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Abstract

This work investigates properties of a smectic C* liquid crystal film containing defects that cause distinctive spiral patterns in the
film’s texture. The phenomena are described by a Ginzburg–Landau type model and the investigation provides a detailed analysis
of minimal energy configurations for the film’s director field. The study demonstrates the existence of a limiting location for the
defects (vortices) so as to minimize a renormalized energy. It is shown that if the degree of the boundary data is positive then
the vortices each have degree +1 and that they are located away from the boundary. It is proved that the limit of the energies for
a sequence of minimizers minus the sum of the energies around their vortices, as the G–L parameter ε tends to zero, is equal to the
renormalized energy for the limiting state.

Résumé

Dans ce travail on étudie les propriétés d’un film de cristaux liquides smectiques C* contenant des défauts qui produisent des
motifs en spirale dans la texture du film. Les phénomènes sont décrits par un modèle de type Ginzburg–Landau dans un domaine
borné du plan, et cet article fournit une analyse détaillée des configurations d’énergie minimale du champ de directions du film. On
montre l’existence d’une configuration limite pour les défauts (tourbillons) qui minimise une énergie renormalisée. On démontre
que si le degré du champ sur le bord du domaine est positif, alors les tourbillons sont dans l’intérieur du domaine et sont chacun
de degré +1. On prouve que quand le paramètre ε de Ginzburg–Landau tend vers zéro, pour une suite de minimiseurs, la limite de
l’énergie moins la somme des énergies autour des tourbillons est égale à l’énergie renormalisée de l’état limite.

1. Introduction

We study the occurrence of point defects in a thin ferroelectric smectic C* (Sm C∗) liquid crystal by using a di-
rector field description based on the Ginzburg–Landau theory. The unknown function u is a vector field in R

2. When
convenient, for ease of notation, we view it as a C-valued function such that u = u1(x1, x2) + iu2(x1, x2) for (x1, x2)

in a bounded domain Ω in R2. We assume Ω has a smooth (C3) boundary in the plane and that Ω represents the
reference configuration of a very thin liquid crystal material.
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We analyze minimizers for a Ginzburg–Landau type energy,

Jε(u) = 1

2

∫
Ω

(
ks(divu)2 + kb(curlu)2 + 1

2ε2

(
1 − |u|2)2

)
dx =

∫
Ω

jε(u,∇u)dx, (1.1)

where ks and kb represent the two-dimensional splay and bend moduli for the film respectively, with ks, kb > 0.
Here Jε(·) is defined for u ∈ H 1

g (Ω;R2), consisting of fields u ∈ H 1(Ω;R2) with Dirichlet boundary conditions,

u|∂Ω = g ∈ C3(∂Ω;S1) such that deg(g, ∂Ω) = d > 0. The variable ε > 0 represents the radius of the defect cores.
Previous work has considered the case where ks = kb , reducing to the classical Ginzburg–Landau functional [1–5].
Our work focuses on the cases where ks �= kb . The elastic energy term of (1.1) is used to model thin film liquid crystals
with chirality, such as an Sm C∗ material. The resulting pattern consists of a family of point defects in the film forming
vortices in the molecular texture that spiral in a fashion determined by the relative values for ks and kb; see [6].

1.1. Main results

By denoting k = min{ks, kb}, we can express (1.1) as

Jε(u) = J ε(u) + k

∫
Ω

det∇udx = J ε(u) + kπd (1.2)

for u ∈ H 1
g (Ω;R2) where

J ε(u) =
∫
Ω

j̄ε(u,∇u)dx =
⎧⎨
⎩

1
2

∫
Ω

(ks |∇u|2 + (kb − ks)(curlu)2 + 1
2ε2 (1 − |u|2)2) dx if k = ks,

1
2

∫
Ω

(kb|∇u|2 + (ks − kb)(divu)2 + 1
2ε2 (1 − |u|2)2) dx if k = kb.

(1.3)

Then u ∈ H 1
g (Ω;R2) is a minimizer of Jε(u) if and only if u is a minimizer for J ε(u). Hence, it suffices to consider

the minimizers of Eq. (1.3) and analyze this functional. In this way, by the strict convexity of the integral in (1.3), we
have the existence of a minimizer uε for each ε; see [7].

We need a detailed description of Ω . Let D ⊂R
2 be a bounded, simply connected domain with a C3 boundary Γ0.

For � = 1, . . . , k let Λ� ⊂ D be pair-wise disjoint, simply connected sets with C3 boundaries Γ�. Consider the domain
Ω = D \ ⋃k

�=1 Λ� where we take the natural orientation for ∂Ω = ⋃k
�=0 ∂Γ�, such that Γ0 is oriented counter-

clockwise and Γ� are oriented clockwise for 1 � � � k. For each g ∈ C3(∂Ω;S1) set d� := winding number of g|Γ�

with respect to the curve’s orientation, and denote the degree d(g, ∂Ω) := d = ∑k
�=0 d�. We fix k points, y� ∈ Λ�,

and set w(x) = ∏k
�=1(

x−y�

|x−y�| )
−d� = eiζ(x) for x ∈ Ω . Thus ζ is a multi-valued, harmonic expression such that ∇ζ(x)

is point-wise well defined. We use w(x) to fix specific representations of functions having boundary values with
winding numbers d� with respect to Γ� for 1 � � � k. The minimizers of the energy functional over H 1

g have a
number of structural properties that lead to the first main result of the paper.

Theorem A. Let {uε} be a sequence of minimizers for Jε(u) over H 1
g such that ε → 0. Then there is a subse-

quence {uε�
}, a function h ∈ H 1(Ω) and d points {a1, . . . , ad} ∈ Ω such that

|uε�
| → 1 uniformly on compact subsets of Ω \ {a1, . . . , ad},

and more generally uε�
(x) → u∗(x) = ei(h(x)+ζ(x)+∑d

n=1 θan (x)) (1.4)

in Cα
loc(Ω \ {a1, . . . , ad}) and in Cm

loc(Ω \ {a1, . . . , ad}) for every 0 < α < 1 and integer m � 0, in which θan = θan(x)

denotes the polar angle of x with respect to the center an.

The d-tuple a = (a1, . . . , ad) ∈ Ωd represents the point defects within the domain Ω . The energy functional, just
as in [1], has a renormalized form,

kW(b) + H(b, ks, kb) for b ∈ Ωd (1.5)

here
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W(b) = 1

2

∫
∂Ω

(
2Gb(g × ∂τ g) − (∂νGb)Gb

)
dσ + πd

−
∑
m �=n

π ln
(|bn − bm|) +

d∑
n=1

k∑
�=1

πd� ln
(|bn − y�|

)
(1.6)

and

H(b, ks, kb) = inf
φ

H (b, φ, ks, kb) =
{

infφ 1
2

∫
Ω

(ks |∇φ|2 + (kb − ks)(curlv)2) dx if k = ks,

infφ 1
2

∫
Ω

(kb|∇φ|2 + (ks − kb)(divv)2) dx if k = kb

(1.7)

where Gb(x) = ∑d
n=1 ln(|x − bn|) − ∑k

�=1 d� ln(|x − y�|), v(x) = ∏d
n=1

x−bn|x−bn|e
i(φ(x)+ζ(x)), and H (b, φ, ks, kb) is

minimized over the class of functions φ ∈ H 1(Ω) such that v = g on ∂Ω . The expression (1.5) is a variant of the
renormalized energy from [1]. Moreover the two agree for the case where ks = kb and Ω is simply connected. By the
definition of (1.5), we have that in order for the renormalized energy to be finite, bn �= bm for n �= m and bn /∈ ∂Ω for
every n. For each such set of configurations b, there exists a function hb, in a particular class of functions, such that
H(b, ks, kb) = H (b, hb, ks, kb), which leads to the second main theorem of this work.

Theorem B. Let {u�} be a sequence of minimizers for Jε�
, for which a = (a1, . . . , ad) is a limiting configuration

of distinct defects as ε� → 0 as described in Theorem A and h ∈ H 1(Ω) is as in Theorem A. Then it holds that
H(a, ks, kb) = H (a, h, ks, kb) and

lim
�→∞

(
Jε�

(u�) − kπd ln

(
1

ε�

))
= kW(a) + H(a, ks, kb) + dγ

where γ is a fixed constant associated with each of the defect core’s energy. Moreover, the renormalized energy attains
its minimum among b ∈ Ωd with distinct components at b = a.

The term kπd ln( 1
ε
) represents the energy around the vortices to leading order. The limit as ε tends to zero of

the difference between this term and (1.1) gives the remaining energy over the domain Ω minus the vortices, with
their location a, minimizing (1.5). For the case ks = kb the proofs for Theorems A and B follow from the results
in [1] and [3] if Ω is simply connected. Moreover their proofs can be extended if the domain is multiply connected.
Theorem B allows us to characterize the limiting pattern, u∗(x), near each am. This follows from the fact that h

minimizes (1.7). For the case ks = kb this implies that h is a harmonic function such that v = g on ∂Ω . Thus

u∗(ρy + am) → βmy

as ρ → 0 for each y ∈ ∂B1(0) where βm = e
i(h(am)+ζ(am)+∑

n�=m θan (am)). For ks �= kb we find a much different structure.
In this case the integral in (1.7) involving either the term curlv or divv must be finite, and as a result pins the values
of h near each am so that

u∗(ρy + am) →
{±y if ks < kb,

±iy if kb < ks

in L2(∂B1(0);C) as ρ → 0. Thus if ks < kb the limiting texture u∗ has a pure splay pattern near each defect and if
kb < ks then u∗ asymptotically has a pure bend pattern near each am.

1.2. Applications

Smectic C materials are made of layers of liquid crystal molecules that pack so that their long axes form a fixed
angle 0 < θ0 < π/2 with the layer normal. The pattern is described using the layer structure and a director field n(x)

for the liquid crystal. The director is a unit vector field that lies parallel to the local average of the molecular long axes
at x. One can then express n(x) = cos(θ0)ν(x) + sin(θ0)c(x) where ν(x) and c(x) each are unit vector fields that are
respectively parallel and perpendicular to the layer normal at x. These two fields are the fundamental unknowns that
are used to characterize the material’s configuration [8]. For the case of a thin film the layers are planer, given by the
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domain Ω ⊂R
2 such that ν(x) = 〈0,0,1〉 and c(x) = 〈c1(x), c2(x),0〉 with x = (x1, x2). The film can be just several

layers thick and the elastic energy for the liquid crystal pattern is given by the Oseen–Frank energy. Each layer in a
smectic C (Sm C) liquid crystal can be represented as a two-dimensional liquid [9] and the integral is taken over the
film,

1

2

∫
Ω

(
ks(div c)2 + kb(curl c)2)dx. (1.8)

An Sm C∗ liquid crystal additionally forms a spontaneous polarization field that produces elastic and electro-static
contributions to the energy. The polar field generates an elastic stress on the film whose effect is modeled by intro-
ducing boundary values for c(x) = g(x) on ∂Ω ; see [6]. The field induces an electro-static contribution that appears
in our energy by increasing the splay constant kb above its bare elastic value [10] and this is a motivation for studying
the case ks �= kb .

If a smoke or dust particle lands on a free-standing film a defect forms in the film’s texture. The particle induces
a singularity in the spontaneous polarization field that in turn causes an island, several layers thicker than the film, to
form around the defect. The island’s shape eventually stabilizes and the island migrates within the film so as to reduce
the total energy. Various experiments have been conducted and models put forward to investigate this phenomenon.
See [6,10–13]. In these papers the notion of the c-director is generalized to allow for defects. The experiments reported
in [6,10–12] indicate that a stable island is disk-like and that the c-director is tangential at the island’s edge, so that
the winding number of c on the edge of the disk is +1. In [6], Lee et al. model the island-defect ensemble by setting
Ω = BR(0) \ Bε(0) with the defect represented by the ε void at the origin and investigate numerically the stability
of rotationally invariant equilibria for (1.8). Their simulations for the case ks < kb and ε sufficiently small, indicate
that minimizers for (1.8) over H 1(Ω;S1) subject to tangential boundary conditions on ∂BR(0) form a simple spiral,
turning from the tangential pattern at the edge of the disk to radial near the defect at the center.

In this paper we follow an order parameter approach as in [13] for the energy (1.1). The unknown field u(x) is
taken to be a generalization of the c director. In this case u need not have unit length and vanishes at a defect where
the smectic order is allowed to melt. This description, in contrast to the one above, does not presuppose the nature or
location of individual defects. We can apply Theorem A to obtain information on minimizers for the problem of an

island, Ω = BR(0) with the tangential boundary values g(x) = ± x⊥
R

(where x⊥ = (−x2, x1) ≡ ix). If ks < kb and ε is
taken sufficiently small it follows that a minimizer has one defect with degree +1 in BR(0), moreover the minimizer’s
pattern is near radial in a neighborhood of the defect. This is consistent with what was observed in the experiments
and simulations from [6].

In [13], Silvestre et al. investigate a different aspect of the problem. They consider a free-standing Sm C∗ film
occupying a simply connected region D containing d disjoint circular islands {BRj

(xj ); 1 � j � d} and they inves-

tigate the texture in the background film Ω ≡ D \ ⋃d
j=1 BRj

(xj ). In this case ∂Ω has d + 1 components, ∂D and

∂BRj
(xj ) for 1 � j � d . On ∂D they take g = const. and g = ± (x−xj )⊥

Rj
on ∂BRj

(xj ) for 1 � j � d . It follows that
deg(g, ∂Ω) = −d . The simulations and experiments in [13] exhibit d topological defects in Ω , each with degree −1,
as companions to the d chiral islands. Our results do not directly apply to this setting. For the case of the classic
Ginzburg–Landau energy (2.7), structure proved for the case deg(g, ∂Ω) > 0 directly translates to the same informa-
tion for the case deg(g, ∂Ω) < 0. This is not obvious for the energy (1.1). Nevertheless the present analysis should be
useful for investigating the case of boundary data with negative degree.

Our paper is organized as follows. In Section 2, we prove Theorem A, developing a number of qualitative features
for the minimizers of Jε . We express the integral in the form of (1.2)–(1.3). Written in this way one sees that mini-
mizers form a family of low energy states for the Ginzburg–Landau functional (2.7), that is a family {uε} ⊂ H 1

g (Ω)

satisfying (2.9) for a fixed constant K . It is proved in [4,5,14] that such a family has a number of structure and com-
pactness properties, in particular it is shown that for a sequence εk → 0, there exists a subsequence {uεk(�)

} and a
function u∗ such that uεk(�)

→ u∗. The analysis in [14] due to Fanghua Lin, contains the detailed description of u∗
that is needed here and we expand on this work in Proposition 2.3. We then use the fact that the uε are minimizers to
refine the notion of convergence away from the defects of u∗. Our work here builds on the investigation of minimizers
for the Ginzburg–Landau energy (2.7) carried out by Brezis, Bethuel and Hélein in [1]. Their work however relies on
a priori estimates for sup |uε|, which they obtain by applying a maximum principle that is not available in the case at



S. Colbert-Kelly, D. Phillips / Ann. I. H. Poincaré – AN 30 (2013) 1009–1026 1013
hand. Here we proceed as in [15], obtaining bounds on the bulk term of the energy, giving us a priori L4 estimates
for the sequence of minimizers. A uniform bound on sup |uε| follows from this and elliptic estimates. In Section 3 we
analyze a class of polar functions for a particular set of points b = (b1, . . . , bd) and show that the spherical average of
these functions around bn tend to either 0 or π

2 , mod π , depending on the relative values of ks and kb . In Section 4, we
construct the renormalized energy in (1.5). We show that for each a, there exists a polar function ha that minimizes
the renormalized energy for a. In Section 5, we prove Theorem B.

2. Qualitative properties of minimizers

We begin by developing a number of structural properties for minimizers of (1.1) for each ε. As stated before, the
minimizers in H 1

g (Ω;R2) of (1.1) are also minimizers in H 1
g (Ω;R2) of (1.3). In translating the variational problem

into minimizing the energy (1.3) in H 1
g (Ω;R2), we have a strictly convex integrand (in the gradient), giving us the

existence of a minimizer to our problem [7]. Then, taking the first variation of (1.3), we get that the minimizer uε

satisfies∫
Ω

((
ksu

1
x1

)
v1
x1

+ (
ksu

1
x2

+ (kb − ks)
(
u1

x2
− u2

x1

))
v1
x2

+ (
ksu

2
x1

+ (kb − ks)
(
u2

x1
− u1

x2

))
v2
x1

+ (
ksu

2
x2

)
v2
x2

+ 1

ε2

(
u
(
1 − |u|2)) · v

)
dx = 0 if k = ks,∫

Ω

((
kbu

1
x1

+ (ks − kb)
(
u1

x1
+ u2

x2

))
v1
x1

+ (
kbu

1
x2

)
v1
x2

+ (
kbu

2
x1

)
v2
x1

+ (
kbu

2
x2

+ (ks − kb)
(
u1

x1
+ u2

x2

))
v2
x2

+ 1

ε2

(
u
(
1 − |u|2)) · v

)
dx = 0 if k = kb (2.1)

for v ∈ H 1
0 (Ω;R2). From regularity theory [16,17], we have uε ∈ C∞(Ω) ∩ C2,α(Ω) for each 0 < α < 1 and ε > 0,

since ∂Ω is C3, g ∈ C3, and the coefficients of the elliptic elastic energy term are constant. Thus we conclude that
|uε|2,α;Ω � C(ε). Using integration by parts, we have that the Euler–Lagrange equation the minimizer satisfies is

−ks�u1 − (kb − ks)
(
u1

x2x2
− u2

x1x2

) = 1

ε2
u1(1 − |u|2),

−ks�u2 − (kb − ks)
(
u2

x1x1
− u1

x2x1

) = 1

ε2
u2(1 − |u|2) (2.2)

if k = ks , and

−kb�u1 − (ks − kb)
(
u1

x1x1
+ u2

x2x1

) = 1

ε2
u1(1 − |u|2),

−kb�u2 − (ks − kb)
(
u2

x2x2
+ u1

x1x2

) = 1

ε2
u2(1 − |u|2) (2.3)

if k = kb in Ω , with u = g on ∂Ω . For each ε > 0, there is an upper and a lower bound that can be obtained for the
integral (1.3).

Proposition 2.1.

J ε(uε)� kπd ln

(
1

ε

)
+ C2(Ω,g, d, ks, kb) (2.4)

for a minimizer uε and

J ε(u) � kπd ln

(
1

ε

)
− C1(Ω,g, d, ks, kb) (2.5)

for any function u ∈ H 1
g where C1 and C2 are positive constants.
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Proof. For the upper estimate, this proof is similar to the proof of Lemma 2.1 in [3]. Consider the case when Ω =
BR(0) = BR and g(x) = β x

|x| , β = ±1 if k = ks or β = ±i if k = kb . We drop the ε for notational purposes. Denote
the values

Iβ(ε,R) = inf
u∈H 1

g

{ ∫
BR(0)

j̄ε(u,∇u)dx

}
. (2.6)

Let Iβ(t) = Iβ(t,1). By using a change of variables, Iβ(ε,R) = Iβ(1, R
ε
) = Iβ( ε

R
). Then, using the same method as

in the proof of Theorem 3.1 in [1], noting that div( ix
|x| ) = curl( x

|x| ) = 0, we have Iβ(t1) � kπ ln( t2
t1

) + Iβ(t2) for all
t1 � t2.

Fix d points, a1, a2, . . . , ad, an �= am for n �= m in Ω and R > 0 such that

BR(an) ⊂ Ω for each n and BR(an) ∩ BR(am) = ∅ for every n �= m.

Let ΩR = Ω \ ⋃d
n=1 BR(an) and consider ḡ(x) : ∂ΩR → S

1 such that

ḡ(x) =
⎧⎨
⎩

g(x), if x ∈ ∂Ω,

eiθ , if x = aj + Reiθ ∈ ∂BR(aj ) for some j and k = ks,

ieiθ , if x = aj + Reiθ ∈ ∂BR(aj ) for some j and k = kb.

Note that deg(ḡ, ∂ΩR) = 0, hence there exists a smooth function v : ΩR → S
1 such that v|∂ΩR

= ḡ. Then by the
above claim for 0 < ε < R,

J ε(u) �
∫

ΩR

j̄ε(v,∇v)dx +
d∑

i=1

Iβ(ε,R)

� kπd ln

(
1

ε

)
+ C2.

Define

Fε(u) = Fε(u;Ω) = 1

2

∫
Ω

(
k|∇u|2 + 1

2ε2

(
1 − |u|2)2

)
dx. (2.7)

Now, let u ∈ H 1
g be any function. Note that J ε(u) � Fε(u). The lower bound (2.5) holds for a minimizer vε ∈ H 1

g

for Fε(·) and is proved in [1] for the case that Ω is star shaped. The general case follows from [3] and [1]. (See [4]
and [5] for alternative proofs.) It follows that the lower bound holds for any u ∈ H 1

g . �
The following corollary is a direct result of the previous proposition, utilizing a method described in [5].

Corollary 2.1. If u is a minimizer for J ε(u), then there exists C4 = C4(g,Ω,ks, kb, d) such that∫
Ω

(
(kb − ks)(curlu)2 + 1

2ε2

(
1 − |u|2)2

)
dx � C4 if k = ks,

∫
Ω

(
(ks − kb)(divu)2 + 1

2ε2

(
1 − |u|2)2

)
dx � C4 if k = kb. (2.8)

Proof. For clarity, we provide a short proof. From Proposition 2.1, we have that for any minimizer uε ∈ H 1
g , J ε(uε) �

kπd ln(ε−1) + C2. Let F2ε(u) be as defined in the proof of Proposition 2.1. Then F2ε(uε) � kπd ln(ε−1) − C3. Thus
(2.8) follows from considering the expression J ε(uε) − F2ε(uε). �

Using the estimate from the corollary and the strong ellipticity of the system in (2.2) and (2.3), we obtain several
bounds for minimizers over the entire domain for small ε. Let x ∈ Ω and set

Ω̃ = {y: εy + x ∈ Ω} and ũ(y) = uε(εy + x) for y ∈ Ω̃.
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Then from (2.8) we have that ‖ũ‖4;Ω̃∩B1(0) � C where C is independent of x ∈ Ω and 0 < ε � 1. If we express (2.2)

and (2.3) as Lku = ε−2f(u), where f(u) = u(1 − |u|2), then Lk is a second order strongly elliptic operator with

constant coefficients. Moreover we have that Lkũ = f(ũ) on Ω̃ ∩ B1(0). Based on the L4 a priori estimate, the
ellipticity of the operator Lk , and the smoothness of both the boundary data and ∂Ω , the proof of the next proposition
follows just as the proof for Lemma 3.1 in [15].

Proposition 2.2. There exists a constant C5 = C5(g,Ω,ks, kb, d) so that if uε is a minimizer to J ε(u), then

|uε|, ε|∇uε|� C5 in Ω, for 0 < ε < 1.

From Proposition 2.1 and the definition of j̄ε(u,∇u), we get that

Fε(uε) � kπd ln

(
1

ε

)
+ K (2.9)

for every 0 < ε < 1 and minimizer uε to J ε(·). With this estimate we are able to apply a structure and compactness
theorem to the sequence of minimizers for J ε(u).

Proposition 2.3. There exist constants δ > 0 and C depending on K , k, g, and Ω so that for any sequence of functions
uε ∈ H 1

g (Ω;R2) with ε ↓ 0 satisfying (2.9) there exists a subsequence {uε�
}, points {a1, . . . , ad} ⊂ Ω , and a function

h(x) ∈ H 1(Ω) so that

min
{
dist(am, ∂Ω), |am − an|, m �= n, 1 � m,n � d

}
� δ, ‖h‖H 1 � C,

and

uε�
→

d∏
m=1

x − am

|x − am|e
i(h(x)+ζ(x))

where the convergence of {uε�
} is weak in H 1

loc(Ω \ {a1, . . . , ad};C) and strong in L2(Ω;C).

Proposition 2.3 is due to Fanghua Lin [18,14,19,20] if Ω is simply connected. In this case the limit takes the form∏d
m=1

x−am|x−am|e
ih(x). We modify his arguments below to prove it for general Ω . We first need a lemma.

Lemma 2.1. There is a constant K ′, depending only on K , k, g, and Ω so that if u satisfies (2.9) then w∗(x)u(x) =
e−iζ(x)u(x) satisfies

Fε

(
w∗u

)
� kπd ln

(
1

ε

)
+ K ′.

Proof. For a ∈C we denote a∗ as the complex conjugate of a. Writing wu = eiζ u. We have

Fε(wu) = Fε(u) + k

∫
Ω

I m
{
u∗∇ζ · ∇u

}
dx + k

2

∫
Ω

|∇ζ |2|u|2 dx.

Since deg(wu; ∂Ω) = d we have the lower bound

Fε(wu) � kπd ln

(
1

ε

)
− C

where C depends on wu|∂Ω = wg. Second, since ζ is smooth and fixed in Ω we have that∫
|∇ζ |2|u|2 dx � M

∫
|u|2 dx � M1

(
ε2 ln

(
1

ε

)
+ 1

)
.

Ω Ω
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With these two estimates, together with our hypothesis on Fε(u) we get

−
∫
Ω

I m
{
u∗∇ζ · ∇u

}
dx � C

where C depends only on K , k, g, and Ω . Finally we can expand and estimate

Fε

(
w∗u

) = Fε(u) − k

∫
Ω

I m
{
u∗∇ζ · ∇u

}
dx + k

2

∫
Ω

|∇ζ |2|u|2 dx

� kπd ln

(
1

ε

)
+ K ′. �

Proof of Proposition 2.3. Let uε ∈ H 1
g (Ω;R2) with ε ↓ 0 satisfying (2.9). Set zε = w∗uε . Then the winding number

for zε|Γj
is 0 for 1 � j � k and we can extend zε onto Λj as a function in H 1(Λj ;S1) that is independent of ε

for each j . We also have that the winding number for zε|Γ0 is d . Thus setting zε|Γ0 = g̃, we have that the sequence
{zε} ⊂ H 1

g̃
(D;C) and that

Fε(zε;D) � kπd ln

(
1

ε

)
+ K ′′

where K ′′ is independent of ε. We can apply the proposition for the simply connected domain D; see [14]. We find a
subsequence {zε�

}, points {a1, . . . , ad} ⊂ D, and h ∈ H 1(D) so that

zε�
→ z∗(x) =

d∏
m=1

x − am

|x − am|e
ih(x) in D.

Thus since uε�
= wzε�

we have that

uε�
→

d∏
m=1

x − am

|x − am|e
i(h(x)+ζ(x)) in Ω.

We know that the {a1, . . . , ad} are uniformly bounded away from each other and Γ0. It remains to show that they are
bounded away from

⋃k
j=1 Λj . If this is not so, then we can find a case with a� ∈ Λj for some � and j . We choose

r > 0 sufficiently small so that Br(a�) ∩ {an: n �= �} = ∅. By construction zε�
(x) for x ∈ Λj are independent of ε�

and in H 1(Λj ). Thus z∗ ∈ H 1(Λj ). On the other hand we have

z∗(x) = x − a�

|x − a�| z̃(x) such that
∣∣z̃(x)

∣∣ = 1 for x ∈ Br(a�). Moreover z̃ ∈ H 1(Br(a�)
)
.

Thus z∗ /∈ H 1(Λj ) and this is a contradiction. �
For ρ > 0 set Ωρ = Ω \ ⋃d

m=1 Bρ(am).

Proposition 2.4. Let {uε�
} be a sequence of minimizers converging to u∗(x) = ∏d

m=1
x−am|x−am|e

i(h(x)+ζ(x)) in L2(Ω).

Then for each ρ > 0 the convergence is in H 1(Ωρ) and ε−2
�

∫
Ωρ

(1 − |uε�
|2)2 dx → 0 as � → ∞. Moreover, u∗ is a

local minimizer for the limiting energy in H 1(Ωρ,S1).

Proof. The proof is similar to the proof of Lemma 3.9 in [15]. For notational purposes we write {u�} = {uε�
}, where

ε� is a subsequence of ε and ε → 0. By Proposition 2.3, u� ⇀ u∗ in H 1(Ωρ) for every ρ > 0 and u� is a local
minimizer for

∫
Ωρ

j̄ε(u,∇u)dx. As in the proof of Lemma 3.9 of [15], choose x̄ ∈ Ω \ {a1, . . . , ad}, assuming first

that x̄ /∈ ∂Ω and let d̄ = d̄(x̄) be such that B2d̄ = B2d̄ (x̄) ⊂ Ω \ {a1, . . . , ad}. Set ω(x) = h(x) + ζ(x) + ∑d
n=1 θan(x)

where x−am = eiθam(x). Then with out loss of generality ω is single valued in B2d̄ . Furthermore ω ∈ H 1(B2d̄ ) by
|x−am|
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Proposition 2.3 and u∗(x) = eiω(x) on B2d̄ . From Corollary 2.1, Proposition 2.3, and as in the proof of Lemma 3.9
of [15], for a subsequence {u�′ } that we do not relabel, there exists a radius d such that d̄ � d � 2d̄ and for which

1

2

∫
∂Bd

(
k|∂τ u�|2 + 1

2ε2
�

(
1 − |u�|2

)2
)

dσ � C1. (2.10)

It follows that {u�} converges to u∗ uniformly on ∂Bd and weakly in H 1(∂Bd). Note that degu∗|∂Bd
= 0. Therefore

degu�|∂Bd
= 0 for sufficiently large �. Thus u�(x) can be expressed as u�(x) = |u�(x)|eiω�(x) such that |u�(x)| �= 0

for every x ∈ ∂Bd where ω� converges to ω uniformly on ∂Bd and weakly in H 1(∂Bd) as well.
Define, for each �, the function Φ�(r, θ) := φ�(r)(ω�(θ) − ω(d, θ)), where d � r = |x − x̄|,

φ�(r) =
{

1 if r = d,

0 if r < r� < d,

φ� is a smooth cut-off function and |∇φ�|� 1
d−r�

, where r� is a sequence of radii such that r� → d so that

∫
∂Bd

|ω� − ω|2
(r� − d)

dσ → 0.

By construction and the fact that ω� ⇀ ω in H 1(∂Bd), we get that Φ� → 0 in H 1(Bd) and Φ� → 0 uniformly in Bd .
Let ū minimize

∫
Bd

j̄ (u,∇u)dx in the set {u ∈ H 1(Bd ;S1): u = u∗ on ∂Bd}. Consider the function eiΦ� ū. Then we

have eiΦ� ū → ū in H 1(Bd), and uniformly in Bd . Now, we construct comparison functions

û� = |û�|eiΦ� ū on Bd

where

|û�| = 1 on Bd−ε�
,

|û�| = |u�| on ∂Bd,

and for each θ , define |û�|(|x − x̄|, θ) to be linear for d − ε� � |x − x̄| � d . This gives that û� = u� on ∂Bd . By
construction, we get that û� → ū uniformly in Bd , û� → ū in H 1(Bd), and ε−2

�

∫
Bd

(1 − |û�|2)2 dx → 0 as � → ∞.
These limits imply that

lim
�→0

∫
Bd

j̄ε�
(û�,∇û�) dx =

∫
Bd

j̄ (ū,∇ū) dx := J (ū)

where

j̄ (u,∇u) =
{

ks |∇u|2 + (kb − ks)(curlu)2 if k = ks,

kb|∇u|2 + (ks − kb)(divu)2 if k = kb.

This notion for j̄ (u,∇u) will be used throughout the rest of the work. Then by the lower semicontinuity of the integral∫
Ω

j̄(u,∇u)dx,∫
Bd

j̄ (u∗,∇u∗) dx � lim inf
�→∞

∫
Bd

j̄ε�
(u�,∇u�) dx � lim sup

�→∞

∫
Bd

j̄ε�
(u�,∇u�) dx

� lim
�→∞

∫
Bd

j̄ε�
(û�,∇û�) dx =

∫
Bd

j̄ (ū,∇ū) dx

�
∫

j̄ (u∗,∇u∗) dx.
Bd
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This implies that

lim
�→∞

∫
Bd

j̄ε�
(u�,∇u�) dx =

∫
Bd

j̄ (u∗,∇u∗) dx.

Since u� ⇀ u∗ in H 1(Bd ;C), then by [21], u� → u∗ in H 1(Bd ;C). A further consequence of the convergence of the
integrals and the strong convergence in H 1(Bd ;C) is

lim
�→∞ ε−2

�

∫
Bd

(
1 − |u�|2

)2
dx = 0.

We have also showed that u∗ is a minimizer to J in H 1
u∗(Bd ;S1). We have proved our assertions for a subsequence

of the original sequence on Bd ⊃ Bd̄ , for some radius d . It follows that we have established the assertions for the full
sequence on Bd .

Finally, suppose x̄ ∈ ∂Ω . Then let Ux̄ be a neighborhood of x̄ such that there exists a smooth diffeomorphism ψ(x)

defined on B2d̄ such that ψ(x̄) = 0 and

ψ : Ux̄ → B+
2d̄

= {
(x, y): x2 + y2 < (2d̄)2, y > 0

}
.

Then we can carry out the same argument in B+
2d̄

, with ψ(x̄), push back into Ux̄ , and then argue as in the previous
case. �

The next proposition shows that the norms of the minimizers converge uniformly to 1 outside of any positive radius
distance away from the vortices. The proof is similar to the proof of Lemma 3.10 in [15].

Proposition 2.5. Let {u�} be a sequence of minimizers with ε� → 0, converging to u∗(x) = ∏d
m=1

x−am|x−am|e
(ih(x)+ζ(x))

in L2(Ω). Then for each ρ > 0, |u�| → 1 uniformly in Ωρ .

Proof. Fix ρ > 0 and assume that there exists a δ > 0, a subsequence {u�} (that we do not relabel), and a sequence
of points {x�} ⊂ Ωρ so that |1 − |u�(x�)|| � δ. From Proposition 2.2 there is a c(δ) > 0 so that |1 − |u�(x)|| � δ

2 for
x ∈ Bcε�

(x�) ∩ Ω . It follows that

ε−2
�

∫
Ωρ

(
1 − |uε�

|2)2
dx � ε−2

�

∫
Bcε�

(x�)∩Ωρ

(
1 − |uε�

|2)2
dx � C > 0

where C is independent of �. We have seen from Proposition 2.4 however that the left side tends to 0 as � → ∞ and
this leads to a contradiction. �

The next two propositions prove higher regularity on the sequence of minimizers on compact subsets of the domain
away from the vortices. For the sequence of minimizers {u�} that converges in H 1

loc(Ω \ {a1, . . . , ad}), we have that
|u�| converges uniformly to 1 on every K � Ω \ {a1, . . . , ad}. The bulk term of the energy has a non-degenerate
minimum when |u| = 1. The elastic term of the energy is strongly elliptic, as well as quadratic in the gradient term.
Due to these facts, the proofs of the following propositions follow from the proofs of Lemma 3.11 and Lemma 3.12
from [15] respectively.

Proposition 2.6. Let {uε�
} be a sequence of minimizers for (1.1) in H 1

g (Ω) converging in H 1
loc(Ω \ {a1, a2, . . . , ad})

as ε� → 0. Then, for K � Ω \ {a1, a2, . . . , ad}, there exist constants �0 and C such that if �� �0, then∥∥D2uε�

∥∥
2;K � C.

Proposition 2.7. Let uε�
be the sequence of minimizers as in the previous lemma. For each n > 2 and set K �

Ω \ {a1, a2, . . . , ad}, there are constants C and �0 such that

‖uε�
‖n,2;K � C for �� �0.
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A consequence of Propositions 2.6 and 2.7 is that for each compact subset K of Ω \ {a1, . . . , ad} and for each
n � 2, we have the entire converging subsequence of minimizers {uε�

} ∈ Hn(K) and bounded. This implies that
u∗ ∈ Hn(K). Now, by Sobolev’s Theorem and Arzelà–Ascoli Theorem, we have the following corollary.

Corollary 2.2. Let {uε�
} be a sequence of minimizers converging to u∗. Then for any 0 < α < 1, and each integer m

uε�
→ u∗ in Cα

loc

(
Ω \ {a1, . . . , ad}) and Cm

loc

(
Ω \ {a1, . . . , ad})

as � → ∞.

Proof of Theorem A. Let {uε} be a sequence of minimizers to (1.1) such that ε ↓ 0. Then we know it is also a min-
imizer of (1.3) for each ε. By applying Proposition 2.3, it follows that there exists a subsequence {uε�

}, a function h,
and points {a1, . . . , ad} such that

uε�
(x) →

d∏
n=1

x − an

|x − an|e
i(h(x)+ζ(x)) = u∗(x) in H 1

loc

(
Ω \ {a1, a2, . . . , ad}).

For each ρ > 0 it follows from Corollary 2.2 that we have uε�
→ u∗ in Cα(Ωρ) for every 0 < α < 1, and uε�

→ u∗ in
Cm(Ωρ) for every integer m� 0, where Ωρ = Ω \ ⋃d

n=1 Bρ(an). �
Remark 1. To be definite we point out that Theorem A applies to the case ks = kb > 0, and that in this case our
arguments are extensions of those from [1,3,14] that allow us to treat the case of a multiply connected domain.
Moreover, in this case the nature of h(x) is distinct. Indeed from Proposition 2.4 we have that h is harmonic in
Ω \ {a1, . . . , ad} and h ∈ H 1(Ω). As such h is harmonic in Ω . (This observation originates in [1].)

In the next section we show that in contrast with the case ks = kb , the values of h are pinned at {a1, . . . , ad} if
ks �= kb .

3. Class of functions for each configuration of points

Assume that ks �= kb . Define the set

T = {
b = (b1, . . . , bd) ∈ Ωd : bn �= bm for n �= m

}
.

Fix a configuration b ∈ T . We can choose f ∈ C3(∂Ω) so that

g(x) = ei(f (x)+∑d
n=1 θbn (x)+ζ(x)) for x ∈ ∂Ω

where θbn is such that x−bn|x−bn| = eiθbn (x) for x �= bn. Note that f |Γ�
is uniquely determined, mod 2π , for each compo-

nent Γ� of ∂Ω . Let φ ∈ H 1(Ω) and set

v(x) = v(b, φ)(x) = ei(φ(x)+∑d
n=1 θbn (x)+ζ(x)).

We define the set

A(b) =
{ {φ ∈ H 1(Ω): v(b, φ) = g on ∂Ω and

∫
Ω

(curlv)2 dx < ∞} if ks < kb,

{φ ∈ H 1(Ω): v(b, φ) = g on ∂Ω and
∫
Ω

(divv)2 dx < ∞} if kb < ks.

It follows from Lemma 1.1 of [22] that φ = f + 2πt� on each component Γ� of ∂Ω , for some t� ∈ Z, for each
φ ∈ A(b). We prove in Proposition 4.1 that A(b) is nonempty. Let ρ > 0 be such that Bρ(bn) ⊂ Ω and such that
{Bρ(bn)} are pair-wise disjoint. For h ∈ A(b) define the function hn(x) = h(x)+∑

m �=n θbm(x)+ζ(x) for x ∈ Bρ(bn).
Set v = v(b, h). From the definition of A(b), we have∫

Bρ(bn)

(curlv)2 dx � C if ks < kb,

∫
B (b )

(divv)2 dx � C if kb < ks,
ρ n
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for each 1 � n � d such that C = C(v) < ∞. On Bρ(bn) we have that v = x−bn|x−bn|e
ihn = cos(hn)

x−bn|x−bn| +
sin(hn)i

x−bn|x−bn| . Since hn ∈ H 1(Bρ(bn)), curl x−bn|x−bn| = div i x−bn|x−bn| = 0, and div x−bn|x−bn| = curl i x−bn|x−bn| = 1
|x−bn| , we ob-

tain using Young’s Inequality that∫
Bρ(bn)

sin2(hn)

|x − bn|2 dx � C if ks < kb,

∫
Bρ(bn)

cos2(hn)

|x − bn|2 dx � C if kb < ks. (3.1)

From (3.1), we obtain the following proposition.

Proposition 3.1. Let b ∈ T and h ∈ A(b). Then we have

1

|∂Bρ(bn)|
∫

∂Bρ(bn)

hdσ → αn −
∑
m �=n

θbm(bn) − ζ(bn) as ρ → 0,

for each 1 � n� d where

αn =
{

cnπ for some cn ∈ Z if ks < kb,

(2cn+1)π
2 for some cn ∈ Z if ks < kb.

Proof. Let hn(x) = h(x) + ∑
m �=n θbm(x) + ζ(x) and

h̄n(ρ) = 1

|∂Bρ(bn)|
∫

∂Bρ(bn)

hn dσ.

Define the functions ωn(x) = sin(hn(x)), ω̄n(ρ) = sin(h̄n(ρ)) if ks < kb , and ωn(x) = cos(hn(x)), ω̄n(ρ) =
cos(h̄n(ρ)) if kb < ks . Set ωn

ρ(y) = ωn(ρy+bn) for 0 < ρ < ρ0 where ρ0 is such that B2ρ0(bn) � Ω \⋃
m �=n B2ρ0(bm).

With hn ∈ H 1(Bρ0(bn)) and (3.1) we get

lim
ρ→0

∥∥ωn
ρ

∥∥2
1,2;B1

= lim
ρ→0

∫
Bρ(bn)

(∣∣∇ωn
∣∣2 + |ωn|2

ρ2

)
dx = 0. (3.2)

Note that h̄n(ρ) ∈ C((0, ρ0]). If the proposition is false there exists a constant δ0 > 0 and a sequence of radii {ρk}
such that ρk → 0 and∣∣h̄n(ρk) − tπ

∣∣� δ0 > 0 if ks < kb,∣∣∣∣h̄n(ρk) − (2t + 1)π

2

∣∣∣∣ � δ0 > 0 if kb < ks, (3.3)

for every t ∈ Z. Since
∫
B2

|∇y(hn(ρy + bn))|2 dy → 0 as ρ → 0, we have

lim
ρ→0

{
sup

1/2�s�1

∫
∂B1

∣∣hn(sρy + bn) − h̄n(ρ)
∣∣2

dσy

}
= 0. (3.4)

Then from the Lipschitz continuity of the sine and cosine functions and (3.4) we have

lim
ρk→0

{
sup

1/2�s�2

∫
∂B1

∣∣ωn
sρk

(y) − ω̄n(ρk)
∣∣2

dσy

}
= 0. (3.5)

From (3.3) we get
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∣∣(ω̄n(ρk)
)∣∣� C3 > 0 (3.6)

for each k. Then, from (3.5) and (3.6) we get for every s ∈ [1/2,1] and every k sufficiently large that∫
∂Bs

∣∣ωn
ρk

∣∣2
dσ � C4 > 0.

This implies∫
Bρk

(bn)

|ωn|2
ρ2

k

dx �
∫

Bρk
(bn)\Bρk/2(bn)

|ωn|2
ρ2

k

dx

=
1∫

1
2

∫
∂Bs

∣∣ωn
ρk

∣∣2
dσ ds � C4

4

which is a contradiction. �
Using the notation from Proposition 3.1 we have the following corollary.

Corollary 3.1. Let hn(x) = h(x) + ∑
m �=n θbm(x) + ζ(x) for h ∈ A(b). Then for 1 � n� d

lim
ρ→0

∫
Bρ(bn)\Bρ/2(bn)

(
|∇hn|2 + (hn − αn)

2

ρ2

)
dx = 0

and

hn(ρy + bn) → αn in L2(
S

1) as ρ → 0.

From the definition of αn then, for each φ ∈ A(b), if ks < kb and v(x) = v(b, φ)(x) we have v(ρy + bn) → ±y as
ρ → 0 in L2(∂B1(0),S1), giving rise to a pure splay pattern near each defect. If kb < ks it follows that v(ρy + bn) →
±iy in L2(∂B1(0),S1), giving rise to a pure bend pattern near each defect.

4. Construction and properties of the renormalized energy

Denote the integrals Jε(u;A) = ∫
A

jε(u,∇u)dx and J ε(u;A) = ∫
A

j̄ε(u,∇u)dx, with A ⊂ Ω , noting that
Jε(u;Ω) = Jε(u). Given any configuration b ∈ T , take a function φ ∈ A(b) and define the function v as in the
previous section. Then, for a given ρ > 0, denoting Ωρ = Ω \ ⋃d

n=1 Bρ(bn), we have

J ε(v;Ωρ) = J (v;Ωρ) =
∫

Ωρ

j̄ (v,∇v)dx

where

v = ei(φ+ζ+∑d
n=1 θbn ) in Ωρ.

Then, we have

k

2

∫
Ωρ

|∇v|2 dx = k

2

∫
Ωρ

(
|∇φ|2 + 2∇φ ·

(
∇ζ +

d∑
n=1

∇θbn

)
+

∣∣∣∣∣∇ζ +
d∑

n=1

∇θbn

∣∣∣∣∣
2)

dx.

Recall that θbn(x) is the harmonic conjugate of ln(|x − bn|), ζ(x) is the harmonic conjugate of −∑k
�=1 d� ln(|x − y�|)

in Ωρ , and {y1, . . . , yk} ⊂ (Ω)c. Define a function Gb(x) = ∑d
n=1 ln(|x − bn|) − ∑k

�=1 d� ln(|x − y�|). Hence, using
integration by parts, we obtain
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k

2

∫
Ωρ

|∇v|2 dx = k

2

∫
Ωρ

|∇φ|2 dx + k

2

∫
∂Ω

(
(∂νGb)Gb − 2(∂τGb)φ

)
dσ

−
∑
m �=n

kπ ln
(|bn − bm|) +

d∑
n=1

k∑
�=1

kπd� ln
(|bn − y�|

) + kπd ln

(
1

ρ

)

+ oρ(1).

We also have on the boundary, v(x) = ei(φ(x)+∑
θbn (x)+ζ(x)) = g(x). Using integration by parts again, we have

k

2

∫
Ωρ

|∇v|2 dx = k

2

∫
Ωρ

|∇φ|2 dx + k

2

∫
∂Ω

(
2Gb(g × ∂τ g) − (∂νGb)Gb

)
dσ

−
∑
m �=n

kπ ln
(|bn − bm|) +

d∑
n=1

k∑
�=1

kπd� ln
(|bn − y�|

) + kπd ln

(
1

ρ

)

+ oρ(1).

This implies that

J (v;Ωρ) = J (v;Ωρ) + kπd

= kπd ln

(
1

ρ

)
+ kW(b) + H (b, φ, ks, kb) + oρ(1) (4.1)

where W(b) and H (b, h, ks, kb) are defined as in (1.6) and (1.7) respectively. Notice that H (b, φ, ks, kb) �
H (b, φ, k, k) and that kW(b) + H(b, k, k) is simply k times the renormalized energy for the Ginzburg–Landau
energy studied in [1] for the case when Ω is simply connected. It is proved there that the latter tends to infinity as
either b → ∂Ωd or |bn − bm| → 0. These properties can be seen to hold here by examining the first and third terms on
the right side of (1.6) respectively. Thus they hold for our renormalized energy as well. To minimize the energy then,
the vortices must be distinct and stay within the domain Ω . Now for each configuration, we will show that there is a
function that will minimize the renormalized energy.

Proposition 4.1. Assume that ks �= kb . Let b ∈ T be a configuration in Ωd . Then, there exists a function hb(x) ∈ Ab
such that

kW(b) + H(b, ks, kb) = min
φ∈A(b)

(
kW(b) + H (b, φ, ks, kb)

)
= kW(b) + H (b, hb, ks, kb).

Proof. We first point out that A(b) �= ∅. Indeed let φ ∈ H 1(Ω) such that v(b, φ) = g on ∂Ω . Let {Bρ(bn); n =
1, . . . , d} be a nonintersecting collection of closed disks that are contained in Ω . One can always modify φ so that
φ(x) = αn −∑

m �=n θbm(x)− ζ(x) for x ∈ Bρ(bn), for each n, for some αn as defined in Proposition 3.1. The resulting
function φ ∈ A(b).

Since W(b) is independent of the particular φ ∈ A(b) we only need to minimize H (b, ·, ks, kb). Let {hn} ⊂ A(b)

be a minimizing sequence for H (b, ·, ks, kb). By definition of the integral, we can subtract an integer multiple of 2π

from each hn, so that without a loss of generality hn|Γ0 = f for each n. Then Poincaré’s inequality can be applied so
that we have ‖hn‖2;Ω � C(‖∇hn‖2;Ω + 1). Since {hn} is a minimizing sequence for H (b, ·, ks, kb) it follows that
‖hn‖1,2;Ω � C0 for some constant C0. Thus there exists a function h0 ∈ H 1(Ω) satisfying v(b, h0) = g on ∂Ω and
such that hnk

⇀ h0 in H 1(Ω) and hnk
→ h0 almost everywhere in Ω . This gives

lim inf
k→∞

∫
Ω

|∇hnk
|2 dx �

∫
Ω

|∇h0|2 dx. (4.2)

This also gives eihnk
(x) ⇀ eih0(x) in H 1(Ω;C). Let

∏d
n=1

x−bn|x−bn|e
i(hnk

(x)+ζ(x)) = wnk
(x) and

∏d
n=1

x−bn|x−bn| ×
ei(h0(x)+ζ(x)) = w0(x). Then we have wnk

→ w0 in L2(Ω,C). Let zk = curlwnk
(divwnk

) if ks < kb (kb < ks).
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Then, we have ‖zk‖2;Ω � C(b). Hence, there exists a subsequence, relabeled as zk , such that zk ⇀ z0 in L2(Ω). This
implies that z0 = curlw0 (divw0) and we have

lim inf
k→∞

∫
Ω

(curlwnk
)2 dx �

∫
Ω

(curlw0)
2 dx if ks < kb,

lim inf
k→∞

∫
Ω

(divwnk
)2 dx �

∫
Ω

(divw0)
2 dx if kb < ks. (4.3)

Then combining (4.2) and (4.3), we get

min
h∈H 1

v

(
W(b) + H (b, h, ks, kb)

) = lim inf
k→∞

(
W(b) + H (b, hnk

, ks, kb)
)

� W(b) + H (b, h0, ks, kb)

giving us the result of the proof, with hb := h0. �
By the previous proposition, we can utilize the notation as in (1.5) so that there is no dependency on the choice of

the function h. Even though it will not be used in this work, one can show that kW(b) + H(b, ks, kb) is continuous
on T . This is done in [23].

Proposition 4.2. Let h be the polar function appearing in the definition of u∗ from Theorem A. Then h ∈ A(a).

Proof. Consider the configuration a = (a1, . . . , ad) and the function u∗ = ∏d
n=1

x−an|x−an|e
i(h(x)+ζ(x)). Let {u�}

be a sequence of minimizers to Jε�
(·) for each ε�. Then from Corollary 2.1 we get

∫
Ω

(curlu�)
2 dx � C̃ or∫

Ω
(divu�)

2 dx � C̃, where C̃ has no dependency on ε. From Proposition 2.3, u� → u∗ in L2(Ω;C) and we have that
the distributions {curlu�} ({divu�}) are uniformly bounded in L2(Ω). Hence, as in the proof of Proposition 4.1, we
get ∫

Ω

(curlu∗)2 dx � lim inf
�→∞

∫
Ω

(curlu�)
2 dx � C0, if ks < kb,

∫
Ω

(divu∗)2 dx � lim inf
�→∞

∫
Ω

(divu�)
2 dx � C0, if kb < ks.

From the definition of each u� on the boundary, we have u∗|∂Ω = g, giving us v(b, h) = g on ∂Ω . From Proposi-
tion 2.3, h ∈ H 1(Ω). Therefore, h ∈ A(a) and must satisfy the result of Proposition 3.1. �
5. Energy away from the vortices

We must first analyze the following minimum problem before proving Theorem B. Let β ∈C, such that

β =
{±1 if ks < kb,

±i if kb < ks

and recall from the proof of Proposition 2.1 the expression

Iβ

(
ε

R

)
= inf

u∈H 1
g

{ ∫
BR(0)

j̄ε(u,∇u)dx

}

where

g(x) = β
x

|x| for |x| = R.
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Proposition 5.1. The function Iβ(τ ) + kπ ln(τ ) is a nondecreasing function of τ for τ > 0 such that γ :=
limτ→0{Iβ(τ ) + kπ ln(τ )} > −∞.

Proof. The argument is similar to that in [1]. It is shown within the proof of Proposition 2.1 that the expression
Iβ(τ ) + kπ ln(τ ) is monotone nondecreasing and bounded below. The existence of the finite one-sided limit at τ = 0
follows from these two properties. �
Proof of Theorem B. Assume that ks �= kb . We argue in a similar manner as in [15] and Chapter 8 of [1]. Those
works however, used the fact that the polar function hb(x) is smooth (since it is harmonic for the case ks = kb). Here
we appeal to Corollary 3.1 to control hb. Let b = (b1, . . . , bn) be a configuration in Ωd , where bn �= bm for m �= n,
and Ωρ = Ω \ ⋃d

n=1 Bρ(bn). For this configuration, set

wb(x) =
d∏

n=1

x − bn

|x − bn|e
i(hb(x)+ζ(x))

where hb ∈ A(b) satisfies Proposition 4.1. Then, using (4.1) we find that,∫
Ωρ

j̄ (wb,∇wb) dx = kπd ln

(
1

ρ

)
+ kW(b) + H(b, ks, kb) − kπd + oρ(1) (5.1)

as ρ → 0. We next construct comparison functions using the configuration point b. For 0 < ε � ρ � 1, define

ũ�(x) =

⎧⎪⎨
⎪⎩

wb(x) for x ∈ Ωρ,

eiqn(x) x−bn|x−bn| for x ∈ Bρ(bn) \ Bρ/2(bn),

zn(x − bn) for x ∈ Bρ/2(bn)

where zn minimizes J ε�
(·;Bρ/2(0)), with

zn(x − bn)|∂Bρ/2(bn) = eiαn
x − bn

|x − bn| .

Here αn is determined from hb by way of Corollary 3.1 such that

αn =
{

cnπ for some cn ∈ Z if ks < kb,

(2cn+1)π
2 for some cn ∈ Z if kb < ks.

Then by Proposition 5.1, we have∫
Bρ/2(0)

j̄ε(zn,∇zn) dx = kπ ln

(
ρ

2ε

)
+ γ + oε(1) (5.2)

as ε → 0 for each ρ > 0. Define h̃n(x) = hb(x) + ∑
m �=n θbm(x) + ζ(x) and qn such that

qn(x)|∂Bρ = h̃n(x), qn(x)|∂Bρ/2 = αn

such that qn is linear in radial directions centered at bn. From Corollary 3.1 there exist ρ� ↓ 0 so that

lim
�→∞

∫
∂Bρ�

(bn)

(
ρ�|∇h̃n|2 + (h̃n − αn)

2

ρ�

)
dσ = 0. (5.3)

With this property we have that

ũ�(x) = eiqn(x) x − bn = (
ei(qn(x)−αn)

)(
eiαn

x − bn

)
for x ∈ Bρ�

(bn) \ Bρ�/2(bn)
|x − bn| |x − bn|
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satisfies ∫
Bρ�

\Bρ�/2

j̄ε(ũ�,∇ũ�) dx = kπ ln(2) + oρ(1) (5.4)

uniformly in ε. Then from (5.1), (5.2), and (5.4) we have for minimizers uε that

Jε(uε) = J ε(uε) + kπd � J ε(ũ�) + kπd

= kπd ln

(
1

ε

)
+ kW(b) + H(b, ks, kb) + dγ + oρ(1) + oε(1).

Thus

lim sup
ε→0

(
Jε(uε) − kπd ln

(
1

ε

))
� kW(b) + H(b, ks, kb) + dγ. (5.5)

We next obtain an estimate from below. Let a be a limiting configuration as in Theorem A. Using Propositions 2.4
and 4.2 we can find a sequence of radii {ρ�} and a subsequence of minimizers {uεk,�

} (that we label {uk}) so that (5.3)
holds at a, and in addition

uk → u∗ in H 1(∂Bρ�
(an)

)
and

1 − |uk|2
εk

→ 0 in L2(∂Bρ�
(an)

)
as k → ∞

for each � and n. It follows that we can construct, in a similar fashion as before, functions ũnk� ∈ H 1(B2ρ�
(an) \

Bρ�
(an);C) so that

ũnk�|∂Bρ�
(an) = uk and ũnk�|∂B2ρ�

(an) = eiαn
x − an

|x − an| ,
satisfying∫

B2ρ�
\Bρ�

j̄εk
(ũnk�,∇ũnk�) dx = kπ ln(2) + oρ(1) + oε(1).

From this and Proposition 5.1 we see that

kπ ln

(
ρ�

εk

)
+ γ � J εk

(uk;Bρ�
) + J εk

(ũnk�;B2ρ�
\ Bρ�

) − kπ ln(2) + oρ(1) + oε(1)

= J εk
(uk;Bρ�

) + oρ(1) + oε(1).

We use Proposition 2.4 and (4.1) to determine the asymptotic nature for J εk
(uk;Ωρ�

). These two estimates give

Jεk
(uk) � kπd ln

(
1

εk

)
+ kW(a) + H (a, h, ks, kb) + dγ + oρ(1) + oε(1)

� kπd ln

(
1

εk

)
+ kW(a) + H(a, ks, kb) + dγ + oρ(1) + oε(1).

Choosing subsequences {ρ�}, {ε�} such that ε� � ρ� → 0 as � → ∞ allows us to compare this to (5.5). Since b was
arbitrary, we have that

kW(a) + H(a, ks, kb) � kW(a) + H (a, h, ks, kb) � kW(b) + H(b, ks, kb)

for any configuration b ∈ T . Hence the configuration a from Proposition 2.3 minimizes the renormalized energy, with
a ∈ T . If we set a = b, we obtain that the function h from Proposition 2.3 minimizes the renormalized energy for the
configuration a. Finally we see that

lim
�→∞

(
Jε�

(uε�
) − kπd ln

(
1

ε�

))
= kW(a) + H(a, ks, kb) + dγ. �



1026 S. Colbert-Kelly, D. Phillips / Ann. I. H. Poincaré – AN 30 (2013) 1009–1026
Remark 2. To be complete, we point out that Theorem B holds in the case k = ks = kb as well. In this case the
renormalized energy is as in (1.5) and (1.6), such that H(b, k, k) = 1

2

∫
Ω

k|∇hb|2 dx, where v(b, hb) = g on ∂Ω and
hb is a harmonic function that minimizes this energy subject to this boundary condition. If Ω is multiply connected
the proof proceeds just as in [1], once one knows that a configuration a obtained from a sequence of minimizers {u�}
is in T . This follows from Proposition 2.3.
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