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Abstract

In this paper, we give a sharp lower bound for the first (nonzero) Neumann eigenvalue of Finsler-Laplacian in Finsler manifolds
in terms of diameter, dimension, weighted Ricci curvature.
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1. Introduction

The study of the first (nonzero) eigenvalue of Laplacian in Riemannian manifolds plays an important role in differ-
ential geometry. The first result on this subject, due to Lichnerowicz [11], says that for an n-dimensional smooth
compact manifold without boundary, the first eigenvalue λ1 can be estimated below by n

n−1K , provided that its
Ric � K > 0. In this case, Obata [13] established a rigidity result, asserting the optimality of Lichnerowicz’ esti-
mate. Namely, λ1 = K if and only if M is isometric to the n-dimensional sphere with constant curvature 1

n−1K .
When K = 0, Li–Yau [9,10] developed a method, which depends on the gradient estimate of the eigenfunctions, to

give the lower bound of the first eigenvalue via diameter d , precisely, λ1 � π2

2d2 . Their method had been improved by

Zhong–Yang [24] to obtain λ1 � π2

d2 , which is optimal in the sense that equality can be attained for one-dimensional

circle. Very recently, Hang and Wang showed that λ1 > π2

d2 in [7], if the dimension n > 1. These results also hold true
when M is a manifold with convex boundary. When M is a convex domain in R

n, this is a classical result of Payne–
Weinberger [17]. Later Chen–Wang [5] and Bakry–Qian [3] combined these results into a same framework, and gave
estimates for the first eigenvalue of very general elliptic symmetric operators, via diameter and Ricci curvature. This
sharp estimate on Riemannian manifolds has been also generalized to Alexandrov spaces by Qian–Zhang–Zhu [18].
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Finsler geometry attracts many attentions in recent years, since it has broader applications in nature science. Simul-
taneously Finsler manifold is one of the most natural metric measure spaces, which plays an important role in many
aspects in mathematics. There exists a natural Laplacian on Finsler manifolds, which we call here Finsler-Laplacian.
Unlike the usual Laplacian, the Finsler-Laplacian is a nonlinear operator. The objective of this paper is to study the
lower bound for the first (nonzero) eigenvalue of this Finsler-Laplacian on Finsler manifolds. In [14] Ohta introduced
the weighted Ricci curvature RicN for N ∈ [n,∞] of Finsler manifolds, following the work of Lott–Villani [12]
and Sturm [20] on metric measure space. He proved the equivalence of the lower boundedness of the RicN and the
curvature-dimension conditions CD(K,N) in [12,20]. As a byproduct, he obtained a Lichnerowicz type estimate on
the first eigenvalue of Finsler-Laplacian under the assumption RicN � K > 0. Another interesting type of eigenvalue
estimates was obtained by Ge–Shen in [6], namely the Faber–Krahn type inequality for the first Dirichlet eigenvalue
of the Finsler-Laplacian holds. See also [4] and [22]. Recently, we proved in [21] the Li–Yau–Zhong–Yang type sharp
estimate for a so-called anisotropic Laplacian on a Minkowski space, which could be viewed as the simplest, but
interesting and important case of non-Riemannian Finsler manifolds. In this paper, we shall generalize the results in
[21] to general Finsler manifolds. Moreover, as in [5] and [3], we shall put the Li–Yau–Zhong–Yang type and the
Lichnerowicz type sharp estimates into a uniform framework.

Our main result of this paper is

Theorem 1.1. Let (Mn,F,m) be an n-dimensional compact Finsler measure space, equipped with a Finsler structure
F and a smooth measure m, without boundary or with a convex boundary. Assume that RicN � K for some real
numbers N ∈ [n,+∞] and K ∈ R. Let λ1 be the first (nonzero) Neumann eigenvalue of the Finsler-Laplacian �m,
i.e.,

−�mu = λ1u, in M, (1)

with a Neumann boundary condition

∇u(x) ∈ Tx(∂M), (2)

if ∂M is not empty. Then

λ1 � λ1(K,N,d), (3)

where d is the diameter of M , λ1(K,N,d) represents the first (nonzero) eigenvalue of the 1-dimensional problem

v′′ − T (t)v′ = −λ1(K,N,d)v in

(
−d

2
,
d

2

)
, v′

(
−d

2

)
= v′

(
−d

2

)
= 0, (4)

with T (t) varying according to different values of K and N . T is explicitly defined by

T (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
(N − 1)K tan(

√
K

N−1 t), for K > 0, 1 < N < ∞,

−√−(N − 1)K tanh(

√
− K

N−1 t), for K < 0, 1 < N < ∞,

0, for K = 0, 1 < N < ∞,

Kt, for N = ∞.

(5)

The precise definition of the Finsler measure space, convex boundary, diameter d , weighted Ricci curvature RicN ,
gradient vector field ∇ , Finsler-Laplacian �m will be given in Section 2 below.

Equivalently, Theorem 1.1 gives an optimal Poincaré inequality in Finsler manifolds.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, we have∫
M

F 2(∇u)dm � λ1(K,N,d)

∫
M

(u − ū)2 dm, (6)

where ū is the average of u.

In the case of K > 0 and N = n, Theorem 1.1 sharpens the Lichnerowicz type estimate given by Ohta [14], since
by Meyer theorem, d � π√ , and λ1(K,N,d) � λ1(K,n, π√ ) = nK . In the case of K = 0 and N = n,
(n−1)K (n−1)K n−1
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Theorem 1.1 gives the Li–Yau–Zhong–Yang type sharp estimate for the Finsler-Laplacian, since λ1(0, n, d) = π2

d2 . We
remark that the Minkowski space (Rn,F ) equipped with the n-dimensional Lebesgue measure satisfies that RicN � K

with K = 0 and N = n (see e.g. [23] theorem on page 908 and [14, Theorem 1.2]), hence Theorem 1.1 covers the
estimate in [21].

Our proof goes along the line of Bakry–Qian [3]. The technique is based on a comparison theorem on the gradient
of the first eigenfunction with that of a one-dimensional (1-D) model function (Theorem 3.1), which was developed
by Kröger [8] and improved by Chen–Wang [5] and Bakry–Qian [3]. By using a Bochner–Weitzenböck formula es-
tablished recently by Ohta–Sturm [16], we find that the one-dimensional model coincides with that in the Riemannian
case, as presented in Theorem 1.1. It should be not so surprising, because when we consider F in R, it can only be
two pieces of linear functions. Since the 1-D model has been extensively studied in [3], it also eases our situation,
although we deal with a nonlinear operator. One difficulty arises when we deal with the Neumann boundary prob-
lem, since the convexity of boundary could not be directly applied due to the difference between the metric induced
from the boundary itself and the metric induced from the gradient of the first eigenfunction. We will establish some
equivalence between them (see Lemmas 3.1 and 3.2) to overcome this difficulty. Another ingredient is a comparison
theorem on the maxima of eigenfunction with that of the 1-D model function (Theorem 3.2). Everything in [3] works
except the boundedness of the Hessian of eigenfunctions around a critical point (since the eigenfunction is only C1,α

among M), which was used to prove (25). Here we avoid the use of the Hessian of eigenfunctions by using the com-
parison theorem on the gradient. For the rest we follow step by step the work of Bakry–Qian [3] to get Theorem 1.1.

This paper is organized as follows. In Section 2, the fundamentals in Finsler geometry is briefly introduced and
the recent work of Ohta–Sturm is reviewed. We shall first prove the comparison theorem on the gradient and on the
maxima of the eigenfunction and then Theorem 1.1 in Section 3.

2. Preliminaries on Finsler geometry

In this section we briefly recall the fundamentals of Finsler geometry, as well as the recent developments on the
analysis of Finsler geometry by Ohta–Sturm [14–16]. For Finsler geometry, we refer to [1] and [19].

2.1. Finsler structure and Chern connection

Let Mn be a smooth, connected n-dimensional manifold. A function F :T M → [0,∞) is called a Finsler structure
if it satisfies the following properties:

(i) F is C∞ on T M \ {0};
(ii) F(x, tV ) = tF (x,V ) for all (x, y) ∈ T M and all t > 0;

(iii) for every (x,V ) ∈ T M \ {0}, the matrix

gij (V ) := ∂2

∂Vi∂Vj

(
1

2
F 2

)
(x,V )

is positive definite.

Such a pair (Mn,F ) is called a Finsler manifold. A Finsler structure is said to be reversible if, in addition, F is even.
Otherwise F is nonreversible. By a Finsler measure space we mean a triple (Mn,F,m) constituted with a smooth,
connected n-dimensional manifold M , a Finsler structure F on M and a measure m on M .

For x1, x2 ∈ M , the distance function from x1 to x2 is defined by

d(x1, x2) := inf
γ

1∫
0

F
(
γ̇ (t)

)
dt,

where the infimum is taken over all C1-curves γ : [0,1] → M such that γ (0) = x1 and γ (1) = x2. Note that the
distance function may not be symmetric unless F is reversible. A C∞-curve γ : [0,1] → M is called a geodesic if
F(γ̇ ) is constant and it is locally minimizing. The diameter of M is defined by
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d := sup
x,y∈M

d(x, y).

The forward and backward open balls are defined by

B+(x, r) := {
y ∈ M: d(x, y) < r

}
, B−(x, r) := {

y ∈ M: d(y, x) < r
}
.

We denote B±(x, r) := B+(x, r) ∪ B−(x, r).
For every nonvanishing vector field V , gij (V ) induces a Riemannian structure gV of TxM via

gV (X,Y ) =
n∑

i,j=1

gij (V )XiY j , for X,Y ∈ TxM.

In particular, gV (V,V ) = F 2(V ).
Let π :T M \ {0} → M the projection map. The pull-back bundle π∗T M admits a unique linear connection, which

is the Chern connection. The Chern connection is determined by the following structure equations, which characterize
“torsion freeness”:

DV
XY − DV

Y X = [X,Y ] (7)

and “almost g-compatibility”

Z
(
gV (X,Y )

) = gV

(
DV

Z X,Y
) + gV

(
X,DV

Z Y
) + CV

(
DV

Z V,X,Y
)

(8)

for V ∈ T M \ {0}, X,Y,Z ∈ T M . Here

CV (X,Y,Z) := Cijk(V )XiY jZk = 1

4

∂3F 2

∂V iV jV k
(V )XiY jZk

denotes the Cartan tensor and DV
XY the covariant derivative with respect to reference vector V ∈ T M \ {0}. We

mention here that CV (V,X,Y ) = 0 due to the homogeneity of F . In terms of the Chern connection, a geodesic γ

satisfies D
γ̇
γ̇ γ̇ = 0. For local computations in Finsler geometry, we refer to [19].

2.2. Hessian and Finsler-Laplacian

We shall introduce the Finsler-Laplacian on Finsler manifolds. First of all, we recall the notion of the Legendre
transform.

Given a Finsler structure F on M , there is a natural dual norm F ∗ on the cotangent space T ∗M , which is defined
by

F ∗(x, ξ) := sup
F(x,V )�1

ξ(V ) for any ξ ∈ T ∗
x M.

One can show that F ∗ is also a Minkowski norm on T ∗M and

g∗
ij (ξ) := ∂2

∂ξi∂ξj

(
1

2
F ∗2

)
(x, ξ)

is positive definite for every (x, ξ) ∈ T ∗M \ {0}.
The Legendre transform is defined by the map l :TxM → T ∗

x M :

l(V ) :=
{

gV (V, ·) for V ∈ TxM \ {0},
0 for V = 0.

One can verify that F(V ) = F ∗(l(V )) for any V ∈ T M and g∗
ij (x, l(V )) is the inverse matrix of gij (x,V ).

Let u :M → R be a smooth function on M and Du be its differential 1-form. The gradient of u is defined as
∇u(x) := l−1(Du(x)) ∈ TxM . Denote Mu := {Du 
= 0}. Locally we can write in coordinates

∇u =
n∑

gij (x,∇u)
∂u

∂xi

∂

∂xj

in Mu.
i,j=1
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The Hessian of u is defined by using Chern connection as

∇2u(X,Y ) = g∇u

(
D∇u

X ∇u,Y
)
. (9)

One can show that ∇2u(X,Y ) is symmetric, see [22] and [16]. Indeed, using (7) and (8) and noticing that
C∇u(∇u,X,Y ) = 0, we have

g∇u

(
D∇u

X ∇u,Y
) = X

(
g∇u(∇u,Y )

) − g∇u

(∇u,D∇u
X Y

)
= XY(u) − g∇u

(∇u,D∇u
Y X + [X,Y ])

= YX(u) + [X,Y ](u) − g∇u

(∇u,D∇u
Y X

) − [X,Y ](u)

= Y
(
g∇u(∇u,X)

) − g∇u

(∇u,D∇u
Y X

) = g∇u

(
D∇u

Y ∇u,X
)
.

In order to define a Laplacian on Finsler manifolds, we need a measure m (or a volume form dm) on M . From
now on, we consider the Finsler measure space (M,F,m) equipped with a fixed smooth measure m. Let V ∈ T M be
a smooth vector field on M . The divergence of V with respect to m is defined by

divm V dm = d(V �dm),

where V �dm denotes the inner product of V with the volume form dm. In a local coordinate (xi), expressing dm =
eΦ dx1 dx2 · · ·dxn, we can write divm V as

divm V =
n∑

i=1

(
∂V i

∂xi
+ V i ∂Φ

∂xi

)
.

A Laplacian, which is called the Finsler-Laplacian, can now be defined by

�mu := divm(∇u).

We remark that the Finsler-Laplacian is better to be viewed in a weak sense that for u ∈ W 1,2(M),∫
M

φ�mudm = −
∫
M

Dφ(∇u)dm for φ ∈ C∞
c (M).

The relationship between �mu and ∇2u is that

�mu + DΨ (∇u) = trg∇u

(∇2u
) =

n∑
i=1

∇2u(ei, ei),

where Ψ is defined by dm = e−Ψ (V )d VolgV
and {ei} is an orthonormal basis of TxM with respect to g∇u. See e.g.

[22, Lemma 3.3].
Given a vector field V , the weighted Laplacian is defined on the weighted Riemannian manifold (M,gV ,m) by

�V
mu := divm

(∇V u
)
,

where

∇V u :=
{∑n

i,j=1 gij (x,V ) ∂u
∂xi

∂
∂xj

for x ∈ Mu,

0 for x ∈ M \ Mu.

Similarly, the weighted Laplacian can be viewed in a weak sense that for u ∈ W 1,2(M). We note that �∇u
m u = �mu.

2.3. Finsler manifolds with boundary

Assume that (M,F,m) is a Finsler measure space with boundary ∂M , then we shall view ∂M as a hypersurface
embedded in M . ∂M is also a Finsler manifold with a Finsler structure F∂M induced by F . For any x ∈ ∂M , there
exists exactly two unit normal vectors ν, which are characterized by

Tx(∂M) = {
V ∈ TxM: gν(ν,V ) = 0, gν(ν, ν) = 1

}
.
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Throughout this paper, we choose the normal vector that points outward M . Note that, if ν is a normal vector, −ν may
be not a normal vector unless F is reversible.

The normal vector ν induces a volume form dmν on ∂M from dm by

V �dm = gν(ν,V )dmν, for all V ∈ T (∂M).

One can check that Stokes theorem holds (see [19, Theorem 2.4.2])∫
M

divm(V )dm =
∫

∂M

gν(ν,V )dmν.

We recall the convexity of the boundary of M .
The normal curvature Λν(V ) at x ∈ ∂M in a direction V ∈ Tx(∂M) is defined by

Λν(V ) = gν

(
ν,D

γ̇
γ̇ γ̇ (0)

)
, (10)

where γ is the unique local geodesic for the Finsler structure F∂M on ∂M induced by F with the initial data γ (0) = x

and γ̇ (0) = V .
M is said to has convex boundary if for any x ∈ ∂M , the normal curvature Λν at x is nonpositive in any directions

V ∈ Tx(∂M). We remark that the convexity of M means that D
γ̇

γ̇ γ̇ (0) lies at the same side of TxM as M . Hence the
choice of normal is not essential for the definition of convexity. (See Lemma 3.2 below.) There are several equivalent
definitions of convexity, see for example [2] and [19].

2.4. Weighted Ricci curvature

The Ricci curvature of Finsler manifolds is defined as the trace of the flag curvature. Explicitly, given two linearly
independent vectors V,W ∈ TxM \ {0}, the flag curvature is defined by

KV (V,W) = gV (RV (V,W)W,V )

gV (V,V )gV (W,W) − gV (V,W)2
,

where RV is the Chern curvature (or Riemannian curvature):

RV (X,Y )Z = DV
XDV

Y Z − DV
Y DV

XZ − DV[X,Y ]Z.

Then the Ricci curvature is defined by

Ric(V ) :=
n−1∑
i=1

KV (V, ei),

where e1, . . . , en−1,
V

F(V )
form an orthonormal basis of TxM with respect to gV .

We recall the definition of the weighted Ricci curvature on Finsler manifolds, which was introduced by Ohta
in [14], motivated by the work of Lott–Villani [12] and Sturm [20] on metric measure spaces.

Definition 2.1. (See [14].) Given a unit vector V ∈ TxM , let η : [−ε, ε] → M be the geodesic such that η̇(0) = V .
Decompose m as m = e−Ψ d volη̇ along η, where volη̇ is the volume form of gη̇ as a Riemannian metric. Then

Ricn(V ) :=
{

Ric(V ) + (Ψ ◦ η)′′(0) if (Ψ ◦ η)′(0) = 0,

−∞ otherwise;
RicN(V ) := Ric(V ) + (Ψ ◦ η)′′(0) − (Ψ ◦ η)′(0)2

N − n
, for N ∈ (n,∞),

Ric∞(V ) := Ric(V ) + (Ψ ◦ η)′′(0).

For c � 0 and N ∈ [n,∞], define

RicN(cV ) := c2RicN(V ).

Ohta proved in [14] that, for K ∈ R, the bound RicN(V ) �KF 2(V ) is equivalent to Lott–Villani and Sturm’s weak
curvature-dimension condition CD(K,N).
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2.5. Bochner–Weitzenböck formula

The following Bochner–Weitzenböck type formula, established by Ohta–Sturm in [16], plays an important role in
this paper.

Theorem 2.1. (See [16, Theorem 3.6].) Given u ∈ W
2,2
loc (M) ∩ C1(M) with �mu ∈ W

1,2
loc (M), we have

−
∫
M

Dη

(
∇∇u

(
F 2(x,∇u)

2

))
dm =

∫
M

η
{
D(�mu)(∇u) + Ric∞(∇u) + ∥∥∇2u

∥∥2
HS(∇u)

}
dm

as well as

−
∫
M

Dη

(
∇∇u

(
F 2(x,∇u)

2

))
dm�

∫
M

η

{
D(�mu)(∇u) + RicN(∇u) + (�mu)2

N

}
dm

for any N ∈ [n,∞] and all nonnegative functions η ∈ W
1,2
c (M) ∩ L∞(M). Here ‖∇2u‖2

HS(∇u) denotes the Hilbert–
Schmidt norm with respect to g∇u.

Based on Bochner–Weitzenböck formula, a similar argument as Bakry–Qian [3, Theorem 6], leads to a refined
inequality, which was referred to as an extended curvature-dimension inequality there. Another direct proof was also
given in [21, Lemma 2.3].

Theorem 2.2. Assume that RicN � K for some N ∈ [n,∞] and some K ∈ R. Given u ∈ W
2,2
loc (M) ∩ C1(M) with

�mu ∈ W
1,2
loc (M), we have

−
∫
M

Dη

(
∇∇u

(
F 2(x,∇u)

2

))
dm�

∫
M

η

{
D(�mu)(∇u) + KF(∇u)2 + (�mu)2

N

+ N

N − 1

(
�mu

N
− D(F 2(x,∇u))(∇u)

2F 2(x,∇u)

)2}
dm (11)

for any N ∈ [n,∞] and all nonnegative functions η ∈ W
1,2
c (M) ∩ L∞(M).

3. Proof of Theorem 1.1

We first remark that a weak eigenfunction u ∈ W 1,2(M) of Finsler-Laplacian defined in (1) has regularity that
u ∈ C1,α(M) ∩ W 2,2(M) ∩ C∞(Mu) (see [6]).

Let us recall the 1-D models LK,N described in [3]. Let K ∈R and N ∈ (1,∞].

(i) For K > 0 and 1 < N < ∞, LK,N is defined on (− π

2
√

K/(N−1)
, π

2
√

K/(N−1)
) by

LK,N(v)(t) = v′′ − √
K(N − 1) tan

(√
K

N − 1
t

)
v′;

(ii) For K < 0 and 1 < N < ∞, LK,N is defined on (−∞,0) ∪ (0,∞) by

LK,N(v)(t) = v′′ − √−K(N − 1) coth

(√
− K

N − 1
t

)
v′

and on (−∞,∞) by

LK,N(v)(t) = v′′ − √−K(N − 1) tanh

(√
− K

N − 1
t

)
v′;
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(iii) For K = 0 and 1 < N < ∞, LK,N is defined on (−∞,0) ∪ (0,∞) by

LK,N(v)(t) = v′′ + N − 1

t
v′

and on (−∞,∞) by

LK,N(v)(t) = v′′;
(iv) For K 
= 0 and N = ∞, LK,N is defined on (−∞,∞) by

LK,N(v)(t) = v′′ − Ktv′;
(v) For K = 0 and N = ∞, LK,N is defined on (−∞,∞) by

LK,N(v)(t) = v′′ − cv′

for any constant c.

For convenience, we write LK,N(v)(t) = v′′ − T (t)v′. It is easy to check that T ′ = K + T 2

N−1 . Denote by μK,N the

invariant measure associated with LK,N , that is, a measure satisfying
∫ b

a
LK,N(v) dμK,N = 0 for v′(a) = v′(b) = 0.

For instance, in the case (i), dμK,N = cosN−1(

√
K

N−1 t) dt .
The following gradient comparison theorem plays the most crucial role in the proof of our main theorem.

Theorem 3.1. Let (M,F,m) and λ1 be as in Theorem 1.1 and u be the eigenfunction. Let v be a solution of the 1-D
model problem on some interval (a, b):

LK,N(v) = −λ1v, v′(a) = v′(b) = 0, v′ > 0. (12)

Assume that [minu,maxu] ⊂ [minv,maxv], then

F
(
x,∇u(x)

)
� v′(v−1(u(x)

))
. (13)

Proof. First, since
∫
M

u = 0, minu < 0 while maxu > 0. We may assume that [minu,maxu] ⊂ (minv,maxv) by
multiplying u by a constant 0 < c < 1. If we prove the result for this u, then letting c → 1 implies the original
statement.

Under the condition [minu,maxu] ⊂ (minv,maxv), v−1 is smooth on a neighborhood U of [minu,maxu].
Consider P(x) = ψ(u)( 1

2F 2(x,∇u)−φ(u)), where ψ,φ ∈ C∞(U) are two positive smooth functions to be deter-
mined later. We first consider the case that P attains its maximum at x0 ∈ M , then study the case that x0 ∈ ∂M if ∂M

is not empty.
Case 1. P attains its maximum at x0 ∈ M .
Due to the lack of regularity of u, we shall compute in the distributional sense. Let η be any nonnegative function

in W
1,2
c (M) ∩ L∞(M). We first compute − ∫

M
Dη(∇∇uP )dm.

−
∫
M

Dη
(∇∇uP

)
dm = −

∫
M

(
ψ ′

ψ
P − ψφ′

)
Dη(∇u) + ψDη

(
∇∇u

(
1

2
F 2(x,∇u)

))
dm

=
∫
M

−D

[(
ψ ′

ψ
P − ψφ′

)
η

]
(∇u) + ηD

(
ψ ′

ψ
P − ψφ′

)
(∇u)

− D(ψη)

(
∇∇u

(
1

2
F 2(x,∇u)

))
+ ηDψ

(
∇∇u

(
1

2
F 2(x,∇u)

))
dm

:= I + II + III + IV.
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By using Du(∇u) = F 2(x,∇u) = 2(P
ψ

+ φ) and �mu = −λ1u in weak sense, we compute

I =
∫
M

−λ1u

(
ψ ′

ψ
P − ψφ′

)
η dm,

II =
∫
M

η

[((
ψ ′′

ψ
− ψ ′2

ψ2

)
P − ψφ′′ − ψ ′φ′

)
Du(∇u) + ψ ′

ψ
DP(∇u)

]
dm

=
∫
M

η

[
2

((
ψ ′′

ψ
− ψ ′2

ψ2

)
P − ψφ′′ − ψ ′φ′

)(
P

ψ
+ φ

)
+ ψ ′

ψ
DP(∇u)

]
dm,

IV =
∫
M

ηψ ′
[

1

ψ
Du

(∇∇uP
) +

(
− ψ ′

ψ2
P + φ′

)
Du(∇u)

]
dm

=
∫
M

{
2ηψ ′

(
− ψ ′

ψ2
P + φ′

)(
P

ψ
+ φ

)
+ terms of DP(∇u)

}
dm.

For the term III, we apply the refined integral Bochner–Weitzenböck formula (11) to derive

III �
∫
M

ψη

[
D(�mu)(∇u) + KF 2 + (�mu)2

N
+ N

N − 1

(
�mu

N
− D(F 2(x,∇u))(∇u)

2F 2(x,∇u)

)2]
dm

=
∫
M

ψη

[
2(K − λ1)

(
P

ψ
+ φ

)
+ λ2

1u
2

N
+ N

N − 1

(−λ1u

N
−

(
− ψ ′

ψ2
P + φ′

)
− 1

ψF 2
DP(∇u)

)2]
dm

=
∫
M

ψη

[
2(K − λ1)

(
P

ψ
+ φ

)
+ λ2

1u
2

N − 1
+ N

N − 1

(
− ψ ′

ψ2
P + φ′

)2

+ 2

N − 1
λ1u

(
− ψ ′

ψ2
P + φ′

)
+ terms of DP(∇u)

]
dm.

Combining all we obtain

−
∫
M

Dη
(∇∇uP

)
dm �

∫
M

η

{
1

ψ

[
2
ψ ′′

ψ
−

(
4 − N

N − 1

)
ψ ′2

ψ2

]
P 2

+
[

2φ

(
ψ ′′

ψ
− 2

ψ ′2

ψ2

)
− N + 1

N − 1

ψ ′

ψ
λu − 2N

N − 1

ψ ′

ψ
φ′ + 2(K − λ1) − 2φ′′

]
P

+ ψ

[
1

N − 1
λ2

1u
2 + N + 1

N − 1
λ1uφ′ + N

N − 1
φ′2 + 2(K − λ1)φ − 2φφ′′

]

+ terms of DP(∇u)

}
dm

:= −
∫
M

{
a1P

2 + a2P + a3 + terms of DP(∇u)
}
dm. (14)

Therefore,

�∇u
m P + terms of DP(∇u) = a1P

2 + a2P + a3 (15)

holds in the distributional sense in M .
We claim that at the maximum point x0 of P ,

a1P
2 + a2P + a3 � 0. (16)
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In fact, if not, then in a neighborhood U of x0, a1P
2 +a2P +a3 > 0. It follows from (15) that the function P is a strict

subsolution to an elliptic operator in U . By maximum principle, P(x0) < max∂U P , which contradicts the maximality
of P(x0).

It is interesting to see that the coefficients ai , i = 1,2,3, coincide with that appeared in the Riemannian case (see
e.g. [3, Lemma 1]). The next step is to choose suitable positive functions ψ and φ such that a1, a2 > 0 everywhere
and a3 = 0, which has already been done in [3]. For completeness, we sketch the main idea here.

Choose φ(u) = 1
2v′(v−1(u))2, where v is a solution of 1-D problem (12). One can compute that

φ′(u) = v′′(v−1(u)
)
, φ′′(u) = v′′′

v′
(
v−1(u)

)
.

Set t = v−1(u) and u = v(t) then

a3(t)

ψ
= 1

N − 1
λ2

1v
2 + N + 1

N − 1
λ1vv′′ + N

N − 1
v′′2 + (K − λ1)v

′2 − v′v′′′

= −v′(v′′ − T v′ + λ1v
)′ + 1

N − 1

(
v′′ − T v′ + λ1v

)(
Nv′′ + T v′ + λ1v

) = 0.

Here we have used that T satisfies T ′ = K + T 2

N−1 . For a1, a2, we introduce

X(t) = λ1
v(t)

v′(t)
, ψ(u) = exp

(∫
h
(
v(t)

))
, f (t) = −h

(
v(t)

)
v′(t).

With these notations, we have

f ′ = −h′v′2 + f (T − X),

v′∣∣2
v−1a1ψ = 2f (T − X) − N − 2

N − 1
f 2 − 2f ′ := 2

(
Q1(f ) − f ′),

a2 = f

(
3N − 1

N − 1
T − 2X

)
− 2T

(
N

N − 1
T − X

)
− f 2 − f ′ := Q2(f ) − f ′.

We may now use Corollary 3 in [3], which says that there exists a bounded function f on [minu,maxu] ⊂
(minv,maxv) such that f ′ < min{Q1(f ),Q2(f )}.

In view of (16), we know that by our choice of ψ and φ, P(x0) � 0, and hence P(x) � 0 for every x ∈ M , which
leads to (13).

Case 2. ∂M 
= ∅ and x0 ∈ ∂M .
To handle this case, we need to define a new normal vector field on ∂M , that is normal with respect to the Rieman-

nian metric g∇u. To be more general, for every X ∈ T M , there is a unique normal vector field νX such that

gX(νX,Y ) = 0 for any Y ∈ T (∂M), gX(νX, νX) = 1, gν(ν, νX) > 0. (17)

A simple calculation shows that

gX(ν, νX) > 0. (18)

Indeed, let νX = Z + aν for some a ∈ R and Z ∈ T (∂M). (17) tells that a > 0. Hence gX(ν, νX) = gX( 1
a
(νX −

Z), νX) = 1
a

> 0.
The following lemma follows directly from the definition of ν and νX .

Lemma 3.1. Let X,Y ∈ T M . Then

gν(ν,Y ) = 0 ⇔ Y ∈ T (∂M) ⇔ gX(νX,Y ) = 0. �
Define four sets

T ν±M := {
Y ∈ T M: gν(ν,Y ) > 0(< 0)

}
and
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T
νX± M := {

Y ∈ T M: gX(νX,Y ) > 0(< 0)
}
.

We have the following simple but important observation, which may be familiar to expects.

Lemma 3.2. T ν+M = T
νX+ M, T ν−M = T

νX− M .

Proof. We first claim that either T ν+M ⊂ T
νX+ M or T ν+M ⊂ T

νX− M . Otherwise, there are two vector fields Y1, Y2 ∈
T ν+M , such that gX(νX,Y1) > 0 and gX(νX,Y2) < 0. Then by the continuity of gX(νX, ·) in T ν+M , there exists Y ∈
T ν+M with gX(νX,Y ) = 0, which means gν(ν,Y ) = 0 from Lemma 3.1. A contradiction. Taking into consideration
that ν ∈ T

νX+ M , we see that T ν+M ⊂ T
νX+ M . A similar argument implies that T

νX+ M ⊂ T ν+M . The second equivalence
follows in a similar way. �

Return to the case when P attains its maximum at x0 ∈ ∂M . If ∇u(x0) = 0, nothing needs to be proved. Thus we
assume x0 ∈ Mu. Recall that P ∈ C∞(Mu). Since ν∇u points outward due to its definition, by taking normal derivative
of P with respect to ν∇u, we have

DP(ν∇u)(x0) � 0.

On one hand, the Neumann boundary condition ∇u ∈ T (∂M) implies that

g∇u(ν∇u,∇u)(x) = 0,

or equivalently,

Du(ν∇u)(x) = 0 for x ∈ ∂M.

Thus we have

DP(ν∇u)(x0) = 1

2
ψ(u)

(
D

(
F 2(∇u)

)
(ν∇u)

)
(x0). (19)

On the other hand, using (8) and the symmetry of ∇2u, we have

D
(
F 2(∇u)

)
(ν∇u) = D

(
g∇u(∇u,∇u)

)
(ν∇u) = 2g∇u

(
D∇u

ν∇u
(∇u),∇u

) = 2g∇u

(
D∇u∇u(∇u), ν∇u

)
. (20)

By the convexity of ∂M , for any X ∈ T (∂M), gν(ν,DX
XX)� 0. In particular, set X = ∇u, we know that

gν

(
ν,D∇u∇u(∇u)

)
� 0. (21)

It follows from Lemmas 3.1 and 3.2 that (21) is equivalent to

g∇u

(
ν∇u,D

∇u∇u(∇u)
)
� 0. (22)

Combining (19), (20) and (22), we conclude that DP(ν∇u)(x0) ≤ 0, and hence DP(ν∇u)(x0) = 0. The tangent
derivatives of P obviously vanish due to its maximality. Hence we have also

∇P(x0) = 0.

Thus the proof for Case 1 works in this case. This finishes the proof of Theorem 3.1. �
Another ingredient is a comparison theorem for the maxima of the eigenfunctions.

Theorem 3.2. Let (M,F,m),λ1 be as in Theorem 1.1 and 1 < N < ∞. Let v = vK,N be a solution of the 1-D model
problem on some interval (a, b) LK,Nv = −λ1v, with initial data v(a) = −1, v′(a) = 0, where

a =
{− π

2
√

K/(N−1)
for K > 0,

0 for K � 0

and b = b(a) be the first number after a with v′(b) = 0. Denote mK,N = vK,N(b) = max(v). Assume that λ1 >

max{ KN ,0} and min(u) = −1. Then maxu � mK,N .

N−1
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Proof. We argue by contradiction. Suppose max(u) < mK,N . Then [minu,maxu] ⊂ [minv,maxv]. The condition
λ1 > max{ KN

N−1 ,0} ensures that

b �
{

π

2
√

K/(N−1)
for K > 0,

∞ for K � 0,

which in turn ensures that v′ > 0 in (a, b). Hence we could apply Theorem 3.1 for u and v.
The same argument as Theorem 12 in [3] implies that the ratio

R(c) =
∫
{u�c} udm∫

{v�c} v dμK,N

is increasing on [min(u),0] and decreasing on [0,max(u)]. Therefore, for c � − 1
2 , we have that

m
({u� c})� 2

∫
{u�c}

|u|dm� 2R(0)

∫
{v�c}

|v|dμK,N � 2R(0)μK,N

({v � c}). (23)

Let c = −1 + ε for ε > 0 small. A simple calculation gives that v′′(a) = λ1
N

. Hence for t close to a, v′′(t) has positive
lower and upper bound. Together with v′(a) = 0, we see that v(t) − v(a)� C(t − a)2. Thus if t ∈ {v � −1 + ε}, then

t ∈ (a, a + Cε
1
2 ). It follows that

μK,N

({v � −1 + ε})� μK,N

((
a, a + Cε

1
2
))

� CεN/2. (24)

On the other hand, we shall prove that

m
({u� −1 + ε})�m

(
B±(

x0,Cε
1
2
))

. (25)

Let x0 ∈ M be such that u(x0) = −1. For any x ∈ B±(x0, δ) with δ small, u(x) is close to −1 and s := v−1(u(x)) is
close to a. Thus we see again from the upper bound of v′′ and v′(a) = 0 that v′(s) � C(s−a). Therefore, we have from
Theorem 3.1 that F(x,∇u(x)) � v′(v−1(u(x))) � C(s − a) and F(x,∇v−1(u(x))) = (v−1)′(u(x))F (x,∇u(x)) � 1.
In turn, we get

s − a = v−1(u(x)
) − v−1(u(x0)

)
� F

(
x̃,∇v−1(u(x̃)

))
δ � δ,

and

u(x) � u(x0) + F
( ˜̃x,∇u( ˜̃x)

)
δ � −1 + C(s − a)δ � −1 + Cδ2,

for some x̃, ˜̃x ∈ B±(x0, δ). Let ε = Cδ2, we conclude B±(x0, δ) ⊂ {u� −1 + ε}, which implies (25).
Combining (23), (24) and (25), we see that there exists some constant C > 0 such that

m
(
B±(x0, r)

)
� CrN . (26)

This will lead to a contradiction. In fact, since max(u) < mK,N and mK,N is continuous with respect to (K,N), we
also have that max(u) < mK,N ′ for any N ′ > N close to N . Argued as before, we will obtain (26) with N ′ instead
of N , i.e.

m
(
B±(x0, r)

)
� CrN ′

. (27)

However, the volume comparison theorem for Finsler manifolds under the assumption of lower bound for RicN (see
[14, Theorem 7.3]), implies that m(B±(x0, r)) � CrN for r > 0 small. A contradiction to (27). The previous argument
also works in the case x0 ∈ ∂M . The proof is completed. �

Besides the comparison theorem on the gradient and maxima, in order to prove Theorem 1.1, we also need some
properties of the 1-D models, which has been extensively studied in [3]. We refer to [3] for the elementary properties,
meanwhile we list two of them, one presents the full range of the maximum function mK,N , the other reveals that the
central interval has the lowest first Neumann eigenvalue.
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Lemma 3.3. (See [3, Section 3].) Assume 1 < N < ∞ (N = ∞ resp.) and fix λ > max{ KN
N−1 ,0}. Let v,m be as in

Theorem 3.2. Then for any k ∈ [m, 1
m

] ((0,∞), resp.), there exists an interval which has the first Neumann eigenvalue
λ and a corresponding eigenfunction ṽ such that min ṽ = −1,max ṽ = k.

Lemma 3.4. (See [3, Theorem 13].) Let λ1(K,N,a, b) denotes the first Neumann eigenvalue of LK,N on the interval
(a, b). Then λ1(K,N,a, b) � λ1(K,N,− b−a

2 , b−a
2 ) = λ1(K,N,b − a).

We now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we may assume that minu = −1 and 0 < maxu := k � 1. It
was shown by Ohta [14, Corollary 8.5], that λ1 � NK

N−1 in the case of K > 0. Choose K̃ < K close to K , we have

λ1 > max{ K̃N
N−1 ,0}. Therefore, Theorem 3.2 and Lemma 3.3 imply that there exists an interval [a, b] which has the

first Neumann eigenvalue λ1 and a corresponding eigenfunction v such that minv = −1 = minu, maxv = maxu = k.
Choose x1, x2 ∈ M with u(x1) = minu,u(x2) = k and γ (t) : [0,1] → M the minimal geodesic from x1 to x2. Consider
the subset I of [0,1] such that d

dt
u(γ (t))� 0. By using Theorem 3.1, we have

d �
1∫

0

F
(
γ̇ (t)

)
dt �

∫
I

F
(
γ̇ (t)

)
dt �

1∫
0

1

F ∗(Du)
Du

(
γ̇ (t)

)
dt =

k∫
−1

1

F(∇u)
du

�
k∫

−1

1

v′(v−1(u))
du =

b∫
a

dt = b − a.

A general property says that λ1(K̃,N,d) is monotone decreasing with respect to d . Hence λ1(K̃,N,b − a) �
λ1(K̃,N,d). Finally, it follows from Lemma 3.4 that

λ1 � λ1(K̃,N,b − a)� λ1(K̃,N,d).

By letting K̃ → K , we get the conclusion λ1 � λ1(K,N,d). �
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