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ABSTRACT. - We study the boundary regularity of convex solutions of
the equation of prescribed Gauss curvature in a domain Q c ~n in the case
that the gradient of the solution is infinite on some relatively open,
uniformly convex portion r of Under suitable conditions on the data
we show that near r x R the graph of u is a smooth hypersurface (as a
submanifold of 1) and that u ~r is smooth. In particular, u is Holder
continuous with exponent 1 /2 near r.
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1. INTRODUCTION

In this paper we study the boundary regularity of convex solutions of
the equation of prescribed Gauss curvature
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on a domain Q c in the case that

for some relatively open, uniformly convex portion r of aS2. The boundary
condition (1.2) is to be interpreted as meaning

for all y E r. This situation arises in a number of problems connected with
equation ( 1 . 1 ), and in fact, proving that ( 1. 2) holds on a suitable portion
r of aS2 is a key step in the proof of the interior regularity of solutions of
( 1.1 ) in the papers [17], [18], [19].

Before stating our results, we recall the problems in which the above
situation arises. Let us suppose that Q is a uniformly convex domain
in ~n and is a positive function. It is easily shown that the
condition

where ffin is the measure of the unit ball in fR", is necessary for the existence
of a convex solution of (1.1). In order to solve the Dirichlet problem for
( 1.1 ) with arbitrary boundary data cp of class it is known from the
papers [3], [15], [17], [19] that two conditions are necessary. Namely, we
require

to ensure the validity of an a priori bound for the solution u, and in
addition

in order to obtain a boundary gradient estimate. As shown in [8], this
condition is not necessary if instead we impose some restrictions on

I 1 ~a~~. If ( 1. 5) holds, but not ( 1. 6), then the Dirichlet problem may
not be solvable in the classical sense (see [15], [19]). However, it is shown
in [18] that there is a unique convex solution of ( 1.1 ) which solves the
Dirichlet problem in a certain optimal sense: the solution u is the infimum
of all convex supersolutions of ( 1.1 ) lying above cp on or alternatively,
u is the supremum of all convex subsolutions of ( 1 . 1 ) lying below cp on

The Dirichlet boundary condition is generally satisfied in the classical
sense on some parts of aS2 and not at other parts. At points at which it is
not satisfied we have |Du= oo, provided K satisfies a mild growth restric-
tion near aS2, for example for some p > n. In fact, 
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501BOUNDARY REGULARITY

is sufficient, by an examination of the proof of Lemma 3.6 of [18] (see
also [21], Lemma 2.1) and Remark (v) following the proof of Lemma 2.2.

In the extremal case

it is shown in [17], [19] that there is a convex solution of ( 1. 1 ) which is
unique up to additive constants, and furthermore, if K e LP (Q) for some
p > n (as above suffices), then on ao.

At present the only theorems which yield any information about the
regularity of u near r are the Holder estimates of [19]. These are valid
much more generally however, and their proof makes no use of the
boundary condition (1.2). It is reasonable therefore to expect that better
boundary regularity can be obtained by using ( 1. 2).
Our results are in fact valid for more general Gauss curvature equations

of the form

where v denotes the downward unit normal to the graph of u given by

and K E (03A9 R X is a positive function. Here Sn denotes the lower
hemisphere of the n-dimensional unit sphere Sn~ Rn+1. The situations
described above for equation ( 1. 1 ) also arise for equation ( 1. 8) if we
impose a number of hypotheses on K (see [18], Theorem 1.1, and [19],
Theorem 4.10).
Our main result is the following. As usual, BR denotes the open ball in

(~n with radius R and centre 0.

THEOREM 1. - Let SZ be a bounded domain in (~n and suppose that for
some x0~~03A9, which we may take to be the origin, I-’ = aSZ ~ BRO is a
connected, C2 ~ 1, uniformly convex portion of aS2. Suppose that
K E C 1 ~ 1 (S2 x f~ x is a positive function and u E C2 (SZ) is a convex solution
of ( 1 . 8) satisfying ( 1 . 2) and such that

and

where ~1, ~,2 are positive constants. Then there is a number p E (0, Ro),
depending only on n, Ro, h, ~,1 and ~2, such that the following hold:

(i) u E C°°1~2 (SZ n and for any x, y E S2 n BP
we have
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where C1 depends only on n, Ro, r, ~,o, ~.l and ~2.
(ii) graph is a hypersurface for any a  l, and we have

where C2 depends only on n, Ro, r, ~o, ~.2 and a.
(iii ) u is of class for any a  1, and we have

where C3 depends only on n, R0, r, 0, pi, 2, a and infu.
q

(iv) If in addition to the above hypotheses we have

and for some integer k >__ 2 and some a E (0,1 ), then
graph (u hypersurface, u is of class and we
have 

~ 

and

where C4 and Cs depend only on n, Ro, r, po, ~1, ~,2, K, k, a and inf u.
q

If K and r are analytic, then graph (u and u |0393~B) are analytic.
If the hypotheses of Theorem 1 are satisfied with r = aSZ, then we obtain

the conclusions of Theorem 1 in {x ~03A9: dist (x, ~03A9)  03C1} for a suitable
p > 0. We may then apply the interior regularity result [20], Theorem 1.1,
to extend the estimates to all of SZ. We state this special case separately.

THEOREM 2. - Suppose Q is a C2~1 uni.f’ormly convex domain in (~n,
K E (03A9 x R x is a positive function and u is a convex solution of
(1 . 8) such that (1 . 10) and ( 1. 11) hold, and

Then the assertions (i) to (iv) of Theorem 1 hold with Q n BP replaced by
Q and r by aSZ. The dependence of the constants C1, ..., Cs on Ro, r
should now be replaced by Q.
We shall prove Theorem 1 in the remaining sections of the paper. In

Section 2 we shall derive some preliminary estimates for graph u near r.
We also reformulate our problem as a free boundary problem for a
function w, obtained by expressing graph u locally as the graph of a
function w over a suitable subdomain of the tangent hyperplane to graph
u at (0, u(0)). In Section 3 we show how the information obtained in
Section 2 can be used to deduce appropriate regularity assertions for the
Legendre transform of w, from which the assertions of Theorem 1 follow.
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As will become clear later, some of the hypotheses of Theorems 1 and
2 may be weakened slightly. First, u may be assumed to be a generalized
solution of ( 1. 8) in the sense of Aleksandrov [2] (see also [18]) rather than
a classical solution. However, under the conditions of Theorem 1, u is a
classical solution on Q n Bp for some p E (0, Ro) depending only on n, Ro,
r, 0 and 1 [see Remark (ii ) following the proof of Lemma 2.2]. Second,
the boundary condition (1.2) may be weakened to a measure theoretic
condition [see (2.20)] which arises quite naturally. In fact, it is this
condition which is first shown to be satisfied in the papers [17], [18], [19];
the stronger condition ( 1. 2) is then deduced by arguments similar to those
used in the proof of Lemma 2.2.
Analogous boundary regularity questions for solutions of the nonpara-

metric least area problem were studied by Simon [14]. His results were
improved and also extended to the mean curvature equation in situations
corresponding to those mentioned above for the Gauss curvature equation
by Lau and Lin [11] ] and Lin [12], [13]. Our approach is similar to [ 11 ],
[12], [13] in that we also reduce the problem to a free boundary problem.
In our case, however, the free boundary problem is not a priori uniformly
elliptic, and considerably more preliminary information is required before
we can apply standard results.

It will be evident that the techniques of Section 2 are also applicable to
certain other Monge-Ampère equations of the form

for which the boundary condition ( 1. 2) arises in a similar fashion as for
the Gauss curvature equation, provided we impose suitable conditions on
the function f. In particular, sufficiently fast growth of f with respect to
Du is necessary. Furthermore, in the case of equation ( 1. 8) we may also
allow some unboundedness or decay to zero of K as x approaches r. We
shall make some remarks about these extensions later. In these situations,
however, we obtain a free boundary problem which in general is necessarily
nonuniformly elliptic or degenerate, and the techniques of Section 3 do
not yield any further regularity. Nevertheless, even in these cases it is

perhaps reasonable to expect somewhat better regularity of u Ir than is

provided by the Holder estimates of [19].
For Monge-Ampere equations of the general form ( 1. 18) the boundary

condition ( 1 . 2) also arises if f grows fast enough as x approaches ao,
even without imposing sufficiently rapid growth on f with respect to Du.
However, we cannot expect regularity assertions for u Ir such as those of
Theorem 1. For as Cheng and Yau [5] have shown, uniformly
convex domain in ~8n (Q) satisfies

( 1.19) A dist (x, _, f ’ (x) _ B dist (x, 
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for some constants A, B > 0, a > 1 and P  n + 1, then the Dirichlet problem

has a unique convex solution u E C2 (SZ) (~ C° (SZ) for any boundary
data cp, and we have |Du = o0 on aS2. Similar assertions are also valid
for Monge-Ampere equations of the general from (1.18), where

satisfies 0 and

for all (x, z, x R x [R", where A, B, a, P, y are constants such that
A, B > 0, cx> 1, and (see [16], Theorem 2.19).

2. ESTIMATES FOR GRAPH u

The main results of this section are a Holder estimate for the normal
vector field v to graph u and a strict convexity estimate for graph u, both
of these being valid at any point (xo, u (xo)) with These
results hold under weaker regularity hypotheses than stated in Theorem 1;
namely, we need only assume r to be uniformly convex and of class 
and the bound ( 1.11 ) is not needed.
We begin with some preliminary estimates for u. From [19],

Corollary 3.11, we have the following preliminary regularity result.

LEMMA 2.1. - There is a number a E (0,1 /2], depending only on n, such
that u E C°~ °‘ (SZ (~ we have

where C depends only on n, Ro, r and ~.°.
Remarks. - The estimate (2.1) does not depend on the boundary

condition ( 1. 2); it uses only the regularity of r and the lower bound
of (1 . 10), and is independent of any boundary condition. The proof of
(2 .1 ) given in [19] yields the exponent cx = 1/2 n, but this can be increased
slightly by an iteration argument described in [19]. The optimal exponent
is not known at present, but for our purposes any positive exponent
suffices.
From Lemma 2.1 we see that by replacing Ro by Ro/2 we may assume

from the start that ue (Q (1 It is also convenient to replace S2
by Q (~ BRO. This involves no loss of generality and has the advantage
that Q is convex, which makes the proof of the following lemma technically
simpler. It is a refinement of the argument used in [17], [18], [19] to show

that Du| = 00 on a suitable portion of ~03A9.
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LEMMA 2.2. - There are numbers El, C > 0, depending only on n, Ro, r
and 1, such that for each x E ~{ x E S2 : dist (x, ~03A9)  El 1} we have

Proof. - Choose coordinates so that the positive xn axis points in the
direction of the inner normal to aQ at 0. It suffices to prove (2.2) for
x = (0, ~2) with ~~~1=~1(n, Ro, r, because a similar argument, with

Ro replaced by Ro/2 and ~1/2 if necessary, will yield the estimate at any
point of (~ { x E SZ : dist (x, 

Since r is uniformly convex, there is an enclosing ball BR (zo) at 0 i. e.

BR (zo) n aS2 == { 0 ~ with the radius R estimated from above by a constant
depending only on r. Let B2R (zl) be another enclosing ball at 0, and for
s > 0 consider the set

where x’ _ (xl, ..., It is clear that for ~>0 sufficiently small, say
E __ Eo = Eo (r), we have dist (03BE0, ~03A9) = E2 where 03BE0 = (0, E2), and further-
more, letting E = aB2R (z 1 + ço),

for some positive constants 8, Al and A2 depending only on r and Ro.
Here (0) denotes the open ball in [Rn-l with radius R and centre 0.

Let

Then Lt is a closed, convex, (n -1 )-dimensional hypersurface in S2 and ~o
is enclosed by Et. Let Gt and G be the generalized Gauss maps of Lt and
E respectively. The meaning of G is clear, since E is smooth, while for

is defined to be the set of outward unit normals of

supporting hyperplanes of Lt at ç, and for any set E c Lt, 
.

= E2 + E ( ~ and let G be the Gauss map of ~. Since
each Et encloses ~o, it is evident that if T is any (n- I)-dimensional
supporting plane of  at 03BE0, T can be translated in the negative xn
direction to yield a parallel (n -1 )-dimensional supporting plane T~ of Et
at some point of Et n LJ. Thus
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by virtue of (2. 3) and an elementary geometric argument.
To proceed further we need to define some set functions. Let

Since Q is convex, M is a complete, convex hypersurface in 
As in [18], we define

(2. 7) Xv ( y) = { P E a supporting hyperplane

For any set E c Q we define

A result of Aleksandrov [1] (see also [5]) asserts that if A, B are disjoint
subsets of Q, then XV (A) U XV (B) has measure zero. Furthermore, if E is
a Borel set, then so are x" (E), x" (E) and xv (E) (see [18]).

Continuing now with the proof of the lemma, we see from (2. 5) that

because each nonhorizontal n-dimensional supporting plane T of M yields
an (n -1 )-dimensional supporting plane Tt = T (~ ~ x : xn + 1= t ~ of Et for
each From (2 . 8) we have

However, by (2 . 4) the second set on the right hand side of (2.10) is
contained in xv (r) and so is empty, since on r. Thus from
(2.9) we obtain

or recalling the definition of v,

where po = Du (xo) and Xt. is defined as above with v replaced by u.
Next, using the fact that u is a convex solution of (1 . 8), we have
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where h (t) = ( 1 + t2) - (n + 2)/2 , Defining

for any b > o, using (2 .12), and estimating the left hand side of (2 .13)
from above, we obtain

for suitable constants C1 and C2. It follows that

for E small enough, say Recalling now that Po = Du (ço) and
~o = (0, ~2), we see that we have proved

since E2 = dist (ço, lQ). The proof of the lemma is complete.
Remarks. - (i ) The proof of Lemma 2.2 does not require u to be a

classical solution of ( 1. 8). All we require is that u is a generalized solution
in the sense that

for any Borel set EcQ. Furthermore, if u is not differentiable at x, then
in the statement of the lemma we need only replace Du (x) by the slope
of any supporting hyperplane of graph u at (x, u (x)).

(ii) If u is a generalized solution of ( 1. 8) and the hypotheses of
Theorem 1 are satisfied, then u is in fact a classical solution on Bp
for some positive p > 0. For if xo E Q n Bp, then for p small enough we
have
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where po is the slope of any supporting hyperplane T of graph u at

(xo, u (xo)). We assert that T n graph u cannot contain a line segment
with an endpoint on SQ x R. Clearly we cannot have such a line segment
with an endpoint on r x I~, by virtue of the boundary condition ( 1. 2),
while if there were such a segment L with an endpoint on (an - r) x IR,
then by the uniform convexity of r there would be a point (xl, u (xl)) E L
with dist (xl, bo for some positive constant ~o depending only on Ro
and r. But then, since T is also a supporting hyperplane of graph u at

u (x 1 )), we have

since u is convex. This contradicts (2.18) if p is small enough, so our
assertion is proved. The C~ regularity of u on Q n Bp now follows in a
standard way, see for example [5], [20].

(iii) In the proof of Lemma 2 . 2 the boundary condition ( 1. 2) was used
only to assert that the set x,* (0 ~ ~03A9) in (2 . 10) is empty. All that is

required for the proof is that this set have measure zero. Thus the

boundary condition ( 1. 2) could be replaced by the weaker measure theor-
etic condition

(iv) Refinements of Lemma 2. 2 are possible. For example if we have

where K E Lq (Q) for some q > (n + 1 )/2, then in place of (2 .14) we obtain

which leads to the estimate

Similarly, if

for some constant ~3 > -1, we obtain

(v) From the proof of Lemma 2 . 2 and (iv) it is evident that the interior
regularity result of [18], Theorem 1.1, is valid under the slightly weaker
growth restriction with q >_ (n + 1)/2 rather than q > n. One can
similarly improve the interior regularity assertions of [19], Theorems 4. 8
and 4 . 10, and [21], Theorems 1 and 2, in the case that Impro-
vements along these lines are possible even if ~03A9~ C1°1, but we shall not
pursue these questions here.
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(vi) Minor modifications of the proof of Lemma 2 . 2, specifically in
(2.13) and (2. 14), lead to similar results for more general Monge-Ampere
equations, for example, equations of the form ( 1.18) where

for all where (S~) and cx >n is a constant.

Arguing as above we obtain

Further modifications along the lines of (iv) are also possible, but we shall
not state these.

Since r E C 1,1, the distance function d defined by

is of class 1 
near r n say for x E d (x) 1 ~ for

some 03C31>0 depending only on r (see [6], Lemma 14.16). By replacing Si 1
from Lemma 2. 2 by a smaller constant if necessary, we may assume that

03C31. We may extend p, the outer unit normal vectorfield to T, to
BRo/2 n { x E Q : d (x)  61 ~ by setting

The tangential gradient u, ..., of u relative to r is defined
by

for all points of Q : d (x)  ~ 1 ~ .
Using Lemmas 2.1 and 2. 2 we now obtain the following.
LEMMA 2 . 3. - There is a number /3 > o, depending only on n, such that

on n ~ x E o : d(x)  El ~, where C depends only on n, Ro, F, po and ~1.
Proof. - From [19], Lemma 3.8, and its refinement to the case

u E (SZ) (see [19], equation (3 . 37)), we have

for all n ~ x E SZ : d (x)  E 1 ~, where a > 0 is the exponent given by
Lemma 2.1 and C depends only on n, Ro, r, po and pi. The estimate
(2 . 28) now follows by combining (2 . 29) with
Lemma 2. 2.

Using Lemmas 2. 1 to 2.3 we can obtain a Holder estimate for the
normal vectorfield to graph u and a strict convexity estimate for graph u
at any point (xo, u (xo)) with xo First of all, we observe that
since I Du = 00 on r and the only supporting hyperplane of
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at a point (xo, u (xo)) E r x (~ is a vertical hyperplane tangent to r x R.
Since M is a convex hypersurface, it follows that the unit normal vector-
field to M is continuous at any point (xo, u (xo)) E M with xo E r. Thus
the unit normal vectorfield to graph u given by (1.9) has a continuous
extension (which we also denote by v) to graph u n (r x R), and

LEMMA 2. 4. - There is a number y > 0, depending only on n, such that

for all Xo Ern BRo/2 and x~03A9 ~ BRo/2’ where C depends only on n, Ro, I-’,
oandl.

Proof. - It clearly suffices to prove (2 . 31 ) for xo = 0 and
for other xo it can be obtained by a similar

argument, while the case is trivial.
Choose coordinates so that the positive xn axis points in the direction

of the inner normal to r at 0. Then v = ~, on r, and in particular,
v (o) = - en where ..., en + 1 denote the unit coordinate vectors in ~n + 1.

then at x we have

for some by virtue of Lemmas 2 . 2 and 2 . 3. In fact, we may
take y = P/2 (1 + P), where P is the constant of Lemma 2. 3.

Next, if x is any point of BRo/2 n ~ x E S2 : d (x)  ~ 1 ~, the same argument
as above shows that

where x is the point of r nearest to x. It follows that
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since v = ~. on r, r is of class and

The lemma is proved.
Next we come to the strict convexity estimate.

LEMMA 2. 5. - There are numbers

such that if T is the unique tangent hyperplane to graph u at

Xo = (xo, u (xo)) where xo ~0393~BR0/2, then for any point
X = (x, u (x)) E (graph u) n (xo) x R) we have

where II is the orthogonal projection onto T and Co depends only on n, Ro,
r, ~o and  1 .

Proof. - As usual it suffices to prove this for the other cases

being obtained by a similar argument. We suppose for convenience that
u (0) = 0, and let E2, Ci, ..., C10 denote various positive constants depend-
ing on some or all of the quantities n, Ro, r, ~,o and ~,1.
By Lemma 2. 4 there is a number E2 > 0 such that

(graph u) n (BE2 (0) x IR) can be written as the graph of a function w
defined on a suitable subdomain U of T obtained by projecting
(graph u) (~ (BE2 x R) orthogonally onto T. In fact, if we choose new

coordinates ya = xa for a  n, yn = - xn + 1 and yn + 1= xn, then by Lemma 2. 4
we have

for some R > 0 depending only on n, Ro, r, ~o and ~1, where graph m c T
is the orthogonal projection of graph (u Ir) onto T, and y’ = (yl, ... , 
We may also assume that

In addition, by Lemma 2.1 we have

where a is the exponent given in Lemma 2 . 1 and denotes the open
ball in (~n -1 with radius R and centre 0.
We also represent r x (~ near (0, 0) as the graph of a function

~ v ~ y E Il~n v ( y~ ~  R ~ -> (~. ~r is independent of yn, and since r E 1 is
uniformly convex we have
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for all y E BR. Clearly we also have

for all (y’, D.

Let y = ( y’, E D and let y be the unique point on the lower boundary
of D such that y’ = y’; thus

Using Lemma 2. 1 we have

where and a is the exponent of Lemma 2.1. If yn >__ 2 C2 ~ y’ ~°‘, then
from (2. 36), (2. 39) and (2.41) we obtain

since ~, ? 2, while if ;g 2 C21 y~ ~°‘ we have

Thus in any case we have

for all A similar estimate for all y E U follows by the convexity of
w. The estimate (2 . 32) with 8 = 2 À follows immediately from this, so the
lemma is proved.

Remark. - Holder continuity estimates for v similar to (2 . 31 ) can also
be obtained if we allow some decay to zero or growth to infinity of K as
x approaches r. For example, if we have

where K E Lq (Q) for some q > n, and ~, > 0 and 8 E [o, 1) are constants, then
by [19], Corollary 3 .11, we have
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for all x, y eQ n where C depends only on n, Ro, r, ~, and 8. This
leads to the tangential gradient estimate

On the other hand, as we have already observed, the second inequality of
(2.43) leads to the estimate (2. 23). The combination of (2. 23) and (2.45)
then leads to a Holder continuity estimate for v of the form (2 . 31 ) with
y > 0 and C > 0 now depending in addition on e and q, provided we have

Strict convexity estimates such as (2 . 31 ) may also be proved under these
somewhat more general hypotheses. Further refinements of these results
are also possible, for solutions of (1 . 8) as well as for solutions of more
general Monge-Ampere equations, but we shall not pursue this here.

However, since the exponent a obtained in Lemma 2.1 and its various
analogues for other equations is not generally sharp, it is clear that the

exponents obtained in Lemmas 2. 3, 2.4 and 2. 5, and conditions such as
(2.46), are not optimal.
To conclude this section we make some further observations about the

function w defined in the proof of Lemma 2.5. First of all, from
Lemma 2 . 4 and the fact that u E C2 (Q), we have w E C2 (D) n C 1 (D) and

where E = { y E aD : yn = ~ ( y’) } is the lower boundary of D. In particular,
since B)/ is independent of yn, we have

Furthermore, it is clear that w is a convex solution of an equation of the
form

where K is obtained from K by the relation

Since (2. 34) holds, there is no loss of generality in assuming that w in
fact satisfies an equation of the form

with f~C1,1(D x [R x [R") satisfying
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for almost all ( y, z, p) E D x R x where and ~2 depend on ~,1
and 2 in ( 1. 10), ( 1. 11 ) and in addition on n and sup I Dw ~. .

D

We see therefore that w is a solution of a free boundary problem, and
the regularity assertions of Theorem 1 are equivalent to suitable regularity
assertions for the free boundary X and for w near L. From Lemmas 2.4
and 2. 5 we see that for any y0~03A3 and any y~D we have the Holder
gradient estimate

and the strict convexity estimate

where ye(0, 1) and b >_ 2 depend only on n and C, co depend in addition
on Ro, r, ~o and 1. In particular, setting yo = 0 in (2 . 55) we obtain

for all y e D. Using (2. 55) and the convexity of w we also obtain

for all y E D.
The free boundary problem obtained above is similar to those studied

by Kinderlehrer and Nirenberg [9], and in fact, their results would imply
higher regularity of 03A3 and w near X if we already knew that L E C1 and
WE C2 (D U L). Of course, we do not know such regularity at this stage,
but nevertheless, the method of [9] can still be used.

3. THE LEGENDRE TRANSFORM

To proceed further in the proof of Theorem 1 we adopt a technique
used by Kinderlehrer and Nirenberg [9] and study the free boundary
problem for the function w obtained at the end of Section 2 by studying
its Legendre transform. In our case however, we may use the full Legendre
transform rather than a partial Legendre transform as in [9].

Since is convex and w solves (2 . 47), (2.51) with f
positive, the mapping ~ : y --~ Dw ( y) defines a diffeomorphism of D onto
an open subset D* of (~ + _ In fact, since W is of class C~ 1

and uniformly convex with respect to y’, we may assume that
~ E C1 (D) n C° (D) is a homeomorphism of D onto D*. Using the esti-
mate (2. 57) we easily see that for any y° E E n BR/2 and any E E (0, R/4]
we have
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and

where zo = ~ (yo) = Dw (yo), ~ is as in (2. 57), and C1 depends only on n,
Ro, r, yo and 1. Using the estimate (2 . 54) we see that for any
Yo E L n BR/2 and any E E (0, R/4] we have

or alternatively, for all 6 > o, such that a, we have

where yo = ~ -1 (zo), y is as in (2 . 54), and 60, C2, C3 are positive constants
depending only on n, Ro, r, ~,o and In fact, the estimates (3 . 2), (3 . 4)
and (3. 6) can be improved, since w = Dw = on X, and B)/ is of class
C~ and uniformly convex with respect to y’.
The Legendre transform of w is the function w* on D* = Dw (D)

given by

where z = Dw (y). It is easily verified that

and

where = [D2 w] -1. Thus D2 w* is positive definite in D*, and we have
w* (D*) (~ C°~1 (D*), w* (0) = 0 and w* >_ 0 in D* by the convexity
of w and the fact that w (0) = 0. Since (2 . 47) holds and B)/ E is uniformly
convex with respect to y’, we see that we have

and

for all (z’, 0) E ~* = Dw (E) c where C4, A, B are controlled positive
constants.
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Next, using the relations (3 . 8) and (3 .9) it is easily verified that w*
solves the equation

where f*~C1,1 (D* x R x is given by

for any (z, t, q) E D* x R x Thus by (2 . 52) and (2 . 53) we have

for almost all (z, t, q) E D* x R x for some controlled positive constants
0, 1 and 2.
It can be shown that the estimates (2.54) and (2.55) for w imply

analogous estimates for w* at each point of ~*. More precisely, from
(2. 55) we see that and, using (2 . 54) and (2. 55), for
any sufficiently small and any zeD* we have

and

where y, b are as in (2.54), (2.55) and Cs, C6 are controlled positive
constants. We shall not prove these estimates because they are not needed
to complete the proof.
The following lemma now essentially completes the proof of Theorem l.

LEMMA 3 . 1-. - Let u E C2 (BR ) n (BR ) be a convex solution of the
equation

where

and suppose that 1 (BR x I~ x satisfies

for almost all (x, z, f~ x (~n, where (3o is a positive constant. Suppose
also that

and
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for all (x’, 0) E TR = BR n ~n -1 and all ~ E ~n -1, where (31 and 7~ are positive
constants. Then there is a number p E (0, R), depending only on n, R, (30,
j31, ~, and (’ u II ~1 ~, such that for any oc E (0, 1) we have

where C depends on the same quantities as p and in addition on ae(0,1).

Proof - If we already knew that the estimate (3.22),
with C depending in addition on , would be a consequence of

BR
well known global second derivative Holder estimates for fully nonlinear,
uniformly elliptic equations (see [6], Theorem 17.26, [10], Theorem 5.5.2).
So it suffices to prove

for suitable positive constants ~ E (0, R) and C depending only on n, R,
. ~ 

.

Let where A > 0 is fixed so large that 1 in Choose
new coordinates for exn, and Then graph u
can be expressed as the graph of a convex function v defined on a subset
V of the hyperplane yn + 1= o, so we have

Thus the lower boundary T of U, given by y" = u ( y’, 0), I y’ I  R, is

uniformly convex and of class C2°1, by virtue of (3.20) and (3.21).
Furthermore, we clearly have v IT = 0 and v E C2 (U) n 1 (IJ) satisfies an
equation of the form

where satisfies

for almost all (y, z, p) e U x [R x where Po depends only on n, Po and
sup |Du |.

BR
Our aim now’ is to prove that

for suitable positive constants p and C. Once we have this, (3 . 23) follows
immediately and the lemma will be proved.
A bound for D2 v on au n BR/2 would follow from the results proved

in [4],- [6], [7], [15] if we knew that v were of class C2 on U. We do not
know this yet, so we need to make our estimates on a suitable approximat-
ing sequence of solutions. First we note that by [20], Lemma 2. 2, there is
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a constant po _ R/2, depending only on n and ~o, such that if vl, v2 are
two convex solutions of (3 . 24) in any domain U’ c U with diam U’  po~
then

Let ( be an increasing sequence of C4 uniformly convex subdomains
oo

of U n Bpo with 03A9k~~U~B03C10, U U such that the principal
k=1 i

curvatures of aOk are bounded from below by some positive constant
depending only on p~ and U, but not on k, and such that the boundary
portions ~03A9k ~ Bpl are uniformly bounded in the C2 ° 1 sense. (Here for
notational covenience we let p = p~/2, and in general PI = 2 -I It is clear
that such a sequence of subdomains can be constructed by appropriately
smoothing U (~ Next, n be a sequence of
functions with cpk E C4 for each k, such that -~ 0 and cpk = 0

Ok

on ~03A9k n It is clear that such a sequence can be constructed. For

example, if v is extended to be zero outside U and vh denotes a suitable
regularization of v (see [6], Section 7 . 2), then we may take cpk = vhk ~rk for
a suitable sequence {hk} decreasing to zero, where is a C4 function on
Ok such that 0 _ ~k  1, on and

on ~03A9k ~B03C11.
Let vk E C2 (Ok) be the unique convex solution of the Dirichlet problem

(3 . 28) in Ok’ on ~03A9k.
Such a function Vk exists by [4], Theorem 7.1 (see also [8]), since a convex
subsolution of (3.28) can be constructed by adding to cpk a sufficiently
large multiple of a uniformly convex defining function for The unique-
ness of vk is a consequence of (3.27). From (3.27) we also see that vk
converges uniformly to v on any compact subset of U (~ Furthermore,
by [6], Theorem 17.4, we have

where Ci depends only on n, po and sup I v I but not on k.
U n Bpo

Next, a bound

with C2 independent of k, follows easily, since if ç is any point of
aOk n BP2, there is an enclosing ball, say BR (z), for Q~ at ç with R
depending only on 9U. The function
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where d (x) = dist (x, ~BR (z)) is then a local lower barrier for vk at ~, for a
suitable positive constant B, depending only on known quantities but not
on k. Thus the outer normal derivative of vk, D~ vk, satisfies a bound

A lower bound follows easily using the convexity of vk, so (3 . 30) is proved.
The convexity of vk then also implies

We now proceed to show that for some sufficiently small but controlled
i E (o, p3) we have

for all sufficiently large k, where Cs is independent of k. First we prove a
boundary estimate

The proof of this is similar to the proofs of the boundary second derivative
estimates given in [4], [6], [7], [15] so we shall only outline the main points.
First, using (3 . 31) and the fact that the principal curvatures of BP1
are bounded above and below by positive constants independent of k, we
obtain, since Vk = 0 on ~03A9k n BP1,

for any y~~03A9k ~ Bp4 and any direction t tangential to aQk at y, where C7
and C8 are positive constants independent of k. Next, using a suitable
barrier argument, together with the C2 ~ 1 regularity of aQk n B we obtain

for any ye ~03A9k ~ BP4 and any direction i as above; here p denotes the
outer unit normal vectorfield to Finally, the estimate

for any y E aQk n Bp4 follows by solving (3 . 28) for and using (3 . 34),
(3 . 35) and the fact that g is bounded.
Next we prove (3 . 32). We first choose a constant M so large that

This can be done with M independent of k, since we have a uniform
positive lower bound for the principal curvatures of aQk. Now for 03B2>0
we consider the function
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for all and all directions § in IRn.

Clearly ~V’k ~ Q~ for k sufficiently large. If W attains its maximum at a

point yo E ank n Bp4 and a direction ~o in we have an upper bound

for W by virtue of (3 . 33). Otherwise W attains its maximum at an interior
point of %k’ and by the argument of [6], Theorem 17. 19, we again
conclude a bound for W, provided P is fixed sufficiently large. Thus for
i > 0 so small that (3. 32) holds for all sufficiently large k.
The second derivative Holder estimates proved in [6], Theorem 17.26,

[10], Theorem 5. 5.2, and standard linear theory [6], Lemma 17.16, now
imply

for any a  1 and all sufficiently large k, where C depends on a in addition
to other known quantities, but not on k. Since vk converges uniformly on
compact subsets of U n BP1 to v, we conclude that (3. 26) holds. This
completes the proof of the lemma.
To complete the proof of Theorem 1 we now apply Lemma 3 . 1 to

obtain

for any a  1, where p and C are controlled positive constants with C
depending on a. Thus the mappings 03A8=Dw and 
are of class C1, ex near 0 for any a  1, and for suitable cr > 0 we have the
estimates

and

Here and below Ci, ..., C~ are positive constants depending only on
known quantities and in addition on a  1. Since ~ _ ~’-1 (~*) and E is
the orthogonal projection of a suitable portion of graph onto the

tangent hyperplane to r x R at (0, u (0)), where u is our original solution
of ( 1. 8), assertion (iii) of Theorem 1 follows.

Next, since w* solves (3 .12) and (3 .14) holds, we see that (3 . 38) implies

for all z~B+03C1 and Thus using (3 . 9) we obtain

for all and Using (3 . 8), (3 . 9), (3 . 38), (3 . 41) and
(3.42) we then find that
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for any a  1, and

for any y~D ~ Ba. Assertions (i ) and (ii ) of Theorem 1 then follow.
Finally we observe that under the additional hypotheses of part (iv) of

Theorem 1 we have

by virtue of standard elliptic regularity theory [6], Lemma 17.16. Using
(3.41) and (3 . 42) we then obtain

for some controlled i E (o, a). Assertion (iv) of Theorem 1 follows from

(3 . 45) and (3 . 46). The case of analytic data follows similarly, so the proof
of Theorem 1 is complete.
Remarks. - (i ) The proof of Lemma 3.1 remains valid if we assume

(BR ) is a generalized solution of (3 . 18).
(ii) Lemma 3 .1 can be generalized to the case where B: is replaced

by a domain of the form for certain nonconvex
In this case we generally need to assume that

of class C3 ~ 1. Coupled with suitable barrier arguments,
this leads to existence theorems for globally smooth solutions of the
Dirichlet problem for Monge-Ampere equations on nonconvex domains.
We intend to treat this more fully in a future paper.
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