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Abstract

Let 1 � p < 2. We construct a Hölder continuous W1,p mapping of a square into R
2 such that the distributional Jacobian equals

to one-dimensional Hausdorff measure on a line segment.
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we construct a planar example of a mapping whose distributional Jacobian is a singular measure
uniformly distributed on a segment.

Let Ω ⊂R
n be open and let f = (f 1, . . . , f n) ∈ W 1,p(Ω,Rn). The Jacobian determinant

Jf (x) = det∇f (x) = det
(∇f 1, . . . ,∇f n

)
is basic tool in analysis of such a map useful in particular for a change of variables. The natural domain of definition
for many integral identities is the space W 1,n in R

n as this assumption easily implies that the Jacobian is integrable.
However, in many applications the assumption W 1,n is too strong.

Starting from the seminal works of C.B. Morrey [12], Yu. Reshetnyak [17] and J. Ball [1] we know that under
weaker assumptions we can define the distributional Jacobian

Jf (ϕ) = −
∫
Ω

f 1(x)det
(∇ϕ,∇f 2, . . . ,∇f n

)
(x) dx

for ϕ ∈ C∞
c (Ω). It is easy to see that this distribution is well-defined for f ∈ (W 1,n−1 ∩ L∞)(Ω,Rn) or we can use

the Sobolev embedding theorem to show that it is well-defined also for f ∈ W 1, n2
n+1 (Ω,Rn).
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On the other hand one can prove using integration by parts and interchangeability of second derivatives that for
smooth function f we have

Jf (ϕ) =
∫
Ω

Jf (x)ϕ(x) dx (1.1)

and by the approximation we can extend this for f ∈ W 1,n. The equality between the Jacobian and the distributional
Jacobian was studied and extended to other situations, e.g. when the Jacobian is integrable (S. Müller [13]), or to fine
scales of integrability of the gradient (T. Iwaniec and C. Sbordone [9], L. Greco [5], P. Koskela and X. Zhong [11]).
For other studies see e.g. the works of V. Šverák [18], S. Müller, T. Qi and B.S. Yan [15], R.L. Jerrard and H.M. Soner
[10], C. De Lellis [3], and C. De Lellis and F. Ghiraldin [4]. Finding new inspiration in Nonlinear Elasticity and
other problems of Calculus of Variations, the distributional Jacobian is nowadays the basic tool in the development of
Geometric Function Theory. For an overview of the field, discussion of interdisciplinary links and further references
we recommend the monographs T. Iwaniec and G. Martin [8] and S. Hencl and P. Koskela [7].

To give some geometric intuition on the subject, already in 1993 S. Müller [14] started to study the examples of
mappings with singular support of the distributional Jacobian. Using some ideas of the construction of S. Ponomarev
[16] he showed that it is possible to construct a continuous mapping f ∈ W 1,p([0,1]n,Rn), for every 1 � p < n,
whose distributional Jacobian is supported on a closed subset of Hausdorff dimension α, α ∈ (0, n). He also studied
examples of mappings with distributional Jacobian somehow supported on the one-dimension line segment. However,
he was not able to construct a mapping whose distributional Jacobian was a measure and its support essentially sits
on the (n − 1)-dimensional hyperplane and he conjectured that it is not possible.

Recently it was shown by H. Brezis and H.M. Nguyen [2, Section 2.3] that it is possible to construct a discontinuous
mapping g ∈ W 1,p((−1,1)n,Rn), p < n, whose distributional Jacobian equals to

Jg =
∞∑

n=1

1

2n
(δPn − δDn),

where δ denotes the Dirac measure and the segment [Pn,Dn] is perpendicular to H := (−1,1)n−1 × {0},
|Pn − Dn| → 0 and the centers of [Pn,Dn] are dense in H . This shows that the support of Jg essentially contains H

and the claim of S. Müller as formally stated in [14] is not true. However they point out that S. Müller’s conjecture
still might be true if one assumes that g is in addition continuous. In Remark 9 they also ask if there is an example
such that the singular part of Jg restricted to H is truly (n − 1)-dimensional, say absolutely continuous with respect
to Hn−1.

The aim of this paper is to show that this is indeed possible and we construct the following example. In this
example, Ω = {x ∈ R

2: |x1| + |x2| < 1}.

Theorem 1.1. Let 1 � p < 2 and β < 1
2 . Then there exists a β-Hölder continuous mapping f : Ω →R

2 such that f ∈
W 1,p(Ω,R2), Jf = 0 a.e. in Ω , but the distributional Jacobian Jf equals the one-dimensional Hausdorff measure
on the line segment [−1,1] × {0}, i.e.

Jf (ϕ) = −
∫
Ω

f 1(x)det
(∇ϕ,∇f 2)(x) dx =

1∫
−1

ϕ(t,0) dt for every ϕ ∈ C∞
c (Ω).

Our construction is purely two-dimensional. We do not see any obstruction for the existence of a similar example in
higher dimension in W 1,p , n − 1 � p < n. However, it seems to be much more difficult to find some efficient pattern,
so that the existence of such a construction is only conjectured.

Of course, we can define on Ω∗ := Ω × [−1,1]n−2 the mapping

f
([x1, . . . , xn]

) = [
f1(x1, x2), f2(x1, x2), x3, . . . , xn

]
with f1 and f2 as in the previous theorem and we obtain a Hölder continuous mapping such that f ∈ W 1,p , p < 2,
and
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−
∫

Ω∗
f 1(x)det

(∇ϕ,∇f 2, . . . ,∇f n
)
(x) dx =

∫
(−1,1)n−1

ϕ(x1,0, x3, . . . , xn) dLn−1 (1.2)

for every ϕ ∈ C∞
c (Ω). However, this example is not satisfactory as p is too small and (1.2) does not allow us to

interpret the expression on the left as the action of the distributional Jacobian. Namely, the genuine distributional
Jacobian should satisfy

J (ϕ) = −
∫

Ω∗
f i(x)det

(∇f 1, . . . ,∇f i−1,∇ϕ,∇f i+1, . . . ,∇f n
)
(x) dx

for each i = 1, . . . , n, which is not the case for the above example.
Let us also note that it is possible to construct even a homeomorphism in W 1,p , p < n, whose distributional

Jacobian is a (purely) singular measure with respect to the Lebesgue measure [6]. Our example of the mapping
f : Ω → R

2 as stated in Theorem 1.1 is the uniform limit of a sequence of Lipschitz mappings fk : Ω → R
2 with

the properties that fk → f in W 1,p , p < 2. Our construction has a self-similar structure obtained by iteration. The
leading pattern is visible already in the first step of the construction. Therefore, it is important for us to understand f1
first.

2. Construction of f1

Recall that Ω = {x ∈R
2: |x1| + |x2| < 1} and denote A = Ω .

First we define a linear map

S =
( 1

9 0

0 α
9

)
(2.1)

with α ∈ (0,1) to be determined later, and points

ai = 2i − 11

9
e1, i = 1, . . . ,10, bi = 2i − 10

9
e1 + α

9
e2, i = 1, . . . ,9,

c = e2 − 2e1

3
, d = e2 + 2e1

3
.

Then we consider the affine maps

gi(x) = S(x + e1) + ai , i = 1, . . . ,9.

To construct f1 we divide A into ten parts: nine inner rhombuses

Ai = gi(A), i = 1, . . . ,9,

and the remaining part A0 = A \ ⋃
i Ai . (See Fig. 1.) Now, we define the group of rotations by right angles

R= {
Rk, k ∈ Z

}
, where R =

(
0 −1
1 0

)
.

We set

hi(x) = 1

3
Rpi (x + e1) + a′

i , i = 1, . . . ,9,

where

p1 = 0, a′
1 = −e1, p2 = 1, a′

2 = −1

3
e1,

p3 = 0, a′
3 = −e1 + 2e2

3
, p4 = 3, a′

4 = e1 + 2e2

3
,

p5 = 2, a′
5 = 1

3
e1, p6 = 3, a′

6 = − 1
3 e1,

p7 = 0, a′
7 = −e1 − 2e2

3
, p8 = 1, a′

8 = e1 − 2e2

3
,

p9 = 0, a′
9 = 1

e1.

3
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Fig. 1. Images of A1, . . . ,A9. The round arrows show the direction of mapping of the inner rhombuses.

We are ready to define f1 on the sets Ai , namely

f1 = hi ◦ g−1
i on Ai, i = 1, . . . ,9. (2.2)

If we set

f1(x) = x, x ∈ ∂Ω, (2.3)

we have defined f1 on the whole boundary of A0. Now, our aim is to extend f1 to A0 to make f1 piecewise affine and
rank-one thereon. The triangulation we use is the following:

(a1,b1, c), (b1,b2, c), (b3, e2, c), (b3,b4, e2), (b4,d, e2), (b4,b5,d), (b5,b6,d), (b6,b7,d),

(b7,b8,d), (b8,b9,d), (b9,a10,d),

and also

(bi ,ai+1,bi+1), i = 1, . . . ,8.

It is easy to see (consult Fig. 2) that if we extend f1 from vertices of selected triangles (where it is already defined)
to the triangles as affine maps, then the extension will be compatible with previously defined values on parts of
boundaries of these triangles. Moreover, this extension to the triangles is always rank-one since the vertices of each
triangle are mapped to colinear points see e.g. f (b2), f (a3), f (b3); in fact, in most cases two vertices of the triangle
are mapped to the same point, e.g. f (b1) = f (c), f (b3) = f (e2). We have already defined f1 on A0 ∩ {x2 > 0} and
extend it as an odd function to the whole A0. (Note that on A1 ∪ · · · ∪ A9 it has been already defined as an odd
function.)

3. Construction of the sequence {fk}

Inside each rhomboid A1, . . . ,A9 we find nine smaller rhomboids and we continue in similar pattern. If s ∈
{1, . . . ,9}k is a multiindex, we define

As = gs1 ◦ · · · ◦ gsk (A).

Denote

Ak =
⋃

k

As.
s∈{1,...,9}
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Fig. 2. Above: The partition of the domain. Below: How the vertices are mapped into the target space. The shaded part is the image of the part
above the x1-axis.
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We construct fk by induction. If fk−1 is already constructed, we define

fk(x) =
{

fk−1(x), x ∈ A \ Ak−1,

hs1 ◦ · · · ◦ hsk−1 ◦ f1 ◦ g−1
sk−1

◦ · · · ◦ g−1
s1

(x), x ∈ As, s ∈ {1, . . . ,9}k−1.

By iteration of identities (2.2) and (2.3) we check that

fk(x) = hs1 ◦ · · · ◦ hsk ◦ g−1
sk

◦ · · · ◦ g−1
s1

(x), x ∈ As, s ∈ {1, . . . ,9}k
and that fk is continuous on A.

4. Passage to the limit and estimates

We define our function f as f = limk→∞ fk . This is allowed by the following lemma.

Lemma 4.1. The sequence fk converges uniformly to a continuous function.

Proof. Choose x ∈ A. Let us estimate |fk(x)−fk−1(x)|, k � 2. The estimate is trivial if x /∈ Ak−1 as fk(x) = fk−1(x)

in this case. If x ∈ Ak−1, then there exists s ∈ {1, . . . ,9}k−1 such that x ∈ As . Set A′
s = fk−1(As). Then also A′

s =
fk(As). Since diamA′

s = 2 · 31−k , we have∣∣fk(x) − fk−1(x)
∣∣ � 2 · 31−k, x ∈ A. (4.1)

This is enough to deduce the uniform convergence. As the functions fk are continuous, the limit is also continuous. �
4.1. Derivative and Lipschitz estimates

Notice that f1 is piecewise affine and there exists a finite set T ⊂ R
2×2 of rank-one matrices such that ∇f1 ∈ A

a.e. in A0.

Lemma 4.2. Let k ∈ N. Then the function fk is piecewise affine. If x ∈ Ak−1 and fk is differentiable at x, then there
exist R ∈ R and T ∈ T (needed if x /∈ Ak) such that

∇fk(x) =
{

3−k+1RT S−k+1, if x ∈ Ak−1 \ Ak,

3−kRS−k, if x ∈ Ak.

In particular, Jfk
= 9k/αk on Ak , Jfk

= 0 on Ak−1 \ Ak and

|∇fk| � C
3k

αk
on A (4.2)

(which controls the Lipschitz constant of fk).

Proof. The computation of derivative is straightforward once we know that ∇g−1
i = S−1, i = 1, . . . ,9 and 3k∇hi ∈

R, i = 1, . . . ,9. We use that R is closed under multiplication. The computation of Jacobian follows by the product
rule for determinants as detR = 1 for R ∈ R and detS = 3−4α. The gradient estimate is proved by induction. On
A \ Ak−1 we have even a better estimate by the induction hypothesis, as fk = fk−1 there, on Ak−1 we use that
|∇S−1|� 9/α. �
4.2. Hölder estimates

Lemma 4.3. Let 0 < β < 1
2 and

32β−1 � α < 1. (4.3)

Then there exists C such that∣∣f (
x′) − f (x)

∣∣ � C
∣∣x − x′∣∣β, x, x′ ∈ A.
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Proof. Choose x, x′ ∈ A. It is enough to consider the case |x −x′| < 1/9. We find j ∈N such that 9−j−1 � |x −x′| <
9−j . We distinguish three cases.

Case 1. If x ∈ As , x′ ∈ As′ with s, s′ ∈ {1, . . . ,9}j , then the inequality |x − x′| � 9−j implies that either s = s′ or at
least As ∩ As′ �= ∅, namely As and As′ are “neighbors”. Since diamf (As) = 2 · 3−j , we have∣∣f (x) − f

(
x′)∣∣� 4 · 3−j � 12 · 3−j−1 � 12

∣∣x − x′∣∣1/2 � 12
∣∣x − x′∣∣β.

Case 2. If x, x′ /∈ Aj , then we use the equality f = fj on A \ Aj and Lipschitz estimate (4.2) of fj on A and deduce
that ∣∣f (x) − f

(
x′)∣∣� C

(
3

α

)j ∣∣x − x′∣∣� C9(1−β)j
∣∣x − x′∣∣� C

∣∣x − x′∣∣β−1∣∣x − x′∣∣ = C
∣∣x − x′∣∣β.

Case 3. If x ∈ Aj , x′ ∈ A \Aj , then we find x′′ ∈ ∂Aj on the line segment connecting x and x′. Then we apply Case 1
to the pair (x, x′′) and Case 2 to the pair (x′′, x′). �
4.3. Sobolev estimates

Lemma 4.4. The sequence fk converges to f in W 1,p(Ω) if

3
p−2
p−1 < α < 1. (4.4)

Proof. The strategy of the proof is the following: we prove that ‖fk − fk−1‖1,p is estimated by a geometric se-
ries, in particular, {fk} is a fundamental sequence in W 1,p(Ω,Rn). By completeness, there exists a limit f̃ of fk in
W 1,p(Ω,Rn). However, since we know that fk → f uniformly, it follows that f = f̃ .

If s ∈ {1, . . . ,9}k , then

|As | = (detS)k|A| =
(

α

92

)k

|A| = 2
αk

92k
. (4.5)

The number of multiindices s ∈ {1, . . . ,9}k is 9k , so that

∣∣Ak
∣∣ = 2

αk

9k
. (4.6)

Since |∇fk| � C( 3
α
)k a.e. (by Lemma 4.2; in fact, up to a multiplicative constant we may use the same estimate for

∇fk and ∇fk−1) and fk = fk−1 on A \ Ak−1, we have (with a generic constant C which change at each occurrence)∫
A

|∇fk−1 − ∇fk|p � 2p−1
( ∫

Ak−1

|∇fk−1|p +
∫

Ak−1

|∇fk|p
)

� C
αk−1

9k−1

(
3

α

)kp

� C
(
3p−2α1−p

)k
.

By (4.4), 3p−2α1−p < 1, so that we have obtained the desired estimate of the first order derivatives. Of course, the
estimate of ‖fj−1 − fj‖Lp causes no difficulty because of (4.1). �
5. Distributional Jacobian

Now, we are ready to prove our main theorem.

Proof of Theorem 1.1. We use f as constructed in the preceding sections. Given 1 < p < 2 and 0 < β < 1
2 , we find

α < 1 such that both conditions (4.3) and (4.4) are satisfied. Then f is β-Hölder continuous on A and belongs to
W 1,p(Ω,Rn). By the definition of fk and Lemma 4.2 we have

Jf = Jfk
= 0 on A \ Ak−1, k = 2,3, . . . .
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Since, by (4.6), |Ak| → 0, we obtain that Jf = 0 a.e.
Denote

� = [−1,1] × {0}.
Choose ϕ ∈ C∞

c (Ω). For each k ∈N and s ∈ {1, . . . ,9}k select a point as ∈ As , for example

as = gs1 ◦ · · · ◦ gsk (−e1) =
(

−1 + 2
k∑

j=1

9−j (sj − 1)

)
e1 ∈ As,

and consider the line segment

�s = � ∩ As.

Then

H1(�s) = 2 · 9−k = ∣∣f (As)
∣∣.

We estimate∣∣∣∣
∫
As

Jfk
(x)ϕ(x) dx −

∫
�s

ϕ(t) dH1(t)

∣∣∣∣
�

∣∣∣∣
∫
As

Jfk
(x)ϕ(x) dx − 2 · 9−kϕ(as)

∣∣∣∣ +
∣∣∣∣2 · 9−kϕ(as) −

∫
�s

ϕ(t) dH1(t)

∣∣∣∣
�

∫
As

∣∣Jfk
(x)

(
ϕ(x) − ϕ(as)

)∣∣dx +
∫
�s

∣∣ϕ(t) − ϕ(as)
∣∣dH1(t)

� 4 · 9−k oscAs ϕ � 2 · 2 · 9−k diam(As)‖∇ϕ‖∞.

Since Jfk
= 0 outside Ak and∑

s∈{1,...,9}k
diam(As) = 2,

summing over s ∈ {1, . . . ,9}k we obtain∣∣∣∣
∫
A

Jfk
(x)ϕ(x) dx −

∫
�

ϕ(t) dH1(t)

∣∣∣∣� 8 · 9−k‖∇ϕ‖∞,

so that∫
�

ϕ(t) dH1(t) dt = lim
k→∞

∫
A

Jfk
(x)ϕ(x) dx. (5.1)

On the other hand, since fk → f uniformly and ∇fk → ∇f in Lp , the passage to limit

Jf (ϕ) = −
∫
A

f 1(x)det
(∇ϕ,∇f 2)(x) dx = − lim

k→∞

∫
A

f 1
k (x)det

(∇ϕ,∇f 2
k

)
(x) dx

is legitimate. We can integrate by parts when dealing the Lipschitz functions fk (cf. (1.1)), hence

Jf (ϕ) = lim
k→∞

∫
A

ϕ(x)det
(∇f 1

k ,∇f 2
k

)
(x) dx = lim

k→∞

∫
A

Jfk
(x)ϕ(x) dx. (5.2)

Comparing (5.1) and (5.2) we conclude the proof. �
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