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Abstract

A set is called “calibrable” if its characteristic function is an eigenvector of the subgradient of the total variation. The main
purpose of this paper is to characterize the “φ-calibrability” of bounded convex sets in R

N with respect to a norm φ (called
anisotropy in the sequel) by the anisotropic mean φ-curvature of its boundary. It extends to the anisotropic and crystalline cases the
known analogous results in the Euclidean case. As a by-product of our analysis we prove that any convex body C satisfying a φ-ball
condition contains a convex φ-calibrable set K such that, for any V ∈ [|K|, |C|], the subset of C of volume V which minimizes the
φ-perimeter is unique and convex. We also describe the anisotropic total variation flow with initial data the characteristic function
of a bounded convex set.
© 2008

Résumé

On dit qu’un ensemble est « calibrable » si sa fonction est vecteur propre du sous-gradient de la variation totale. Le but de cet
article est une caractérisation de la « φ-calibrabilité » des ensembles convexes bornés de R

N , relativement à une norme φ (appelée
anisotropie), en fonction de la φ-courbure moyenne anisotrope de leur frontière. Il s’agit donc d’une extension aux cas anisotropes
et cristallins de résultats connus dans le cas euclidien. On démontre en particulier l’existence dans tout corps convexe régulier C

d’un convexe K ⊆ C φ-calibrable, tel que pour tout V ∈ [|K|, |C|], l’ensemble de volume V de φ-périmètre minimal contenu dans
C est unique et convexe. Nous étudions aussi le flot de la variation totale anisotrope à partir de la caractéristique d’un ensemble
convexe borné.
© 2008
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1. Introduction

The purpose of this paper is to give a characterization of convex calibrable sets (with respect to an anisotropic
perimeter) in R

N extending the corresponding result for N = 2 [17] and the corresponding results for the usual
euclidean perimeter [27,14,2]. In the evolution of a set under anisotropic mean curvature flow, calibrable facets are
those which do not bend or break during the evolution process, and they are characterized, in the convex case, in terms
of the anisotropic curvature of the boundary [17].

The anisotropic perimeter Pφ in R
N is defined as

Pφ(E) :=
∫
∂E

φ◦(νE
)
dHN−1, E ⊆ R

N,

where νE is the outward unit normal to the boundary ∂E of E and φ◦ (the surface tension) is a norm on R
N . We say

that the anisotropy φ◦ is crystalline if {φ◦ � 1} is a polyhedron.
Let F be a convex subset of R

2. For any measurable set X ⊆ R
N , |X| denotes the Lebesgue measure of the set X.

It has been proved in [17] that the following three assertions are equivalent.

(a) F is φ-calibrable, i.e., there is a vector field ξ ∈ L∞(F,R
2), with φ(ξ(x)) � 1 a.e. in F (where φ is the dual

norm of φ◦), such that

−div ξ = λ
φ
F := Pφ(F )

|F | in F ,

ξ · νF = −φ◦(νF
)

in ∂F , (1.1)

where νF (x) denotes the outer unit normal to ∂F at the point x ∈ ∂F .
(b) F is a solution of the problem

min
X⊆F

Pφ(X) − λ
φ
F |X|. (1.2)

(c) We have

ess sup
x∈∂F

κ
φ
F (x) � λ

φ
F , (1.3)

where κ
φ
F (x) denotes the anisotropic curvature of ∂F at the point x.

The characterization of the calibrability of a convex set in R
2, with respect to the euclidean perimeter, was proved

by Giusti in [27], where he also proved that in a convex calibrable set the capillary problem in absence of gravity, with
any prescribed contact angle at its boundary, has always a solution. In the euclidean case, this equivalence has been
partly rederived in [14] where calibrable sets were used to construct explicit solutions of the denoising problem in
image processing. A simple proof of the equivalence (b) ⇔ (c) was given in [30] (where it was studied in connection
which Cheeger sets, see Section 6). The extension of the above result for the euclidean perimeter and N � 3 was
proved in [2]. In that case, the left-hand side of (1.3) has to be substituted by the sum of the principal curvatures at the
point x ∈ ∂F . Our purpose in this paper is to extend the above set of equivalences to the anisotropic case, for a convex
set in R

N which satisfies a ball condition (see Definition 2.7).
The proof of the equivalence (a) ⇔ (b) is the same as in the euclidean case and it is independent of the dimension N

(see [14,2]). We notice that the supremum of the curvature κ
φ
C in (1.3) has to be substituted with the number (N −

1)‖Hφ
C‖∞, where ‖Hφ

C‖∞ is defined in Section 2.5 and denotes the L∞-norm of the anisotropic mean curvature of
∂C. To prove (b) ⇔ (c) we follow the strategy used in [2] for the euclidean case, thus, we embed the variational
problem (1.2) in a family of problems

min Pφ(X) − λ|X|, λ > 0, (1.4)

X⊆C
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and we study the dependence of its solution on λ. In particular, we prove that C is a solution of (1.4) if and only if
λ � max{λφ

C, (N − 1)‖Hφ
C‖∞}. The solutions of (1.4) are related to the solution of the variational problem

min
u∈BV(RN)∩L2(RN)

∫
RN

φ◦(Du) + μ

2

∫
RN

(u − χC)2 dx, μ > 0. (1.5)

Indeed, it turns out that the level sets of the solution of (1.5) embed the solutions of (1.4) for λ ∈ [0,μ]. Since the
solution u of (1.5) satisfies the equation

v − μ−1 div
(
∂φ◦(Dv)

) = 1 in C,

∂φ◦(Dv) · νC = −φ◦(νC
)

in ∂C (1.6)

(the meaning of ∂φ◦(Dv) will be explained below) and the solutions of (1.6) can be approximated by the solutions uε

of

v − μ−1 div

(
T ◦(Dv)√

ε2 + φ◦(Dv)2

)
= 1 in C,

T ◦(Dv)√
ε2 + φ◦(Dv)2

· νC = −φ◦(νC
)

in ∂C (1.7)

as ε → 0 (where T ◦(x) = 1
2∂(φ◦)2(x), x ∈ R

N ). We use the result of Korevaar [31] to conclude that u is concave
in C, hence also continuous there. This implies the uniqueness and convexity of solutions of (1.4). Thus, by studying
the dependence on λ of solutions of (1.4), we can prove that if C satisfies the curvature estimate (1.3) but is not a
minimum of (1.2), then it can be approximated from inside by solutions Cλ of (1.4), with λ → μ and μ > λ

φ
C . As we

shall prove in Proposition 7.1, this implies that (N − 1)‖Hφ
C‖∞ > λ

φ
C , a contradiction.

As an interesting by-product of our analysis we obtain that solutions of (1.4) are convex sets. Since (1.4) can be
considered as the functional obtained by applying the Lagrange multiplier method to the area minimizing problem

min
X⊆C, |X|=V

Pφ(X) (1.8)

where 0 < V < |C|, we obtain that, for some range of volumes, the solutions of this isoperimetric problem with fixed
volume V are convex sets. The range of values of V for which the above result holds is [|K|, |C|] where K is a
convex φ-calibrable set contained in C obtained as solution of (1.4) for a certain value of λ (see Section 6). This
extends the analogous result in [2]. In the euclidean case, a similar result has been also proved by E. Stredulinsky and
W.P. Ziemer [39] in the case of a convex set C containing a ball B such that ∂B ∩ ∂C is a meridian of ∂B , and we
mention the result of C. Rosales [36] when C is a rotationally symmetric convex body.

Finally, let us mention that our results enable us to describe the evolution of any convex set in R
N , satisfying a ball

condition, by the anisotropic total variation flow. The same result for the euclidean case was proved in [3] (for N = 2)
and in [2]: as in those papers, it can be extended to unions of convex set which are far apart from each other. Other
examples of evolution are given in [35].

Let us describe the plan of the paper. In Section 2 we collect some preliminary definitions and results about
anisotropies, regularity conditions in the anisotropic case, functions of bounded variation and Green’s formula. In
Section 3 we recall the subdifferential of the anisotropic total variation in R

N and we define φ-calibrable sets. In
Section 4 we relate the solution of the variational problem (1.4) with the solution of (1.5) and we study the basic
properties of its minimizers. In Section 5 we prove the concavity of solutions of (1.5) for a certain range of values
of μ. This will imply the convexity of the solutions of (1.4) for an interval of values of λ. In Section 6 we prove
the convexity of solutions of (1.8) when V ∈ [|K|, |C|] where K is a certain convex φ-calibrable set contained in C.
Section 7 is devoted to the characterization of the φ-calibrability of a convex set in terms of the anisotropic mean
curvature of its boundary. Finally, in Section 8 we characterize the φ-calibrability of the convex sets which satisfy a
ball condition, and we describe the evolution of such sets by the minimizing anisotropic total variation flow.
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2. Preliminaries

2.1. Notation

Given an open set A ⊆ R
N and a function f :A → R, we write f ∈ C1,1(A) (resp. f ∈ C1,1

loc (A)) if f ∈ C1(A)

and ∇f ∈ Lip(A;R
N) (resp. ∇f ∈ Liploc(A;R

N)). Let B ⊂ R
N be a set; we say that B (or ∂B) is of class C1,1

(resp. Lipschitz) if ∂B can be written, locally around each point, as the graph (with respect to a suitable orthogonal
coordinate system) of a function f of class C1,1 (resp. Lipschitz).

Given two nonempty sets A,B , we denote the Hausdorff distance between A and B by dH(A,B) =
max{supa∈A dist(a,B), supb∈B dist(b,A)}. We denote by χA the characteristic function of A, and by Ā (resp. int(A))
the closure (resp. the interior part) of A.

We let SN−1 := {ξ ∈ R
N : |ξ | = 1} and for ρ > 0 we let Bρ := {x ∈ R

N : |x| < ρ}. We denote by HN−1 the
(N − 1)-dimensional Hausdorff measure in R

N , and by | · | the Lebesgue measure. Given a function f defined on the
boundary ∂C of a set C, we set ‖f ‖L∞(∂C) to be the HN−1-essential supremum of |f | on ∂C.

We shall use the notation f (t) ∈ O(t) if |f (t)
t

| is bounded as t → 0.

2.2. Anisotropies and distance functions

In the sequel of the paper, the function φ will always denote an anisotropy, i.e., a function φ : RN → [0,∞) such
that

φ(tξ) = |t |φ(ξ) ∀ξ ∈ R
N, ∀t ∈ R, (2.1)

and

m|ξ | � φ(ξ) ∀ξ ∈ R
N, (2.2)

for some m > 0. In particular φ(ξ) = φ(−ξ) for any ξ ∈ R
N . Observe that there exists M ∈ [m,+∞) such that

φ(ξ) � M|ξ | for all ξ ∈ R
N . We let Wφ := {φ � 1}. The polar function φ◦ of φ (also called surface tension) is

defined as φ◦(ξ) := sup{η · ξ : φ(η) � 1} for any ξ ∈ R
N . If φ is an anisotropy, then φ◦ is also an anisotropy and there

holds (φ◦)◦ = φ.
By a convex body we mean a compact convex set whose interior contains the origin. A convex body is said to

be centrally symmetric if it is symmetric with respect to the origin. If φ is an anisotropy, then Wφ := {ξ : φ(ξ) � 1}
(sometimes called Wulff shape) is a centrally symmetric convex body. If K is a convex body, the function hK(ξ) :=
supη∈K η · ξ is called the support function of K ; notice that {(hK)◦ � 1} = K .

As usual, we shall denote by ∂φ(ξ) the subdifferential of φ at ξ ∈ R
N . If φ is differentiable at ξ , we have ∂φ(ξ) =

{∇φ(ξ)}. If Φ is a convex function defined on a Hilbert space, we still denote by ∂Φ the subdifferential of Φ .
Given a nonempty set E ⊆ R

N , we let

dφ(x,E) := inf
y∈E

φ(x − y), x ∈ R
N.

We denote by dE
φ the signed φ-distance function to ∂E negative inside E, that is

dE
φ (x) := dφ(x,E) − dφ

(
x,R

N \ E
)
, x ∈ R

N. (2.3)

Observe that |dE
φ (x)| = dφ(x, ∂E).

It can be shown (the proofs are identical to the Euclidean case) that the function dE
φ is Lipschitz, and at each point

x where it is differentiable we have φ◦(∇dE
φ (x)) = 1. We set

νE
φ := ∇dE

φ on ∂E, (2.4)

at those points where ∇dE
φ exists. When φ is the euclidean norm, i.e., φ(ξ) = |ξ |, we set νE = νE|·| and B1 =W|·|. We

have

νE
φ (x) = νE(x)

◦ E
.

φ (ν (x))



V. Caselles et al. / Ann. I. H. Poincaré – AN 25 (2008) 803–832 807
Let T ◦ be the multivalued map in R
N defined by

T ◦(x) = 1

2
∂
(
φ◦)2

(x), x ∈ R
N.

T ◦ is a maximal monotone operator mapping Wφ◦ onto Wφ . If E is Lipschitz, at HN−1-a.e. x ∈ ∂E we have〈
νE
φ (x),p

〉 = 1 ∀p ∈ T ◦(νE
φ (x)

)
.

Vector fields which are selections in ∂φ◦(∇dE
φ ) are sometimes called Cahn–Hoffman vector fields, and we denote by

Norφ(∂E,R
N) the set of such fields.

Definition 2.1. We say that φ ∈ C1,1
+ (resp. C∞+ ) if φ2 is of class C1,1(RN) (resp. C∞(RN \ {0})) and there exists a

constant c > 0 such that ∇2(φ2) � c Id almost everywhere. We say that a centrally symmetric convex body is of class
C1,1

+ (resp. C∞+ ) if it is the unit ball of an anisotropy of class C1,1
+ (resp. C∞+ ).

Definition 2.2. We say that φ is crystalline if the unit ball Wφ of φ is a polytope.

Remark 2.3. Observe that

(a) φ ∈ C1,1
+ (resp. C∞+ ) if and only if φ◦ ∈ C1,1

+ (resp. C∞+ ) [37, p. 111];
(b) φ is crystalline if and only if φ◦ is crystalline.

2.3. φ-regularity and the RWφ-condition

Following [15–18] we define the class of φ-regular sets and Lipschitz φ-regular sets (these latter are a generaliza-
tion of sets of class C1,1 in the euclidean case).

Definition 2.4. Let E ⊂ R
N be a set. We say that E is φ-regular if ∂E is a compact Lipschitz hypersurface and there

exist an open set U ⊃ ∂E and a vector field n ∈ L∞(U ;R
N) such that div n ∈ L∞(U), and n ∈ ∂φ◦(∇dE

φ ) almost

everywhere in U . We say that E is Lipschitz φ-regular if E is φ-regular and n ∈ Lip(U ;R
N).

It is clear that a Lipschitz φ-regular set is φ-regular. With a little abuse of notation, sometimes we will denote by
(E,n), by (E,U) or by (E,U,n), a φ-regular set.

Observe that, in general, vector fields n are not unique, unless φ ∈ C1,1
+ . When φ ∈ C1,1

+ the inclusion n ∈ ∂φ◦(∇dE
φ )

becomes an equality; in this respect we give the following definition.

Definition 2.5. Let φ ∈ C1,1
+ and (E,U) be a Lipschitz φ-regular set. Let x ∈ U be a point where there exists ∇dE

φ (x).
We set

nE
φ (x) := ∇φ◦(∇dE

φ (x)
)
. (2.5)

Remark 2.6. Observe that (Wφ,n), with n(x) := x/φ(x), is Lipschitz φ-regular, and div n(x) = (N − 1)/φ(x) for
almost every x ∈ R

N .

The next definition will play an important role in the sequel.

Definition 2.7. Let E ⊂ R
N be a set with nonempty interior and R > 0. We say that E satisfies the RWφ-condition

if, for any x ∈ ∂E, there exists y ∈ R
N such that

RWφ + y ⊆ Ē and x ∈ ∂(RWφ + y).

The first assertion of the following result is proved in [18, Lemmas 3.4, 3.5], and the second one is proved in
[13, Proposition 3.9].
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Lemma 2.8. Let φ be any anisotropy.

(i) If E is a Lipschitz φ-regular set, then E and R
N \ E satisfy the RWφ-condition for some R > 0.

(ii) A compact convex set satisfying the RWφ-condition is φ-regular.

If φ ∈ C1,1
+ , we list some relations between φ-regularity and the RWφ-condition (see [13, Remark 4]).

Remark 2.9. Assume that φ ∈ C1,1
+ . The following assertions hold.

(a) E is Lipschitz φ-regular if and only if E is of class C1,1.
(b) Let C be a compact convex set which satisfies the RWφ-condition for some R > 0. Then C is Lipschitz φ-regular

(hence C is of class C1,1 by (a)).
(c) E is Lipschitz φ-regular if and only if E and R

N \ E satisfy the RWφ-condition for some R > 0.

2.4. BV functions, φ-total variation and generalized Green formula

Let Ω be an open subset of R
N . A function u ∈ L1(Ω) whose gradient Du in the sense of distributions is a (vector

valued) Radon measure with finite total variation |Du|(Ω) in Ω is called a function of bounded variation. The class
of such functions will be denoted by BV(Ω). We denote by BV loc(Ω) the space of functions w ∈ L1

loc(Ω) such that
wϕ ∈ BV(Ω) for all ϕ ∈ C∞

c (Ω). Concerning all properties and notation relative to functions of bounded variation we
will follow [6].

A measurable set E ⊆ R
N is said to be of finite perimeter in Ω if |DχE |(Ω) < ∞. The (euclidean) perimeter

of E in Ω is defined as P(E,Ω) := |DχE |(Ω), and we have P(E,Ω) = P(RN \ E,Ω). We shall use the notation
P(E) := P(E,R

N).
Let u ∈ BV(Ω). We define the anisotropic total variation of u with respect to φ in Ω [4] as∫

Ω

φ◦(Du) = sup

{∫
Ω

udivσ dx: σ ∈ C1
c

(
Ω;R

N
)
, φ

(
σ(x)

)
� 1 ∀x ∈ Ω

}
. (2.6)

If E ⊆ R
N has finite perimeter in Ω , we set

Pφ(E,Ω) :=
∫
Ω

φ◦(DχE)

and we have [4]

Pφ(E,Ω) =
∫

Ω∩∂∗E

φ◦(νE
)
dHN−1, (2.7)

where ∂∗E is the reduced boundary of E and νE the (generalized) outer unit normal to E at points of ∂∗E.
Recall that, since φ◦ is homogeneous, φ◦(Du) coincides with the nonnegative Radon measure in R

N given by

φ◦(Du) = φ◦(∇u(x)
)
dx + φ◦

(
Dsu

|Dsu|
)∣∣Dsu

∣∣,
where ∇u(x)dx is the absolutely continuous part of Du, and Dsu its singular part.

Let Ω be an open subset of R
N . Following [10], let

X2(Ω) := {
z ∈ L∞(

Ω;R
N

)
: div z ∈ L2(Ω)

}
.

If z ∈ X2(Ω) and w ∈ L2(Ω) ∩ BV(Ω) we define the distribution (z,Dw) :C∞
c (Ω) → R by the formula〈

(z,Dw),ϕ
〉 := −

∫
wϕ div z dx −

∫
wz · ∇ϕ dx ∀ϕ ∈ C∞

c (Ω).
Ω Ω
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Then (z,Dw) is a Radon measure in Ω ,∫
Ω

(z,Dw) =
∫
Ω

z · ∇w dx ∀w ∈ L2(Ω) ∩ W 1,1(Ω),

and ∣∣∣∣ ∫
B

(z,Dw)

∣∣∣∣ �
∫
B

∣∣(z,Dw)
∣∣ � ‖z‖∞

∫
B

|Dw| ∀B ⊆ Ω Borel set.

We recall the following result proved in [10].

Theorem 2.10. Let Ω ⊂ R
N be a bounded open set with Lipschitz boundary. Let u ∈ BV(Ω)∩L2(Ω) and z ∈ X2(Ω).

Then there exists a function [z · νΩ ] ∈ L∞(∂Ω) such that ‖[z · νΩ ]‖L∞(∂Ω) � ‖z‖L∞(Ω;RN), and∫
Ω

udiv z dx +
∫
Ω

(z,Du) =
∫

∂Ω

[
z · νΩ

]
udHN−1.

When Ω = R
N we have the following integration by parts formula [10], for z ∈ X2(R

N) and w ∈ L2(RN) ∩
BV(RN):∫

RN

w div z dx +
∫

RN

(z,Dw) = 0. (2.8)

Remark 2.11. Let Ω ⊂ R
N be a bounded Lipschitz open set, and let zinn ∈ L∞(Ω;R

N) with div zinn ∈ L2
loc(Ω), and

zout ∈ L∞(RN \ Ω;R
N) with div zout ∈ L2

loc(BR \ Ω), for all R > 0. Assume that[
zinn · νΩ

]
(x) = −[

zout · νR
2\Ω]

(x) for HN−1 − a.e x ∈ ∂Ω.

Then if we define z := zinn on Ω and z := zout on R
N \ Ω , we have z ∈ L∞(RN ;R

N) and div z ∈ L2
loc(R

N).

2.5. The anisotropic mean curvature

Let (E,U,n) be a φ-regular set. For any p ∈ [1,+∞], we define

H̃
div,p
φ

(
U,R

N
) := {

N ∈ L∞(
U ;R

N
)
: N ∈ T ◦(∇dE

φ

)
,divN ∈ Lp(U)

}
.

Fix now δ0 > 0 be such that Ut := {|dE
φ | < t} ⊆ U for t ∈ [0, δ0]. Then, following [18] (see also Theorem 2.12 below)

there exists a vector field z̃t ∈ L∞(Ut ,R
N) such that z̃t ∈ T ◦(∇dE

φ ) a.e. in U0, div z̃t ∈ L2(U0) and

‖div z̃t‖L2(Ut )
� ‖divZ‖L2(Ut )

∀Z ∈ H̃
div,2
φ

(
Ut,R

N
)
. (2.9)

We point out that, even if the minimizer z̃t may be nonunique, its divergence is always uniquely defined. In particular,
it follows that

div z̃s = div z̃t a.e. in Us, (2.10)

for all 0 < s < t .

Theorem 2.12. Let (E,U,n) be a φ-regular set. Let 0 < δ0 � R be such that U0 := {|dE
φ | < δ0} ⊆ U , and let (uh, zh),

uh ∈ BV loc(R
N) ∩ L2

loc(R
N), be the solution of

uh − hdiv zh = dE
φ in R

N , (2.11)

where zh ∈ ∂φ◦(∇uh) and (zh,Duh) = φ(Duh) in D′(RN). Then, there exists z̃ ∈ L∞(RN,R
N), and a subsequence

hj → 0+ such that zhj → z̃ weakly∗ in R
N , where z̃ is such that z̃ ∈ T ◦(∇dE

φ ) in U0 and

‖div z̃‖Lq(U0) � ‖divn‖Lq(U0) ∀q ∈ [1,∞]. (2.12)
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More generally, z̃ satisfies the following inequality

‖div z̃‖Lq(Uδ) � ‖divZ‖Lq(Uδ) ∀Z ∈ H̃
div,∞
φ

(
Uδ,R

N
)
, (2.13)

for all q ∈ [1,∞] and for all 0 < δ < δ0, where Uδ := {|dE
φ | < δ}. Finally, if E is convex, then div z̃ � 0 in U0.

Let us recall that (2.11) has a unique solution uh ∈ L2
loc(R

N) [23]. Moreover uh ∈ L∞
loc(R

N) [23] and ‖uh‖L∞(BR) �
‖dE

φ ‖L∞(B2R) + C for some constant C which does not depend on h. Let us also point out that uh is Lipschitz with a

Lipschitz constant depending only on the Lipschitz constant of dE
φ . Indeed, by the results in [23] uh can be obtained

as limit in L1
loc(R

N) of the solutions uh
j ∈ L∞

loc(R
N) of

u − hdiv ∂φ(∇u) � min
{
dE
φ , j

}
in R

N , (2.14)

and, for any y ∈ R
N , uh

j (· + y) is the solution of (2.14) with right-hand side min{dE
φ (· + y), j}. As in [23], Corol-

lary C.2, we prove that∥∥(
uh

j − uh
j (· + y)

)+∥∥∞ �
∥∥min

{
dE
φ , j

} − min
{
dE
φ (· + y), j

}∥∥∞ �
∥∥dE

h − dE
h (· + y)

∥∥∞.

This implies that∥∥(
uh − uh(· + y)

)+∥∥∞ �
∥∥dE

h − dE
h (· + y)

∥∥∞.

Interchanging the role of uh and uh(· + y) we deduce that∥∥∇uh
∥∥∞ �

∥∥∇dE
φ

∥∥∞. (2.15)

We may also prove this along the lines of the proof of Theorem 3 in [23] which uses another approximation of (2.11)
and viscosity solution theory.

Proof. For simplicity, let us denote d := dE
φ . By the remarks previous to the proof we have that |uh| � cλ on {d � λ}

where cλ is a constant depending on λ for any λ > 0. Multiplying (2.11) by uh − d and integrating by parts in {d � λ}
we obtain∫

{d�λ}

(
uh − d

)2
dx = −h

∫
{d�λ}

zh · (∇uh − ∇d
)
dx + h

∫
∂{d�λ}

zh · ν{d�λ}(uh − d
)
dHN−1,

hence uh → d in L2
loc(R

N) as h → 0+. By the estimate (2.15), we have that the convergence takes place also locally
uniformly in R

N . Moreover, modulo a subsequence, we may assume that zh → z̃ weakly∗ in L∞(RN) as h → 0+.
Let a < b and Qh

a,b := {uh � a} ∩ {d � b} be such that Qh
a,b ⊆ U0. Let us assume that h varies along a sequence

converging to 0. Since uh ∈ BV loc(R
N) we may assume that a is such that {uh < a} is a set of finite perimeter in R

N .
Since uh converges to d locally uniformly in R

N we may assume h small enough so that {uh < a} ⊆ {d � b} and
{uh = a} ∩ {d = b} = ∅. Let P : R → [0,∞) be a smooth, increasing and nonnegative function. Then∫

Qh
a,b

(
uh − d

)
P

(
uh − d

)
dx = h

∫
Qh

a,b

div zhP
(
uh − d

)
dx

= h

∫
Qh

a,b

(
div zh − divn

)
P

(
uh − d

)
dx + h

∫
Qh

a,b

divnP
(
uh − d

)
dx.

The first term can be written as∫
Qh

a,b

(
div zh − divn

)
P(uh − d)dx

= −
∫

Qh

(
zh − n

) · ∇P
(
uh − d

)
dx −

∫
RN

((
zh,DχQh

a,b

) − (n,DχQh
a,b

)
)
P

(
uh − d

)
.

a,b
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First, observe that∫
Qh

a,b

(
zh − n

) · ∇P
(
uh − d

)
dx =

∫
Qh

a,b

P ′(uh − d
)(

zh − n
) · ∇(

uh − d
)
dx

=
∫

Qh
a,b

P ′(uh − d
)(

φ◦(∇uh
) − n · ∇uh + φ◦(∇d) − zh · ∇d

)
dx � 0.

To prove that the second term is negative, we observe that

−
∫

RN

((
zh,DχQh

a,b

) − (n,DχQh
a,b

)
)
P

(
uh − d

)
=

∫
RN

((
zh,Dχ{uh<a}

) − (n,Dχ{uh<a})
)
P

(
uh − d

) −
∫

RN

((
zh,Dχ{d�b}

) − (n,Dχ{d�b})
)
P

(
uh − d

)
.

Now, by the proof of [23, Lemma 5.1] (see also [13, Lemma 4]), we have that −(zh,Dχ{uh<s}) = φ◦(Dχ{uh<s}),
where the equality means the equality of both measures, for almost every s ∈ R and we may assume that a has been
chosen to satisfy this equality. On the other hand, since φ(n) � 1, we have that |(n,Dχ{uh<a})| � φ◦(Dχ{uh<a}). This
implies that∫

RN

((
zh,Dχ{uh<a}

) − (n,Dχ{uh<a})
)
P

(
uh − d

)
� 0.

By the same arguments we could have also chosen b > a from the beginning so that (n,Dχ{d�b}) = −φ◦(Dχ{d�b}),
and, again, we have |(zh,Dχ{d�b})| � φ◦(Dχ{d�b}). Hence∫

RN

((
zh,Dχ{d�b}

) − (n,Dχ{d�b})
)
P

(
uh − d

)
� 0.

Combining all these inequalities we obtain that∫
Qh

a,b

(
uh − d

)
P

(
uh − d

)
dx � h

∫
Qh

a,b

divnP
(
uh − d

)
dx. (2.16)

If q < ∞, let q̃ = q . If q = ∞, let q̃ < ∞. Let Pj be a sequence of increasing nonnegative functions such that
Pj (r) → r+(q̃−1) locally uniformly as j → ∞. Using P = Pj in (2.16) we obtain

1

h

∫
Qh

a,b

((
uh − d

)+)q̃
dx �

∫
Qh

a,b

divn
((

uh − d
)+)q̃−1

dx.

Applying Young’s inequality we obtain

1

h

∥∥(
uh − d

)+∥∥
Lq̃ (Qh

a,b)
� ‖divn‖Lq̃(Qh

a,b)
.

Hence, we have∥∥(
div zh

)+‖Lq̃(Qh
a,b)

� ‖divn‖Lq̃(Qh
a,b)

.

Letting h → 0 and q̃ → ∞ if q = ∞, we obtain∥∥(div z̃)+
∥∥

Lq(Qa,b)
� ‖divn‖Lq(Qa,b) ∀q ∈ [1,∞], (2.17)

where Qa,b := {a � d � b}. Letting a → −δ0, b → δ0, we deduce that∥∥(div z̃)+
∥∥

q � ‖divn‖Lq(U0) ∀q ∈ [1,∞]. (2.18)

L (U0)
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I a similar way we obtain∥∥(div z̃)−
∥∥

Lq(U0)
� ‖divn‖Lq(U0) ∀q ∈ [1,∞]. (2.19)

Indeed it suffices to change uh into −uh, n into −n and to integrate in {uh � b} ∩ {d � a} to obtain (2.19). Both
inequalities (2.18) and (2.19) prove (2.12).

Now, we observe that uh → d locally uniformly in R
N , zh → z̃ and div zh → div z̃ weakly in L2

loc(U0). From this
it follows that z̃(x) ∈ ∂T ◦(∇d) a.e. in U0. To prove it, observe that since φ(zh) � 1 we deduce that φ(z̃) � 1. Let ψ

be a nonnegative test function with support contained in U0. Then∫
U0

φ◦(∇d)ψ dx � lim inf
h→0

∫
U0

φ◦(∇uh
)
ψ dx = lim inf

h→0

∫
U0

zh · ∇uhψ dx

= lim inf
h→0

−
∫
U0

div zhuhψ dx −
∫
U0

zh · ∇ψuh dx

= −
∫
U0

div z̃ dψ dx −
∫
U0

z̃ · ∇ψd dx

=
∫
U0

z̃ · ∇dψ dx �
∫
U0

φ◦(∇d)ψ dx.

Hence∫
U0

z̃ · ∇dψ dx =
∫
U0

φ◦(∇d)ψ dx.

Since this is true for any test function ψ with compact support in U0 we obtain that z̃ · ∇d = φ◦(∇d) in U0, hence
z̃ ∈ T ◦(∇d) in U0.

To prove the inequality (2.13) we observe that if 0 < δ < δ0 and Z ∈ H̃
div,∞
φ (Uδ,R

N), then (E,Uδ,Z) is φ-regular
and, by repeating the computations that lead to (2.12), we deduce that (2.13) holds.

Finally, if E is convex, the inequality div z̃ � 0 follows from the inequality d � uh, proved in [23, Theorem 3]. �
From (2.10) and (2.13) it follows that, if E satisfies the assumptions of Theorem 2.12, the function t →

‖div z̃t‖L∞(Ut ) = ‖div z̃‖L∞(Ut ) is nondecreasing, hence we may take the limit∥∥Hφ
E

∥∥∞ := lim
t→0+‖div z̃t‖L∞(Ut ). (2.20)

Let (E,n) be Lipschitz φ-regular and let N ∈ Norφ(∂E,R
N) ∩ lip(∂E, R

N). By [18, Lemmas 3.4, 3.5, 4.5], we have
that

(i) there exists a neighborhood U of ∂E and δ > 0 such that the map FN : ∂E × (−δ, δ) → R
N defined by

FN(x, t) = x + tN(x)

is bilipschitz, moreover

dE
φ

(
x + tN(x)

) = t, x ∈ ∂E,

and ∇dE
φ (x + tN(x)) = νE

φ (x) for any t ∈ (−δ, δ) and HN−1-a.e. x ∈ ∂E;

(ii) given y ∈ U , there is a unique x ∈ ∂E such that y = FN(x, t) where t = dE
φ (x). We shall denote this point x

by πN(y). This permits to extend the vector field N to a vector field Ne on U by the formula

Ne(x) = N
(
πN(x)

)
, x ∈ U.

Using πN, any vector field η can be extended from ∂E to U . Hence, from now on we shall write η instead of ηe,
i.e. we shall assume that η is defined on a neighborhood of ∂E;
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(iii) the trace of div Ne (denoted by div N) is defined HN−1-almost everywhere on ∂E and coincides on ∂E with the
tangential divergence of N to be defined below.

Finally, if (E,n) is a Lipschitz φ-regular set and N ∈ Norφ(∂E,R
N), we may define the (weak) tangential diver-

gence divτ N : Lip(∂E) → R as follows∫
∂E

divτ Nψφ◦(νE
)
dHN−1 :=

∫
∂E

N · nψ divτ nφ◦(νE
)
dHN−1 −

∫
∂E

[
(Id−n ⊗ n)∇τψ

] · Nφ◦(νE
)
dHN−1,

where ψ ∈ Lip(∂E). As proved in [18], this divergence does not depend on the vector field n. Letting

H
div,p
φ

(
∂E,R

N
) := {

N ∈ Norφ
(
∂E,R

N
)
: divτ N ∈ Lp(∂E)

}
, p ∈ [1,+∞],

we define Nmin ∈ H
div,2
φ (∂E,R

N) to be a minimizer (possibly nonunique) of the functional∫
∂E

(divτ N)2φ◦(νE
)
dHN−1, N ∈ H

div,2
φ

(
∂E,R

N
)
. (2.21)

As proved in [18], the function divτ Nmin does not depend on the choice of the minimizer Nmin of (2.21). Moreover,
by [18, Theorem 6.7] we have that divτ Nmin ∈ L∞(∂E) and

‖divτ Nmin‖∞ = min
{‖divτ N‖∞: N ∈ H

div,∞
φ

(
∂E,R

N
)}

. (2.22)

Remark 2.13. Let φ ∈ C1,1
+ and E be a Lipschitz φ-regular set. Then

divτ Nmin = divnE
φ , HN−1-a.e. on ∂E and (N − 1)

∥∥Hφ
E

∥∥∞ = ‖divτ Nmin‖L∞(∂E). (2.23)

We do not know if the second equality in (2.23) holds for all Lipschitz φ-regular set E ⊂ R
N . However, we can

prove it under the additional assumption that the anisotropy φ is crystalline and E is a polyhedron.
Let us first observe that a polyhedron E ⊂ R

N is Lipschitz φ-regular if and only if for all vertices v of E there
holds

C(v) :=
⋂

F facet of E: v∈F

∂φ◦(νF
) �= ∅, (2.24)

where νF is the outer unit normal to ∂E at the facet F .

Proposition 2.14. Assume that φ is crystalline and let E ⊂ R
N be a Lipschitz φ-regular polyhedron. Then

(N − 1)
∥∥Hφ

E

∥∥∞ = ‖divτ Nmin‖L∞(∂E).

Proof. Given a vertex v of E, we shall denote by N(v) a generic element of the set C(v), defined by (2.24).
Letting Et := {dE

φ � t}, we know from [18] that there exists δ0 > 0 such that Et is a Lipschitz φ-regular polyhedron

for all |t | � δ0. Let also Nt
min : ∂Et → R

N be a minimizer of ‖divτ N‖L2(∂Et )
, which is equivalently a minimizer of

‖divτ N‖L∞(∂Et ) by [18]. Letting Ht := ‖divτ Nt
min‖L∞(∂Et ), it is enough to prove that the function t ∈ [−δ0, δ0] → Ht

is continuous at t = 0 (hence it is also continuous on the whole interval). Indeed, letting z̃ as in Theorem 2.12 and
differentiating the equality φ(z̃) = 1, we obtain ∇ z̃ · ∇dE

φ = 0 in a neighborhood of ∂E. As a consequence, we get
that divτ z̃ = div z̃ a.e. in that neighborhood, where the tangential divergence (which, in this case, is an euclidean
divergence) is computed with respect to ∂Et at a point x ∈ ∂Et . It follows that the field z̃ can be obtained by patching
together the minimizing vector fields Nt

min, which are defined on ∂Et .
Letting now Ft be the facet of Et corresponding to the facet F of E, we shall prove the equivalent statement that

the function

t → HF
t := ∥∥divτ Nt

min

∥∥ ∞
L (Ft )
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is continuous at t = 0 (notice that Ht = maxF HF
t ). To simplify the notation we shall identify Ft with its orthogonal

projection on the hyperplane spanned by F . Notice that, for t small enough, the facet Ft can be obtained by parallelly
translating the edges of F of a distance proportional to t (with a constant depending on the edge) and possibly inserting
new edges, with length of order t , near the vertices of F . As a consequence, to a vertex v of F will correspond
some vertices (at least one) of Ft which lie at a distance of order t from v. Notice that, for all the vertices v′ of Ft

corresponding to v, we still have N(v) ∈ C(v′). Moreover, there exists a constant C > 0, depending on F , such that
dH(∂Ft , ∂F ) � C|t |, for all t small enough. Let us also denote by F−

t the facet obtained by parallelly translating the
edges of F of a distance of 2C|t |, in the direction −νF . We then have F−

t ⊂ Ft , for all t small enough. Notice that,
in this case, to a vertex v of F corresponds only one vertex v− of F−

t respectively, and we have N(v) ∈ C(v−). It
follows that, to any vertex v′ of Ft \ F−

t , we can uniquely associate a vertex v of F , and we set N(v′) := N(v).
In order to prove the result, it is enough to construct a vector field Ñt on Ft , with the property

‖divτ Ñt‖L∞(Ft ) = ‖divτ Nmin‖L∞(F ) + O(t).

Let ψt : RN → R
N be a one-parameter family of Lipschitz diffeomorphisms such that ψt(F

−
t ) = F and ‖ψt −

Id‖W 1,∞ ∈ O(t). We define the field Ñt to be equal to Nmin ◦ ψt on F−
t , and to the linear interpolation of N(v′)

on Ft \ F−
t (in order to do this we first perform a triangulation of Ft \ F−

t , without adding new vertices). The thesis
now follows by observing that

‖divτ Ñt‖L∞(Ft\F−
t ) = O(t). �

3. The φ-anisotropic total variation and φ-calibrable sets

Let φ : RN → R be an anisotropy and let φ◦ be its polar function. Since φ◦ is homogeneous of degree 1, for any
η ∈ ∂φ◦(ξ) we have φ◦(ξ) = η · ξ . We also observe that

χ · η � φ◦(η) for any χ ∈ ∂φ◦(ξ), and any ξ, η ∈ R
N . (3.1)

Consider the energy functional Ψφ :L2(RN) → (−∞,+∞] defined by

Ψφ(u) :=
{∫

RN φ◦(Du) if u ∈ L2(RN) ∩ BV(RN),

+∞ if u ∈ L2(RN) \ BV(RN).
(3.2)

Since the functional Ψφ is convex, lower semicontinuous and proper, then ∂Ψφ is a maximal monotone operator with
dense domain, generating a contraction semigroup in L2(RN) (see [21]). The next lemma gives the characterization
of the subdifferential ∂Ψφ (the proof is the same as the proof of Proposition 1.10 in [9], see also [23], or [35] for more
general cases).

Lemma 3.1. Let u ∈ L2(RN) ∩ BV(RN). The following assertions are equivalent:

(a) v ∈ ∂Ψφ(u);

(b)

v ∈ L2(
R

N
)

and ∃z ∈ X2
(
R

N
)
, φ

(
z(x)

)
� 1 a.e., such that v = −div z in D′(

R
N

)
(3.3)

and ∫
RN

(z,Du) =
∫

RN

φ◦(Du). (3.4)

From now on we shall sometimes write v = div(∂φ◦(Du)) instead of v ∈ ∂Ψφ(u).
Under the rest of conditions of (b), condition (∗) φ(z(x)) � 1 is equivalent to say that (∗∗) z(x) ∈ ∂φ◦(∇u(x))

a.e. Obviously, by (3.1), (∗∗) implies (∗). Assume now that φ(z(x)) � 1. Then (3.4) implies that (z,Du) = φ◦(Du)

as measures in R
N . Hence z(x) · ∇u(x) = φ◦(∇u(x)) a.e. Then

φ◦(η) − φ◦(∇u(x)
)
�

〈
z(x), η − ∇u(x)

〉 ∀η ∈ R
N,
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is equivalent to

φ◦(η) �
〈
z(x), η

〉 ∀η ∈ R
N

and this follows from φ(z(x)) � 1. We deduce that z(x) ∈ ∂φ◦(∇u(x)) a.e.
Given a function g ∈ L2(RN), we define

‖g‖φ,∗ := sup

{ ∫
RN

g(x)u(x) dx: u ∈ L2(
R

N
) ∩ BV

(
R

N
)
,

∫
RN

φ◦(Du) � 1

}
.

Note that ‖g‖φ,∗ may be infinite. Let us recall the following result [14,34].

Lemma 3.2. Let f ∈ L2(RN) and λ > 0. The following assertions hold.

(a) the function u is the solution of

min
w∈L2(RN)∩BV(RN)

D(w) :=
∫

RN

φ◦(Dw) + λ

2

∫
RN

(w − f )2 dx (3.5)

if and only if there exists z ∈ X2(R
N) satisfying (3.4) such that φ(z(x)) � 1 a.e. and div z = λ(u − f ).

(b) The function u ≡ 0 is the solution of (3.5) if and only if ‖f ‖φ,∗ � 1
λ

.
(c) We have ∂Ψφ(0) = {f ∈ L2(RN): ‖f ‖φ,∗ � 1}.

Obviously, part (a) follows from Lemma 3.1 since ∂Ψφ(u)+λ(u−f ) � 0 is the Euler–Lagrange equation for (3.5).
Part (b) can be found in [14,34], and it is easily deduced from (a). Part (c) follows from (a) and (b), or as an immediate
consequence of duality.

Definition 3.3. Let E be a bounded set of finite perimeter in R
N . We say that E is φ-calibrable if there exists a vector

field ξ ∈ L∞(RN,R
N) with φ(ξ(x)) � 1 a.e. such that (ξ,DχE) = φ◦(DχE) as measures in RN , and

−div ξ = λEχE in D′(
R

N
)
, (3.6)

for some constant λE .

Notice that, a set of finite perimeter E is φ-calibrable if and only if it exists λE ∈ R such that λEχE ∈ ∂Ψφ(χE).

Observe that if E is φ-calibrable, then λE = Pφ(E)

|E| := λ
φ
E . Indeed, multiplying (3.6) by χE and integrating in R

N we
obtain

λE |E| = −
∫

RN

div ξχE dx =
∫

RN

(ξ,DχE) =
∫

RN

φ◦(DχE) = Pφ(E).

The following result was proved in [17,19] (see also [14]). For the proof we refer to [2, Proposition 2] and we skip
the details. Lemma 3.6 below is used in the proof of Proposition 3.4.

Proposition 3.4. Let E be a bounded set of finite perimeter in R
N . Assume E to be convex. The following assertions

are equivalent

(i) E is φ-calibrable;
(ii) E minimizes the functional

Pφ(X) − λE |X| (3.7)

among the sets of finite perimeter X ⊆ E.

For the proof of the following result we refer to [14,9,2].
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Proposition 3.5. Let λ > 0. The solution of

u − λ−1 div
(
∂φ◦(Du)

) = χWφ
in R

N (3.8)

is u = (1 − λ
φ
Wφ

λ
)+χWφ

.

Finally, the following result can be proved as in [5].

Lemma 3.6. For any set of finite perimeter E in R
N and any convex set C we have

Pφ(E ∩ C) � Pφ(E). (3.9)

4. The level sets of the solution of a variational problem

Proposition 4.1. Let C be a bounded convex domain in R
N . Let u ∈ BV(RN) ∩ L2(RN) be the solution of the varia-

tional problem

(Q)λ: min
u∈BV(RN)∩L2(RN)

{ ∫
RN

φ◦(Du) + λ

2

∫
RN

(u − χC)2 dx

}
. (4.1)

Then 0 � u � 1. Let Es := {u � s}, s ∈ (0,1]. Then Es ⊆ C, and, for any s ∈ (0,1], we have

Pφ(Es) − λ(1 − s)|Es | � Pφ(F ) − λ(1 − s)|F | ∀F ⊆ C. (4.2)

Proof. Recall that u satisfies the following partial differential equation

u − λ−1 div
(
∂φ◦(Du)

) = χC in R
N . (4.3)

Let u− = min(u,0). Multiplying (4.3) by u− and integrating by parts, we deduce that u− = 0. Similarly, multiplying
(4.3) by (u − 1)+ we deduce that u � 1. Let us prove that u = 0 outside C. Let H be a half-plane containing C.
Since χC � χH , and v = χH is the solution of (4.3) with right-hand side equal to v (indeed it suffices to take z(x) =
η ∈ ∂φ◦(νH ), νH being the euclidean unit normal to H pointing towards H ), by the comparison principle proved in
[23] (see also [14]) we have that u � χH . This implies that u = 0 outside C, hence Es ⊆ C for all s ∈ (0,1].

Let F ⊆ C be a set of finite perimeter. By the proof of Lemma 5.1 in [23] (see also Lemma 4 in [13]), we have that
(z,DχEs ) = φ◦(DχEs ) for almost all s ∈ (0,1]. Hence, for such an s ∈ (0,1], we have

−
∫

RN

div z (χF − χEs ) dx =
∫

RN

(z,DχF ) −
∫

RN

(z,DχEs ) =
∫

RN

(z,DχF ) − Pφ(Es) � Pφ(F ) − Pφ(Es)

and we deduce

Pφ(F ) − Pφ(Es) � λ

∫
RN

(χC − u)(χF − χEs ) = λ

∫
RN

(
(χC − s) + (s − u)

)
(χF − χEs ).

Since (s − u)(χF − χEs ) � 0 we have

Pφ(F ) − Pφ(Es) � λ

∫
RN

(χC − s)(χF − χEs ) = λ(1 − s)
(|F | − |Es |

)
.

Since all sets Es are contained in C and Pφ is lower semicontinuous in the L1-topology, we deduce that (4.2) holds
for any s ∈ (0,1]. �
Lemma 4.2. Let C be a bounded convex domain in R

N . Let uλ be the solution of (Q)λ, λ > 0.

(i) uλ �= χC for any λ > 0.
(ii) uλ → χC in L2(RN) as λ → ∞.
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(iii) Assume that C satisfies the RWφ-condition, for some R > 0. Then for any λ > 0, we have

uλ �
(

1 − N

Rλ

)+
χC.

(iv) uλ �= 0 if and only if λ > 1
‖χC‖φ,∗ .

(v) Assume that C is not φ-calibrable (i.e., there is no vector field z ∈ L∞(RN,R
N), φ(z(x)) � 1 a.e. such that

−div z = λ
φ
CχC ). For any λ > 1

‖χC‖φ,∗ uλ cannot be a multiple of χC . Thus, for any such λ, there is some
s ∈ [0,1] such that {uλ � s} �= C.

Proof. (i) Suppose that there is λ > 0 such that uλ = χC . Then, by Lemma 3.2 there is a vector field zλ ∈
L∞(RN,R

N), φ(zλ(x)) � 1 a.e., such that (zλ,DχC) = φ◦(DχC) and

div zλ = 0.

Multiplying this equation by χC and integrating in R
N , we obtain

0 = −
∫

RN

div zλχC dx =
∫

RN

(zλ,DχC) =
∫

RN

φ◦(DχC) = Pφ(C).

This contradiction proves that uλ �= χC .
(ii) Since∫

RN

φ◦(Duλ) + λ

2

∫
RN

(uλ − χC)2 dx �
∫

RN

φ◦(DχC) = Pφ(C),

we deduce that∫
RN

(uλ − χC)2 dx � 2

λ
Pφ(C),

i.e. uλ → χC in L2(RN) as λ → ∞. Moreover, uλ is bounded in BV(RN).
(iii) Let p ∈ ∂C and let Wp be the translation of RWφ which osculates from inside ∂C at p. Let us compare uλ

with the solution up of

u − λ−1 div
(
∂φ◦(Du)

) = χWp .

Since χWp � χC , by the comparison principle [14] we deduce that up � uλ. The solution up is given explicitly by

up =
(

1 −
λ

φ
Wp

λ

)+
χWp .

But

λ
φ
Wp

= Pφ(Wp)

|Wp| = 1

R

Pφ(Wφ)

|Wφ | = 1

R
λ

φ

Wφ
= N

R
.

Hence

up =
(

1 − N

Rλ

)+
χWp .

Since this is true for any p ∈ ∂C, and since also any p in the interior of C lies in some translation of RWφ , we deduce
that

uλ �
(

1 − N

Rλ

)+
χC.

(iv) By Lemma 3.2, we know that uλ is characterized by the equation

uλ − λ−1 div zλ = χC
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where zλ ∈ L∞(RN,R
N), φ(zλ(x)) � 1 a.e., with (zλ,Duλ) = φ◦(Duλ). Thus uλ = 0 if and only if −div zλ = λχC ,

i.e. if and only if ‖λχC‖φ,∗ � 1.
(v) Suppose that for some λ > 1

‖χC‖φ,∗ , we have uλ = cλχC for some constant 0 � cλ � 1. Observe that, by (i) and
(iv), we have cλ ∈ (0,1). Then

−div zλ = λ(1 − cλ)χC.

Since (zλ,Duλ) = φ◦(Duλ), and cλ > 0, we have that (zλ,DχC) = φ◦(DχC) = Pφ(C). Multiplying the equation by
χC and integrating by parts we deduce

λ(1 − cλ) = λC.

Hence

−div zλ = λCχC,

and therefore C is φ-calibrable, a contradiction. The final assertion is a simple consequence of the first one. �
Lemma 4.3. Let C be a bounded convex domain in R

N . For any λ > 0, let us consider the problem

(P )λ: min
F⊆C

Pφ(F ) − λ|F |. (4.4)

Then

(i) Let Cλ,Cμ be minimizers of (P )λ and (P )μ, respectively. If λ < μ, then Cλ ⊆ Cμ.
(ii) Let μ > λ. Assume that C is a minimizer of (P )λ. Then C is also the unique minimizer of (P )μ.

(iii) Let λn ↑ λ. Then C∪
λ := ⋃

n Cλn is a minimizer of (P )λ. Moreover Pφ(Cλn) → Pφ(C∪
λ ). Similarly, if λn ↓ λ, then

C∩
λ := ⋂

n Cλn is a minimizer of (P )λ, and Pφ(Cλn) → Pφ(C∩
λ ).

(iv) Assume that C satisfies the RWφ-condition, for some R > 0. Then C is a minimizer of (P )λ for any λ �
λ

φ
Wφ

R
.

Proof. The proof is similar to the proof of Lemma 4 in [13] and we only give the proof of (iv).

By (ii), it suffices to prove that C is a solution of (P )
λ

φ
Wφ

/R
. Let η >

λ
φ
Wφ

R
and take 0 < sn < 1 − λ

φ
Wφ

Rη
such

that η(1 − sn) ↓ λ
φ
Wφ

R
. We observe that, by Lemma 4.2(iii), we have {uη � sn} = C and, by Proposition 4.1, C is a

minimizer of

Pφ(F ) − η(1 − sn)|F |. (4.5)

Now, by assertion (iii) in the present lemma, we deduce that C is also a minimizer of

Pφ(F ) −
λ

φ

Wφ

R
|F |. � (4.6)

Remark 4.4. In Proposition 4.1 we have proved that for any s ∈ (0,1], the level set {uλ � s} is a minimizer
of (P )λ(1−s). Moreover, by Lemma 4.3, the sets {uλ � s}∪ := ⋃

ε>0{uλ � s + ε}, s ∈ [0,1), and {uλ � s}∩ :=⋂
ε>0{uλ � s −ε}, s ∈ (0,1], are also minimizers of (P )λ(1−s) (obviously {uλ � 1}∪ = ∅ is also a minimizer of (P )0).

Notice that, except on countably many values of s, they both coincide with {uλ � s}.

5. The concavity of solutions of (Q)λ

Our purpose is to prove the following result.

Theorem 5.1. Let C be a bounded convex domain in R
N satisfying the RWφ-condition, for some R > 0. If λ � 2N

R
,

then the solution uλ of (Q)λ is concave in C. In particular {uλ � s} is convex for any s ∈ [0,1].
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Before going into the proof, we observe that, being concave in C, uλ is continuous in C. In particular {uλ � s}∩ =
{uλ � s} and {uλ � s}∪ = {uλ > s}, and {uλ � s} = {uλ > s} (modulo a null set) for any s ∈ (0,max{uλ}).

The result is a consequence of Korevaar’s concavity result [31]. First we need to recall some approximation results
which reduce the proof of Theorem 5.1 to the case of a smooth anisotropy.

5.1. The approximation of a generic anisotropy φ with smooth ones

The following result is proved in [37, Theorem 3.3.1 and p. 111].

Theorem 5.2. Let ε > 0 and let η : [0,∞) → [0,∞) be a function of class C∞ with support in [ ε
2 , ε] and with∫

RN η(|x|) dx = 1. If φ◦ : RN → [0,+∞) is an anisotropy, then the function φ̃◦ defined by

φ̃◦(ξ) :=
∫

RN

φ◦(ξ + |ξ |z)η(|z|)dz, ξ ∈ R
N, (5.1)

is an anisotropy of class C∞(RN \ {0}).
Similarly, given a convex body K , define the map K �→ T (K) as follows: let h̃K(ξ) := ∫

RN hK(ξ + |ξ |z)η(|z|) dz

for any ξ ∈ R
N : then, h̃K is the support function hT (K) of T (K). The map T has the following properties: if K1 and

K2 are two convex bodies, then

(a) T (K1 + K2) = T (K1) + T (K2) and T (αK1) = αT (K1) for any α > 0;
(b) if K1 is contained in BR , then dH(K1,T (K1)) � Rε;
(c) dH(T (K1),T (K2)) � (1 + ε)dH(K1,K2);
(d) T (K1) + Bε is of class C∞+ .

Theorem 5.2 provides a way to approximate at the same time a generic anisotropy with C∞+ anisotropies and a
convex set with C∞+ convex sets. Indeed, the following result holds [13].

Lemma 5.3. Let φ be an anisotropy, and let C be a convex body in R
N . Then there exist a sequence {φε} of anisotropies

and a sequence {Cε} of compact convex sets satisfying the following properties:

(i) {φε} converges to φ uniformly on R
N as ε → 0;

(ii) {Cε} converges to C in the Hausdorff distance as ε → 0;
(iii) φε , φ◦

ε ∈ C∞+ and Cε is of class C∞+ for any ε > 0;
(iv) if C satisfies the rWφ-condition, r > 0, then Cε satisfies the rWφε -condition for any ε > 0.

Proof. Let T be the map defined in Theorem 5.2. Let φε be the anisotropy such that Wφε = T (Wφ) + Bε ; then
φε ∈ C∞+ by (d) of Theorem 5.2, hence also φ◦

ε ∈ C∞+ by (a) of Remark 2.3. Then (b) of Theorem 5.2 yields (i). Let
Cε := T (C) + Brε . It is clear that (ii) is satisfied. From Theorem 5.2(d) we have that Cε is of class C∞+ . Assume that
C satisfies the rWφ-condition, thus there exists C′ ⊂ C such that C = C′ + rWφ . By (a) in Theorem 5.2 we have

Cε = T (C) + Brε = T (C′) + rT (Wφ) + Brε

= T (C′) + r
(
T (Wφ) + Bε

) = T (C′) + rWφε ,

hence (iv) follows. �
Observe that

φ◦
ε (ξ) = sup

x∈T (Wφ)+Bε

x · ξ = sup
y∈T (Wφ)

sup
z∈Bε

(y + z) · ξ = φ̃◦(ξ) + ε|ξ |. (5.2)

We also observe that, from (5.1) we get∣∣φ̃◦(ξ) − φ◦(ξ)
∣∣ � ε|ξ | ∀ξ ∈ R

N. (5.3)
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5.2. The Dirichlet problem

Let Ω be an open bounded subset of R
N with boundary of class C1, let h ∈ L1(∂Ω), and let Ψφ,h : L2(Ω) →

(−∞,+∞] be the functional defined by

Ψφ,h(u) :=
{∫

Ω
φ◦(Du) + ∫

∂Ω
|u − h|φ◦(νΩ)dHN−1 if u ∈ L2(Ω) ∩ BV(Ω),

+∞ if u ∈ L2(Ω) \ BV(Ω).
(5.4)

The functional Ψφ,h is convex and lower semicontinuous in L2(Ω), hence ∂Ψφ,h is a maximal monotone operator
in L2(Ω). Let us recall the characterization of ∂Ψφ,h.

Proposition 5.4. The following conditions are equivalent

(i) v ∈ ∂Ψφ,h(u);
(ii) u,v ∈ L2(Ω), u ∈ BV(Ω) and there exists z ∈ X2(Ω) with φ(z(x)) � 1 a.e., v = −div(z) in D′(Ω) such that

(z,Du) = φ◦(Du) and [z · νΩ ] ∈ sign(h − u)φ◦(νΩ(x)) HN−1 a.e. on ∂Ω .

Proof. In the case h = 0, which is the case we need below, the result follows as in [9, Proposition 1.10], since Ψφ,0 is
positively homogeneous of degree 1. The general case is contained in [35]. Since we need some intermediate results,
we shall sketch a direct proof of it.

Assume first that φ is a smooth anisotropy and fix ε > 0. Let

Ψ ε
φ,h(u) :=

{∫
Ω

√
ε2 + φ◦(Du)2 + ∫

∂Ω
|u − h|φ◦(νΩ)dHN−1 if u ∈ L2(Ω) ∩ BV(Ω),

+∞ if u ∈ L2(Ω) \ BV(Ω).
(5.5)

By [9, Theorem 6.7] (see also [33,7,35]) we know that ∂Ψ ε
φ,h is a maximal monotone operator which can be charac-

terized as Proposition 5.4. Since, as ε → 0, the solutions of

u + λ∂Ψ ε
φ,h(u) � f,

where f ∈ L2(Ω) converge to the solution of u+ λ∂Ψφ,h(u) � f , the thesis follows. The case of a general anisotropy
also follows by approximating it with smooth ones. �

The following comparison principle can be easily deduced by an integration by parts.

Proposition 5.5. Let fi ∈ L2(Ω), hi ∈ L1(∂Ω), i = 1,2. Assume that f1 � f2 and h1 � h2. Let ui , i = 1,2, be the
solution of

u + λ∂Ψφ,hi
(u) � fi. (5.6)

Then u1 � u2.

The same result also holds for ∂Ψ ε
φ,h [9, Theorem 6.14], [35].

5.3. Some technical results

We recall two auxiliary results. The following theorem was proved in [31].

Theorem 5.6. Assume that φ ∈ C∞+ and Wφ is strictly convex. Let Ω be a strictly convex bounded domain in R
N of

class C1,1. Let b : R × R
N → R be such that

∂b

∂u
> 0,

∂2b

∂u2
� 0.

Assume that u ∈ C(Ω) ∩ C2(Ω) satisfies

div

(
T ◦(Du)√ ◦ 2

)
= b(u,Du)
1 + φ (Du)
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and the graph of u is a C1 surface above Ω having zero contact angle with ∂Ω × R, i.e.

T ◦(Du)√
1 + φ◦(Du)2

· νΩ = −φ◦(νΩ
)
. (5.7)

Then u is a concave function.

The sense of the boundary condition (5.7) will be made precise during the proof of Theorem 5.1. Let us recall the
following result which was proved in [2] using the results by Atkinson and Peletier in [11].

Lemma 5.7. Assume that λ � 2N
R

, R > 0. Then there is a radius R̃ � R and a radial solution u
B̃
(x) = U

B̃
(|x|) of

u − λ−1 div

(
Du√

ε2 + |Du|2
)

= 1 in B̃ = B(0, R̃),

u = 0 on ∂B̃, (5.8)

such that

0 > U ′
B̃
(r) > −∞, U < U

B̃
(r) < γ for 0 < r < R̃,

U ′
B̃
(r) → −∞, U

B̃
(r) → U as r ↑ R̃,

for some values γ > 0, U > 0. Hence u
B̃

� U > 0 on B̃ , and has zero contact angle with ∂B̃ × R. In particular, we
have

Du
B̃√

ε2 + |Du
B̃
|2

· νB̃ = −1 = sign(−u
B̃
) on ∂B̃.

Let us recall that the solution uB̃
(x) = U

B̃
(|x|) of (5.8) can be characterized as a minimizer of

Ee(u) :=
∫
B̃

√
ε2 + |Du|2 + λ

∫
B̃

F (u)dx +
∫
∂B̃

|u|dHN−1 (5.9)

and U
B̃
(r) can be characterized as a minimizer of

Eer (v) :=
R̃∫

0

√
ε2 + v′2sN−1 ds + λ

R̃∫
0

F(v)sN−1 ds + R̃N−1
∣∣v(R̃)

∣∣. (5.10)

Lemma 5.8. Assume that φ ∈ C∞+ . Let u
B̃

be the solution of (5.8) given by Lemma 5.7. Let u
W̃

(x) = U
B̃
(φ(x)),

x ∈ W̃ := R̃Wφ . Then u
W̃

is a solution of

u − λ−1 div

(
T ◦(Du)√

ε2 + φ◦(Du)2

)
= 1 in W̃ = RWφ,

u = 0 on ∂W̃ . (5.11)

Before going into the proof let us make the following observation. If φ is an smooth anisotropy, then ∇φ(x) =
ν
Wφ

φ (x) = ν(x)
φ◦(ν(x))

on ∂Wφ where ν(x) the euclidean unit normal to ∂Wφ , since φ(x) = dφ(x, ∂Wφ) − 1. We also

have |∇φ(x)| = 1
φ◦(ν(x))

.

Proof. Let us write F(u) = 1
2 (u − 1)2. Recall that u

W̃
is a solution of (5.11) if and only if is a minimizer of

E(u) :=
∫
˜

√
ε2 + φ◦(Du)2 + λ

∫
˜

F(u)dx +
∫
˜

|u|φ◦(ν∂W̃ (x)
)
dHN−1. (5.12)
W W ∂W
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Let w ∈ W 1,1(W̃ ). Then

∫
W̃

√
ε2 + φ◦(∇w)2 =

R̃∫
0

∫
{φ=s}

√
ε2 + φ◦(∇w(x)

)2 dHN−1(x)

|∇φ(x)| ds

=
R̃∫

0

∫
{φ=1}

√
ε2 + φ◦(∇w(sy)

)2 dHN−1(y)

|∇φ(y)| sN−1 ds

=
∫

{φ=1}

dHN−1(y)

|∇φ(y)|
R̃∫

0

√
ε2 + φ◦(∇w(sy)

)2
sN−1 ds.

Let wy(s) = w(sy), φ(y) = 1. Since w′
y(s) = y∇w(sy) � φ◦(∇w(sy)) for any y ∈ {φ = 1}, we obtain

∫
W̃

√
ε2 + φ◦(∇w)2 �

∫
{φ=1}

dHN−1(y)

|∇φ(y)|
R̃∫

0

√
ε2 + ∣∣w′

y(s)
∣∣2

sN−1 ds.

In a similar way we have

∫
W̃

F (u)dx =
∫

{φ=1}

dHN−1(y)

|∇φ(y)|
R̃∫

0

F
(
wy(s)

)
sN−1 ds

and, using that |∇φ(x)| = |νφ(x)| = 1/φ◦(ν(x)), we have∫
∂W̃

|u|φ◦(ν∂W̃ (x)
)
dHN−1 = R̃N−1

∫
{φ=1}

dHN−1(y)

|∇φ(y)|
∣∣wy(R̃)

∣∣.
Since U

B̃
is a minimizer of Eer , by the above inequalities, we have

E(w) �
∫

{φ=1}

dHN−1(y)

|∇φ(y)|
R̃∫

0

√
ε2 + ∣∣w′

y(s)
∣∣2

sN−1 ds +
∫

{φ=1}

dHN−1(y)

|∇φ(y)|
R̃∫

0

F
(
wy(s)

)
sN−1 ds

+ R̃N−1
∫

{φ=1}

dHN−1(y)

|∇φ(y)|
∣∣wy(R̃)

∣∣
=

∫
{φ=1}

dHN−1(y)

|∇φ(y)| Eer (wy) �
∫

{φ=1}

dHN−1(y)

|∇φ(y)| Eer (UB̃
).

Now, we have ∇u
W̃

(x) = U
B̃
(φ(x))∇φ(x), hence φ◦(∇u

W̃
(x)) = |U

B̃
(φ(x))|φ◦(∇φ(x)) = |U

B̃
(φ(x))|. With the

same computations as above we obtain

E(u
W̃

) =
∫

{φ=1}

dHN−1(y)

|∇φ(y)| Eer (UB̃
)

and we deduce that

E(w) � E(u
W̃

)

for any w ∈ W 1,1(W̃ ). This implies that u
W̃

is a minimizer of E , hence, a solution of (5.11). �
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Theorem 5.9. Assume that φ ∈ C∞+ . Let C be a bounded convex domain in R
N satisfying the RWφ-condition, for

some R > 0. Let λ � 2N
R

. Let us consider the following problem{
u − λ−1 div(

T ◦(Du)√
ε2+φ◦(Du)2

) = 1 in C,

u = 0 on ∂C.

(5.13)

Then, there is a unique solution uε of (5.13) such that 0 � uε � 1. Moreover uε � α > 0 in a neighborhood of ∂C for
some α > 0. Hence, u satisfies[

T ◦(Duε)√
ε2 + φ◦(Duε)2

· νC

]
= sign

(−uε
)
φ◦(νC

) = −φ◦(νC
)

on ∂C. (5.14)

Proof. Existence and uniqueness of a solution uε of (5.13) satisfying the Dirichlet boundary condition in the general-
ized sense follows by the results in [8,33]. Multiplying (5.13) by test functions as in the proof of Proposition 4.1 and
integrating by parts we deduce that 0 � uε � 1.

Let us prove that uε � α > 0 for some α > 0. For that we shall use Lemmas 5.7 and 5.8. Recall that at each point
p ∈ ∂C, there is a ball Wp of radius R̃ � R such that Wp ⊆ C and p ∈ ∂Wp . Since the solution uε of (5.13) in C satis-
fies uε � 0 in Wp , by applying the comparison principle for the problem (5.11) in Wp instead of W̃ (see Section 5.2)
we deduce that uε � uWp � U . Since this is true for all balls Wp , we deduce that uε � U on a neighborhood of ∂C.
Finally, by Proposition 5.4 in Section 5.2 we get (5.14). �
5.4. The proof of Theorem 5.1

Let φ be any anisotropy, and assume that C satisfies the RWφ-condition. Let φδ ∈ C∞+ , Cδ be the regularization
of φ and C given by Lemma 5.3. We know that Cδ satisfies the RWφδ -condition, hence is Lipschitz φδ-regular by
Remark 2.9(b). By Theorem 5.9, for any λ � 2N

R
there is a solution uε of⎧⎨⎩u − λ−1 div(

T ◦
φδ

(Du)√
ε2+φ◦

δ (Du)2
) = 1 in Cδ,

u = 0 on ∂Cδ.

(5.15)

Let vε(x) = uε( x
ε
). We know that vε(x) is a solution of

div

(
T ◦

φδ
(Dv)√

1 + φ◦
δ (Dv)2

)
+ λ

ε
(1 − v) = 0 in εCδ, (5.16)

satisfying[
T ◦

φδ
(Dvε)√

1 + φ◦
δ (Dvε)2

· νεCδ

]
= sign

(−vε
)
φ◦

δ

(
νεCδ

) = −φ◦
δ

(
νεCδ

)
on ∂(εC). (5.17)

Moreover, by the results of Korevaar and Simon [32, Theorems 2, 3 and Section 3] (see also [38]), since Cδ is a
bounded convex domain of class C∞, we have that vε ∈ C2(εCδ) ∩ C(εCδ). Indeed, by the results in [32] (Theorems
2, 3 and Section 3), there is a solution wε ∈ C2(εCδ) ∩ C(εCδ) of (5.16) satisfying the boundary condition in a

classical sense, that is,
T ◦

φδ
(Dwε)√

1+φ◦
δ (Dwε)2

∈ C(εCδ) (even more, is a Lipschitz function on the graph of wε ) and (5.17)

holds. Since the solution of (5.16)–(5.17) is unique [8,33], we have that wε = vε . Hence vε ∈ C2(εCδ) ∩ C(εCδ).
From Korevaar’s Theorem 5.6 [31], we then deduce that vε is concave, hence also uε is concave. Since, as ε → 0,

uε converges to the solution wδ of

u − λ−1 div
(
∂φ◦

δ (Du)
) = 1 in Cδ,

u = 0 on ∂Cδ (5.18)

we deduce that wδ is also concave. Moreover, from Theorem 5.9 and Lemma 5.7 we also know that wδ � β > 0 (which
comes also by a comparison with balls). Thus the vector field ξδ satisfies φδ(ξδ(x)) � 1 a.e., (ξδ,Dwδ) = φ◦

δ (Dwδ),
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wδ − λ−1 div ξδ = 1 on Cδ , and [ξδ · νCδ ] = −φ◦
δ (νCδ ). Hence, if we define wδ = 0 outside Cδ (see Remark 2.11), we

have that wδ is a solution of

u − λ−1 div
(
∂φ◦

δ (Du)
) = χCδ in R

N. (5.19)

Finally, letting δ → 0+, we have that wδ converges in L2(RN) to a solution wλ of

u − λ−1 div
(
∂φ◦(Du)

) = χC in R
N, (5.20)

which is concave in C. Hence wλ = uλ. We conclude that uλ is concave in C. The theorem is proved.

6. A partial result on the convexity of the minima of the anisotropic perimeter with fixed volume

As in [2], using Lemma 4.3 and Theorem 5.1 we prove the following result.

Proposition 6.1. Assume that C is a bounded convex domain in R
N satisfying the RWφ-condition, R > 0. For α > 0,

let uα be the solution of (Q)α . Let α,β � 2N
R

.

(i) If λ > α(1 − ‖uα‖∞), then problem (P )λ has a unique solution. Moreover, the solution is a convex set.
(ii) We have α(1 − ‖uα‖∞) = β(1 − ‖uβ‖∞). Let λ∗ denote this common value.

(iii) We have {uα � ‖uα‖∞} = {uβ � ‖uβ‖∞}, and

λ∗ = Pφ({uα � ‖uα‖∞})
|{uα � ‖uα‖∞}| . (6.1)

As a consequence, we obtain that the set {uα � ‖uα‖∞} is φ-calibrable.

Let us denote the φ-calibrable set {uα � ‖uα‖∞} constructed in Proposition 6.1 by K . Then λ
φ
K = λ∗ and K

minimizes

min
F⊆C

Pφ(F ) − λ
φ
K |F |. (6.2)

Now, extending the usual concept in the euclidean case, let us call the Cheeger φ-constant of C the quantity

hφ(C) := min
F⊆C

Pφ(F )

|F | . (6.3)

In a similar was as in the euclidean case, we call a Cheeger φ-set of C any set G which minimizes (6.3). Notice that
for any Cheeger φ-set G of C, λ

φ
G = hφ(C). Observe that G is a Cheeger φ-set of C if and only if G minimizes

min
F⊆C

Pφ(F ) − λ
φ
G|F |. (6.4)

In particular, if G is a Cheeger φ-set of C which is convex, then G is φ-calibrable. Thus, C is a Cheeger φ-set of C if
and only if C is φ-calibrable. On the other hand, we have that K is a Cheeger φ-set of C. Moreover, if G is any other
Cheeger φ-set of C, then it minimizes (6.4), and using that λ

φ
K = λ

φ
G = hφ(C) we have that G ⊆ Cλ for any λ > λ

φ
K .

By Lemma 4.3, this implies that G ⊆ Cλ for any λ > λ
φ
K . Since K = ⋂

λ>λ
φ
K

Cλ, we have that G ⊆ K . In other words,

K is the largest Cheeger φ-set of C.

Remark 6.2. In the euclidean case, a convex set C ⊆ R
2 is a Cheeger set of C if and only if maxx∈∂C κC(x) �

λC := P(C)
|C| . This has been proved in [27,14,30] (see also [3]) though it was stated in terms of calibrability in [14,3].

This result was extended to any dimension in [2] by replacing the curvature of the boundary by the sum of principal
curvatures. Moreover, when C ⊆ R

2 is convex, the convexity and uniqueness of the Cheeger set of C was proved
in [30] (see also [29]) and can be deduced from the results in [3,2] which were stated in terms of calibrable sets. In
higher dimension, uniqueness (hence convexity) of the Cheeger set of a convex set C ⊆ R

N has been recently proved
by [24,1].



V. Caselles et al. / Ann. I. H. Poincaré – AN 25 (2008) 803–832 825
Observe that the empty set is also a solution of (6.2). Collecting the above results and using Lemma 4.3 we obtain
the following theorem.

Theorem 6.3. Let C be a bounded convex domain in R
N satisfying the RWφ-condition, for some R > 0. Then there

is a set K ⊆ C which is the largest Cheeger φ-set of C. Moreover, K is convex and minimizes

min
F⊆C

Pφ(F ) − λ
φ
K |F |, (6.5)

thus K is φ-calibrable. For any λ �= λ
φ
K , λ > 0, there is a unique minimizer Cλ of (P )λ, which is convex, and the

function λ → Cλ is increasing and continuous (hence also the function λ → Pφ(Cλ) is increasing and continuous).

Moreover, Cλ = ∅ for all λ ∈ (0, λ
φ
K).

Let us state without proof the following observation.

Lemma 6.4. Let C be a bounded convex subset of R
N . Let μ � 0 and let E be a solution of the variational problem

min
F⊆C

Pφ(F ) − μ|F |. (6.6)

Let V = |E|. Then E is a solution of

min
F⊆C, |F |=V

Pφ(F ). (6.7)

Theorem 6.5. Let C be a bounded convex domain in R
N satisfying the RWφ-condition for some R > 0. For any

V ∈ [|K|, |C|] there is a unique convex solution of the constrained isoperimetric problem (6.7).

Proof. Any solution of (6.7) corresponding to a value V ∈ [|K|, |C|] coincides with the solution obtained from the
corresponding problem (P )λ for some λ ∈ [λφ

K,∞). Indeed, if V ∈ [|K|, |C|], there is a value of λ ∈ [λφ
K,∞) such

that, if Cλ is the minimum of (P )λ, then |Cλ| = V . By Lemma 6.4 we know that Cλ is a solution of (6.7). Now, let Q

be another solution of (6.7). We have that Pφ(Q) = Pφ(Cλ), and |Q| = |Cλ|. Hence

Pφ(Q) − λ|Q| = P(Cλ) − λ|Cλ| � Pφ(F ) − λ|F |
for any F ⊆ C. Thus, Q is a minimum of (P )λ, hence Q = Cλ. �
Remark 6.6. Thanks to Lemma 6.4 and Proposition 4.1, the algorithm described in [26,25], permits to compute the
solution of (6.7) for any V ∈ [|K|, |C|].

7. A characterization of a class of convex φ-calibrable sets by its anisotropic mean curvature

Proposition 7.1. Let C be a bounded convex subset of R
N which satisfies the RWφ-condition for some R > 0. Let

μn → μ. Let Cn be a minimizer of (P )μn . Assume that Cn is a sequence of convex sets converging to C, and Cn �= C.

Then μ � (N − 1)‖Hφ
C‖∞.

Proof. Let N ∈ Norφ(U,R
N) be the vector field z̃ given by Theorem 2.12 applied to the set C, where U := {|dC

φ | < δ}
for some δ > 0. We know that N ∈ T ◦(∇dC

φ ) a.e. in U .

Assume by contradiction that (N − 1)‖Hφ
C‖∞ < μ. We may assume that δ > 0 is small enough so that

‖div N‖L∞(U) < μ. Then, for n large enough, we may also assume that ‖div N‖L∞(U) < μn and Cn ⊆ U . Now, we
integrate div N on C \ Cn. We have

μn|C \ Cn| >
∫

div Ndx
C\Cn
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=
∫

∂C\∂Cn

N · νC dHN−1 −
∫

∂Cn\∂C

N · νCn dHN−1

�
∫

∂C\∂Cn

φ◦(νC
)
dHN−1 −

∫
∂Cn\∂C

φ◦(νCn
)
dHN−1

=
∫
∂C

φ◦(νC
)
dHN−1 −

∫
∂Cn

φ◦(νCn
)
dHN−1

= Pφ(C) − Pφ(Cn).

Hence

Pφ(C) − μn|C| < Pφ(Cn) − μn|Cn|.
This contradiction proves that μ � (N − 1)‖Hφ

C‖∞. �
Theorem 7.2. Let C ⊂ R

N be a bounded convex domain of class C∞ and φ ∈ C∞+ . If E is the minimizer of (P )λ, with

λ > λ
φ
K , then E is of class C1,1.

Proof. Observe that, by Remark 2.3(a), φ◦ ∈ C∞+ . By the regularity results in [32], ∂E ∩ C is smooth. Following the
ideas in [39] we prove that ∂E ∈ C1,1 in some neighborhood of ∂C. Since E is convex by Theorem 6.3, then near each
point x ∈ ∂E ∩ ∂C, we may represent both ∂E ∩ ∂C as graphs of functions u and β , respectively, defined on an open
set U ′ ⊂ R

N−1 containing x′ where x = (x′, y′′), y′′ ∈ R. We will assume u and β chosen in such a way that u � β ,
u = 0 on ∂U ′ and β � 0 on ∂U ′. Now select v ∈ K := {w :U ′ → R: v � β in U ′ and v = 0 on ∂U ′}. For 0 < ε < 1,
define uε on U ′ as uε = u + ε(v − u). We will assume ε chosen small enough so that the graph of uε remains in C̄.
Select a point z ∈ (∂E) ∩ C at which ∂E is regular. Then, there is a neighborhood of z where the anisotropic mean
curvature of ∂E is constant and in which we can represent ∂E as the graph of a function w defined on some open set
V ′ ⊂ R

N−1 containing z′ where z = (z′, z′′). Note that we can take the sets U ′ and V ′ to be disjoint. Let ϕ ∈ C∞
0 (V ′)

denote a function which satisfies∫
V ′

ϕ dHN−1 =
∫
U ′

(v − u)dHN−1 (7.1)

and define wε = w − εϕ. The graphs of the functions uε and wε produce a perturbation of the set E, say Eε . Because
of (7.1) we have that |E| = |Eε|. Taking

F(ε) =
∫
U ′

φ◦(∇uε,−1) dHN−1 +
∫
V ′

φ◦(∇wε,−1) dHN−1,

the minimizing property of ∂E implies that F(0) � F(ε) for all small ε and therefore, F ′(0) � 0. Thus,∫
U ′

∇φ◦(∇u,−1) · ∇(v − u)dHN−1 −
∫
V ′

∇φ◦(∇w,−1) · ∇ϕ dHN−1 � 0.

Since w has constant anisotropic mean curvature K , we obtain∫
V ′

∇φ◦(∇w,−1) · ∇ϕ = −K

∫
V ′

ϕ dHN−1 = −K

∫
U ′

(v − u)dHN−1

and therefore∫
U ′

∇φ◦(∇u,−1) · ∇(v − u) � −K

∫
U ′

(v − u)dHN−1.

Finally, applying a regularity result due to Brézis and Kinderlehrer [22], we conclude that u ∈ C1,1(V ) on any
domain V with V̄ ⊂ U ′. �
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Theorem 7.3. Let C be a bounded convex domain R
N which satisfies the RWφ-condition for some R > 0. Let Λ :=

(N − 1)‖Hφ
C‖∞. Let Cμ be the solution of (P )μ, μ > 0. Then Cμ = C if and only if μ � max{λφ

C,Λ}.

Proof. Assume that C is a solution of (P )μ, and let us prove that μ � max{λφ
C,Λ}. First of all, notice that Pφ(C) −

μ|C| � Pφ(∅)−μ|∅| = 0, i.e. μ � λ
φ
C . If K denotes the φ-calibrable set contained in C defined by Theorem 6.3, then

K = arg minX⊂C P (X) − λ
φ
K |X|, and we have P(C) − λ

φ
K |C| � P(K) − λK |K| = 0, that is, λ

φ
C � λ

φ
K .

The proof of μ � Λ requires an approximation argument. Let φε ∈ C∞+ and Cε ∈ C∞+ be the anisotropies and
convex sets satisfying (i)–(iii) in Lemma 5.3, in particular, they converge to φ and C respectively. We recall the
construction: φε is the anisotropy such that Wφε = Tε(Wφ) + Bε , where Tε is given by Theorem 5.2, and Cε :=
Tε(C) + BRε . Let λε

Cε
:= Pφε (Cε)

|Cε | , λε
Kε

:= Pφε (Kε)

|Kε | , where Kε is the largest φε -calibrable set contained in Cε obtained
in Theorem 6.3. As in the last paragraph, we also deduce that λε

Cε
� λε

Kε
.

Using (5.2), (5.3) and the Lipschitz local continuity of φ◦ we have that |φ◦
ε (ξ) − φ◦(ξ)| � 2ε for any ξ ∈ R

N ,
|ξ | = 1. This implies that∣∣Pφε (X) − Pφ(X)

∣∣ � 2εP (X) (7.2)

for any set of finite perimeter X ⊆ R
N . Hence, since Pφ(Cε) → Pφ(C) we deduce that Pφε (Cε) → Pφ(C). Since we

also have that |Cε | → |C| [37], then λε
Cε

→ λ
φ
C .

Let δ > 0, from the last argument we know that μ + δ > λε
Cε

� λε
Kε

. Now, we consider the problem

(P )μ,ε,δ : min
F⊆Cε

Pφε (F ) − (μ + δ)|F |. (7.3)

Let Dε,δ be a minimizer of (P )μ,ε,δ . By Theorem 6.3 we know that the minimum is unique and it is a convex set.
Now, as the sets Dε,δ are uniformly bounded in ε, by extracting a subsequence if necessary, we may assume that

Dε,δ converge to a convex set Dδ in the Hausdorff distance. Using (7.2) and the lower semicontinuity of Pφ , we obtain
that Dδ is a minimizer of (P )μ+δ . By applying (ii) of Lemma 4.3, we obtain that Dδ = C for every δ > 0.

By Theorem 7.2, we know that Dε,δ is of class C1,1 and, as φε ∈ C∞+ , from Remark 2.9(a) (see also [13, Re-
mark 4(a)]) it follows that Dε,δ is Lipschitz φε -regular. Hence, by Lemma 2.8 Dε,δ satisfies the τWφε -condition for
some τ > 0. Let nε,δ be the Cahn–Hofmann vector field of Dε,δ . Now, by applying the first variation formula for the

perimeter Pφε [20,18], we deduce that (N − 1)Hφε

Dε,δ
= divnε,δ � μ + δ. Let dε,δ := d

Dε,δ

φε
. By [13, Theorem 4] we

have that dε,δ ∈ C
1,1
loc ({|dε,δ| < (μ + δ)−1}) and

0 � divnε,δ � μ + δ

1 − |dε,δ|(μ + δ)
in |dε,δ| < (μ + δ)−1.

By [13, Corollary 1], we know that Dε,δ satisfies the (μ + δ)−1Wφε -condition. By the stability result proved in [13,
Lemma 2], we know that C satisfies the (μ + δ)−1Wφ-condition. Moreover, we may assume that nε,δ → n and
divnε,δ → divn weakly∗ in L∞

loc({|dε,δ| < (μ+δ)−1}). As in the proof of Theorem 2.12 this implies that n ∈ T ◦(∇dC
φ )

a.e. in {|dC
φ | < (μ + δ)−1}. Moreover

0 � divn � μ + δ

1 − |dC
φ |(μ + δ)

in
{∣∣dC

φ

∣∣ < (μ + δ)−1
}
. (7.4)

By Theorem 2.12, there exists a vector field z̃ ∈ T ◦(∇dC
φ ) a.e. in {|dC

φ | < (μ+ δ)−1} which minimizes (2.13) and such
that

‖div z̃‖L∞(Ut ) � ‖divn‖L∞(Ut ), (7.5)

for any t < (μ + δ)−1, where Ut := {|dC
φ | < t}. Using (7.4) and (7.5) we then get

(N − 1)
∥∥Hφ

C

∥∥∞ � μ + δ.

Letting δ → 0+, we obtain that (N − 1)‖Hφ ‖∞ � μ.
C
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Assume now that μ � max{λφ
C,Λ}, but C is not a minimizer of (P )μ. In particular, by Proposition 3.4 and

Lemma 4.3(ii), C is not φ-calibrable. We shall construct a sequence of sets Eλ �= C each one being a solution of

(P )μλ with μλ → β , β > μ. Let λ > max{λ
φ
Wφ

R
, 1

‖χC‖φ,∗ ,μ}. By Lemma 4.2(iii), we know that uλ � (1 − λ
φ
Wφ

Rλ
)+χC .

Let us define

βλ := inf

{
γ : uλ �

(
1 − γ

λ

)+
χC

}
.

Obviously, we have βλ �
λ

φ
Wφ

R
, and

uλ �
(

1 − βλ

λ

)+
χC. (7.6)

Case βλ ��� μ. Take s = 1 − μ
λ

. Then, by Proposition 4.1, {uλ � s} is a solution of (P )λ(1−s) = (P )μ. Finally we
observe that {uλ � s} = C. Thus C is a solution of (P )μ.

Case μ < βλ ���
λ

Wφ
φ

R . For each λ > max{λ
φ
Wφ

R
, 1

‖χC‖φ,∗ }, take sλ ∈ (1 − βλ

λ
,1 − βλ

λ
+ ελ

λ
], ελ > 0, being a sequence

converging to 0. Then

βλ − ελ � λ(1 − sλ) < βλ.

Let Eλ = {uλ � sλ}. Since λ(1 − sλ) < βλ, and by Lemma 4.2(v), we know that uλ is not constant, by an appropriate
choice of sλ we may assume that Eλ �= ∅, Eλ �= C. By Lemma 4.2(ii), choosing sλ sufficiently near 1 − βλ

λ
, i.e. ελ

sufficiently small, we have that Eλ → C as λ → ∞. Without loss of generality me may assume that βλ → β where

μ � β �
λ

φ
Wφ

R
. If β = μ, then λ(1 − sλ) → μ. Since Eλ is a solution of (P )λ(1−sλ), then C would be a solution

of (P )μ, and this would conclude. Therefore we may assume that μ < β �
λ

φ
Wφ

R
.

To summarize, we proved that Eλ is a solution of (P )μλ with μλ := λ(1 − sλ) → β with μ < β �
λ

φ
Wφ

R
, and

Eλ �= C, Eλ → C.
Moreover, since Eλ is an upper level set of uλ and λ can be taken � 2N

R
(recall that λ → ∞), by Theorem 5.1, we

know that uλ is concave, hence Eλ is convex. By Proposition 7.1, we have that

β � (N − 1)
∥∥Hφ

C

∥∥∞ = Λ � μ,

and we obtain a contradiction. We have proved that C minimizes (P )μ. �
Corollary 7.4. Let C be a bounded convex domain in R

N which satisfies the RWφ-condition for some R > 0. Then
E = C is a solution of

min
F⊆C

Pφ(F ) − λ
φ
C |F | (7.7)

if and only if (N − 1)‖Hφ
C‖∞ � λ

φ
C .

Remark 7.5. Corollary 7.4 extends to the anisotropic case the analogous results proved in [27,14,30] when N = 2 and
in [13] when N � 2. In terms of Cheeger sets, it characterizes those convex sets C (satisfying the RWφ-condition for
some R > 0) which are Cheeger φ-sets in themselves.
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8. The evolution of a convex set by the anisotropic total variation flow

8.1. The minimizing anisotropic total variation flow

We are interested in computing the solution of the minimizing anisotropic total variation flow

∂u

∂t
= div ∂φ◦(Du) in QT := ]0, T [ × R

N, (8.1)

coupled with the initial condition

u(0) = u0 ∈ L2(
R

N
)
, (8.2)

when u0 = χC , C being a bounded convex domain in R
N satisfying a ball condition.

The following notion of strong solution is adapted from the notion of strong solution in the semigroup sense [21]
(see also [35,9,14]).

In the following definition, we denote by L1
w(0, T ;BV(RN)) the space of functions w : [0, T ] → BV(RN) such

that w ∈ L1((0, T ) × R
N), the maps t ∈ [0, T ] → ∫

RN ψ dDw(t) are measurable for every ψ ∈ C1
0(RN ;R

N) and∫ T

0 |Dw(t)|(RN)dt < ∞.

Definition 8.1. A function u ∈ C([0, T ];L2(RN)) is called a strong solution of (8.1) if

u ∈ W
1,2
loc

(
0, T ;L2(

R
N

)) ∩ L1
w

(
0, T ;BV

(
R

N
))

and there exists z ∈ L∞t (]0, T [ × R
N ;R

N) with ϕ(z(x)) � 1 a.e. such that

ut = div z in D′(]0, T [ × R
N

)
and ∫

RN

(
z(t),Du(t)

) =
∫

RN

φ◦(Du(t)
)

t > 0 a.e. (8.3)

Theorem 8.2. Let u0 ∈ L2(RN). Then there exists a unique strong solution in the semigroup sense u of (8.1) in
[0, T ] for every T > 0. Moreover, if u and v are strong solutions of (8.1) corresponding to the initial conditions
u0, v0 ∈ L2(RN), then∥∥u(t) − v(t)

∥∥
2 � ‖u0 − v0‖2 for any t � 0. (8.4)

8.2. The evolution of a convex φ-calibrable set

Let Ω be a set of finite perimeter in R
N . We shall say that the set Ω decreases at constant speed λ if

u(t, x) := (1 − λt)+χΩ(x) (8.5)

is the strong solution of (8.1) with initial condition u0 = χΩ . It can be easily checked (see [14]) that Ω decreases at
speed λ if and only if the function v := χΩ satisfies the equation

−div ∂φ◦(Du) = λv, (8.6)

i.e. if and only if there exists a vector field ξ ∈ L∞(RN ;R
N) such that φ(ξ) � 1,

−div ξ = λv (8.7)

and ∫
RN

(ξ,Dv) =
∫

RN

φ◦(Dv). (8.8)

In other words, the set decreases at constant speed if and only if it is φ-calibrable. Using Theorem 7.3 we obtain a
characterization of the convex sets which decrease at constant speed.
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Theorem 8.3. Let C be a bounded convex subset of R
N which satisfies the RWφ-condition for some R > 0. The

following conditions are equivalent:

(i) C decreases at constant speed;
(ii) C is φ-calibrable;

(iii) (N − 1)‖Hφ
C‖∞ � λ

φ
C .

8.3. The evolution of a bounded convex domain satisfying a ball condition

Let us assume that C is a bounded convex domain in R
N satisfying the RWφ-condition for some R > 0. Let K

be the largest φ-calibrable set contained in C, as in Theorem 6.3. For each λ > 0 let Cλ be the solution of (P )λ.
By Theorems 6.3 and 7.3 we have that Cλ = ∅ for any λ < λ

φ
K , and Cλ = C for any λ � max{λφ

C, (N − 1)‖Hφ
C‖∞}.

Following [12,28,2], and recalling the monotonicity of Cλ, we define

HC(x) :=
{− inf{λ: x ∈ Cλ} on x ∈ C,

0 on R
N \ C.

(8.9)

Observe that HC � 0 on C, and HC(x) = −λ
φ
K for all x ∈ K .

Definition 8.4. Let H ∈ L1(RN) and let FH be the functional defined as

FH (X) := Pφ(X) +
∫
X

H(x)dx,

for all X ⊆ R
N of finite perimeter. Let E be a set of finite perimeter in R

N . We say that H is a φ-variational mean
curvature of E if

FH (E) �FH (X) ∀X of finite perimeter in R
N.

The following result can be proved arguing as in [12,28].

Proposition 8.5. We have

(i) HC is a φ-variational mean curvature of C and
∫
C

HC(x)dx = −Pφ(C).
(ii) HCχCλ is a φ-variational mean curvature of Cλ and

∫
Cλ

HC(x)dx = −Pφ(Cλ).

Lemma 8.6. We have ‖HC‖φ,∗ = 1. In particular, there exists a vector field ξC ∈ L∞(RN,R
N), such that φ(ξC) � 1

and div ξC = HC in R
N . Moreover,

(ξ,DχCλ) = φ◦(DχCλ) for any λ > 0.

Proof. Since FH (C) = 0, we have − ∫
X

HC(x)dx � Pφ(X) for any set X ⊆ R
N of finite perimeter. This inequality,

as in the proof of Lemma 3.2, implies that ‖HC‖φ,∗ � 1. Since
∫
C

HC(x)dx = −Pφ(C), we deduce that ‖HC‖φ,∗ = 1.
Hence, by Lemma 3.2 there exists a vector field ξC such that φ(ξC) � 1 and div ξC = HC in R

N .
Now, multiplying div ξC = HC by χCλ and integrating on R

N , we obtain

−
∫

RN

(ξC,DξCλ) =
∫
Cλ

HC(x)dx = −Pφ(Cλ) = −
∫

RN

φ◦(DχCλ).

Since φ(ξC) � 1, we deduce that (ξC,DχCλ) = φ◦(DχCλ). �
Theorem 8.7. Let C be a bounded convex domain in R

N satisfying the RWφ-condition for some R > 0, and let
HC be the variational curvature of C defined by (8.9). Then, u(t, x) = (1 + HC(x)t)+χC(x) is the solution of (8.1)
corresponding to the initial condition u0 = χC .
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Proof. Let t > 0. We have ut (t, x) = sign+(1 + HC(x)t)HC(x), where sign+(1 + HC(x)t) = 1 if and only if
t < − 1

HC(x)
, otherwise sign+(1 + HC(x)t) = 0. In particular, we observe that for t � ‖ 1

HC
‖L∞(C) = 1

λ
φ
K

we have

ut = u = 0. Thus

ut (t, x) = HC(x)χC1/t
(x)χ[0,T )(t),

where T := 1
λ

φ
K

. Let ξC be the vector field given by Lemma 8.6. We have[
ξC · νC1/s

] = −φ◦(νC1/s
)

on ∂C1/s,

for all s > 0. Arguing as in [14,17], we now modify the vector field ξC in such a way that its modification ξ(t, x)

satisfies ξ(t, x) ∈ X2(R
N) and div(ξ(t, x)) = 0 in R

N \ C1/t . If t � 1
λ

φ
K

, we set ξ(t, x) := 0. By Lemma 8.6, we have

(ξ(t),Du(t)) = φ◦(Du(t)) and

div ξ(t) = HC(x)χC1/t
= ut ∀t ∈ (0, T ).

By the characterization of ∂Ψφ given in Lemma 3.1 and recalling Theorem 8.2, we get that u(t) is the unique strong
solution of (8.1), corresponding to the initial condition u0 = χC . �
Remark 8.8. The proof also shows that actually, for a convex initial data, u(t, x) is the solution of the problem (Q)λ
defined in (4.1) for λ = 1/t .
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