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Abstract

We construct a category of examples of partially hyperbolic geodesic flows which are not Anosov, deforming the metric of
a compact locally symmetric space of nonconstant negative curvature. Candidates for such an example as the product metric and
locally symmetric spaces of nonpositive curvature with rank bigger than one are not partially hyperbolic. We prove that if a metric
of nonpositive curvature has a partially hyperbolic geodesic flow, then its rank is one. Other obstructions to partial hyperbolicity of
a geodesic flow are also analyzed.
© 2013 Published by Elsevier Masson SAS.

1. Introduction

The theory of hyperbolic dynamics has been one of the extremely successful stories in dynamical systems. Origi-
nated by studying dynamical properties of geodesic flows on manifolds with negative curvature [1] and geometrical
properties of homoclinic points [33], hyperbolicity is the cornerstone of uniform and robust chaotic dynamics; it char-
acterizes the structural stable systems; it provides the structure underlying the presence of homoclinic points; a large
category of rich dynamics are hyperbolic (geodesic flows in negative curvature, billiards with negative curvature, linear
automorphisms, some mechanical systems, etc.); the hyperbolic theory has been fruitful in developing a geometrical
approach to dynamical systems; and, under the assumption of hyperbolicity one obtains a satisfactory (complete) de-
scription of the dynamics of the system from a topological and statistical point of view. Moreover, hyperbolicity has
provided paradigms or models of behavior that can be expected to be obtained in specific problems.

Nevertheless, hyperbolicity was soon realized to be a property less universal than it was initially thought: it was
shown that there are open sets in the space of dynamics which are nonhyperbolic. To overcome these difficulties, the
theory moved in different directions; one being to develop weaker or relaxed forms of hyperbolicity, hoping to include
a larger class of dynamics.

There is an easy way to relax hyperbolicity, called partial hyperbolicity. Let f : M → M be a diffeomorphism from
a smooth manifold M to itself. We say that f is partially hyperbolic if the tangent bundle of M split into Df invariant
subbundles T M = Es ⊕Ec ⊕Eu, such that the behavior of vectors in Es,Eu are contracted and expanded respectively
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by Df , but vectors in Ec may be neutral for the action of the tangent map, i.e., |dxf
nv| contracts exponentially fast

if v ∈ Es , |dxf
nv| expands exponentially fast if v ∈ Eu and |dxf

nv| neither contracts nor expands as fast as for the
other two invariant subbundles if v ∈ Ec. The Anosov condition is equivalent to Ec(x) = {0} for all x ∈ M . This
notion arose in a natural way in the context of time one-maps of Anosov flows, frame flows or group extensions. See
[7,32,24,5,9] for examples of these systems and [21,29] for an overview.

However, and differently from hyperbolic ones, partially hyperbolic non-Anosov systems were unknown in the
context of geodesic flows induced by Riemannian metrics. As far as we know, the way to produce partially hyperbolic
systems in discrete dynamics are the following: time-one maps of Anosov flows, skew-products over hyperbolic
dynamics, products and derived of Anosov deformations (DA). The two last approaches can be adapted to flows.

Our work shows that one is able to deform a specific metric that provides an Anosov geodesic flow to get a
partially hyperbolic geodesic flow. Theorem A is inspired by the Mañé’s DA construction of a partially hyperbolic
diffeomorphism [24].

We prove the following theorems:

Theorem A. There are Riemannian metrics such that their geodesic flows are partially hyperbolic but not Anosov.
Moreover, some of them are transitive.

More precisely, we prove:

Theorem B. Let (M,g) be a compact locally symmetric Riemannian manifold of nonconstant negative sectional
curvature. There is a C2-open set of C∞ Riemannian metrics on M such that their geodesic flows are partially
hyperbolic but not Anosov. Those metrics which are on the C2-boundary of the Anosov Riemannian metrics are
transitive.

Remark 1.1. These metrics are C1-close and C2-far from g, and some are C2-far from Anosov.

Remark 1.2. Cartan classified the symmetric spaces of negative curvature (see [19,20]). They are:

i. the hyperbolic space RHn of constant curvature −c2, which is the canonical space form of negative constant
curvature;

ii. the hyperbolic space CHn of curvature −4c2 � K � −c2, which is the canonical Kähler hyperbolic space of
constant negative holomorphic curvature −4c2 [17];

iii. the hyperbolic space HHn of curvature −4c2 � K �−c2, which is the canonical quaternionic Kähler symmetric
space of negative curvature [4,36];

iv. the hyperbolic space CaH 2 of curvature −4c2 � K � −c2, which is the canonical hyperbolic symmetric space
of the octonions of constant negative curvature.

The theorem works for the quotient of the Kähler hyperbolic space of constant negative holomorphic curvature by
a cocompact lattice, and also for the quotient of the quaternionic Kähler symmetric space of negative curvature by a
cocompact lattice. Both of these locally symmetric spaces are even-dimensional. In these cases, for a fixed v ∈ T M

and if we suppose c = 1 in the classification above, there are subspaces A and B of v⊥ such that if w ∈ A then
K(v,w) = −1, if w ∈ B then K(v,w) = − 1

4 and v⊥ = A ⊕ B . This property implies that the geodesic flow of these
manifolds is Anosov with many invariant subbundles (see Section 6).

Remark 1.3. Of course, if we multiply the metric by a constant, the Anosov or the partially hyperbolic splitting remain
the same, but the curvature does not. So, we consider the maximal sectional curvature of the locally symmetric space
to be −1, which is true after multiplication of the metric by a constant.

Let X : N → T N be a vector field on N without singularities, i.e., for any p ∈ N , X(p) �= 0, let φt : N → N be
its flow, let p ∈ N be a point such that φT (p) = p for a positive real number T , and let λi , i = 1, . . . ,dim(N) be the
eigenvalues of dpφT : TpN → TpN . Let λ1 = 1 be the eigenvalue associated to X(p). We say p is hyperbolic if there
is no eigenvalue in the unit circle, besides λ1, i.e., λi �= 1 for i = 2, . . . ,dim(N). We say p is quasi-elliptic if there are
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eigenvalues in the unit circle, besides λ1. We say p is nondegenerate if there is no eigenvalue equal to one or to a root
of the unity besides λ1. The next two corollaries are given by the persistence of quasi-elliptic nondegenerate periodic
points.

Corollary C.1. There is a C2-open set U of metrics in the set of metrics of M such that for g ∈ U , the geodesic flow of
g is partially hyperbolic but not Anosov, for (M,g) as in the previous theorem. There is also an open set U ′ of metrics
such that for g ∈ U ′, the geodesic flow of g is partially hyperbolic non-Anosov and with conjugate points.

Remark 1.4. A classical Mañé theorem [26] says that if, for a geodesic flow of a Riemannian manifold there is
an invariant Lagrangian subbundle, then this Riemannian manifold does not have conjugate points. The existence
of a partially hyperbolic non-Anosov geodesic flow implies that this theorem does not extend to invariant isotropic
subbundles. Corollary C.1 states that some partially hyperbolic non-Anosov do have conjugate points.

Corollary C.2. There is a C2-open set V of Hamiltonians in the set of Hamiltonians of (T M,ωTM), near geodesic
Hamiltonians, such that for h ∈ U , the Hamiltonian flow of h is partially hyperbolic but not Anosov.

It is easy to construct partially hyperbolic Hamiltonians by suspensions; but they are not close to geodesic flows.
We also show that product metrics of Anosov geodesic flows are not examples with the partially hyperbolic prop-

erty:

Theorem D. If (M1, g
1) and (M2, g

2) are Riemannian manifolds such that the geodesic flow of at least one of them
is Anosov, then the geodesic flow of (M1 × M2, g

1 + g2) is not partially hyperbolic.

For compact locally symmetric spaces of nonpositive curvature the following holds:

Theorem E. If the geodesic flow of a compact locally symmetric space of nonpositive curvature is partially hyperbolic,
then its geodesic flow is Anosov.

The proof of Theorem D and Theorem E imply the following:

Theorem F. If (M,g) is a compact Riemannian manifold with nonpositive sectional curvature and partially hyper-
bolic geodesic flow then (M,g) has rank one.

Moreover,

Theorem G. If (Mn,g) is a Riemannian manifold with partially hyperbolic geodesic flow then n is even, and if
n ≡ 2 mod 4, then dimEs = 1 or n − 1.

Roughly speaking, the strategy of the proof of Theorem A follows these steps:

1. We chose a metric whose geodesic flow is Anosov and whose hyperbolic invariant splitting is of the form
T (UM) = Ess ⊕ Es ⊕ 〈X〉 ⊕ Eu ⊕ Euu (Section 4).

2. We take a closed geodesic γ without self-intersections (Section 5.2).
3. We change the metric in a tubular neighborhood of γ in M , such that along γ the strong subbundles (Ess and Euu)

remain invariant and the weak subbundles disappear, becoming a central subbundle with no hyperbolic behavior
(Section 5.3).

4. Outside the tubular neighborhood of γ , the dynamics remains hyperbolic.
5. We show that for the geodesics that intersect the tubular neighborhood the cones associated to the extremal

subbundles (Ess and Euu) are preserved (Sections 5.3.3, 5.3.4, 5.3.5, 5.3.6).
6. We prove that for vectors in the unstable cones there is expansion, and for vectors inside the stable cones there is

contraction, under the action of the derivative of the new geodesic flow (Section 5.3.7).
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Remark 1.5. In the case of the geodesic flow of a compact locally symmetric Riemannian manifold (M,g) of non-
constant negative curvature, the tangent bundle of the unitary tangent bundle UM splits in many invariant subbundles:
T (UM) = Ess ⊕ Es ⊕ 〈X〉 ⊕ Eu ⊕ Euu. If θ ∈ UM , ζ ∈ Ess(θ) then |dθζ | contracts exponentially fast as t → ∞,
faster than if ζ ∈ Es . If ζ ∈ Euu then |dθζ | expands exponentially fast as t → ∞, faster than if ζ ∈ Eu (see Section 4).

We would like to recall that in the symplectic context, the existence of dominated splitting with two subbundles of
equal dimension implies hyperbolicity. This was first observed by Newhouse for surfaces maps [27], later by Mañé
in any dimension [25] for symplectic maps, by Ruggiero in the context of geodesic flows [30] and Contreras for
symplectic and contact flows [12]. We want to point out that these results do not contradict ours: the splitting for the
examples of Theorem A and Theorem B contain more than two invariant subbundles.

There are partially hyperbolic Σ -geodesic flows, defined over a distribution Σ � T M which arise in the study of
the dynamics of free particles in a system with constraints (see [11]). However, if the distribution is involutive then
the leaves of the distribution have negative curvature, and we are again in the Anosov geodesic flows case. If the
distribution is not involutive, the Σ -geodesic flow is not a geodesic flow.

The article is organized as follows:
In the second section of the article, we introduce basic results about geodesic flows, partial hyperbolicity and the

equivalent property of the proper invariance of cone fields [28,21].
In the third section we prove Theorem D. We show that product metrics are not examples of partially hyperbolic

non-Anosov geodesic flows.
In the fourth section we introduce properties and the classification of locally symmetric spaces of negative curvature

which are the natural candidates to deform into partially hyperbolic non-Anosov geodesic flows.
In the fifth section we prove Theorem B, and so Theorem A, except for the transitivity of some of the examples.

We show that the deformed metric has a partial hyperbolic non-Anosov geodesic flow. We give a proof of the proper
invariance of the strong cones, i.e., the derivative of the geodesic flow brings the strong unstable cone field properly
inside itself, and the derivative of the inverse of the geodesic flow brings the stable cone field properly inside itself.
The proof is based on the calculation of the variation of the opening of the cones of an appropriate cone field, and then
we prove the exponential expansion or contraction for vectors in the strong unstable and stable cones.

In the sixth section we prove Theorem E. We show that compact locally symmetric spaces of nonpositive sectional
curvature are not partially hyperbolic. The geodesic flow of a locally symmetric spaces of nonconstant negative cur-
vature is Anosov with at least four invariant subbundles in their dominated splitting, so they are the candidates for the
deformation, since they have the property mentioned in the first item of the strategy above [14,15,22].

In the last section we prove Theorems F and G and the transitivity of some of the examples, which is stated in
Theorems A and B. We show some obstructions to the existence of a partially hyperbolic geodesic flow. In general,
there are obstructions for the rank of the manifold if the Riemannian manifold has nonpositive sectional curvature,
and for the dimension of the Riemannian manifold and the dimension of the hyperbolic invariant subbundles.

2. Preliminaries

In this section, we give some preliminary definitions. In the first subsection, the definitions are about geodesic
flows. The basic reference for this subsection is the book by Paternain [28]. In the second subsection, we give the
main definitions about partial hyperbolicity and the basic reference is the survey by Hasselblatt and Pesin [21].

2.1. Geodesic flows

A Riemannian manifold (M,g) is a C∞-manifold with a Euclidean inner product gx in each TxM which varies
smoothly with respect to x ∈ M . So a Riemannian metric is a smooth section g : M → Symm+

2 (T M), where
Symm+

2 (T M) is the set of positive definite bilinear and symmetric forms in T M . Along the article we will consider
the topology of the space of metrics of a manifold M to be the C2-topology on the space of these sections.

The geodesic flow of the metric g is the flow

φt : T M → T M,

φt (x, v) = (γ(x,v)(t), γ
′
(x,v)(t)

)
,
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such that γ(x,v) is the geodesic for the metric g with initial conditions γ(x,v)(0) = x and γ ′
(x,v)(0) = v, x ∈ M ,

v ∈ TxM . Since the speed of the geodesics is constant, we can consider the flow restricted to UM := {(x, v) ∈
T M: gx(v, v) = 1}.

Definition 2.1. Let πM : T M → M be the canonical projection of the tangent bundle. The vertical subbundle, πV :
V (T M) → T M , is the bundle whose fiber at θ ∈ TxM is given by V (θ) = ker(dθπM).

Definition 2.2. K : T (T M) → T M , which is called the connection map associated to the metric g, is defined as
follows: given ξ ∈ TθT M let z : (−ε, ε) → T M be an adapted curve to ξ ; let α : (−ε, ε) → M : t → πM ◦ z(t), and Z

the vector field along α such that z(t) = (α(t),Z(t)); then Kθ(ξ) := (∇α′Z)(0). πH : H(T M) → T M , the horizontal
subbundle, is given by H(θ) := ker(Kθ ).

Some properties of H and V are:

1. H(θ) ∩ V (θ) = 0,
2. dθπ and Kθ give identifications of H(θ) and V (θ) with TxM ,
3. TθT M = H(θ) ⊕ V (θ).

The geodesic vector field G : T M → T (T M) is given by G(v) = (v,0) in the decomposition H ⊕ V ≈ π∗T M ⊕
π∗T M .

The decomposition in horizontal and vertical subbundles allows us to define the Sasaki metric on T M :

ĝθ (ξ, η) := gx

(
dθπ(ξ), dθπ(η)

)+ gx

(
Kθ(ξ),Kθ (η)

)
= gx(ξh, ηh) + gx(ξv, ηv)

for ξ and η ∈ TθT M , with ξ = (ξh, ξv) and η = (ηh, ηv) in the decomposition TθT M = H(θ) ⊕ V (θ), with ξh and
ηh ∈ TxM ∼= H(θ), ξv and ηv ∈ TxM ∼= V (θ).

It also allows us to define a symplectic 2-form and an almost complex structure J̃ on T M and a contact form
on UM :

Ωθ(ξ, η) := gx

(
dθπ(ξ),Kθ (η)

)− gx

(
Kθ(ξ), dθπ(η)

)
= gx(ξh, ηv) − gx(ηh, ξv),

J̃ (ξh, ξv) := (−ξv, ξh),

αθ (ξ) := ĝθ

(
ξ,G(θ)

)= gx

(
dθπ(ξ), v

)= gx(ξh, v).

Definition 2.3. The geodesic flow leaves UM invariant, and we can define a contact form on UM such that its
Reeb vector field is the geodesic vector field: πS : S(UM) → UM is the contact structure bundle on UM , with fiber
S(θ) := ker(αθ ). It is an invariant subbundle for the geodesic flow, and R · G ⊕ S = T (UM). The vector bundle
S(UM) also has a decomposition on horizontal and vertical subbundles.

In the next definition, we relate the derivative of the geodesic flow with the Jacobi fields of the metric that generates
the flow.

Definition 2.4. Let γθ be a geodesic on the Riemannian manifold (M,g) with initial conditions γθ (0) = x, γ ′
θ (0) = v,

where θ = (x, v), x ∈ M , v ∈ TxM . A Jacobi field ζ(t) along a geodesic γθ is a vector field obtained by a variation of
the geodesic γθ through geodesics:

ζ(t) := ∂

∂s

∣∣∣∣
s=0

π ◦ φt

(
z(s)

)
,

where z(0) = θ , z′(0) = ξ and z(s) = (α(s),Z(s)) (where z,α,Z were introduced in Definition 2.2). It satisfies the
following equation:

ζ ′′ + R
(
γ ′
θ , ζ
)
γ ′
θ = 0.
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Its initial conditions are:

ζ(0) = ∂

∂s

∣∣∣∣
s=0

π ◦ z(s) = dθπξ = ξh,

ζ ′(0) = D

dt

∂

∂s

∣∣∣∣
t=0,s=0

π ◦ φt

(
z(s)

)= D

∂s

∂

∂t

∣∣∣∣
s=0,t=0

π ◦ φt

(
z(s)

)
= D

∂s

∣∣∣∣
s=0

Z(s) = Kθξ = ξv.

Observe that the choice of ξ determines a Jacobi field ζξ along γθ and so the derivative of a geodesic flow is:
dθφt (ξ) = (ζξ (t), ζ

′
ξ (t)).

We can restrict the action of the derivative of the geodesic flow to the contact structure: dθφt (ξ) : S(UM) →
S(UM). In this case the Jacobi fields associated with the contact structure are the orthogonal to the geodesics on M :
ζ :R→ γ ∗

θ T M such that ζ(0) = ξh, ζ ′(0) = ξv , where ξ ∈ TθT M , ξh⊥θ , ξv⊥θ .

Remark 2.5. We define the curvature tensor R : Γ (T M)×Γ (T M)×Γ (T M) → Γ (T M) as it is done in do Carmo’s
book [10]:

R(X,Y )Z := ∇Y ∇XZ − ∇X∇Y Z + ∇[X,Y ]Z.

2.2. Partial hyperbolicity

Definition 2.6. A partially hyperbolic flow φt : N → N in the manifold N generated by the vector field X : N → T N

is a flow such that its quotient bundle T N/〈X〉 has an invariant splitting T N/〈X〉 = Es ⊕ Ec ⊕ Eu such that these
subbundles are non-trivial and have the following properties:

dxφt

(
Es(x)

)= Es
(
φt (x)

)
,

dxφt

(
Ec(x)

)= Ec
(
φt (x)

)
,

dxφt

(
Eu(x)

)= Eu
(
φt (x)

)
,

‖dxφt |Es ‖� C exp(tλ),

‖dxφ−t |Eu‖� C exp(tλ),

C exp(tμ)� ‖dxφt |Ec‖� C exp(−tμ),

for some constants λ < μ < 0 < C and for all x ∈ N . In the context of the present paper, N is the unitarian tangent
bundle UM .

Definition 2.7. A splitting E ⊕ F of the quotient bundle T N/〈X〉 is called a dominated splitting if:

dxφt

(
E(x)

)= E
(
φt (x)

)
,

dxφt

(
F(x)

)= F
(
φt (x)

)
,

‖dxφt |E(x)‖ · ‖dφt (x)φ−t |F(φt (x))‖ < C exp(−tλ)

for some constants C, λ > 0 and x ∈ N .

We only need to prove the existence of dominated splitting because of a well-known result in symplectic dynamics
– Theorem A of [12], Proposition 2.1 of [30]:

Lemma 2.8. Let (N,ω) be a symplectic manifold, ω its symplectic 2-form and φt : N → N a flow on N such that
LXω = 0, i.e., it preserves the symplectic structure of N . If there is a dominated splitting T N/〈X〉 = E ⊕ Ec ⊕ F

such that dim(E) = dim(F ), then for all x ∈ N there is a positive real number C and a negative real number λ such
that

‖dxφt |E‖� C exp(tλ), ‖dxφ−t |F ‖� C exp(tλ).
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2.2.1. Partial hyperbolicity and cone fields
There is a useful criterion for verifying partial hyperbolicity, called the cone criterion:
Given x ∈ N , a subspace E(x) ⊂ TxN and a number δ, we define the cone at x centered around E(x) with angle δ

as

C
(
x,E(x), δ

)= {v ∈ TxN : � (v,E(x)
)
< δ
}
,

where � (v,E(x)) is the angle that the vector v ∈ TxN makes with its own projection to the subspace E(x) ⊂ TxN .
Sometimes, the constant δ involves in the definition of the cone C(x,E(x), δ) is called the opening of the cone.

A flow is partially hyperbolic if there are δ > 0, some time T > 0, and two continuous cone families C(x,E1(x), δ)

and C(x,E2(x), δ) such that:

dxφ−t

(
C
(
x,E1(x), δ

))
� C

(
x,E1

(
φ−t (x)

)
, δ
)
,

dxφt

(
C
(
x,E2(x), δ

))
� C

(
x,E2

(
φt (x)

)
, δ
)
,

‖dxφtξ1‖ < K exp(tλ),

‖dxφ−t ξ2‖ < K exp(tλ),

for ξ1 ∈ C(x,E1(x), δ), ξ2 ∈ C(x,E2(φt (x)), δ), some constants K > 0, λ < 0 and all t > 0.

2.2.2. Partial hyperbolicity and angle cone variation
Let PrE : T N → E be the orthogonal projection to E, where πE : E → N is a vector subbundle of T N . We define

ΘE(v) := g(PrE v,PrE v)

g(v, v)
. (1)

To prove that the proper invariance of cones holds, it is enough to check the following inequality:

d

dt
ΘE(φt (x))

(
dxφt (v)

)
> 0 (2)

for v ∈ ∂C(x,E(x), δ) := {w ∈ TxN : � (w,E(x)) = δ}.
Remark 2.9. The quantity ΘE(v) equals twice the square of the cosine of the angle between v and the subspace E,
so if it increases along the flow, then the cone field is properly invariant. We call the derivative above the angle cone
variation. This calculation is inspired by the calculations in [35], although we do not use quadratic forms here.

The proper invariance of the cones by the derivative of the geodesic flow implies the existence of a dominated
splitting. For the exponential expansion or contraction in the unstable and stable directions, respectively, we only need
to check exponential expansion or contraction inside the unstable and stable cones, respectively.

Lemma 2.10. For a fixed δ > 0, and a fixed subbundle E → N , E(x) ⊂ TxN , if inequality (2) holds for v ∈
∂C(x,E(x), δ), then the cone field is proper invariant for the geodesic flow.

Proof. Let c ∈ (1,2) be such that 2 cos2(δ) = c. Then

C
(
x,E(x), δ

)= {ΘE(v) � c
}
,

∂C
(
x,E(x), δ

)= {ΘE(v) = c
}
.

Notice that the quantity on the left side of (2) is the same for v and for kv for every k > 0. Then we can calculate for
v such that g(v, v) = 1. Define

∂1C
(
x,E(x), δ

)= {g(PrE v,PrE v) = c, g(v, v) = 1
}
.

Then the set of vectors in the above defined boundary of the cones is compact, which implies that its derivative is
bounded away from zero:

d

dt
ΘE(φt (x))

(
dxφt (v)

)
� a > 0.

Its immediate consequence is that the cone field is properly invariant by the flow. �
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3. The geodesic flow of a product metric is not partially hyperbolic

Now, we are going to show that some simple candidates for partially hyperbolic geodesic flows are not partially
hyperbolic. In particular, we are going to prove that product metrics are neither Anosov nor partially hyperbolic.

A natural candidate for symplectic partially hyperbolic dynamics is the following: for any hyperbolic symplectic
action Φ : R → Sp(E,ω), π : E → B a symplectic bundle with ω as its symplectic 2-form, one can produce another
symplectic action Φ∗ : R → Sp(E,ω) ⊕ Sp(B × R2,ω0) : t → Φ(t) ⊕ Id, where ω0 = dx ∧ dy is the canonical
symplectic form of R2 = {(x, y): x, y ∈R}. The symplectic flow associated with this symplectic R-action is partially
hyperbolic with a central direction of dimension 2. For geodesic flows the above described construction does not
work.

Theorem 3.1. Let (M,g) be a Riemannian manifold whose geodesic flow is Anosov. Then, the product Riemannian
manifold (M ×Tn, g + g0) where (Tn, g0) is Tn with its canonical flat metric, is not partially hyperbolic.

Proof. Notice that for any x ∈ M , {x} × Tn is a totally geodesic submanifold of (M × Tn, g + g0). So, its second
fundamental form is identically zero. Since the metric in Tn is flat this implies that, for any x ∈ M and any y ∈ Tn:

R
(
γ ′
(x,y,0,v), (0,w)

)
γ ′
(x,y,0,v) = 0,

where γ(x,y,0,v) is the geodesic of (M ×Tn, g+g0) starting at (x, y) ∈ M ×Tn with γ ′
(x,y,0,v)(0) = (0, v) ∈ TxM ×Rn,

the covariant derivative of the geodesic starting at (x, y) with tangent vector (0, v).
For a product metric in (M1 ×M2, g

1 +g2), let us say R is the curvature tensor of the product Riemannian manifold
with the product metric and R1 the curvature tensor of the Riemannian manifold M1. Then the following properties
hold:

i. R(X,Y,Z,W) = R1(X,Y,Z,W), for X,Y,Z,W tangent to M1, because of Gauss’ equation and the fact that the
second fundamental form is zero [10];

ii. R(X,Y,Z,N) = 0, for X,Y,Z tangent to M1 and N tangent to M2, because of Codazzi’s equation and the fact
that the second fundamental form is zero [10];

iii. R(X,N,X, N̂) = 0, for X,Y tangent to M1 and N, N̂ tangent to M2, because K(X,N) = 0 [10].

Then, for a submanifold {x} ×Tn with the flat metric:

R
(
γ ′
(x,y,0,v), ·

)
γ ′
(x,y,0,v) ≡ 0.

So, the derivative of the geodesic flow along geodesics in {x} × Tn does not have any exponential contraction or
expansion. So, there is no partially hyperbolic splitting for its geodesic flow. �
Theorem 3.2. Let (M1, g

1) and (M2, g
2) be two Riemannian manifolds whose geodesic flows are Anosov. The

geodesic flow of the Riemannian manifold (M1 × M2, g
1 + g2) is not Anosov.

Proof. The proof that this geodesic flow is not Anosov is easy. It is a classical result that (x0, γ(y,v)(t)) and
(γ(x,u)(t), y0) are geodesics of the product metric, x0 ∈ M1, y0 ∈ M2, u ∈ TxM1, v ∈ TyM2, γ(x,u)(0) = x and
γ ′
(x,u)(0) = u, γ(y,v)(0) = y and γ ′

(y,v)(0) = v. So, we choose x0 and x1 ∈ M1 close enough. Then (x0, γ(y,v)(t)) and
(x1, γ(y,v)(t)) are two geodesics of the product metric with initial conditions (x0, y,0, v) and (x1, y,0, v). Let dist be
the distance function for the Sasaki metric of U(M1 × M2) and dist1 be the distance function for the Sasaki metric of
UM1. The geodesic flow is not expansive, because dist (φt (x0, y,0, v),φt (x1, y,0, v)) = dist1((x0,0), (x1,0)) and
therefore, for any ε > 0, if x0 and x1 are close enough, then dist1((x0,0), (x1,0)) < ε, and so the geodesic flow is not
Anosov. �
Theorem 3.3. The geodesic flow of the product metric of a product manifold of two Riemannian manifolds with Anosov
geodesic flows is not partially hyperbolic.
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Proof. Take local coordinates for the geodesic flow of the product metric. Let x ∈ M1, y ∈ M2, u ∈ TxM1, v ∈ TyM2,
and let γ(x,y,u,v)(t) be the geodesic with initial conditions γ(x,y,u,v)(0) = (x, y) and γ ′

(x,y,u,v)(0) = (u, v). Since the
product metric is a sum of the two metrics, we have that πi : M1 ×M2 → Mi , i = 1,2, the natural projection from the
product manifold to Mi , is an isometric submersion. So γ(x,y,u,v)(t) = (γ(x,u)(t), γ(y,v)(t)).

Let us construct an orthonormal basis of parallel vector fields for γ(x,y,u,v)(t). Suppose g1
x(u,u) = 1 and

g2
y(v, v) = 1. So, to have (x, y,u, v) in the unitary tangent bundle of M1 × M2 we take (x, y,αu,βv), and

g(x,y)

(
(αu,βv), (αu,βv)

)= α2g1
x(u,u) + β2g2

y(v, v) = α2 + β2 = 1.

Then

γ(x,y,αu,βv)(t) = (γ(x,αu)(t), γ(y,βv)(t)
)
, γ ′

(x,y,αu,βv)(t) = (αγ ′
(x,u)(t), βγ ′

(y,v)(t)
)
.

Let Ei , i = 2, . . . ,dim(M1), be an orthogonal frame of parallel vector fields along the geodesic γ(x,u). Let Fj , j = 2,

. . . ,dim(M2), be an orthogonal frame of parallel vector fields along the geodesic γ(y,v).
Notice that along the geodesic γ(x,y,αu,βv), since its components are γ(x,αu) and γ(y,βv), the following holds:

g1
γ(x,αu)(t)

(
γ ′
(x,αu)(t), γ

′
(x,αu)(t)

)= α2, g2
γ(y,βv)(t)

(
γ ′
(y,βv)(t), γ

′
(y,βv)(t)

)= β2,

so the proportion (α,β) is preserved along the geodesic.
So {(αγ ′

(x,u)(t), βγ ′
(y,v)(t)), (βγ ′

(x,u)(t),−αγ ′
(y,v)(t)), (Ei(t),0), (0,Fj (t))}i,j is an orthonormal frame of parallel

vector fields along the geodesic γ(x,y,αu,βv)(t).
The fact that the second fundamental form of the submanifolds {p}×M2 and M1 ×{q} is zero, together with Gauss

and Codazzi equations, imply that:

R
(
(u1,0), (u2,0), (u3,0), (u4,0)

)= R1(u1, u2, u3, u4),

R
(
(0, v1), (0, v2), (0, v3), (0, v4)

)= R2(v1, v2, v3, v4),

R
(
(u1,0), (u2,0), (u3,0), (0, v1)

)= 0,

R
(
(0, v1), (0, v2), (0, v3), (u1,0)

)= 0.

Also the fact that the curvature is zero for planes generated by one vector tangent to M1 and another tangent to M2
implies:

R
(
(u1,0), (0, v1), (u2,0), (0, v2)

)= 0.

All these equations imply that along the geodesic γ(x,y,αu,βv)(t):

R
(
γ ′
(x,y,αu,βv), (Ei,0), γ ′

(x,y,αu,βv), (Ek,0)
)= α2R1(γ ′

(x,u),Ei, γ
′
(x,u),Ek

)
,

R
(
γ ′
(x,y,αu,βv), (0,Fj ), γ

′
(x,y,αu,βv), (0,Fl)

)= β2R2(γ ′
(y,v),Fj , γ

′
(y,v),Fl

)
,

R
(
γ ′
(x,y,αu,βv), (Ei,0), γ ′

(x,y,αu,βv), (0,Fj )
)= 0.

Now, we are going to write a system of Jacobi fields. First we take an orthonormal basis of parallel fields Ui : R →
Tγ (t)U(M1 × M2) along a geodesic γ : R → U(M1 × M2), i = 1, . . . ,dim(M1) + dim(M2), such that {Ui(t)} is the
basis {(

αγ ′
(x,u)(t), βγ ′

(y,v)(t)
)
,
(
βγ ′

(x,u)(t),−αγ ′
(y,v)(t)

)
,
(
Ei(t),0

)
,
(
0,Fj (t)

)}
k,j

,

such that j = 2, . . . ,dim(M2), k = 2, . . . ,dim(M1). We write the Jacobi field ζ : R → with respect to this base:
ζ(t) =∑n

i=2 fi(t)Ui(t). Then ζ ′′(t) =∑n
i=2 f ′′

i (t)Ui(t) and

0 =
n∑

j=2

(
f ′′

j +
n∑

i=2

fiR
(
γ ′,Ui, γ

′,Uj

))
Uj .

So, the Jacobi equation can be written as:[
f

f ′
]′

=
[

0 I

−K 0

][
f

f ′
]

where Kij = R(γ ′,Ui, γ
′,Uj ).
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In the case of the product metric we have:

[
f

f ′
]′

=

⎡⎢⎢⎣
0 0 I 0
0 0 0 I

−α2K1 0 0 0

0 −β2K2 0 0

⎤⎥⎥⎦[ f

f ′
]

.

With a change in the order of the basis of parallel vector fields we have:

F ′ =

⎡⎢⎢⎣
0 I 0 0

−α2K1 0 0 0
0 0 0 I

0 0 −β2K2 0

⎤⎥⎥⎦F.

So the systems decouples and the solutions are given immediately by the solutions for M1 and M2.
Now suppose the geodesic flow of the product metric is partially hyperbolic with splitting Es ⊕ Ec ⊕ Eu,

dimEs = p, dimEu = q . So the geodesic flow of each metric g1 and g2 is partially hyperbolic and each geodesic
flow inherits a partially hyperbolic splitting:

Es
1 ⊕ Ec

1 ⊕ Eu
1 ,

along geodesics in M1 × {y} (β = 0), such that Es
1 ⊕ Eu

1 ⊂ TxM1 ⊕ {0} ⊂ TxM1 ⊕ TyM2, and

Es
2 ⊕ Ec

2 ⊕ Eu
2 ,

along geodesics in {x} × M2 (α = 0), such that Es
2 ⊕ Eu

2 ⊂ {0} ⊕ TyM2 ⊂ TxM1 ⊕ TyM2.
For geodesics of the product metric which have α �= 0 �= β , we get a splitting into five invariant subbundles Es

1 ⊕
Es

2 ⊕ Ec ⊕ Eu
1 ⊕ Eu

2 , without the domination, since α and β multiply the Lyapunov exponents of each subbundle.
Since we already have a splitting, Es and Eu are necessarily one of a combination of subbundles of Es

1 and Es
2, Eu

1
and Eu

2 , respectively:

Es ∈ {E ⊕ F : E ⊂ Es
1, F ⊂ Es

2, dimE + dimF = p
}
,

Eu ∈ {E ⊕ F : E ⊂ Eu
1 , F ⊂ Eu

2 , dimE + dimF = q
}
.

So there is no way to go from the case α = 0 to β = 0 without breaking the continuity of the splitting, because one
cannot go from the case dimE = 0 for β = 0, to dimF = 0 for α = 0 in a continuous way. �
4. Anosov geodesic flow with many invariant subbundles

In this section, we introduce the metric which we are going to deform to produce the example of a partially
hyperbolic and non-Anosov geodesic flow.

The candidate for the deformation is a compact locally symmetric space which is a quotient of the symmetric space
of nonconstant negative curvature M := G/K by a cocompact lattice Γ , where G is a Lie group that acts transitively
on M and K is a compact subgroup of G [6].

Cartan classified the symmetric spaces of negative curvature (see [19,20]). They are:

i. the hyperbolic space RHn of constant curvature −c2, which is the canonical space form of negative constant
curvature;

ii. the hyperbolic space CHn of curvature −4c2 � K � −c2, which is the canonical Kähler hyperbolic space of
constant negative holomorphic curvature −4c2 [17];

iii. the hyperbolic space HHn of curvature −4c2 � K �−c2, which is the canonical quaternionic Kähler symmetric
space of negative curvature [4,36];

iv. the hyperbolic space CaH 2 of curvature −4c2 � K � −c2, which is the canonical hyperbolic symmetric space
of the octonions of constant negative curvature.
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Their geodesic flows are all Anosov, but the geodesic flow of the first one does not have more than the two invariant
subbundles, the stable and the unstable, which cannot be decomposed in other subbundles. The others have more
invariant subbundles, as in the first item of the strategy written in Section 1. So, the metrics which are the candidates
to produce a partially hyperbolic geodesic flow which is not Anosov are the metrics in items [ii.], [iii.] and [iv.].
Through the article we are going to consider c = 1

2 .
For these type of metrics we need the following properties to hold:

i. For all v ∈ TxM , the subspace {w ∈ TxM: K(v,w) = −1} is parallel along γv in the sense that the derivative of
the projection to this subspace of TxM along geodesics is zero.

ii. For closed geodesics γ : [0, T ] → M , (γ (0), γ ′(0)) = (γ (T ), γ ′(T )), the parallel translation from γ (0) to γ (T )

along γ of these subspaces {w ∈ TxM: K(v,w) = −1} and {w ∈ TxM: K(v,w) = − 1
4 }, where v = γ ′(0),

preserves orientation.

The examples that satisfy the properties above are:

i. compact Kähler manifolds of negative holomorphic curvature −1 (see [17]),
ii. compact locally symmetric quaternionic Kähler manifolds of negative curvature (see [4]).

In the next subsection we describe a series of properties of the hyperbolic subbundles of the Anosov geodesic flows
for the two cases listed above. More precisely, in Section 4.1 we describe the strong and weak stable and unstable
subbundles, in Section 4.1.1 we study the cone variation (as defined in Section 2.2.2) for the hyperbolic subbundles
and in Section 4.1.2 we study the orientability of those subbundles.

4.1. Subspaces of S(UM) and UM

Since the candidate has nonconstant negative curvature, then its sectional curvature, up to multiplication of the
metric by a constant, has planes of sectional curvature −1 and planes of sectional curvature − 1

4 . Actually, every
vector v ∈ T M is in a plane with curvature −1 and in another with curvature − 1

4 .
We define

A(x, v) := {w ∈ TxM: K(v,w) = −1
}
, (3)

B(x, v) :=
{
w ∈ TxM: K(v,w) = −1

4

}
. (4)

If we restrict the derivative of the geodesic flow to the subbundle S(UM) = kerα → UM , where α is the contact
form on UM , then S(x, v) = Ĥ (x, v) ⊕ V̂ (x, v), and Ĥ (x, v) and V̂ (x, v) are identified with {v}⊥ = A(x, v) ⊕
B(x, v) ⊂ TxM , (x, v) ∈ UM . The subbundles A and B are invariant by parallel translation along geodesics.

Lemma 4.1. The geodesic flow of the symmetric spaces of nonconstant negative curvature induces a hyperbolic
splitting of the contact structure defined on UM : S(UM)/〈X〉 = Ess ⊕ Es ⊕ Eu ⊕ Euu.

Proof. We can define the invariant subbundles P u
C(v),P s

C(v) ⊂ T(x,v)UM , C = A,B such that

P u
C(v) = {(w,αCw) ∈ S(x, v): w ∈ C(x, v)

}
,

P s
C(v) = {(w,−αCw) ∈ S(x, v): w ∈ C(x, v)

}
,

where αA = 1 and αB = 1
2 .

That invariant subbundles are exactly the subbundles of the decomposition in the first item of the strategy stated in
the introduction:

Euu(x, v) = P u
A(x, v), Ess(x, v) = P s

A(x, v),

Es(x, v) = P s
B(x, v), Eu(x, v) = P u

B(x, v).
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Above subbundles are invariants and the splitting is dominated: Jacobi fields in Euu and Ess contract for the past and
the future, respectively, at rate e−t and Jacobi fields in Eu and Es contract for the past and the future, respectively,
at rate e−t/2. �
4.1.1. Angle cone variation for the Anosov flow with many subbundles

Let us calculate the proper invariance of the cones in the case of the geodesic flow of the compact locally symmetric
Riemannian manifold of nonconstant negative sectional curvature.

We use the following family of trajectories for the system:

q(t, u) = π ◦ φt

(
z(u)

)
,

|u| < ε. We consider the geodesic v(t) := φt (z(0)) = γ ′
z(0)(t).

The Jacobi system along the geodesic γz(0) is given by (ξ(t), η(t)), where

ξ(t) = dq

du
(t,0), η(t) = Dv

du
(t,0) = D

du

dq

dt
(t,0).

So the following equations hold:

Dξ

dt
= η,

Dη

dt
= −R(v, ξ)v. (5)

The quantity (1), which in this case is

Θu
A(ξ, η) := g(PrA(ξ + η),PrA(ξ + η))

g(ξ, ξ) + g(η, η)
,

indicates twice the square of the cosine of the angle between the vector (ξ, η) ∈ T(x,v)UM and its projection to
P u

A(x, v). The cone in this case is

C
(
v,P u

A(x, v), c
)= {(ξ, η) ∈ T(x,v)UM: Θu

A(ξ, η) = ĝ(PrPu
A(v)(ξ, η),PrPu

A(v)(ξ, η))

ĝ((ξ, η), (ξ, η))
� c

}
,

where ĝ is the Sasaki metric and c = 2 cos2 δ, where δ is the angle between the vectors in the boundary of the cone and
the subspace P u

A(v). So, as explained in Section 2.2.2, to prove that the cone fields are properly invariant is equivalent
to prove that the cosine of this angle increases under the action of the derivative of the geodesic flow, for vector in the
boundary of the cone fields,

∂C
(
v,P u

A(x, v), c
)= {(ξ, η) ∈ T(x,v)UM: Θu

A(ξ, η) = c ∈ (1,2)
}
.

Remember that for any Riemannian manifold (M,g) and any u(t), v(t) ∈ Tγ (t)M vector fields along a geodesic
γ : R→ M on M

d

dt
g(u, v) = g

(
Du

dt
, v

)
+ g

(
u,

Dv

dt

)
.

If (M,g) is locally symmetric, and if ξ(t) ∈ Tγ (t)M is a vector field along a geodesic γ (t) on M , then

D

dt
PrA ξ = PrA

D

dt
ξ,

i.e. the subspace A(γ ′(t)) is parallel along the geodesic γ :R→ M of (M,g). Let us call, to simplify the equations,

ξA := PrA ξ, ξB := PrB ξ,

ξ ′
A = PrA

D

dt
ξ = (ξA)′, ξ ′

B = PrB

D

dt
ξ = (ξB)′,

and remember that ξ = ξA + ξB . Then, for

g(ξA + ηA, ξA + ηA) = Θu
A(ξ, η) = c ∈ (1,2),
g(ξ, ξ) + g(η, η)
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its derivative along a geodesic γ : R→ M is:

d

dt
Θu

A(ξ, η) = 2
g(ξA + ηA, ξ ′

A + η′
A + ξA′ + ηA′)

g(ξ, ξ) + g(η, η)

− 2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g
(
ξ, ξ ′)+ g

(
η,η′)).

Since the subspaces A(γ ′(t)) and B(γ ′(t)) are parallel along the geodesic γ : R→ M and Eq. (5) holds, then

ξA′ = 0, ηA′ = 0,

ξ ′ = η, η′ = −R(v, ξ)v,

ξ ′
A = ηA, η′

A = −R(v, ξ)vA,

imply

d

dt
Θu

A(ξ, η) = 2
g(ξA + ηA,ηA − (R(v, ξ)v)A)

g(ξ, ξ) + g(η, η)

− 2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(ξ, η) − R(v, ξ, v, η)

)
.

But for the locally symmetric metric of negative curvature, the curvature is:

R(v, ξ)v = −1

4
ξB − ξA.

So, we have:

d

dt
Θu

A(ξ, η) = 2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(ξ, ξ) + g(η, η)

− g(ξ, η) − g(ξA,ηA) − 1

4
g(ξB, ηB)

)
.

We need to show that it is positive at least in the boundary of the cone C(v,P u
A(v), c). In fact it will be positive for

any initial c ∈ (1,2):

d

dt
Θu

A(ξ, η) = 2g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(ξA, ξA) + g(ξB, ξB) + g(ηA,ηA)

+ g(ηB,ηB) − g(ξA,ηA) − g(ξB, ηB) − g(ξA,ηA) − 1

4
g(ξB, ηB)

)
= 2g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(ξA, ξA) − 2g(ξA,ηA)

+ g(ηA,ηA) + g(ξB, ξB) − 5

4
g(ξB, ηB) + g(ηB,ηB)

)
= 2g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(ξA − ηA, ξA − ηA)

+ g

(
ξB − 5

8
ηB, ξB − 5

8
ηB

)
+ 39

64
g(ηB,ηB)

)
.

Since the derivative is the same if (ξ, η) is multiplied by a scalar, we consider (ξ, η) such that g(ξ, ξ) + g(η, η) = 1,
and such that they are in the boundary of the cones of size c. This is a compact set and the derivative for this values of
(ξ, η) is far away from zero:

d

dt
Θu

A(ξ, η) = g(ξA − ηA, ξA − ηA) + g

(
ξB − 5

8
ηB, ξB − 5

8
ηB

)
+ 39

64
g(ηB,ηB).

This means that the cones are properly invariant under the action of the derivative of the geodesic flow.
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To get the exponential growth, we need Lemma 2.8, but in this case we are able to calculate it explicitly:

d

dt
g(ξA + ηA, ξA + ηA) = 2g

(
ξA + ηA,ηA − (R(v, ξ)v

)
A

)
= 2g(ξA + ηA, ξA + ηA).

This implies that the vectors inside the cone grow at the rate of et .

4.1.2. Orientability of A and B

In the following section, we use normal coordinates along closed geodesics. To define them properly in a suitable
way for our needs, we need that the hyperbolic subbundles are orientable. We discuss this issue in the present section.

Recall that a Kähler manifold is a triple (M,J,ω), such that J : T M → T M is an integrable complex map with
J 2 = −IdTM , and ω is a J -compatible symplectic form. In the case of negative holomorphic curvature −1, A(x, v) =
R · Jv and B(x, v) has a basis of the form (e1, J e1, . . . , ek, J ek). If γ is a closed geodesic then the parallel transport
along γ sends Jv to Jv and sends (e1, J e1, . . . , ek, J ek) to (ẽ1, J ẽ1, . . . , ẽk, J ẽk), which have the same orientation.

In the Kähler quaternionic case, instead of one map J , there are three maps I , J , K , such that I 2 = J 2 = K2 =
−IdTM , IJ = −JI , K = IJ [4,36]. In this case, A(x, v) has as its basis (Iv, Jv,Kv). The three maps are not parallel,
but the orthogonal projection to A is parallel. Also, Q(v) = Iv ∧ Jv ∧ Kv is parallel, so along closed geodesics the
orientation of A(x, v) is preserved [18]. For the same reason, Q being parallel, B(x, v) has its orientation preserved
along closed geodesics.

5. The partially hyperbolic non-Anosov example

In the first subsection we give a more detailed strategy for the deformation of the metric introduced in the previous
section.

In the second subsection we give some definitions and we introduce the deformation of the original metric whose
geodesic flow is partially hyperbolic and non-Anosov.

In Sections 5.3.3, 5.3.4, 5.3.5 we show that the new geodesic flow preserves a strong stable and a strong unstable
cone fields. We first show that along the closed geodesic γ the strong stable and strong unstable cones are properly
invariant under the action of the derivative of the deformed geodesic flow. Then, we show that for geodesics which
are close to γ ′ = (v0,0,0, . . . ,0) the strong stable and strong unstable cones are properly invariant too (Sections 5.3.3
and 5.3.4). Then we show that for geodesics that cross the neighborhood of the deformation of the compact locally
symmetric metric the strong stable and strong unstable cones are not properly invariant, but we manage to control
the lack of this property in such a way that, after crossing the neighborhood, and inside the region where the metric
remains the same, proper invariance is obtained (Section 5.3.5). Then we prove that there is expansion for the vectors
in the strong unstable cones, and contraction for the vectors in the strong stable cones (Section 5.3.7).

In Section 5.4 we state the main theorem and some of its corollaries.

Remark 5.1. We only need to show the strong unstable cone is properly invariant, because this guarantees that we
have one unstable subbundle Eu invariant under the flow. For the same reasons there is a properly invariant unstable
subbundle for the inverse of the flow, which is the stable subbundle, since geodesic flows are reversible flows.

5.1. The strategy to construct the example

First we add more details to the strategy of the proof of Theorem A described in the introduction:

1. We chose a metric whose geodesic flow is Anosov and whose hyperbolic invariant splitting is of the form
T (UM) = Ess ⊕ Es ⊕ 〈X〉 ⊕ Eu ⊕ Euu (recall Section 4).

2. We take a closed geodesic γ without self-intersections (Section 5.2).
3. We change the metric in a tubular neighborhood of γ in M , such that along γ the strong subbundles (Ess and Euu)

remain invariant and the weak subbundles disappear, becoming a central subbundle with no hyperbolic behavior
(Section 5.3):
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3.1. to obtain the non-hyperbolicity we change the metric in such a way that the directions of small curvature
become directions of zero curvature (Sections 5.3 and 5.3.1);

3.2. to obtain that the strong subbundles remain the same along γ we deform the metric along it in such a way
that the directions of larger curvature (Ess and Euu) remain (Sections 5.3 and 5.3.2).

4. Observe that outside the tubular neighborhood of γ , the dynamics remains hyperbolic.
5. We show that for the geodesics that intersect the tubular neighborhood the cones associated to the extremal

subbundles (Ess and Euu) are preserved (Sections 5.3.3, 5.3.4, 5.3.5, 5.3.6):
5.1. for geodesics close to γ0 (‘parallel’ region), we verify that the cones associated with the extremal subbundles

are preserved (Sections 5.3.3, 5.3.4);
5.2. for geodesics ‘transversal’ to γ0 (‘transversal’ region) we control the angle cone variation for the cones

associated to the extremal subbundles with its own axis under the action of the derivative of the geodesic
flow (Section 5.3.5);

5.3. then, we prove that for any geodesic the time spent in the ‘transversal’ region is small as we need in compar-
ison to the time spent outside it (Section 5.3.5).

6. We finish proving that for vectors in the unstable cones there is expansion, and for vectors inside the stable cones
there is contraction, under the action of the derivative of the new geodesic flow (Section 5.3.7).

5.2. The new metric g∗ and its properties

Let us call (Mn,g) a compact locally symmetric space of nonconstant negative curvature of dimension n, intro-
duced in Section 4.

Let us fix a closed prime geodesic γ : [0, T ] → Mn, with γ (0) = γ (T ) and γ ′(0) = γ ′(T ), without self-
intersections. This is the closed geodesic which we use to construct the tubular neighborhood where we change the
metric g. There is always a geodesic with these properties in a compact Riemannian manifold [23].

Definition 5.2. Let us define a tubular neighborhood of the geodesic γ , constructed as follows:
We introduce normal coordinates along this geodesic. Take an orthonormal basis of vector fields {e0(t) := γ ′(t),

e1(t), . . . , en−1(t)} in Tγ (t)M , such that {e1(t), . . . , er (t)} is a basis for A(γ (t), γ ′(t)), and {er+1(t), . . . , en−1(t)} is
a basis for B(γ (t), γ ′(t)). This is possible because the parallel transport preserves orientation and M is orientable.
Ψ : [0, T ]× (−ε0, ε0)

2n−1 → M : (t, x) → expγ (t)(x1e1(t)+x2e2(t)+· · ·+xn−1en−1(t)) with ε0 less than the injec-
tivity radius, so Ψ |U is a diffeomorphism, with U = [0, T ] × (−ε0, ε0)

n−1. We define U(ε) := [0, T ] × (−ε, ε)n−1.
Now, the tubular neighborhood is noted and defined as B(γ, ε) = Ψ (U(ε)).

Definition 5.3. The set of vectors {(x, v) ∈ UM: x ∈ B(γ, ε), |vi | < θ, i = 1, . . . , n−1} is called the set of θ -parallel
vectors to γ , the set {(x, v) ∈ UM: x ∈ B(γ, ε), |vi | � θ, for some i = 1, . . . , n− 1} is called the set of θ -transversal
vectors to γ . If (x, v) ∈ UM belongs to the set of θ -parallel vectors for all θ , then we call it a parallel vector to γ .
Notice that {(x, v) is θ -parallel to γ } ∪ {(x, v) is θ -transversal to γ } = B(γ, ε).

Let gij (t, x) denote the components of the metric in this tubular neighborhood of γ where Ψ is defined. We define
a new Riemannian metric g∗ as:

g∗
00(t, x) := g00(t, x) + α(t, x),

α(t, x) :=
n−1∑
i,j=1

Φij (t, x)xixj ,

g∗
ij (t, x) := gij (t, x), (i, j) �= (0,0),

with Φij : [0, T ] × (−ε0, ε0)
n−1 → R, where each Φij is a bump function. This kind of deformation allows us to

change the curvature (change the second derivative), as γ and the parallel transport along γ (the metric up to its first
derivative) remain the same. This becomes clear if we look to the formulas of the metric, the parallel transport and the
curvature with respect to a coordinate system.
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For this new metric g∗, the coordinates along γ are:

g∗ij (t,0) = gij (t,0), 0 � i, j � n − 1,

g∗
ij (t,0) = gij (t,0), 0 � i, j � n − 1,

∂kg
∗ij (t,0) = ∂kg

ij (t,0), 0 � i, j, k � n − 1,

∂kg
∗
ij (t,0) = ∂kgij (t,0), 0 � i, j, k � n − 1.

These equalities imply that the closed geodesic γ still is a closed geodesic for g∗. We are going to use the following
deformation:

α(t, x) =
n−1∑

k=r+1

x2
kΦk(t, x).

The first property we need for the function α : U → R is that Φk(t,0) = − 1
4 . The Φk are going to be products of

bump functions define on a tubular neighborhood of γ of radius ε < ε0. We need to change ε along the proof, so we
can say that this functions Φk are going to be ε-parameter families of functions. For some ε small enough the new
metric g∗ is going to be partially hyperbolic.

Remark 5.4. Notice that the functions α and Φk are defined in a tubular neighborhood of the closed geodesic γ .
Since t is the coordinate of the closed geodesic γ and we want to preserve it after perturbations, we do not use bump
functions with t as a parameter. So we define α as a linear combination of products of bump functions Φk which do
not depend on t .

Let us construct some functions that will help us define the α function we need.

Definition 5.5. Let us define for a positive real number h and a non-negative real number τ the function ϕh,τ :
R�0 → R, continuous and piecewise-C1 with support in [0,1]:

• ϕh,τ (0) = ϕh,τ (1) = ϕh,τ (
1
2 ) = 0,

• ϕ′
h,τ (x) = h

τ
, if x ∈ (0, τ ) ∪ (1 − τ,1),

• ϕ′
h,τ (x) = −h

τ
, if x ∈ ( 1

2 − τ, 1
2 + τ),

• ϕh,τ (x) = h for x ∈ (τ, 1
2 − τ), ϕh,τ (x) = −hτ , for x ∈ ( 1

2 − τ,1 − τ),
• if τ = 0, ϕh,0 := hχ[− 1

2 , 1
2 ] − hχ[−1,− 1

2 )
− hχ

( 1
2 ,1].

Definition 5.6. Let us define φh,τ : R�0 →R such that φh,τ (x) := ∫ 1
x

∫ s

0 ϕh,τ (t) dt ds.

Lemma 5.7. For each τ � 0 there is an hτ such that φhτ ,τ (0) = − 1
2 . Moreover, the function H : R�0 → R such that

H(τ ) = hτ is a C1-function.

Proof. It is easy to see that φh,τ (0) = −h
4 (1 − 2τ), so ∂τφh,τ (0) = h

2 �= 0, so by the implicit function theorem there
is only one hτ such that φhτ ,τ (0) = − 1

2 and H(τ ) = hτ is a C1-function. �
Definition 5.8. Let us define for a non-negative real number τ the function φτ : R�0 → R such that φτ := φhτ ,τ .

Lemma 5.9. Let Fτ : R�0 → R be the function Fτ (x) := x2φ′′
τ (x) + 4xφ′

τ (x) + 2φτ (x). Then For every δ > 0 there
is a small enough positive real number β such that if τ < β then Fτ (x) ∈ [−2(1 + δ)Fτ (0),2(1 + δ)Fτ (0)].

Proof. We use the following facts that hold for τ small enough:

• the quadratic term of Fτ is the only one that does not varies continuously as τ varies. The other two do vary
continuously because φτ is C1-close to φ0,
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• hτ depends C1 on τ ,
• Fτ (0) = −1 and so does not depend on τ .

For τ = 0, we have that F0(x) = (− 1
2 +6x2)h0 for x ∈ (0, 1

2 ) and F0(x) = (−1+6x +6x2)h0 for x ∈ ( 1
2 ,1). Then

it is simple to see that F0(0) = −h0
2 and F0(x) ∈ [−h0, h0]. Then, for τ = 0 we have that F0(x) ∈ [−2F0(0),2F0(0)].

So for δ > 0 there is a β > 0 such that hτ ∈ ((1 − δ)h0, (1 + δ)h0). We know by definition of φτ that φ′′
τ (x) ∈

[−hτ ,hτ ], which implies x2φ′′
τ (x) ∈ [−(1 + δ)h0, (1 + δ)h0].

We suppose also that β is small enough so that Fτ minus its quadratic part is δ close to F0 minus its quadratic part.
Then Fτ (x) ∈ [−2(1 + δ)F0(0),2(1 + δ)F0(0)] but F0(0) = Fτ (0) so the statement of the lemma is proved. �
Remark 5.10. Let us define the function φλ

τ : R → R as φλ
τ (x) := φτ (

x
λ
). Our bump functions φλ

τ have support in an
interval of length 2λ, so let us notice that if the lemma holds for φτ with support in [0,1], then it holds for φλ

τ for
any λ. It also holds if φτ is multiplied by a constant. And it also holds if φ is a C∞ function C2 close to φτ .

Definition 5.11. Let the function φk,j :R → R be such that

φk,j (x) =
{

φε(x) if k �= j,

φε2
(x) if k = j,

where x ∈R, φλ is a C∞ function C2 close to φλ
τ such that the previous lemma holds for both functions.

Definition 5.12. Now we define α : U →R as

α(t, x) =
n−1∑

k=r+1

x2
kΦk(x),

such that for k = 1, . . . , n − 1, the function Φk : U → R is

Φk(x) = 1

4
φk,1(x1)φk,2(x2)φk,3(x3) . . . φk,2n−1(x2n−1).

Lemma 5.13. For α : U → R, (t, x) →∑n−1
k=r+1 x2

kΦk(x), there exists M0 independent of ε, the following inequalities
are satisfied:

i. |α| � M0ε
4,

ii. |∂xj
α| �M0ε

2,
iii. |∂2

xixj
α| � M0ε, if i �= j , or if i � r , or j � r ,

iv. |∂2
xkxk

α| � M0, k = r + 1, . . . , n − 1.

Proof. We check each term of the sum x2
kΦk , and observe that xk is of order ε2, Φk is of order of 1, dΦk is of order

ε−2, d2Φk is of order ε−4 and therefore the next inequalities hold:

i. |α| � 1
4ε4.

ii. |∂xj
α| � 1

4ε42ε−2.
iii. |∂2

xj xi
α| � n

4 ε44ε−2 if j �= i.

iv. |∂2
xkxk

α| � 1
4ε43ε−4 � 1. �

By definition φk,1, . . . φk,n−1, except φk,k , have support on [−ε, ε], and φk,i(0) = 1, φk,i(±ε) = 0, with ε < ε0,
and φk,k have support on [−ε2, ε2], φk,k(0) = −1 and φk,k(±ε2) = 0. This ensures that the only second order partial
derivative of α that does not go to 0 as ε → 0 is ∂2 α. Moreover, α is C1-close to the constant zero function.
k,k
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Remark 5.14. The coordinates of the curvature tensor in the tubular neighborhood of γ are:

Rijkl = −1

2

(
∂2
ikgjl + ∂2

j lgik − ∂2
ilgjk − ∂2

jkgil

)− Γ T
ik g−1Γjl + Γ T

il g−1Γjk, (6)

where Γik := [Γj,ik]j and Γj,ik := 1
2 (∂igjk + ∂kgij − ∂jgik).

Using that α is C1-close to the constant zero function, we can get the following estimates for the curvature tensor
of g∗:

R∗
ijkl(t, x) ≈ Rijkl(t, x) − 1

2

(
δj+l,0∂

2
ikα(t, x) + δi+k,0∂

2
j lα(t, x)

− δj+k,x∂
2
ilα(t, x) − δi+l,x∂

2
jkα(t, x)

)
,

and so

R∗
0j0l (t, x) ≈ R0j0l (t, x) − 1

2

(
∂2
j lα(t, x)

)
.

Then:

R∗
0i0j (t, x) ≈ R0i0j (t, x), i �= j, i, j = 2, . . . , n − 1,

R∗
0k0k(t, x) ≈ R0k0k(t, x) − 1

2

(
∂2
kkα(t, x)

)
≈ R0k0k(t, x) − 1

4

(
x2
kφ′′

k,k(xk) + 4xkφ
′
k,k(xk) + 2φk,k(xk)

)
.

Previous remark shows that the curvature is only deformed in the direction of the subspace generated by ∂
∂xk

,
k = r + 1, . . . , n − 1, along geodesics close to γ . To accomplish this we have constructed a bump function such that,
as ε → 0, only the term ∂2

xkxk
α, k = r + 1, . . . , n − 1, perturbs the curvature. In particular, if the curvature is changed

by 1
4 along the closed geodesic γ , then the curvature is deformed by ± 1

2 in the weak directions of the splitting of the
geodesic flow, so the curvature for the strong directions is still greater than in the other directions. This explains in a
rough way why the geodesic flow still preserves the strong directions.

5.3. Partial hyperbolicity of the geodesic flow of g∗

To prove that the geodesic flow of the new metric g∗ is partially hyperbolic we are going to define the strong stable
and strong unstable cones of the geodesic flow of g∗.

Definition 5.15. The strong unstable and strong stable cone fields for g∗ are:

Cu(v, c) :=
{
(ξ, η) ∈ S(x, v):

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
� c

}
,

Cs(v, c) :=
{
(ξ, η) ∈ S(x, v):

g∗(ξA − ηA, ξA − ηA)

g∗(ξ, ξ) + g∗(η, η)
� c

}
,

for a real number c ∈ (1,2), and v ∈ TxM , g∗
x(v, v) = 1.

Remark 5.16. Notice that the cone field defined above coincides with the cone field associated with g outside the
region of the deformation of the metric g.

Remark 5.17. Remember that

ξA := PrA ξ, ξB := PrB ξ,

ξ ′
A = PrA

D

dt
ξ, ξ ′

B = PrB

D

dt
ξ.

We also define
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ξA′ =
(

D

dt
PrA

)
ξ, ξB ′ =

(
D

dt
PrB

)
ξ,

because for g∗ the subspaces A and B are not parallel.

Proposition 5.18. The geodesic flow of g∗ preserves the strong unstable cone field Cu(v, c) and the strong stable cone
field Cs(v, c) provided by Definition 5.15, for some c ∈ (1,2) and some ε small enough.

We only prove proper invariance of the strong unstable cone (see Remark 5.1). We divide the proof in several steps,
but first, in the next subsection, we prove that along the geodesic γ , the geodesic flow of g∗ is partially hyperbolic but
not hyperbolic.

5.3.1. Along γ the geodesic flow of g∗ is not hyperbolic
From a corollary in Eberlein’s article [13] follows:

Corollary 3.4. (See [13].) If the geodesic flow is Anosov, then the following holds: Let any γ be a unit speed geodesic,
and E(t) any non-zero perpendicular parallel vector field along γ , then the sectional curvature K(γ ′,E)(t) < 0 for
some real number t .

For the geodesic flow of the new metric g∗, if we can find E(t) a non-zero perpendicular parallel vector field
along γ , and K(γ ′,E)(t) = 0, then the geodesic flow of the metric g∗ is not Anosov.

Lemma 5.19. If Φk(t,0) = − 1
4 then, following Eberlein’s criterion, the geodesic flow of g∗ is not Anosov.

Proof. Recalling Remark 5.14, follows that the curvature tensor at γ is:

R∗
ijkl(t,0) = Rijkl(t,0) − 1

2

(
δj+l,0∂

2
ikα(t,0) + δi+k,0∂

2
j lα(t,0)

− δj+k,0∂
2
ilα(t,0) − δi+l,0∂

2
jkα(t,0)

)
,

and

R∗
0j0l (t,0) = R0j0l (t,0) − 1

2

(
∂2
j lα(t,0)

)
.

Then, along γ :

R∗
0i0j (t,0) = R0i0j (t,0), i �= j, i, j = 2, . . . , n − 1,

R∗
0k0k(t,0) = R0k0k(t,0) − 1

2

(
∂2
kkα(t,0)

)
= R0k0k(t,0) − Φk(t,0).

For the initial metric and k = r + 1, . . . ,2n − 1:

R0k0k(t,0) = g00(t,0)gkk(t,0)K
(
γ ′(t), ek(t)

)= −1

4
.

So, if Φk(t,0) = − 1
4 , then R∗

0k0k(t,0) = 0. Then, Eberlein’s corollary applies, and the geodesic flow of g∗ is not
Anosov. �
5.3.2. Along γ the geodesic flow of g∗ is partially hyperbolic

We are going to show that the strong unstable cone field of the geodesic flow of Section 4 still works for the
geodesic flow of the new metric g∗ along γ .

Lemma 5.20. For the new metric g∗ and along the geodesic γ there is an invariant splitting S(t) = Ess ⊕ Ec ⊕ Euu,
such that Ess = Ess

g , Ec = Es
g ⊕ Eu

g , Euu = Euu
g , where Eσ

g are the subbundles of the hyperbolic invariant split-
ting of the geodesic flow of the original metric g, σ = uu,u, s, ss, and S(t) is the contact structure of U∗M along
(γ (t), γ ′(t)).
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Proof. The normal coordinates that were defined for g along the closed geodesic γ are still normal coordinates for g∗,
and observe that it has the same Christoffel symbols along γ . This implies that g∗ has the same parallel transport as g

along γ .
Taking {E0(t) = γ ′(t),E1(t), . . . ,Er(t),Er+1(t), . . . ,En−1(t)}, an orthonormal basis of parallel vector fields in

Tγ (t)M , then ζ(t) =∑2n−1
i=0 fi(t)Ei(t) are Jacobi fields along γ if they are the solutions of the following equation:

0 = ζ ′′(t) + R∗(γ ′(t), ζ(t)
)
γ ′(t)

=
2n−1∑
i,j=0

(
f ′′

i (t) + R∗(E0,Ej ,E0,Ei)(t)fi(t)
)
Ei(t),

which implies that

0 = f ′′
i (t) +

2n−1∑
j=1

R∗(E0,Ej ,E0,Ei)(t)fi(t), i = 0, . . . ,2n − 1,

which is equivalent to[
f (t)

f ′(t)

]′
=
[

0 I

−K∗(t) 0

][
f (t)

f ′(t)

]
,

K∗
ij (t) := R∗(E0,Ej ,E0,Ei)(t).

Along γ we have:

K∗(t) =
[−Idr 0

0 0

]
.

The hyperbolic subbundles are Euu, spanned by (et ei(t), e
t ei(t)), i = 1, . . . , r and Ess , spanned by (e−t ei(t),

−e−t ei(t)), i = 1, . . . , r and Ess , the same as for the metric g. And there is a central direction spanned by the Jacobi
fields related to the curvature K(γ ′(t),Ek(t)), Ek(t) and tEk(t), for k = r +1, . . . ,2n−1. This implies we have a cen-
tral bundle Ec along the geodesic γ . Notice that {ek(t)}2n−1

k=r+1 and {Ek(t)}2n−1
k=r+1 generate the same subspace of Tγ (t)M ,

invariant by parallel transport because it is orthogonal to γ ′(t) and A(γ (t), γ ′(t)). Then Ec = Es
g ⊕ Eu

g . �
5.3.3. Preservation of the cone field for parallel vectors

Now we adapt to the geodesic flow of the new metric g∗, the same type of calculations done in Section 4.1.1.
To prove the partial hyperbolicity of this new flow, we divided the set of vectors whose geodesics cross the neighbor-
hood where we change the original metric. First we verify the proper invariance of the cone field for parallel vectors
(see definition in the beginning of Section 5.3).

By the formula of the bump function Φk we have that, as ε goes to zero, the partial derivatives of second order of α

which do not involve the direction of ∂
∂xk

go to zero. The only one that does not go to zero as ε → 0 is ∂2
k,kΦk . So, the

following holds:

R∗
010k ≈ R010k, k = 2, . . . , n − 1,

R∗
0k0k ≈ R0k0k − 1

2
∂2
k,kα.

If v = (v0,0, . . . ,0) then:

R∗(v, ξ, v, η) ≈ R(v, ξ, v, η) − 1

2
∂2
ξηαv2

0

≈ R(v, ξ, v, η) − 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk.

When we use the symbol ≈ we mean that the difference between the left side and the right side is of order ε. It
depends on the size of |α|, |∂α|, |∂2 α|, i �= j , and the size of supp(Φi), i = r + 1, . . . , n − 1 (see Lemma 5.13).
ij
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Remark 5.21. Remember that for the geodesic flow of Section 4.1.1 ξA′ and ηA′ do not appear on the calculations due
to the fact that A is a parallel subspace along geodesics (see Eq. (5)). For the new metric g∗ this is not the case but, as
A′ depends on the first derivative of α they appear as a small term of perturbation.

Lemma 5.22. For parallel vectors the angle cone variation is positive (therefore, from Section 2.2.2, the cone is closed
by the action of the derivative).

Proof. We begin by approximating the angle cone variation at parallel vectors with respect to the derivative of the
geodesic flow by an expression that is better to work with. This expression is equal to the one for the geodesic flow
of g (recall Section 4.1.1) except for the term related to the second derivative of α and ξk , ηk related to the central
direction along γ . Also recall Remark 5.22 about ξA′ and ηA′ .

In fact, we consider the derivative of

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)

which is exactly the quantity

Θu
A(ξ, η)

for the metric g∗:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
= 2

g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

(
5

8
g∗(ξ − η, ξ − η) + 3

8
g∗(ξ, ξ)

− 3

4
g∗(ξA, ηA) + 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + 3

8
g∗(η, η)

)

= 2
g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

((
g∗(ξA + ηA, ξA′ + ηA′)

g∗(ξA + ηA, ξA + ηA)

)(
g∗(ξ, ξ) + g∗(η, η)

)
−
(

g∗(ξA + ηA, ξA + R∗(v, ξ)v)

g∗(ξA + ηA, ξA + ηA)

)(
g∗(ξ, ξ) + g∗(η, η)

)
+ 1

4
g∗(ξ, η) + 3

4
g∗(ξA, ηA) − 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + R∗(v, ξ, v, η)

)
.

We define as ξA′ the covariant derivative of the projection to A applied to ξ : (∇∗ PrA)ξ . If c is the opening of the cone
(see Section 2.2.1) and g∗(ξ, ξ) + g∗(η, η) = 1, because the derivative does not depend on the norm of the (ξ, η), the
equation above is:

= 2c
(
c−1(g∗(ξA + ηA, ξA′ + ηA′)

)− c−1(g∗(ξA + ηA, ξA + R∗(v, ξ)v
))

+ 1

4
g∗(ξ, η) + 3

4
g∗(ξA, ηA) − 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + R∗(v, ξ, v, η)
)
.

Then:∣∣g∗(ξA + ηA, ξA + R∗(v, ξ)v
)∣∣� ∣∣g∗(ξA + ηA,R∗(v, ξ)v − R(v, ξ)v

)∣∣
+ ∣∣g∗(ξA + ηA, ξA + R(v, ξ)v

)∣∣.
Since |g∗(ξA + ηA, ξA + R(v, ξ)v)| depends on |α|, and |g∗(ξA + ηA,R∗(v, ξ)v − R(v, ξ)v)| depends on |α|, |∂α|,
and |∂2

jξ α|, j = 1, . . . , r and these terms are limited by Mε (recall Lemma 5.13), we can say that, for some big enough
M1 independent of ε:∣∣g∗(ξA + ηA, ξA + R∗(v, ξ)v

)∣∣� ∣∣g∗(ξA + ηA,R∗(v, ξ)v − R(v, ξ)v
)∣∣

+ ∣∣g∗(ξA + ηA, ξA + R(v, ξ)v
)∣∣� M1ε.
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For the same reasons:∣∣g∗(ξA + ηA, ξA′ + ηA′)
∣∣� M0

∥∥g∗ − g
∥∥

C1

(|ξ |∗ + |η|∗)� M1ε,∣∣∣∣∣14g∗(ξ, η) + 3

4
g∗(ξA, ηA) − 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + R∗(v, ξ, v, η)

∣∣∣∣∣� M1ε.

Suppose M1 sufficiently big to be the same in the three inequalities above. So we have:∣∣∣∣∣ d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
− 2

g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

(
5

8
g∗(ξ − η, ξ − η)

+ 3

8
g∗(ξ, ξ) − 3

4
g∗(ξA, ηA) + 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + 3

8
g∗(η, η)

)∣∣∣∣∣
� 2c(3M1)ε = M2ε.

Let us analyses the following expression over the initial closed geodesic:(
3

8
g∗(ξ, ξ) − 3

4
g∗(ξA, ηA) + 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + 3

8
g∗(η, η)

)

= 3

8

(
ξ2

1 + ξ2
2 + · · · + ξ2

n−1 + η2
1 + η2

2 + · · · + η2
n−1 − 2

r∑
k=1

ξkηk + 4

3

n−1∑
k=r+1

∂2
kkαv2

0ξkηk

)
.

The expression ξ2
1 + η2

1 + ξ2
2 + η2

2 + · · · + ξ2
n−1 + η2

n−1 − 2ξ1η1 − · · · − 2ξrηr + 4
3

∑n−1
k=r+1 ∂2

kkαv2
0ξkηk is equal to∑r

k=1(ξk − ηk)
2 +∑n−1

k=r+1 ξ2
k − 2

3ξkηk + η2
k =∑r

i=k(ξk − ηk)
2 +∑n−1

k=r+1(ξk − 1
3ηk)

2 + 8
9η2

k which is positive in
the boundary of the cone with opening c. This implies that along the closed geodesic γ the cone is preserved, but that
we already knew. We need to prove the positivity of the derivative along the other geodesics of the flow. So, we need
to show that there exists a positive constant L(a, b) (i.e., a constant which depends only on a and b) such that the
following holds:

inf
a∈[−1− δ

2 ,1+ δ
2 ]

inf

{
n−1∑

k=r+1

ξ2
k − 4a

3
ξkηk + η2

k

}
� L(a, b) > 0,

for any (ξ, η) in the boundary of the cone with opening c ∈ [a, b] ⊂ (1,2). Because g∗ is a C∞ metric, and its
coordinates along γ are δij , if the neighborhood of γ is sufficiently small, if ε is small enough, we can conclude:

inf
x∈supp(α)

inf

{(
g∗(ξ, ξ) − 2g∗(ξA, ηA) + 4

3

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + g∗(η, η)

)}
� 1

2
L(a, b) > 0.

So:

inf
x∈supp(α)

inf

{
3

8
g∗(ξ, ξ) − 3

4
g∗(ξA, ηA) + 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + 3

8
g∗(η, η)

}

� 3

16
L(a, b) > 0.

This implies that, if ε < 3
32M2

L(a, b), for (ξ, η) in the boundary of the cone with opening c ∈ [a, b] ⊂ (1,2), and for
v = (v0,0, . . . ,0), then the derivative of Eq. (2) is positive. �
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5.3.4. Extension of the cone property to θ -parallel vectors
Now we are going to show that this derivative is positive not only for parallel vectors (v = (v0,0, . . . ,0)), but for

θ -parallel vectors.

Lemma 5.23. For θ -parallel vectors the angle cone variation is positive (therefore, from Section 2.2.2, the cone is
closed by the action of the derivative).

Proof.

R∗(v, ξ, v, η) − R(v, ξ, v, η) ≈ −1

2

n−1∑
k=r+1

∂2
kkα
(
v2
kξ0η0 + v2

0ξkηk − v0vk(ξ0ηk + ξkη0)
)
.

This is so because (6) implies the following relation:

R∗
ijkl − Rijkl ≈ −1

2

(
∂2
ik�gjl + ∂2

j l�gik − ∂2
il�gjk − ∂2

jk�gil

)
, (7)

where ≈ means that the equation depends on α and ∂α, and �gij := g∗
ij − gij . So we can say that:∣∣∣∣∣R∗(v, ξ, v, η) − R(v, ξ, v, η) + 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk

∣∣∣∣∣� M1ε + M0|θ |(‖ξ‖∗‖η‖∗).
So, for the derivative we have:∣∣∣∣∣ d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
− 2

g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

(
5

8
g∗(ξ − η, ξ − η)

+ 3

8
g∗(ξ, ξ) − 3

4
g∗(ξA, ηA) + 1

2

n−1∑
k=r+1

∂2
kkαv2

0ξkηk + 3

8
g∗(η, η)

)∣∣∣∣∣
�M2ε + M0|θ |(‖ξ‖∗‖η‖∗).

So, if we calculate for (ξ, η) in g∗(ξ, ξ)+g∗(η, η) = 1, we have that if |θ | < 3
64M0

L(a, b) and ε < 3
32M2

L(a, b), then:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
� 3

32
L(a, b) > 0.

Then we conclude that, in the band {(x, v) is θ -parallel to γ } the cones are properly invariant for the geodesic flow. �
5.3.5. The control of the cones for θ -transversal vectors

For vectors that are not θ -close to (v0,0, . . . ,0) i.e. that are θ -transversal to γ , we do not have preservation of the
cones. To overcome this difficulty we choose an ε small enough such that the cone with opening b stays inside the
cone with opening a. This can be done since α is C1 close to zero, the second derivative of α is uniformly bounded
independently of ε. So:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
� M.

Observe that as ε goes to 0, the support of the deformation of the metric shrinks. As it shrinks, the time that the
geodesics take to cross this neighborhood of the geodesic γ goes to zero. So, as we can control the time which these
geodesics spend inside the tubular neighborhood U(ε) of the geodesic γ , we choose an ε such that the cone with
opening b stays inside the cone of opening a.

Let us be more precise:

Lemma 5.24. The time which a θ -transversal geodesics cross the tubular neighborhood U(ε) of the deformation of
the metric g is comparable to ε.
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Proof. To see that the time spent inside U(ε) is comparable to ε we need to express the geodesic vector field in Fermi
coordinates of the neighborhood. In fact, we can use that coordinates since we don’t need the coordinates in the whole
neighborhood of the closed geodesic γ . The maps dπ and K in Fermi’s coordinates are given by:

dπξ = (ξ0, ξ1, . . . , ξ2n−1),

Kξ =
(

ξ2n+k +
2n−1∑
i,j=0

Γ ∗k
ij viξj

)2n−1

k=0

.

So, the pre-image of (v,0) by the map (dπ,K) is:(
v0, v1, . . . , v2n−1,−

2n−1∑
i,j=0

Γ ∗0
ij vivj ,−

2n−1∑
i,j=0

Γ ∗1
ij vivj , . . . ,−

2n−1∑
i,j=0

Γ ∗2n−1
ij vivj

)
.

Since g∗ is C∞ and along the geodesic γ , Γ ∗k
ij = 0, then, if ε is sufficiently small, the geodesic vector field is

approximately (v0, v1, . . . , v2n−1,0,0, . . . ,0).
Since the second part of the geodesic vector field is small as ε is small, we can say that geodesics such that

|vi | � θ for some i = 1, . . . ,2n − 1 cross the neighborhood in at most time ε
θ

, and they arrive to the complement of
{v ∈ U∗M: |vi | < θ

2 , i = 1,2, . . . ,2n − 1}. �
5.3.6. Proof of Proposition 5.18

Based on previous lemmas about parallel and transversal geodesic and Lemma 5.24 we can conclude the proof of
Proposition 5.18:

Proof of Proposition 5.18. First, take an orbit of the geodesic flow of g∗. If it never crosses the region of the
deformation, where g∗ equals the original metric g, then the cone field is preserved. If it crosses the region of
deformation, then it takes some time T ′ inside this region. If it is θ -parallel to the geodesic γ , then it preserves
the cone field (Lemma 5.23). If it turns, after this time T ′, into a θ -transversal geodesic, then it spends T ′ + kε

time inside this region (Lemma 5.24), and then it leaves it and spend some time outside it. As the set of the or-
bits which leave this region is a compact set, the infimum is positive. Let us say they spend at least Tε outside the
neighborhood. As ε goes to zero, Tε does not goes to zero. If it did, we could get a sequence of geodesics outside
{v ∈ U∗M: |vi | < θ

2 , i = 1,2, . . . ,2n − 1} which would spend a small time outside the neighborhood U(ε) of γ be-
fore enter it again. So, in the limit, there would be a contradiction with the uniqueness of the solutions of the ordinary
differential equations of the geodesic flow. So the time spent outside the neighborhood of γ is bounded from below
– let us say it is bounded from below by T . This means that we can choose ε so that the quotient between the time
spent inside and the time spent outside of the neighborhood of γ is as small as we want. As small as it is necessary
for the preservation of the strong unstable and strong stable cones. So, the orbit spends some time kε where there is
a little expansion of the angle of the cone field, then spends time at least T in the region where there’s contraction of
the angle of the cone field.

Outside the neighborhood of the deformation the following holds:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
= d

dt

g(ξA + ηA, ξA + ηA)

g(ξ, ξ) + g(η, η)
� 3

8
c(2 − c),

for (ξ, η) in the boundary of the cone of opening c. So, for cones with boundary in [a, b], we have:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)∗
� 3

8
b(2 − b).

So we choose a′ such that |a′ − b| < 3
16b(2 − b)T . This ensures that outside the neighborhood the geodesic flow

sends the cone with opening a′ inside the cone with opening B in time T
2 . For ε sufficiently small, with the inferior

limit of the derivative not depending on ε, the cone with opening b is not sent outside the cone with opening a′.
So, we have preservation of the cone field, although there is a region where the cone field is not properly invariant,

because the orbits of length T of the geodesic flow cross this region in an interval of time as small as we want. So
the preservation of the cone field holds because after that it takes an interval of length T

2 for the cones to be properly
contained. �
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5.3.7. Exponential growth of the Jacobi fields
So, the strong unstable cone is preserved by the new geodesic flow. By reversibility of geodesic flows, the strong

stable cone is preserved too. But preservation of these cones only proves that there are invariant subbundles with
domination. We have to show that there is exponential growth along these strong directions.

Proposition 5.25. For the geodesic flow of g∗ there is exponential expansion of vectors in Cu(v, c).

Proof. The geodesic flow has an invariant splitting of the following kind: S(UM) = E ⊕ Ec ⊕ F . Because it is
symplectic, and dim(E) = dim(F ), we apply Lemma 2.8. Then the invariant subbundles E and F are hyperbolic, or
there is exponential contraction of vectors in the former subbundle, and exponential expansion of vectors in the later
subbundle. �
5.4. Finishing the proof of Theorems A, B, and Corollaries C.1 and C.2

Summarizing, in Proposition 5.18 we proved the proper invariance of the unstable and stable cones and in Propo-
sition 5.25 we proved the exponential expansion or contraction respectively. Therefore we conclude:

Theorem 5.26. Let (M,g) be a Kähler manifold of negative holomorphic curvature −1 or a quaternion Kähler locally
symmetric space of negative curvature. Then there is a C∞ metric g∗ on M such that its geodesic flow is partially
hyperbolic but not Anosov. Also, g∗ is C2-far from the open set of metrics on M which have Anosov geodesic flows.

To finish the proof of Theorems A and B, we have to show that some of the deformed metric are transitive; this is
concluded in the next corollary.

Corollary 5.27. There is a Riemannian manifold (M,g) such that its geodesic flow is partially hyperbolic, non-
Anosov, transitive. Moreover, (M,g) has no conjugate points.

Proof. By a theorem of Eberlein [16], if M has a Riemannian metric g such that its geodesic flow is Anosov and if
M admits another metric g∗ such that its geodesic flow does not have conjugate points, then the geodesic flow of g∗
is transitive. The set of metrics of M without conjugate points is closed. So, if we consider the one parameter family
of metrics gs = g + s(g∗ − g), with s ∈ [0,1], first we notice that the geodesic flow of (M,gs) is partially hyperbolic
– the proof is the same for gs as the proof above for g1. Then there is an s0 such that the geodesic flow of gs0 has no
conjugate points, is partially hyperbolic, and it is not Anosov, which implies immediately that it is transitive. �

Now, we prove Corollary C.1 that states that there is an open set of metrics whose geodesic flows are partially
hyperbolic and have conjugate points.

Proof of Corollary C.1. Ruggiero in [31] proved that the C2-interior of the set of metrics with no conjugate points
is the set of metrics whose geodesic flow is Anosov. So, since the example has a partially hyperbolic geodesic flow
which is non-Anosov, there is a metric C2-close to it that has conjugate points. Moreover, it is a corollary of Ruggiero’s
theorem that the set of metrics with conjugate points is open, so there is a C2-open set of metrics with conjugate points
and a partially hyperbolic geodesic flow. �

Now we provide the proof of Corollary C.2 about Hamiltonian flows.

Proof of Corollary C.2. For the same reasons of the previous corollary there is an open set of Hamiltonians with the
same property, near geodesic Hamiltonians. �
6. Symmetric spaces of nonpositive curvature

In this section, first we give a brief introduction to the subject of symmetric and locally symmetric space [14,15,22],
and later we prove that the geodesic flow of a compact locally symmetric spaces of nonpositive curvature is partially
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hyperbolic (in the sense that the geodesic flow admits a dominated splitting with more than two invariant subbundles)
only if it has nonconstant negative curvature.

Definition 6.1. A simply connected Riemannian manifold is called symmetric if for every x ∈ M there is an isometry
σx : M → M such that

σx(x) = x, dσx(x) = −idTxM.

The property of being symmetric is equivalent to:

• ∇R ≡ 0,
• if X(t), Y(t) and Z(t) are parallel vector fields along γ (t), then R(X(t), Y (t))Z(t) is also a parallel vector field

along γ (t).

Remark 6.2. A symmetric Riemannian manifold is geodesically complete and every two points can be connected by
a geodesic.

Definition 6.3. A complete Riemannian manifold with ∇R ≡ 0 is called locally symmetric.

Each simply connected symmetric space M is the quotient of the Lie group G of isometries of M with a left
invariant metric by its maximal compact subgroup K : M = G/K . Each compact locally symmetric space N is the
quotient of a simply connected symmetric space M by a cocompact lattice Γ of G acting on M discretely, without
fixed points and isometrically, such that N = M/Γ [14,15,22].

Proposition 6.4. Let N be a locally symmetric space, p ∈ N , v ∈ TpN , c a geodesic such that c(0) = p, c′(0) = v,
there are v1, . . . , vn−1 an orthogonal basis of eigenvectors of Rc′(0) orthogonal to v with eigenvalues ρ1, . . . , ρn−1,
and parallel vector fields v1(t), . . . , vn−1(t) along c such that vi(0) = vi . Moreover, the Jacobi fields along c are
linear combinations of the following Jacobi fields

cρj
(t)vj (t) and sρj

(t)vj (t),

where

cρ(t) :=

⎧⎪⎨⎪⎩
cos

√
ρt, ρ > 0,

cosh
√−ρt, ρ < 0,

1, ρ = 0,

sρ(t) :=

⎧⎪⎪⎨⎪⎪⎩
1√
ρ

sin
√

ρt, ρ > 0,

1√−ρ
sinh

√−ρt, ρ < 0,

t, ρ = 0.

The proof of the proposition is standard and it relies on the two following facts: Rv : TpN → TpN : w → R(v,w)v

is a self-adjoint map and the curvature tensor is parallel [22].

Definition 6.5. Let M = G/K be a symmetric space, where G is the Lie group of isometries of M and K the maximal
compact subgroup of G. Let g be the algebra of Killing fields on the symmetric space M and p ∈ M . Define

k := {X ∈ g: X(p) = 0
}
,

p := {X ∈ g: ∇X(p) = 0
}
.

For these subspaces of g, k⊕ p= g and k∩ p= {0}, and TpM identifies with p.

Remark 6.6. In fact the Lie algebra of G is g and the Lie algebra of K is k.

Definition 6.7. Given p ∈ M , we define the involution φp(g) : G → G : g → σp ◦ g ◦ σp where G is a Lie group.
Then, we obtain θp := dφp : g → g. Since θ2

p = id and θp preserves the Lie brackets, the properties of these subspaces
of g are:
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i. θp|k = id ,
ii. θp|p = −id ,

iii. [k, k] ⊂ k, [p,p] ⊂ k, [k,p] ⊂ p.

Proposition 6.8. With the identification TpM ∼= p the curvature tensor of M satisfies

R(X,Y )Z(p) = [X, [Y,Z]](p)

for all X,Y,Z ∈ p. In particular, R(X,Y )X(p) = −(adX)2(Y )(p).

Remark 6.9. We are going to consider only symmetric spaces with nonpositive sectional curvature.

Fix a maximal Abelian subspace a⊂ p. Let Λ denote the set of roots determined by a, and

g = g0 +
∑
α∈Λ

gα,

where gα = {w ∈ g: (adX)w = α(X)w, ∀X ∈ a}, α : a → R is a one-form [22]. Notice that the subindexes are the
one forms, not their values at each vector in α.

Define a corresponding decomposition for each α ∈ Λ, kα = (id + θ)gα and pα = (id − θ)gα . Then:

i. id + θ : gα → kα and id − θ : gα → pα are isomorphisms,
ii. pα = p−α , kα = k−α , and pα ⊕ kα = gα ⊕ g−α ,

iii. p= a+∑α∈Λ pα , k = k0 +∑α∈Λ kα , where k0 = g0 ∩ k.

For X ∈ a we have that, along the geodesic c in M with initial conditions c(0) = p, c′(0) = X, the Jacobi fields are
linear combinations of the following Jacobi fields:

c−α(X)2(t)vj (t) and s−α(X)2(t)vj (t).

So, we define for a vector X ∈ a, and for α such that α(X) �= 0, the subspaces P u
α (X),P s

α(X) ⊂ T(p,X)UM such
that

P u
α (X) = {(w,

∣∣α(X)
∣∣w) ∈ p× p: w ∈ pα

}
,

P s
α(X) = {(w,−∣∣α(X)

∣∣w) ∈ p× p: w ∈ pα

}
,

where T(p,X)UM is identified with TpM × TpM , which is identified with p× p.
If follows from the definition that they are invariant by the geodesic flow.
Along the same lines of the proof that product metrics are not partially hyperbolic:

Theorem 6.10. If the geodesic flow of a compact locally symmetric space of nonpositive curvature is partially hy-
perbolic, then it is a locally symmetric space of nonconstant negative curvature. In particular, this implies that the
geodesic flow of the locally symmetric space is Anosov.

Proof. If the locally symmetric space N has a partially hyperbolic geodesic flow, then the symmetric space M such
that N = M/Γ has a partially hyperbolic geodesic flow.

Fix x ∈ M and consider v ∈ SxM . Let a be the maximal Abelian subspace of g in x such that v ∈ a, after identifi-
cation of TxM and p.

Suppose dim(a) � 2. If the geodesic flow of the symmetric space M is partially hyperbolic, then there is a splitting
into invariant subbundles:

S(UM) = Es ⊕ Ec ⊕ Eu.

This decomposition and the curvature tensor formula imply that

Eu(x, v) = {(ξ, η) ∈ T(x,v)UM: (ξ, η) ∈ P u
αi

(v)
}
,

Es(x, v) = {(ξ, η) ∈ T(x,v)UM: (ξ, η) ∈ P s
αi

(v)
}
,

i = 1, . . . , k, |α1(v)| > |α2(v)| > · · · > |αk(v)|, such that if β �= αi , ∀i = 1, . . . , k, then β(v) < αi(v), ∀i = 1, . . . , k.
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Now we pick (x, v′) such that α1(v
′) = 0. Then:

Eu
(
x, v′)= {(ξ, η) ∈ T(x,v′)UM: (ξ, η) ∈ Pβj

}
,

Es
(
x, v′)= {(ξ, η) ∈ T(x,v′)UM: (ξ, η) ∈ Pβj

}
,

for some βj ∈ Λ, j = 1, . . . , k′, |β1(v
′)| > |β2(v

′)| > · · · > |βk′(v′)|. Notice that α1(v
′) = 0 implies βj �= α1, ∀j =

1, . . . , k′. As in the proof of the product metric, there is no way to go from one decomposition to the other continuously.
So, there are no Abelian subspaces with dimension greater than one, and the symmetric space of nonpositive curvature
has rank one. If dimension of the Abelian subspaces is one then the symmetric space has negative curvature, which
implies by the classification of Cartan [19,20] that it is a Kähler hyperbolic space, or quaternionic hyperbolic space,
or the hyperbolic space over the Cayley numbers. �
7. Further results and questions

This section is about the obstructions to have a partially hyperbolic geodesic flow and some questions related to
partially hyperbolic geodesic flows.

There is an obstruction to partial hyperbolicity if one add the hypothesis of nonpositive sectional curvature in the
Riemannian manifold: the rank of the Riemannian manifold.

Definition 7.1. Let (M,g) be a Riemannian manifold of nonpositive sectional curvature. Then, for v ∈ TxM ,
rank(v) := dimJ c(v), where J c(v) is the set of parallel Jacobi fields along the geodesic γ , such that γ (0) = x,
γ ′(0) = v. The rank of M is rank(M) := infv∈TxM rank(v) [2,14,15].

Theorem 7.2. If M is a compact Riemannian manifold with nonpositive curvature such that its geodesic flow is
partially hyperbolic, then M has rank one.

Proof. By Theorem 3.3, M has to be irreducible. By the rank rigidity theorem of Ballmann [3] and Burns and Spatzier
[8], if M is irreducible, has nonpositive curvature, and rank bigger than one, then it is a locally symmetric space of
rank bigger than one. Then, by Theorem 6.10, its geodesic flow is not partially hyperbolic. �

Another obstruction is the dimension of the Riemannian manifold, and also the dimension of the extremal subbun-
dles of the partially hyperbolic splitting. We use the following result in Steenrod’s classical book:

Theorem 7.3. (See [34], Theorem 27.18.) Let Sn be the n-dimensional sphere. Then, it does not admit a continuous
field of tangent k-planes if n is odd or if n ≡ 1 mod 4 and 2 � k � n − 2.

So, we can state the following:

Theorem 7.4. If (Mn,g) is a Riemannian manifold with partially hyperbolic geodesic flow then n is even, and if
n ≡ 2 mod 4, then dimEs = 1, n − 2 or n − 1.

Proof. First, let Es ⊕ Ec ⊕ Eu be the splitting of S(UM), the contact structure on the unit tangent bundle UM . Let
p ∈ M be fixed, and UpM the fiber of the unit tangent bundle of M at p. Let k := dim(Es), Λ(k,Sv(UM)) be the
set of k-dimensional isotropic subspaces of the symplectic space Sv(UM), for any v ∈ UM , and Λ1(k, Sv(UM)) be
the set of k-dimensional isotropic subspaces of the symplectic space Sv(UM) which intersect the vertical subspace,
i.e., E ∈ Λ1(k, Sv(UM)) if E ∩ V �= ∅. If we look at the fiber bundle π : Fp → UpM whose fiber at v ∈ UpM

is Λ(k,Sv(UM)). We know that the codimension of Λ1(k, Sv(UM)) in Λ(k,Sv(UM)) is greater than one [28] if
k < n − 1. So, if we look at Es(p, v) as a section of the fiber bundle π : Fp → UpM , it is easy to see that there is a
section σ : UpM → Fp which does not intersect the vertical subbundle. Let πS : S(UM) → UM be the contact struc-
ture bundle on UM , then, πS(σ ) is a continuous field of tangent k-planes in UpM , which is an (n − 1)-dimensional
sphere. So, we need only to apply the previous theorem.

The case k = n − 1 is trivial, there is no obstruction to the existence of a continuous field of (n − 1)-planes on an
(n − 1)-dimensional sphere. �
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Remark 7.5. The idea that partial hyperbolicity of the geodesic flow implies even dimension of the Riemannian
manifold is due to Gonzalo Contreras, who communicated an idea of the proof of this fact to the second author of this
article.

There are some questions that we hope to address in the future:

Question 1. Is there a transitive partially hyperbolic non-Anosov geodesic flow with conjugate points?

It would be interesting to know if transitivity and existence of conjugate points can be together in these examples
we constructed. For example, if the transitive non-Anosov example showed in Section 5.4 is robustly transitive, the
answer to the question would be positive.

Question 2. Is the example constructed in Theorem A ergodic?
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