (t, u(·)) ∈K. Also by assumption (A2), there exists C1 > 0 such that r � θ(r)

for all r � C1. There fore, for every (t, u(·)) ∈K, we have

∥∥u(·)∥∥1 =
∫

[0,t]∩{|u|m�C1}

∣∣u(s)
∣∣
m

ds +
∫

[0,t]∩{|u|m<C1}

∣∣u(s)
∣∣
m

ds

�
∫

[0,t]∩{|u|m�C1}
θ
(∣∣u(s)

∣∣
m

)
ds + tC1

�
t∫

0

[
L
(
xu(s), u(s)

)+ c0
]
ds + tC1

� C + (c0 + C1)t

� C + (c0 + C1)(t̄ + δ) =: C̃. (26)

Consequently, recalling assumption (A1) and applying Gronwall’s Lemma, we conclude that all trajectories xu(·)
associated with elements (t, u(·)) ∈ K are uniformly bounded, that is, there is a compact set C ⊂ R

n such that, for
every (t, u(·)) ∈K,

xu(s) ∈ C ∀s ∈ [0, t]. (27)

On the other hand, inequality (26) also says that for every (t, u(·)) ∈ K, there exists su ∈ [0, t] such that

∣∣u(su)
∣∣
m

� 2C̃

t̄ − δ
. (28)

Let M̃ be a positive constant such that∣∣〈u,∇uL(x,u)
〉
m

− L(x,u)
∣∣� M̃, (29)

for any x ∈ C and any u ∈ R
m satisfying |u|m � 2C̃/(t̄ − δ). By (28)–(29), (iv), and the fact that f0 ≡ 0, we deduce

that, for every (t, u(·)) ∈K,∣∣H (xu(su),pu(su)
)∣∣= 〈u(su),∇uL

(
xu(su), u(su)

)〉− L
(
xu(su), u(su)

)
� M̃. (30)

Let now M̂ be another positive constant such that∣∣L(x,u)
∣∣� M̂,

for any x ∈ C and any u ∈ R
m satisfying |u|m � 1. We need the following lemma.

Lemma 4. If we define h : Rn × R
m → R by

∀(x,u) ∈ R
n × R

m, h(x,u) := 〈u,∇uL(x,u)
〉
m

− L(x,u), (31)

then we have that

h(x,u) � θ(|u|m)

|u|m − c0 + M̂

|u|m − M̂, ∀(x,u) ∈ C × R
m \ {0}. (32)
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Proof. Fix x ∈ C, u ∈ R
m \ {0}, and set v := u/|u|m ∈ Bm(0,1). Define the convex function of class C2, L̃ : [0,∞) →

R, by

∀α � 0, L̃(α) := L(x,αv),

and define h̃ : [0,∞) → R by

∀α � 0, h̃(α) := αL̃′(α) − L̃(α).

Then, for every α � 1,

h̃(α) = h̃(1) +
α∫

1

h̃′(r) dr

= h̃(1) +
α∫

1

rL̃′′(r) dr

� h̃(1) +
α∫

1

L̃′′(r) dr

= h̃(1) + L̃′(α) − L̃′(1)

� h̃(1) + L̃(α) − L̃(0)

α
− L̃′(1) (by convexity of L̃)

= −L̃(1) + L̃(α) − L̃(0)

α

� θ(α|v|m)

α
− c0

α
− M̂

α
− M̂,

in view of assumption (A2) and the definition of L̃ and h̃. Taking α = |u|m, we conclude easily. �
We now return to the proof of Lemma 3. Since

lim
q→∞

θ(q)

q
− c0 + M̂

q
− M̂ = +∞,

there exists C2 > 0 such that

h(x,u) > 2M̃,

for any x ∈ C and any u ∈ Rm satisfying |u|m > C2. Thus, by (iii) and (30) we deduce that, for every (t, u(·)) ∈K,∣∣u(s)
∣∣
m

� C2 ∀s ∈ [0, t], (33)

which in turn gives (24). Furthermore, we know that for every (t, u(·)) ∈ K,

−ṗu(s) ∈
m∑

i=1

(
u(s)
)
i
dfi

(
xu(s)

)∗
pk(s) − ∂xL

(
xu(s), u(s)

)
, s ∈ [0, t] a.e. (34)

Hence by (27), (33) and Gronwall’s Lemma, there exists a constant M ′ > 0 such that for every (t, u(·)) ∈K,∣∣pu(s)
∣∣� M ′∣∣pu(0)

∣∣, ∀s ∈ [0, t]. (35)

Next, we claim that, for some constant P > 0,

∀(t, u(·)) ∈ K,
∣∣pu(0)

∣∣� P. (36)
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For suppose there exists a sequence {(tk, uk(·))}k ∈ K such that {pk
0 := puk

(0)}k satisfies |pk
0| → ∞ as k → ∞.

Define, for any k,

p̂k(s) := puk
(s)

|pk
0|

∀s ∈ [0, tk].

By (34), we have that

− ˙̂pk(s) ∈
m∑

i=1

(
uk(s)

)
i
dfi

(
xuk

(s)
)∗

p̂k(s) − 1

|pk
0|

∂xL
(
xuk

(s), uk(s)
)

for almost every s ∈ [0, tk]. Since, by (33), {uk(·)}k is uniformly bounded in L∞ and, by (27), xk(·) are all included
in the compact set C, the sequence {p̂k}k is uniformly bounded and equicontinuous. By the Ascoli–Arzèla Theorem,
we deduce that, up to a subsequence, the pair (xuk

(·), p̂k(·)) converges uniformly to some pair (x∞(·),p∞(·)), and
uk(·) converges to some u∞(·) in the weak-L1 topology. Moreover, tk → t ∈ [t̄ − δ, t̄ + δ] and Ct(u∞(·)) = V (t, x)

(by the same argument as in the end of the proof of Proposition 3.1). Furthermore, recalling the linear dependence of
H0 with respect to u,{

ẋ∞(s) = ∇pH0(x∞(s),p∞(s), u∞(s)),

−ṗ∞(s) = ∇xH0(x∞(s),p∞(s), u∞(s)),

for almost every s ∈ [0, t]. Also, by (iii) and (30), we know that, for every k and every u ∈ R
m,

∀s ∈ [0, tk], H̃
(
xuk

(s),puk
(s), u

)
� H
(
xuk

(s),puk
(s)
)

= H
(
xuk

(suk
),puk

(suk
)
)

� M̃.

Hence, for any k, any u ∈ R
m such that |u|m � 1, and any s ∈ [0, tk],

m∑
i=1

ui

〈
pk(s)

|pk
0|

, fi

(
xk(s)

)〉
� M̃ + M̂

|pk
0|

.

Passing to the limit in the above inequality, we obtain

m∑
i=1

ui

〈
p∞(s), fi

(
x∞(s)

)〉
� 0

for any u ∈ R
m such that |u|m � 1. This implies that, for any s ∈ [0, t], p∞(s) is orthogonal to each vector

f1(x∞(s)), . . . , fm(x∞(s)). So, invoking Proposition 2.4, we conclude that u∞(·) is a singular control for Ex0,t ,
in contrast with assumption (A3). This proves our claim.

Summing up, we have proved that, for every (t, u(·)) ∈K,

xu(s) ∈ C,
∣∣u(s)

∣∣
m

� C2, and
∣∣pu(s)

∣∣� M ′P

for every s ∈ [0, t]. By (11), we deduce that, for every (t, u(·)) ∈ K, the derivatives ẋu(·) and ṗu(·) are uniformly
bounded on [0, t]. Since, by (iv),

u(s) = Φ
(
xu(s),X

(
xu(s),pu(s)

))
, ∀s ∈ [0, t],

the uniform Lipschitz estimate (25) easily follows. �
We can now complete the proof of Theorem 1. We denote by U∞ the set of u(·) ∈ U which satisfy (24) and (25) on

[0, t̄ + δ]. We shall regard any control u(·), such that (t, u(·)) ∈ K, as defined on [0, t̄ + δ] which is always the case
possibly extending its domain of definition to [0, t̄ + δ] by taking u(s) = u(t) for every s ∈ [t, t̄ + δ]. We shall equip
U∞ with the uniform norm ‖ · ‖∞ on [0, t̄ + δ].
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Lemma 5. There exist r,R > 0 such that, for every (t, u(·)) ∈ K, there exists a mapping of class C1,1,

Ft,u : (t − r, t + r) × B
(
x := xu(t), r

)−→ U∞,

with dFt,u R-Lipschitz, which satisfies Ft,u(t, x) = (t, u(·)) and

∀s ∈ (t − r, t + r), ∀y ∈ B(x, r), Ex0,s
(
Ft,u(s, y)

)= y.

Proof. Fix (t̂ , û(·)) ∈ K. By assumption (A3), there are n controls

vû
1 (·), . . . , vû

n(·) ∈ U
such that the linear operator given by

dEx0,t̂
(
û(·)) : span

{
vû

1 (·), . . . , vû
n(·)}−→ R

n,

v(·) 	−→ dEx0,t̂
(
û(·))(v(·)),

is a linear isomorphism. Since the mapping (t, u(·)) 	→ Ex0,t (u(·)) is of class C1 on [0, t̄ + δ] × U∞, there exists a
constant ρt̂,û > 0 such that

dEx0,t
(
u(·)) : span

{
vû

1 (·), . . . , vû
n(·)}−→ R

n,

v(·) 	−→ dEx0,t
(
u(·))(v(·)),

is an isomorphism for every (t, u(·)) ∈ [0, t̄ + δ] × U∞ satisfying

|t − t̂ | < ρt̂,û and
∥∥u(·) − û(·)∥∥∞ < ρt̂,û. (37)

Define

Eu
t̂,û

: (0,∞) × R
n −→ (0,∞) × R

n,

(
t, λ := (λ1, . . . , λn)

) 	−→
(

t,Ex0,t

(
u(·) +

n∑
i=1

λiv
û
i (·)
))

.

Then, for some constant μt̂,û > 0,∣∣det
(
d(Eu

t̂,û
)(t,0n)

)∣∣� μt̂,û

for every (t, u(·)) satisfying (37). By the compactness of K, there exist a finite set J and J pairs (tj , uj ) ∈ K (j =
1, . . . , J ) such that

K ⊂
⋃
j∈J

{
(tj − ρtj ,uj

, tj + ρtj ,uj
, tj ) × BX

(
uj (·), ρtj ,uj

)}
.

Set

μ := min
j∈J

{μtj ,uj
}.

Therefore, by construction, we have for every (t, u(·)) ∈K,∣∣det
(
d(Eu

tj ,uj
)(t,0n)

)∣∣� μ,

for some j ∈ J . In other terms, for every (t, u(·)) ∈ K, there is j ∈ J such that the linear mapping

d
(
Eu

tj ,uj

)
(t,0n) : R × R

n −→ R × R
n,

(s, λ) 	−→
(

s,

n∑
i=1

λi dEx0,t
(
u(·))(vuj

i (·))
)

,

is an isomorphism satisfying∣∣det
(
d(Eu

t ,u )(t,0n)
)∣∣� μ.
j j
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Then, we apply the Inverse Mapping Theorem to the mapping E := Eu
tj ,uj

obtaining an inverse of the form E−1(s, y) =
(s, λt,u(s, y)). Observe that the radius r > 0 of the cylinder (t − r, t + r) × B(x = xu(t), r) which is contained in the
image of a neighborhood of (t, u(·)) and the Lipschitz constant of dE−1 depend uniquely on the norms of E, dE in a
neighborhood of (t, u(·)) and of (dE)−1 in a neighborhood of E(t, u(·)). Since K is compact and the absolute values
of the determinants of dE(t, u(·)) are uniformly bounded below by a positive constant, we conclude taking

Ft,u(s, y) = u(·) +
n∑

i=1

λ
t,u
i (s, y)v

uj

i (·)

for every (s, y) ∈ (t − r, t + r) × B(x = xu(t), r). �
Let us return to the proof of Theorem 1 and consider (t, x) ∈ G and u(·) ∈ U such that (t, u(·)) ∈K and xu(t) = x.

By Lemma 5, there exists a diffeomorphism of class C1,1, Ft,u : (t − r, t + r)×Br(x) → (0,∞)×U∞, which satisfies
Ft,u(t, x) = (t, u(·)) and such that DFt,u is R-Lipschitz. We have, by the definition of V ,

V (t, x) = Ct

(
Ft,u(t, x)

)
, (38)

and

V (t ′, y) � Ct ′
(
Ft,u(t

′, y)
)
, ∀(t ′, y) ∈ (t − r, t + r) × Br(x). (39)

Moreover, we have the following lemma that we shall prove in Appendix A.

Lemma 6. The function (t, u(·)) ∈ [0, t̄ + δ]×U∞ 	→ Ct(u(·)) is locally semiconcave, that is, for each pair (t, u(·)) ∈
[0, t̄ + δ] × U∞ there are constants ρ,C > 0 such that∣∣Ct1

(
u1(·))− Ct2

(
u2(·))∣∣� C

(|t1 − t2| +
∥∥u1(·) − u2(·)∥∥∞) (40)

and

μCt1

(
u1(·))+ (1 − μ)Ct2

(
u2(·))− Cμt1+(1−μ)t2

(
μu1(·) + (1 − μ)u2(·))

� μ(1 − μ)C
(|t1 − t2|2 + ∥∥u1(·) − u2(·)∥∥2

∞
)

(41)

∀μ ∈ [0,1], ∀t1, t2 ∈ [0, t̄ + δ] with |t1 − t2| � ρ, and ∀u1(·), u2(·) ∈ U∞ satisfying ‖u1(·) − u2(·)‖∞ � ρ.

To complete the proof of Theorem 1, let (t1, x1), (t0, x0) ∈ G be such that |t1 − t0| < r, |x1 −x0| < r . For μ ∈ [0,1],
set tμ := μt1 + (1 − μ)t0 and xμ := μx1 + (1 − μ)x0. Since (tμ, xμ) ∈ G, there exists uμ ∈ U such that (tμ,uμ) ∈ K
and xμ = xuμ(tμ). Also, since (t1, x1), (t0, x0) ∈ (tμ − r, tμ + r) × Br(xμ), in view of (38)–(39) and Lemma 6, we
obtain

μV (t1, x1) + (1 − μ)V (t0, x0) − V (tμ, xμ)

� μCt1

(
Ftμ,uμ(t1, x1)

)+ (1 − μ)Ct0

(
Ftμ,uμ(t0, x0)

)− Ctμ

(
Ftμ,uμ(tμ, xμ)

)
= μCt1

(
Ftμ,uμ(t1, x1)

)+ (1 − μ)Ct0

(
Ftμ,uμ(t0, x0)

)− Ctμ

(
μFtμ,uμ(t1, x1) + (1 − μ)Ftμ,uμ(t0, x0)

)
+ Ctμ

(
μFtμ,uμ(t1, x1) + (1 − μ)Ftμ,uμ(t0, x0)

)− Ctμ

(
Ftμ,uμ(tμ, xμ)

)
� Cμ(1 − μ)

∥∥Ftμ,uμ(t1, x1) −Ftμ,uμ(t0, x0)
∥∥2

(0,∞)×U∞
+ C
∥∥μFtμ,uμ(t1, x1) + (1 − μ)Ftμ,uμ(t0, x0) −Ftμ,uμ(tμ, xμ)

∥∥
(0,∞)×U∞ .

Since (t, x) 	→Ftμ,uμ(t, x) is C1,1, the conclusion follows. �
In order to allow for a drift in (3), we impose the additional assumptions below.

(A3′) (i) For all r > 0 there exists K1(r) such that

L(x,u) � K1(r)
(|u|2m − 1

)
for all x ∈ Br,u ∈ R

m.
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(ii) For all r > 0 there exists K2(r) > 0 such that

L(x,u) � K2(r)
(|u|2m + 1

)
for all x ∈ Br,u ∈ R

m.
(iii) For all r > 0 there exists K3(r) > 0 such that∣∣∇uL(x,u)

∣∣
m

� K3(r)
(|u|m + 1

)
for all x ∈ Br,u ∈ R

m.
(iv) For all r > 0 there exists K4(r) > 0 such that

x ∈ Br,u ∈ R
m, ζ ∈ ∂xL(x,u) �⇒ |ζ | � K4(r)

(|u|2m + 1
)
.

Then, we have the following result.

Theorem 2. If assumptions (A1)–(A3) and (A3′) hold, then V is locally semiconcave in Ω .

Proof of Theorem 2. As in the proof of Theorem 1, for a fixed (t̄ , x̄) ∈ Ω let δ > 0 be such that G := [t̄ − δ,

t̄ + δ] × B̄(x̄, δ) ⊂ Ω. Let K ⊂ [t̄ − δ, t̄ + δ] × U be the (nonempty) set of all pairs (t, u(·)) for which there exists a
pair of absolutely continuous arcs (x(·),p(·)) : [0, t] → R

n × R
n which satisfies properties (i)–(vi). As in the proof of

Theorem 1, we note that, for some C̃ > 0 and every (t, u(·)) ∈K,

∥∥u(·)∥∥1 =
t∫

0

∣∣u(s)
∣∣
m

ds � C̃.

Thus, by assumption (A1) and Gronwall’s Lemma, there is r > 0 such that for every (t, u(·)) ∈ K, |xu(s)| � r for
all s ∈ [0, t]. Hence, recalling (A3′) (i) and repeating the reasoning used to obtain (26), we conclude that, for some
constant Ĉ > 0 and every (t, u(·)) ∈ K,

∥∥u(·)∥∥2 =

√√√√√
t∫

0

∣∣u(s)
∣∣2
m

ds � Ĉ. (42)

Let us also observe that, by (A1) and (A3′) (ii)–(iv), for every t ∈ (0,∞), the map Ct :u(·) ∈ L2([0, t];R
m) →

Ct(u(·)) ∈ R, is locally Lipschitz in L2-norm. Therefore, for every (t, u(·)) ∈ K, the nonsmooth Lagrange multiplier
theorem (see [10,12]) ensures that there exists p̄u ∈ R

n satisfying p̄∗
u dEx0,t (u(·)) ∈ ∂Ct (u(·)). So,〈

p̄u, dEx0,t
(
u(·))(v(·))〉 ∈ 〈∂Ct

(
u(·)), v(·)〉

L2 , ∀v(·) ∈ L2([0, t];R
m
)
. (43)

Actually, p̄u can be related to the adjoint arc p(·) of Proposition 3.3 as follows.

Lemma 7. There exists an absolutely continuous arc p(·) : [0, t] → R
n for which (11) is satisfied for almost every

s ∈ [0, t] and such that p(t) = p̄u.

Proof. We note that, for every ξ ∈ ∂Ct (u(·)), there exists η ∈ L∞([0, t];R
n) satisfying η(s) ∈ ∂xL(xu(s), u(s)) for

every s ∈ [0, t], such that

〈
ξ, v(·)〉

L2 =
t∫

0

〈
η(s), dEx0,s

(
u(·))(v(·))〉+ 〈∇uL

(
xu(s), u(s)

)
, v(s)

〉
m

ds,

for every v(·) ∈ L2([0, t];R
m). Moreover, the first term of the above right-hand side can be written as

t∫ 〈
η(s), dEx0,s

(
u(·))(v(·))〉ds =

t∫ 〈
η(s),

s∫
S(s)S(r)−1B(r)v(r) dr

〉
ds
0 0 0
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=
t∫

0

s∫
0

〈
η(s), S(s)S(r)−1B(r)v(r)

〉
dr ds

=
t∫

0

t∫
r

〈
η(s), S(s)S(r)−1B(r)v(r)

〉
ds dr

=
t∫

0

〈 t∫
s

(
S(r)S(s)−1B(s)

)∗
η(r) dr, v(s)

〉
m

ds

=
t∫

0

〈
B(s)∗

(
S(s)−1)∗ t∫

s

S(r)∗η(r) dr, v(s)

〉
m

ds.

Furthermore, for every v(·) ∈ L2([0, t];R
m),

〈
p̄u, dEx0,t

(
u(·))(v(·))〉

L2 =
〈
p̄u,

t∫
0

S(t)S(s)−1B(s)v(s) ds

〉

=
t∫

0

〈
p̄u,

t∫
0

S(t)S(s)−1B(s)v(s)

〉
ds

=
t∫

0

〈
B(s)∗

(
S(s)−1)∗S(t)∗p̄u, v(s)

〉
m

ds.

Let us set

p(s) := (S(s)−1)∗S(t)∗p̄u − (S(s)−1)∗ t∫
s

S(r)∗η(r) dr, ∀s ∈ [0, t].

Then,

B(s)∗p(s) = ∇uL
(
xu(s), u(s)

)
, ∀s ∈ [0, t].

This proves that u(s) = Φ(xu(s),X(xu(s),p(s))) for every s ∈ [0, t]. Also,

−ṗ(s) = A(s)∗p(s) − η(s) ∈ ∂xH
(
xu(s),p(s)

)
, a.e. s ∈ [0, t].

This concludes the proof of the lemma. �
We now proceed to show the following result.

Lemma 8. There exists a constant K > 0 such that, for every (t, u(·)) ∈K,∣∣u(s)
∣∣
m

< K, ∀s ∈ [0, t],
and ∣∣u(s) − u(s′)

∣∣
m

< K|s − s′|, ∀s, s′ ∈ [0, t].

Proof. To begin, recall that, for every (t, u(·)) ∈ K and some constant R > 0,∥∥u(·)∥∥ ,
∥∥u(·)∥∥ ,

∥∥x(·)∥∥ � R. (44)
1 2 ∞
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Let us now prove that there is a constant P > 0 such that, for every (t, u(·)) ∈ K and every p̄u ∈ R
n satisfying (43),

we have,

|p̄u| � P. (45)

We argue by contradiction: suppose there exist sequences (tk, uk(·))k ∈ K and (p̄k)k ∈ R
n such that (43) holds for

every k, and |p̄k| → ∞ as k → ∞. Thus, for every k and every v(·) ∈ L2([0, tk];R
m),〈

p̄k

|p̄k| , dEx0,tk
(
uk(·)

)(
v(·))〉 ∈ 1

|p̄k|
〈
∂Ctk

(
uk(·)

)
, v(·)〉

L2 .

Recalling that the map (t, u(·)) 	→ dEx0,t (u(·)) is continuous in the weak L1-topology (see [24]), in the limit as
k → ∞ we obtain that there exist p̄ ∈ R

n with |p̄| = 1 and a pair (t, u(·)) ∈ K, with u ∈ L2([0, t];R
m), such that

〈p̄, dEx0,t (u(·))(v(·))〉 = 0 for every v(·) ∈ L2([0, t];R
m). Since u(·) minimizes Ct(·), we have obtained a contradic-

tion. Consequently, there is P > 0 such that (45) holds for every (t, u(·)) ∈ K and every p̄u ∈ R
n satisfying (43). Let

M be a positive constant such that ‖dfi(x)∗‖ � M for every x ∈ Br and every i = 0, . . . ,m. Recalling Lemma 7 we
have that, for every (t, u(·)) ∈K and p̄u ∈ R

n satisfying (43), there is an absolutely continuous arc pu(·) : [0, t] → R
n

satisfying pu(t) = p̄u and

−ṗu(s) ∈
m∑

i=1

(
u(s)
)
i
dfi

(
xu(s)

)∗
pu(s) − ∂xL

(
xu(s), u(s)

)
, a.e. s ∈ [0, t].

By (44) and assumption (A3′)(iv), we deduce that, for every (t, u(·)) ∈K,∣∣ṗu(s)
∣∣� R

√
m
∣∣u(s)

∣∣
m

∣∣pu(s)
∣∣+ K4(R)

(∣∣u(s)
∣∣
m

+ 1
)
, ∀s ∈ [0, t].

Owing to (45) and Lemma 7 the above estimate implies that, for all (t, u(·)) ∈K and s ∈ [0, t],

∣∣pu(s)
∣∣ �
∣∣pu(t)

∣∣+
t∫

s

K4(R)
(∣∣u(r)

∣∣
m

+ 1
)
dr +

t∫
s

R
√

m
∣∣u(r)

∣∣
m

∣∣pu(r)
∣∣dr

� P + K4(R)
(
C + (t̄ + δ)

)+
t∫

s

R
√

m
∣∣u(r)

∣∣
m

∣∣pu(r)
∣∣dr

:= Q +
t∫

s

R
√

m
∣∣u(r)

∣∣
m

∣∣pu(r)
∣∣dr.

By Gronwall’s Lemma, we deduce that, for every s ∈ [0, t],
∣∣pu(s)

∣∣� Q exp

( t∫
s

R
√

m
∣∣u(r)

∣∣
m

dr

)
� QeR

√
mC.

Then, we conclude the reasoning arguing as in the proof of Lemma 3. �
The proof of Theorem 2 is now complete. �

4. Properties of optimal trajectories

In this section, we will derive a few results relating the differentiability of V at a given point with the uniqueness of
the optimal control at the same point. A similar analysis is known in the literature for finite horizon problems with an
initial cost and for exit time problems, see [8]. Here, we are interested in problems with finite horizon and fixed initial
condition. Although our results will be analogous to those obtained in the aforementioned situations, the technique of
proof is—in the present context—totally different, yet still based on the semiconcavity of V . Through this section, we
assume that f0 ≡ 0.
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To begin, let us recall that the Hamiltonian H : Rn × R
n → R is defined by

H(x,p) := max
u∈Rm

{
H̃ (x,p,u)

}= max
u∈Rm

{〈
p,f (x,u)

〉− L(x,u)
}

for any (x,p) ∈ R
×

R
n. Let us also recall that, as well-known, V is a viscosity solution of the Hamilton–Jacobi

equation

∂V

∂t
+ H(x,DxV ) = 0 in Ω. (46)

We will need the following assumptions.

(A4) The Lagrangian L is of class C
1,1
loc in the x variable.

(A5) For every (t, x) ∈ Ω and for any control u(·) steering x0 to x in time t which minimizes Ct(·), the trajectory
xu(·) remains in Ω for s ∈ (0, t]. Moreover, for every (t1, x1) and (t2, x2) in Ω , and for any control u(·) steering
x0 to x2 in time t2 which minimizes the cost functional with xu(t1) = x1, we have that dEx1,t2−t1(u(t1 + ·)) is
surjective.

Let (t, x) ∈ Ω and u(·) ∈ U be a control steering x0 to x in time t which minimizes Ct(·). Under assumptions
(A1)–(A4), Proposition 3.3 implies that there exists an absolutely continuous arc p(·) : [0, t] → R

n such that the pair
(x(·) := xu(·),p(·)) is a solution of the Hamiltonian differential system{

ẋ(s) = ∇pH(x(s),p(s)),

−ṗ(s) = ∇xH(x(s),p(s)),
(47)

for almost every s ∈ [0, t]. Note that, in view of assumption (A4), (x(·),p(·)) is the solution of a locally Lipschitz
differential equation. Hence, it is of class C1,1. Also, observe that the above Hamiltonian system can be rewritten as{

ẋ(s) = ∇pH̃ (x(s),p(s), u(s)),

−ṗ(s) = ∇xH̃ (x(s),p(s), u(s)),
(48)

for almost every s ∈ [0, t], where

u(s) = Φ
(
x(s),X

(
x(s),p(s)

))
. (49)

Lemma 9. Under assumptions (A1)–(A5), for every (t, x) ∈ Ω and every control u(·) ∈ U steering x0 to x in time t

such that V (t, x) = Ct(u(·)), we have that, for every s ∈ (0, t), u(·) is the unique control in L1([0, s];R
m) steering

x0 to xu(s) and such that V (s, xu(s)) = Cs(u(·)).

Proof. We argue by contradiction. Let s̄ ∈ (0, t) and let u′(·) be a control steering x0 to xu(s̄) in time s̄ which is
minimizing and such that u′(·) �= u(·) on [0, s̄]. Then, we have two different controls which minimize the cost between
x0 and x in time t . By assumption (A4), there are two absolutely continuous arcs p(·),p′(·) : [0, t] → R

n such that the
triples (x(·), u(·),p(·)) and (x′(·) := xu′(·), u′(·),p′(·)) satisfy the Hamiltonian system (48). In addition, since u(·)
and u′(·) do not coincide on [0, t], then p′(s) �= p(s) for any s ∈ [s̄, t]. On the other hand, since both trajectories x(·)
and x′(·) and both controls u(·) and u′(·) coincide on [s̄, t], we have that, for almost every s ∈ [s̄, t],{

ẋ(s) =∑m
i=1 ui(s)fi(x(s)),

−(ṗ′(s) − ṗ(s)) =∑m
i=1 ui(s)dfi(x(s))∗(p′(s) − p(s)).

Furthermore, by (49), we have that, for any s ∈ [s̄, t],〈
p′(s) − p(s), f

(
x(s), u

)〉= 0, ∀u ∈ R
m.

In other terms, u(·) is a singular control for Ex(s̄),t−s̄ . This contradicts assumption (A5) and proves the result. �
We need now the following lemma.

Lemma 10. For every (t, x) ∈ Ω and every (ζt , ζx) ∈ D∗V (t, x), there exists a solution (x(·),p(·)) of the Hamiltonian
system (47) such that the corresponding control given by (49) satisfies p(t) = ζx and minimizes Ct(·).
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Proof. Let us first prove that for every (t, x) ∈ Ω at which V is differentiable, there exists a solution (x(·),p(·)) of
the Hamiltonian system (47) such that the corresponding control given by (49) is minimizing and p(t) = ∇xV (t, x).
Let u(·) ∈ U be a control steering x0 to x such that V (t, x) = Ct(u(·)). Since V is differentiable at (t, x), there exists a
function φ : Rn → R of class C1 with ∇xV (t, x) = ∇φ(x) and such that y 	→ V (t, y)−φ(y) attains a local minimum
at x. Thus, there exists a neighborhood V of u(·), contained in U , such that V (t, x) � V (t, xv(t)) − φ(xv(t)) + φ(x)

for every control v(·) ∈ V . Moreover, the very definition of V yields V (t, xv(t)) � Ct(v(·)). Therefore, V (t, x) �
Ct(v(·)) − φ(xv(t)) + φ(x), for every control v(·) ∈ V . In particular, u(·) is a solution of the minimization problem

min
v(·)∈V

{ t∫
0

L
(
xv(s), v(s)

)
ds − φ

(
xv(t)

)+ φ(x)

}
.

By the Pontryagin Maximum Principle, we deduce the existence of an absolutely continuous arc p(·) satisfying (47)
such that p(t) = ∇xV (t, x). Now, let (t, x) be any point in Ω and (ζt , ζx) ∈ D∗V (t, x). By definition, there exists a
sequence {(tk, xk)}k in Ω such that V is differentiable at (tk, xk) and lim∇V (tk, xk) = (ζt , ζx). For each k, we denote
by uk(·) a minimizing control joining x0 to xk . On account of the first part of this proof, we know that, for each k, there
exists an adjoint arc pk(·) : [0, tk] → R

n satisfying pk(tk) = ζxk
. Passing to the limit as k → ∞ gives the result. �

Theorem 3. Under assumptions (A1)–(A5), for every (t, x) ∈ Ω and every u(·) ∈ U steering x0 to x in time t such
that V (t, x) = Ct(u(·)), the function V is differentiable at (s, xu(s)) for every s ∈ (0, t). Moreover, u(·) is the unique
control in L1([0, s];R

m) steering x0 to xu(s) and such that V (s, xu(s)) = Cs(u(·)). Furthermore, if p(·) : [0, s] →
R

n \ {0} satisfies (47) on [0, s], then p(s) = ∇xV (s, xu(s)).

Proof. We argue by contradiction. If V is not differentiable at (s, x(s)) for some s ∈ (0, t), then, by semiconcav-
ity, V possesses at least two distinct limiting subgradients (ζ 1

s , ζ 1
x(s)), (ζ

1
s , ζ 1

x(s)) at the point (s, x(s)). Since V is a
viscosity solution of (46), we have that

ζ i
s + H

(
x(s), ζ i

x(s)

)= 0, ∀i = 1,2.

Thus, necessarily, ζ 1
x(s) �= ζ 2

x(s), and the above lemma yields the first statement. The second assertion follows from
Lemma 9. Lemma 10 ensures the existence of p(·) : [0, s] → R

n such that (47) is satisfied on [0, s], and p(s) =
∇xV (s, xu(s)). If there is another adjoint arc for which (47) is satisfied on [0, s], then, as in the proof of Lemma 9, we
deduce that u(·) is singular for Ex0,s , which contradicts assumption (A3). �
Theorem 4. Under assumptions (A1)–(A5), for every (t, x) ∈ Ω , V is differentiable at (t, x) if and only if there is a
unique u(·) ∈ L1([0, t];R

m) steering x0 to x in time t such that V (t, x) = Ct(u(·)).
Proof. Assume that V is differentiable at (t, x) ∈ Ω , and suppose there are two distinct controls u1(·) �= u2(·) steering
x0 to x in time t such that V (t, x) = Ct(ui(·)) for i = 1,2. Then there exist two arcs p1(·),p2(·) : [0, t] → R

n \ {0}
satisfying (47) on [0, t]. Both vectors p1(t) and p2(t) being equal to ∇xV (t, x), we have that p1(t) = p2(t). This
implies that u1(·) = u2(·).

Assume now that there is a unique u(·) ∈ L1([0, t];R
m) steering x0 to x in time t such that V (t, x) = Ct(u(·)). If

V is not differentiable at (t, x), then it possesses at least two distinct elements in D∗
xV (t, x). The conclusion easily

follows. �
In view of the above results, one concludes that, for every (t, x) ∈ Ω , we have a one-to-one mapping between the

set of minimizing controls steering x0 to x in time t , and the set of limiting gradients D∗V (t, x).

5. Strongly bracket generating control systems

Through this section, we assume that f0 ≡ 0 and that f1, . . . , fm are smooth vector fields satisfying (A1). We recall
that if X,Y are two smooth vector fields on R

n, then the Lie bracket [X,Y ] at x ∈ R
n is defined by

[X,Y ](x) := dX(x)
(
Y(x)

)− dY (x)
(
X(x)

)
.

The control system is said to be strongly bracket generating on R
n if the following assumption is satisfied:
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(A6) For every x ∈ R
n and every (v1, . . . , vm) ∈ R

m \ {0m},

span
{
fj (x) | 1 � j � m

}+ span

{[
m∑

i=1

vifi, fj

]
(x)

∣∣∣ 1 � j � m

}
= R

n.

Whenever f1(x), . . . , fm(x) are linearly independent for any x ∈ R
n, the family f1, . . . , fm defines a so-called

nonsingular distribution Δ on R
n, i.e.,

Δ(x) := span
{
f1(x), . . . , fm(x)

}
, ∀x ∈ R

n.

If vector fields f1, . . . , fm satisfy assumption (A6), then the corresponding distribution Δ is said to be fat (cf. [13,15,
25]). It can be proved that, given a pair (m,n), there may be no fat distributions of rank m in R

n, see [15,17]. We have
the following well-known result.

Proposition 5.1. If assumption (A6) hold, then, for any x ∈ R
n and any t > 0, any control u(·) ∈ U which is not

identically zero on the interval [0, t] is nonsingular for Ex,t .

Proof. We use the characterization of singular controls given by Proposition 2.4. Let us argue by contradiction and
assume that there exists a solution (x(·),p(·), u(·)) of (6)–(7) on [0, t]. Then, for every i = 1, . . . ,m,〈

p(s), fi

(
x(s)
)〉= 0, ∀s ∈ [0, t].

Differentiating the above equality and using (6) yields, for a.e. s ∈ [0, t],
0 = d

ds

(〈
p(s), fi

(
x(s)
)〉)= 〈ṗ(s), fi

(
x(s)
)〉+ 〈p(s), dfi

(
x(s)
)(

ẋ(s)
)〉

= −
〈

m∑
j=1

uj (s) dfj

(
x(s)
)∗

p(s), fi

(
x(s)
)〉+

〈
p(s),

m∑
j=1

uj (s) dfi

(
x(s)
)(

fj

(
x(s)
))〉

=
m∑

j=1

uj (s)
(−〈p(s), dfj

(
x(s)
)(

fi

(
x(s)
))〉+ 〈p(s), dfi

(
x(s)
)(

fj

(
x(s)
))〉)

=
m∑

j=1

uj (s)
〈
p(s), [fi, fj ]

(
x(s)
)〉=
〈
p(s),

[
fi,

m∑
j=1

fj

](
x(s)
)〉

.

Fix s̄ ∈ [0, t] such that p(·) and x(·) are differentiable at s̄ and such that u(s̄) �= 0, and set v := u(s̄) ∈ R
m. We obtain〈

p(s̄),

[
m∑

j=1

fj , fi

](
x(s̄)
)〉= 0,

for every i = 1, . . . ,m, which contradicts assumption (A6). �
Furthermore, the Chow–Rashevsky Theorem (see [3,9,16]) asserts that if system (3) has no drift, then under as-

sumption (A6), for any pair (x, y) ∈ Rn and any t > 0 there exists some control u(·) ∈ U such that x(t;x,u(·)) = y.
Hence, we obtain the following result as a corollary.

Corollary 5.2. If assumptions (A1)–(A2) and (A6) hold and if f0 ≡ 0, then the value function V is continuous on
(0,∞) × R

n and semiconcave on (0,∞) × (Rn \ {x0}).

Example 5.3. The nonholonomic integrator of Example 2.5 is strongly bracket generating. Indeed, it is easy to check
that

[f1, f2](x) =
(0

0
2

)
, ∀x ∈ R

3.

So, the three vectors f1(x), f2(x), [f1, f2](x) form a basis of R
3.



794 P. Cannarsa, L. Rifford / Ann. I. H. Poincaré – AN 25 (2008) 773–802
6. The sub-Riemannian distance

Through this section, we assume that f0 ≡ 0, that f1, . . . , fm are smooth vector fields satisfying (A1), and that the
following assumption is satisfied:

(A7) for every x ∈ R
n, f1(x), . . . , fm(x) are linearly independent.

For any family F of smooth vector fields (i.e., F ⊂ C∞(Rn,R
n)), we denote by Lie(F) the Lie algebra of all vector

fields generated by F , that is, the smallest vector subspace S of C∞(Rn,R
n) satisfying

[f,g] ∈ S, ∀f ∈ F, ∀g ∈ S.

For any point x ∈ R
n, Lie(F)(x) denotes the set of all vectors f (x) ∈ R

n with f ∈ F . We say that {f1, . . . , fm} satisfy
Hörmander’s bracket generating condition on R

n if the following assumption is satisfied:

(A8) for every x ∈ R
n, Lie{f1, . . . , fm}(x) = R

n.

Hereafter, we assume that (A7)–(A8) are satisfied and set

Δ(x) := span
{
f1(x), . . . , fm(x)

}
, ∀x ∈ R

n.

According to the classical Chow–Rashevsky theorem (see [3,9,16]), the control system (3) is small time locally con-
trollable at any point of R

n.
Let g(·, ·) be a Riemannian metric on R

n, associated with a smooth positive definite symmetric matrix Q(x), that
is

gx(v,w) = 〈Q(x)v,w
〉
, ∀x ∈ R

n, ∀v,w ∈ R
n.

The pair (Δ,g) defines what we call a sub-Riemannian distribution of rank m on R
n, that is a smooth distribution of

constant rank m which satisfies Hörmander’s bracket generating condition on R
n. We refer the reader to [14,15] for

an extensive study of sub-Riemannian distributions.
An absolutely continuous arc γ : [0,1] → R

n is said to be horizontal if γ̇ (t) ∈ Δ(x) for a.e. t ∈ [0,1]. For any
given x0 ∈ R

n, we denote by Hx0 the set of horizontal arcs satisfying γ (0) = x0. For any x ∈ R
n, the sub-Riemannian

distance between x0 and x, denoted by dSR(x0, ·), is defined as the minimal length of an horizontal arc joining x0 to x,
that is,

dSR(x0, x) := inf
{
length(γ ) | γ ∈Hx0 , γ (1) = x

}
where

length(γ ) :=
1∫

0

√
gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt.

We note that, since system (3) is small time locally controllable, it is easy to prove that the map x 	→ dSR(x0, x) is
well defined and continuous in R

n. Furthermore, denoting by F(x) the set {v ∈ Δ(x) | gx(v, v) � 1} for any x ∈ R
n,

it is straightforward to show that dSR(x0, ·) coincides with the minimum time Tx0(x) needed to steer x to x0 along a
trajectory of the differential inclusion

ẋ(t) ∈ F
(
x(t)
)
. (50)

For any x ∈ R
n, the sub-Riemannian energy between x0 and x, denoted by eSR(x0, x), is defined by

eSR(x0, x) := inf

{ 1∫
0

gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt

∣∣∣ γ ∈Hx0 s.t. γ (1) = x

}
.

The following lemma is fundamental. For sake of completeness, we provide its easy proof.
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Lemma 11. For every x ∈ R
n, dSR(x0, x) = √

eSR(x0, x).

Proof. First, we observe that, for every horizontal arc γ (·) satisfying γ (0) = x0 and γ (1) = x, the Cauchy–Schwarz
inequality yields

( 1∫
0

√
gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt

)2

�
1∫

0

gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt.

Taking the infimum over γ , the above inequality implies dSR(x0, x)2 � ex0(x) for every x ∈ R
n. On the other hand,

for all x ∈ R
n and every ε > 0, there exists a horizontal curve γ ∈ Hx0 , with γ (1) = x, such that

length(γ ) =
1∫

0

√
gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt � dSR(x0, x) + ε.

Define φ : [0,1] → [0, length(γ )] by

φ(s) :=
s∫

0

√
gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt, ∀s ∈ [0,1].

Note that φ is strictly increasing, hence one-to-one from [0,1] to [0, length(γ )]. Set ψ := φ−1 : [0, length(γ )] →
[0,1], and define ξ : [0,1] → R

n by ξ(t) := γ (ψ(length(γ )t)) for any t ∈ [0,1]. It clear that ξ ∈ Hx0 and ξ(1) = x.
Moreover, one can easily check that

gξ(t)

(
ξ̇ (t), ξ̇ (t)

)= length(γ )2 for a.e. t ∈ [0,1].
Consequently,

eSR(x0, x) �
1∫

0

gξ(t)

(
ξ̇ (t), ξ̇ (t)

)
dt = length(γ )2 = (dSR(x0, x) + ε

)2
.

Letting ε tend to 0 completes the proof of the lemma. �
Since f1, . . . , fm satisfy (A7), for every γ ∈Hx0 , there is a unique control u(·) ∈ L1([0,1];R

m) such that

γ̇ (t) =
m∑

i=1

ui(t)fi

(
γ (t)
)

for a.e. t ∈ [0,1].

Hence,

gγ (t)

(
γ̇ (t), γ̇ (t)

)= m∑
i=1

ui(t)
2gγ (t)

(
fi

(
γ (t)
)
, fi

(
γ (t)
))+ m∑

i,j=1,i �=j

ui(t)uj (t)gγ (t)

(
fi

(
γ (t)
)
, fi

(
γ (t)
))

.

Define the Lagrangian L : Rn × R
m → R by

L(x,u) :=
m∑

i=1

u2
i gx

(
fi(x), fi(x)

)+ m∑
i,j=1, i �=j

uiujgx

(
fi(x), fj (x)

)
.

Under the above assumptions, it is easy to show that L satisfies (A2). Moreover, by Lemma 11,

dSR(x0, x)2 = inf

{ 1∫
L
(
xu(s), u(s)

)
ds

∣∣∣ u(·) ∈ U s.t. xu(1) = x

}
,

0
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for every x ∈ R
n. Furthermore, by (A8) together with Chow–Rashevsky’s Theorem, dSR(x0, x) is finite for every

x ∈ R
n. Therefore, Proposition 3.1 implies that, for every x ∈ R

n, there is a minimizing control u(·) ∈ L1([0,1];R
m)

steering x0 to x such that

dSR(x0, x)2 =
1∫

0

L
(
xu(s), u(s)

)
ds.

We now need the following assumption.

(A9) Every minimizing control steering x0 to x �= x0 is regular.

Note that, under assumption (A9), Pontryagin’s Maximum Principle ensures that all minimizing controls are smooth.
Moreover, applying Theorem 1 and Chow–Rashevsky’s Theorem, we obtain the following result.

Theorem 5. Let x0 ∈ R
n. If f0 ≡ 0 and assumptions (A1), (A7)–(A9) hold, then the function dSR(x0, ·) = Tx0 is

continuous on R
n and locally semiconcave on R

n \ {x0}.

Hence, in the special case of fat distributions, Corollary 5.2 yields the result below.

Corollary 6.1. Let x0 ∈ R
n and (Δ,g) be a sub-Riemannian distribution on R

n such that Δ is fat on R
n. Then the

function dSR(x0, ·) = Tx0 is continuous on R
n and locally semiconcave on R

n \ {x0}.

Theorem 5 provides useful information on the regularity of the sub-Riemannian distance function in the smooth
case. For example, using classical results on the structure of the singular sets of locally semiconcave functions (see
[2,8]), we can deduce that the Hausdorff dimension of the set of points at which dSR(x0, ·) fails to be differentiable
does not exceed n − 1. Furthermore, the semiconcavity of the sub-Riemannian distance is fundamental to study
the stabilization problem for nonholonomic distributions, see [23]. Finally, we observe that, since the Lagrangian
associated to (Δ,g) is smooth in the x variable, one can show that the sub-Riemannian distance function can be
written locally as an infimum of “uniformly” smooth functions. Such an approach leads to further regularity results,
see [21] and [22].

Appendix A

A.1. Proof of Lemma 2

Let (Z,V ) = ((x, y, z), (v,w,u)) ∈ (Rn × R × R
m)2 and (α,β) = ((α1, α2, α3), (β1, β2, β3)) ∈ NP

G(Z,V ). By
the definition of F , we have that v =∑m

i=1 uifi(x) and there exists δ � 0 such that w = L(x,u) + δ. Since F is
independent of y and z, α2 = α3 = 0. Moreover, by the definition of NP

G(Z,V ), ther e exists σ > 0 such that

〈α1, x
′ − x〉 + 〈β1, v

′ − v〉 + β2(w
′ − w) + 〈β3, u

′ − u〉m
� σ |x′ − x|2 + σ(y′ − y)2 + σ |z′ − z|2m + σ |v′ − v|2 + σ(w′ − w)2 + σ |u′ − u|2m, (51)

for every ((x′, y′, z′), (v′,w′, u′)) ∈ (Rn × R × R
m) × (Rn × R × R

m). Hence, it is easy to see that β2 � 0, and that
β2 = 0 whenever δ > 0. Assume, first, β2 < 0 (so that δ = 0). Applying (51) at point ((x′, y, z), (f (x′, u),L(x′, u),

u)) ∈ G, for every x′ ∈ R
n, gives

〈α1, x
′ − x〉 + 〈β1, f (x′, u) − f (x,u)

〉+ β2
(
L(x′, u) − L(x,u)

)
� σ |x′ − x|2 + σ

∣∣f (x′, u) − f (x,u)
∣∣2 + σ

(
L(x′, u) − L(x,u)

)2
, (52)

which can be written as

L(x′, u) − L(x,u) + σ |x′ − x|2 + σ
∣∣f (x′, u) − f (x,u)

∣∣2 + σ
(
L(x′, u) − L(x,u)

)2
�
〈

α1
, x′ − x

〉
+
〈

β1
, f (x′, u) − f (x,u)

〉

−β2 −β2
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for every x′ ∈ R
n. Now, for every x′ ∈ R

n satisfying |x′ − x| � 1,

∣∣f (x′, u) − f (x,u)
∣∣� ∣∣f0(x

′) − f0(x)
∣∣+ m∑

i=1

|ui |
∣∣fi(x

′) − fi(x)
∣∣

=
∣∣∣∣∣

1∫
0

d

dλ

{
f0
(
x + λ(x′ − x)

)}
dλ

∣∣∣∣∣+
m∑

i=1

|ui |
∣∣∣∣∣

1∫
0

d

dλ

{
fi

(
x + λ(x′ − x)

)}
dλ

∣∣∣∣∣
�

1∫
0

∣∣df0
(
x + λ(x′ − x)

)∣∣|x′ − x|dλ +
m∑

i=1

|ui |
1∫

0

∣∣dfi

(
x + λ(x′ − x)

)∣∣|x′ − x|dλ

� K|x′ − x| + √
mK|u|m|x′ − x|,

where K is a positive constant such that |dfi(x
′)| � K for all i = 0, . . . ,m and x ′ ∈ x + B̄ . We also obtain, by (A2)(ii),

L(x′, u) − L(x,u) � K
(|x| + 1

)
θ
(|u|m

)|x′ − x|
for every x′ ∈ x + B̄ . Since, for every x′ ∈ R

n,

f (x′, u) − f (x,u) =
m∑

i=1

ui dfi(x)(x′ − x) + o(x′ − x),

we obtain that, for every x′ ∈ x + B̄ ,

L(x′, u) − L(x,u) + σ
(
1 + K

(
1 + √

m |u|m
)+ K

(|x| + 1
)
θ
(|u|m

))|x′ − x|2

�
〈

α1

−β2
, x′ − x

〉
+
〈

β1

−β2
,

m∑
i=1

ui dfi(x)(x′ − x)

〉
+ o(x′ − x).

Therefore,

1

−β2

(
α1 + A∗β1

) ∈ ∂xL(x,u) where A :=
m∑

i=1

ui dfi(x).

Now, apply (51) to ((x, y, z), (f (x,u′),L(x,u′), u′)) ∈ G, for any u′ ∈ R
m, to obtain〈

β1, f (x,u′) − f (x,u)
〉+ β2

(
L(x,u′) − L(x,u)

)+ 〈β3, u
′ − u〉m

� σ
∣∣f (x,u′) − f (x,u)

∣∣2 + σ
(
L(x,u′) − L(x,u)

)2 + σ |u′ − u|2m, (53)

which can be written as

L(x,u′) − L(x,u) + σ
∣∣f (x,u′) − f (x,u)

∣∣2 + σ
(
L(x,u′) − L(x,u)

)2 + σ |u′ − u|2m
�
〈

β1

−β2
, f (x′, u) − f (x,u)

〉
+
〈

β3

−β2
, u′ − u

〉
m

for every u′ ∈ R
m. Also, for every u′ ∈ R

m,∣∣f (x,u′) − f (x,u)
∣∣� √

m max
{∣∣fi(x)

∣∣ | i = 1, . . . ,m
}|u′ − u|m.

Thus, denoting by K a Lipschitz constant for u′ 	→ L(x,u) on the ball centered at u with radius 1, we have L(x,u′)−
L(x,u) � K|u′ − u|m for every u′ ∈ R

m with |u′ − u|m � 1. As above, this implies that

1

−β2
(β̂1 + β3) = ∇uL(x,u) where β̂1 := (〈β1, f1(x)

〉
, . . . ,

〈
β1, fm(x)

〉)∗
.

Suppose now β2 = 0. By (52) and the above estimates, we easily deduce that

α1 + A∗β1 = 0, where A :=
m∑

ui dfi(x).
i=1
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On the other hand, (53) yields

1

−β2
(β̂1 + β3) = 0 where β̂1 := (〈β1, f1(x)

〉
, . . . ,

〈
β1, fm(x)

〉)∗
.

The fact that the same properties are satisfied whenever (α,β) ∈ NP
G(Z,V ) is easy to prove.

A.2. Proof of Lemma 6

Let t1 � t2 ∈ I := [0, t̄ + δ] and let u1(·), u2(·) ∈ U∞ be such that ‖u1(·)‖∞,‖u2(·)‖∞ � K . Define

x1(·) := xu1(·), x2(·) := xu2(·).
Observe that, by assumptions (A1)–(A2), there is a constant C > 0 such that∥∥x1(·)

∥∥∞,
∥∥ẋ1(·)

∥∥∞,
∥∥x2(·)

∥∥∞,
∥∥ẋ2(·)

∥∥∞ � C.

Moreover, by regularity of the Lagrangian in both variables, we have that∣∣L(x,u) − L(x′, u′)
∣∣� C

(|x − x′| + |u − u′|m
)

for every x, x′ ∈ R
n and u,u′ ∈ R

m satisfying |x|, |x′| � C and |u|m, |u′|m � K . In addition, by Gronwall’s Lemma
we conclude that∣∣x2(s) − x1(s)

∣∣� C
∥∥u2(·) − u1(·)∥∥∞, ∀s ∈ [0, t1].

Therefore, estimate (40) can be derived as follows

∣∣Ct1

(
u1(·))− Ct2

(
u2(·))∣∣�

∣∣∣∣∣
t2∫

t1

L
(
x2(s), u

2(s)
)
ds

∣∣∣∣∣+
t1∫

0

∣∣L(x1(s), u
1(s)
)− L

(
x2(s), u

2(s)
)∣∣ds

� C|t1 − t2| + C

t1∫
0

(∣∣x1(s) − x2(s)
∣∣+ ∣∣u1(s) − u2(s)

∣∣)ds

� C
(|t1 − t2| +

∥∥u2(·) − u1(·)∥∥∞).
Now, in order to prove (41), let μ ∈ [0,1] and define

tμ = μt1 + (1 − μ)t2,

uμ(·) = μu1(·) + (1 − μ)u2(·),
xμ(·) = xuμ(·).

We note that

μCt1

(
u1(·)

)+ (1 − μ)Ct2

(
u2(·)

)− Ctμ

(
uμ(·))

= μCt1

(
u1(·)

)+ (1 − μ)Ct1

(
u2(·)

)− Ct1

(
uμ(·))

+ (1 − μ)

t2∫
t1

L
(
x2(s), u

2(s)
)
ds −

tμ∫
t1

L
(
xμ(s), uμ(s)

)
ds. (54)

The change of variables s := μt1 + (1 − μ)t gives

tμ∫
t1

L
(
xμ(s), uμ(s)

)
ds = (1 − μ)

t2∫
t1

L
(
xμ

(
μt1 + (1 − μ)t

)
, uμ
(
μt1 + (1 − μ)t

))
dt.
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Hence,

(1 − μ)

t2∫
t1

L
(
x2(s), u

2(s)
)
ds −

tμ∫
t1

L
(
xμ(s), uμ(s)

)
ds

= (1 − μ)

t2∫
t1

[
L
(
x2(t), u

2(t)
)− L

(
xμ

(
μt1 + (1 − μ)t

)
, uμ
(
μt1 + (1 − μ)t

))]
dt

= (1 − μ)[I1 + I2 + I3 + I4]
where

I1 :=
t2∫

t1

[
L
(
x2(t), u

2(t)
)− L

(
x2
(
μt1 + (1 − μ)t

)
, u2(t)

)]
dt

I2 :=
t2∫

t1

[
L
(
x2
(
μt1 + (1 − μ)t

)
, u2(t)

)− L
(
x2
(
μt1 + (1 − μ)t

)
, uμ(t)

)]
dt

I3 :=
t2∫

t1

[
L
(
x2
(
μt1 + (1 − μ)t

)
, uμ(t)

)− L
(
xμ

(
μt1 + (1 − μ)t

)
, uμ(t)

)]
dt

and

I4 :=
t2∫

t1

[
L
(
xμ

(
μt1 + (1 − μ)t

)
, uμ(t)

)− L
(
xμ

(
μt1 + (1 − μ)t

)
, uμ
(
μt1 + (1 − μ)t

))]
dt.

In view of our preliminary considerations, we have that

I1 � C

t2∫
t1

∣∣x2(t) − x2
(
μt1 + (1 − μ)t

)∣∣ds

� Cμ

t2∫
t1

(t − t1) dt = C

2
μ(t2 − t1)

2.

Moreover,

I2 � C

t2∫
t1

∣∣u2(t) − uμ(t)
∣∣
m

dt � Cμ|t2 − t1|
∥∥u2(·) − u1(·)∥∥∞.

Also, observe that, again by Gronwall’s Lemma,∣∣x2(s) − xμ(s)
∣∣� C

∥∥u2(·) − uμ(·)∥∥∞ � Cμ
∥∥u2(·) − u1(·)∥∥∞

for all s ∈ [t1, tμ]. Therefore,

I3 � C

t2∫
t1

∣∣x2
(
μt1 + (1 − μ)t

)− xμ

(
μt1 + (1 − μ)t

)∣∣dt

� Cμ(t2 − t1)
∥∥u2(·) − u1(·)∥∥ .
∞
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Finally, recalling (25), we obtain

I4 � C

t2∫
t1

∣∣uμ(t) − uμ
(
μt1 + (1 − μ)t

)∣∣dt � KC

2
μ(t2 − t1)

2.

Summing up, we conclude that

(1 − μ)

t2∫
t1

L
(
x2(s), u

2(s)
)
ds −

tμ∫
t1

L
(
xμ(s), uμ(s)

)
ds

� Cμ(1 − μ)(t2 − t1)
∥∥u2(·) − u1(·)∥∥∞ + Cμ(1 − μ)(t2 − t1)

2. (55)

The quantity μCt1(u
1(·)) + (1 − μ)Ct1(u

2(·)) − Ct1(u
μ(·)) can be written as

μCt1

(
u1(·))+ (1 − μ)Ct1

(
u2(·))− Ct1

(
uμ(·))

=
t1∫

0

[
μL
(
x1(s), u

1(s)
)+ (1 − μ)L

(
x2(s), u

2(s)
)− L

(
xμ(s), uμ(s)

)]
ds

=
t1∫

0

[
μL
(
x1(s), u

μ(s)
)+ (1 − μ)L

(
x2(s), u

μ(s)
)− L

(
xμ(s), uμ(s)

)]
ds

+ μ

t1∫
0

[
L
(
x1(s), u

1(s)
)− L

(
x1(s), u

μ(s)
)]

ds + (1 − μ)

t1∫
0

[
L
(
x2(s), u

2(s)
)− L

(
x2(s), u

μ(s)
)]

ds.

From assumption (A2)(ii), we know that, for some constant C′ > 0,

μL(x,u) + (1 − μ)L(x′, u) − L
(
μx + (1 − μ)x′, u

)
� C′μ(1 − μ)|x − x′|2

for every μ ∈ [0,1], every x, x′ ∈ R
n satisfying |x|, |x′| � C and every u,u′ ∈ R

m satisfying |u|m, |u′|m � K . More-
over, since the end-point mapping Ex0,t1 is of class C1,1, we can also assume that,∣∣μx1(s) + (1 − μ)x2(s) − xμ(s)

∣∣� Cμ(1 − μ)
∥∥u1(·) − u2(·)∥∥2

∞, ∀s ∈ [0, t1].
Hence we obtain,

t1∫
0

[
μL
(
x1(s), u

μ(s)
)+ (1 − μ)L

(
x2(s), u

μ(s)
)− L

(
xμ(s), uμ(s)

)]
ds

=
t1∫

0

[
μL
(
x1(s), u

μ(s)
)+ (1 − μ)L

(
x2(s), u

μ(s)
)− L

(
μx1(s) + (1 − μ)x2(s), u

μ(s)
)]

ds

+
t1∫

0

[
L
(
μx1(s) + (1 − μ)x2(s), u

μ(s)
)− L

(
xμ(s), uμ(s)

)]
ds

� C′μ(1 − μ)

t1∫
0

∣∣x1(s) − x2(s)
∣∣2 ds + C

t1∫
0

∣∣μx1(s) + (1 − μ)x2(s) − xμ(s)
∣∣ds

� Cμ(1 − μ)
∥∥u1(·) − u2(·)∥∥2

.
∞
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On the other hand, denoting by h(s) the difference u1(s) − u2(s) for all s ∈ [0, t1], we have that

t1∫
0

[
L
(
x1(s), u

1(s)
)− L

(
x1(s), u

μ(s)
)]

ds = (1 − μ)

t1∫
0

1∫
0

〈∇uL
(
x1(s), u

μ(s) + λ(1 − μ)h(s)
)
, h(s)

〉
dλds,

and
t1∫

0

[
L
(
x2(s), u

2(s)
)− L

(
x2(s), u

μ(s)
)]

ds = −μ

t1∫
0

1∫
0

〈∇uL
(
x2(s), u

μ(s) − λμh(s)
)
, h(s)

〉
dλds.

Thus,

μ

t1∫
0

[
L
(
x1(s), u

1(s)
)− L

(
x1(s), u

μ(s)
)]

ds + (1 − μ)

t1∫
0

[
L
(
x2(s), u

2(s)
)− L

(
x2(s), u

μ(s)
)]

ds

= μ(1 − μ)

t1∫
0

1∫
0

〈
Λ(λ, s), h(s)

〉
dλds,

where

Λ(λ, s) = ∇uL
(
x1(s), u

μ(s) + λ(1 − μ)h(s)
)− ∇uL

(
x2(s), u

μ(s) − λμh(s)
)

for every λ ∈ [0,1] and every s ∈ [0, t1]. Since∣∣∇uL(x,u) − ∇uL(x′, u′)
∣∣� C

(|x − x′| + |u − u′|m
)

for every x, x′ ∈ R
n satisfying |x|, |x′| � C and every u,u′ ∈ R

m satisfying |u|m, |u′|m � K , we obtain that, for every
λ ∈ [0,1] and every s ∈ [0, t1],

Λ(λ, s) � C
∣∣h(s)

∣∣
m

+ C
∣∣x1(s) − x2(s)

∣∣� C
∥∥u2(·) − u1(·)∥∥∞.

Therefore,

μ

t1∫
0

[
L
(
x1(s), u

1(s)
)− L

(
x1(s), u

μ(s)
)]

ds + (1 − μ)

t1∫
0

[
L
(
x2(s), u

2(s)
)− L

(
x2(s), u

μ(s)
)]

ds

� μ(1 − μ)
∥∥u2(·) − u1(·)∥∥2

∞. (56)

The conclusion follows from (55)–(57).
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