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Abstract

We study the existence of sign-changing solutions with multiple bubbles to the slightly subcritical problem

−�u = |u|2∗−2−εu in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N , N � 3, 2∗ = 2N

N−2 and ε > 0 is a small parameter. In particular we prove that if Ω

is convex and satisfies a certain symmetry, then a nodal four-bubble solution exists with two positive and two negative bubbles.
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1. Introduction

We are concerned with the slightly subcritical elliptic problem{ −�u = |u|2∗−2−εu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth and bounded domain in R
N , N � 3, ε > 0 is a small parameter. Here 2∗ denotes the critical

exponent in the Sobolev embeddings, i.e. 2∗ = 2N
N−2 .

In [21] Pohoz̆aev proved that the problem (1.1) does not admit a nontrivial solution if Ω is star-shaped and ε � 0.
On the other hand problem (1.1) has a positive solution if ε � 0 and Ω is an annulus, see Kazdan and Warner [18].
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In [2] Bahri and Coron found a positive solution to (1.1) with ε = 0 provided that the domain Ω has a nontrivial
topology. Moreover in [12–14,20] the authors considered the slightly supercritical case where ε < 0 is close to 0 and
proved solvability of (1.1) in Coron’s situation of a domain with one or more small holes.

In the subcritical case ε > 0 the problem (1.1) is always solvable, since a positive solution uε can be found by
solving the variational problem

inf

{∫
Ω

|∇u|2
∣∣∣ u ∈ H 1

0 (Ω), ‖u‖2∗−ε = 1

}
.

In [9,16,17,23,24] it was proved that, as ε → 0+, the ground state solution uε blows up and concentrates at a point
ξ which is a critical point of the Robin’s function of Ω . In addition to the one-peak solution uε , several papers have
studied concentration phenomena for positive solutions of (1.1) with multiple blow-up points [3,22]. In a convex
domain such a phenomenon cannot occur. Grossi and Takahashi [15] proved the nonexistence of positive solutions
for the problem (1.1) blowing up at more than one point. On the other hand, multi-peak nodal solutions always exist
for problem (1.1) in a general bounded and smooth domain Ω . Indeed, in [6] a solution with exactly one positive
and one negative blow-up point is constructed for the problem (1.1) if ε > 0 is sufficiently small. The location of the
two concentration points is also characterized and depends on the geometry of the domain. Moreover the presence
of sign-changing solutions with a multiple blow up at a single point has been proved in [19,25] for problem (1.1);
such solutions have the shape of towers of alternating-sign bubbles, i.e. they are superpositions of positive bubbles
and negative bubbles blowing up at the same point with a different velocity. We also quote the paper [8], where the
authors study the blow up of the low energy sign-changing solutions of problem (1.1) and they classify these solutions
according to the concentration speeds of the positive and negative part. Finally, we mention the papers [4] and [7]
where, by a different approach, the authors provide existence and multiplicity of sign-changing solutions for more
general problems than (1.1). These papers are however not concerned with the profile of the solutions.

In this paper we deal with the construction of sign-changing solutions which develop a spike-shape as ε → 0+,
blowing up positively at some points and negatively at other points, generalizing the double blowing up obtained in [6].
We are able to prove that on certain domains Ω , (1.1) admits solutions with exactly two positive and two negative
blow-up points. Moreover, the asymptotic profile of the blow up of these solutions resembles a bubble, namely a
solution of the equation at the critical exponent in the entire R

N . It is natural to ask about the existence of solutions
with k blow-up points, also for k �= 2,4, and in more general domains. We shall discuss this difficult problem below.

In order to formulate the conditions on the domain Ω , we need to introduce some notation. Let us denote by
G(x,y) the Green’s function of −� over Ω under Dirichlet boundary conditions; so G satisfies{ −�yG(x, y) = δx(y), y ∈ Ω,

G(x, y) = 0, y ∈ ∂Ω,

where δx is the Dirac mass at x. We denote by H(x,y) its regular part, namely

H(x,y) = 1

(N − 2)σN |x − y|N−2
− G(x,y),

where σN is the surface measure of the unit sphere in R
N . The value of H on the diagonal, i.e. the function H(x,x),

is called the Robin’s function of the domain Ω .
Here are our assumptions on Ω .

(A1) Ω ⊂R
N , N � 3, is a bounded domain with a C2-boundary.

(A2) Ω is invariant under the reflection (x1, x
′) 
→ (x1,−x′) where x1 ∈ R, x′ ∈R

N−1.

For simplicity of notation we write the restrictions of G and H to the x1-axis as g and h respectively, i.e.

g(t, s) = G
(
(t,0, . . . ,0), (s,0, . . . ,0)

)
and h(t, s) = H

(
(t,0, . . . ,0), (s,0, . . . ,0)

)
. (1.2)

Our last assumption concerning the domain is:
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(A3) There exists a connected component (a, b) of the set {t | (t,0, . . . ,0) ∈ Ω} ⊂R such that

the function (a, b) � t 
→ h(t, t) is convex (1.3)

and

for any t, s ∈ (a, b), t �= s: (t − s)
∂g

∂t
(t, s) < 0. (1.4)

We can now state our main result.

Theorem 1.1. If Ω satisfies (A1), (A2), (A3), then for ε > 0 sufficiently small problem (1.1) has a solution uε with
the following property. There exist numbers λε

i > 0 and points ξε
i = (tεi ,0, . . . ,0) ∈ Ω with tεi ∈ (a, b), i = 1,2,3,4,

such that

uε(x) = αN

4∑
i=1

(−1)i+1
(

λε
i ε

1
N−2

ε
2

N−2 (λε
i )

2 + |x − ξε
i |2

)N−2
2 + o(1) uniformly in Ω;

here αN = (N(N − 2))(N−2)/4. Moreover, the numbers λε
i are bounded above and below away from zero, and the

numbers tεi are aligned on (a, b) and remain uniformly away from the boundary and from one another, i.e.

δ < λε
i <

1

δ
∀i = 1,2,3,4,

and

a + δ < tε1 < tε2 < tε3 < tε4 < b − δ, tεi+1 − tεi > δ ∀i = 1,2,3,

for some δ > 0.

Let us observe that the assumption (A3) is satisfied for a (not necessarily strictly) convex domain Ω as a con-
sequence of some properties of the Green’s and the Robin’s functions. Indeed, (1.3) follows from the result in [11]
according to which the Robin’s function of a convex domain is strictly convex. Moreover in a convex domain the
function G(·, y) is strictly decreasing (with non-zero derivative) along the half-lines starting from y (see Lemma A.2),
hence (1.4) holds true. Assumption (A3) is also satisfied for some non-convex domains, for instance those which are
C2-close to convex domains. It seems to be an open problem whether (A3) holds, for instance, on annuli.

The proof of Theorem 1.1 relies on a Lyapunov–Schmidt reduction scheme. This reduces the problem of finding
multi-bubble solutions for (1.1) to the problem of finding critical points of a functional which depends on points ξi and
scaling parameters λi . The leading part of the reduced functional is explicitly given in terms of the Green’s and Robin’s
functions. The reduced functional has a quite involved behaviour, due to the different interactions among the bubbles
(which depends on their respective sign). The symmetry of the domain plays a crucial role: indeed, the validity of the
hypothesis (A2) allows us to place the positive and negative bubbles alternating along the one-dimensional interval
(a, b). Then we use a variational approach and we obtain the existence of a saddle point by applying a max–min
argument. An important step is the proof of a compactness condition which ensures that the max–min level actually
is a critical value, and this is the most technical and difficult part of the proof.

As remarked above, it is natural to ask about other types of multibump solutions, and to consider more general
domains. First of all, the Lyapunov–Schmidt reduction scheme works in a very general setting. In particular, (A2) and
(A3) are not required for this. The problem lies in finding critical points of the reduced functional. This problem seems
to be very subtle. In the paper [5] we considered the case of a ball and we showed the existence of two three-bubble
solutions having different nodal properties. However, these solutions are not found via a global variational argument
and the proof strongly depends on the explicit formula of the Green’s and the Robin’s function in a ball. It also seems
very hard to weaken the assumptions on the domain. In our argument we use the symmetry condition (A2) in order
to localize and order the peaks on the x1-axis. Together with (A3) this allows comparison arguments involving the
Green’s and Robin’s functions which do not hold in general.

The paper is organized as follows. In Section 2 we sketch the finite-dimensional reduction method. Section 3 is
devoted to solving the reduced problem by the max–min procedure. Finally in Appendix A we collect some properties
of the Green’s function which are usually referred to throughout the paper.
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2. The reduced functional

The proof of Theorem 1.1 is based on the finite-dimensional reduction procedure which has been used for a wide
class of singularly perturbed problems. We sketch the procedure here and refer to [6] for details. Related methods
have been developed in [12–14] where the almost critical problem (1.1) was studied from the supercritical side. In this
section the assumptions (A2) and (A3) are not required.

For any ε > 0 let us introduce the functions

Uε,λ,ξ (x) = αN

(
λε

1
N−2

λ2ε
2

N−2 + |x − ξ |2
)N−2

2

, αN = (
N(N − 2)

)(N−2)/4
,

with λ > 0 and ξ ∈ R
N . These are actually all positive solutions of the limiting equation

−�U = U2∗−1 in R
N,

and constitute the extremals for the Sobolev’s critical embedding (see [1,10,26]). Fixing k � 1, we define the config-
uration space

Ok :=
{
(λ, ξ) = (λ1, . . . , λk, ξ1, . . . , ξk)

∣∣∣ δ < λi < δ−1, ξi ∈ Ω, dist(ξi, ∂Ω) > δ ∀i

|ξi − ξj | > δ if i �= j

}

where δ > 0 is a sufficiently small number. For fixed integers a1, . . . , ak ∈ {−1,1}, we seek suitable scalars λi and
points ξi such that a solution u exists for (1.1) with u ≈ ∑k

i=1 aiUε,λi ,ξi
. In order to obtain a better first approximation,

which satisfies the boundary condition, we consider the projections PΩUε,λ,ξ onto the space H 1
0 (Ω) of Uε,λ,ξ , where

the projection PΩ :H 1(RN) → H 1
0 (Ω) is defined as the unique solution of the problem{

�PΩu = �u in Ω,

PΩu = 0 on ∂Ω.

Then the following estimate holds

PΩUε,λi ,ξi
= Uε,λi ,ξi

+ O(
√

ε ) (2.1)

uniformly with respect to (λ, ξ) ∈ Ok . We look for a solution to (1.1) in a small neighbourhood of the first approxi-
mation, i.e. a solution of the form

u :=
k∑

i=1

aiPΩUε,λi ,ξi
+ φ,

where the rest term φ is small. To carry out the construction of a solution of this type, we first introduce an intermediate
problem as follows.

We consider the spaces

Kε,λ,ξ = span

{
PΩ

(
∂Uε,λi ,ξi

∂ξ
j
i

)
,PΩ

(
∂Uε,λ,ξ

∂λi

) ∣∣∣ i = 1, . . . , k, j = 1, . . . ,N

}
⊂ H 1

0 (Ω),

and

K⊥
ε,λ,ξ =

{
φ ∈ H 1

0 (Ω)

∣∣∣ 〈φ,ψ〉 :=
∫
Ω

∇φ∇ψ = 0 ∀ψ ∈ Kε,λ,ξ

}
⊂ H 1

0 (Ω);

here we denote by ξ
j
i the j -th component of ξi . Then it is convenient to solve as a first step the problem for φ as a

function of ε, λ, ξ . This turns out to be solvable for any choice of points ξi and scalars λi , provided that ε is sufficiently
small. The following result was established in [6].
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Lemma 2.1. There exist ε0 > 0 and a constant C > 0 such that for each ε ∈ (0, ε0) and each (λ, ξ) ∈ Ok there exists
a unique φε,λ,ξ ∈ K⊥

ε,λ,ξ satisfying

�(Vε,λ,ξ + φ) + |Vε,λ,ξ + φ|2∗−2−ε(Vε,λ,ξ + φ) ∈ Kε,λ,ξ (2.2)

and

‖φ‖ :=
(∫

Ω

|∇φ|2
)1/2

< Cε. (2.3)

Here Vε,λ,ξ = ∑k
i=1 aiPΩUε,λi ,ξi

. Moreover the map Ok → H 1
0 (Ω), (λ, ξ) 
→ φε,λ,ξ is of class C1.

After this result, let us consider the following energy functional associated with problem (1.1):

Iε(u) = 1

2

∫
Ω

|∇u|2 dx − 1

2∗ − ε

∫
Ω

|u|2∗−ε dx, u ∈ H 1
0 (Ω). (2.4)

Solutions of (1.1) correspond to critical points of Iε . Now we introduce the new functional

Jε :Ok → R, Jε(λ, ξ) = Iε(Vε,λ,ξ + φε,λ,ξ ) (2.5)

where φε,λ,ξ has been constructed in Lemma 2.1. The next lemma has been proved in [3] and reduces the original
problem (1.1) to the one of finding critical points of the functional Jε .

Lemma 2.2. The pair (λ, ξ) ∈Ok is a critical point of Jε if and only if the corresponding function uε = Vε,λ,ξ +φε,λ,ξ

is a solution of (1.1).

Finally we describe an expansion for Jε which can be obtained as in [13,14].

Proposition 2.3. With the change of variables λi = (cNΛi)
1

N−2 the following asymptotic expansion holds:

Jε(λ, ξ) = kCN + k

2
ωNε log ε + kγNε + ωNεΨk(Λ, ξ) + o(ε) (2.6)

C1-uniformly with respect to (λ, ξ) ∈Ok . Here:

Ψk(Λ, ξ) = 1

2

k∑
i=1

Λ2
i H(ξi, ξi) −

∑
i<j

aiajΛiΛjG(ξi, ξj ) − log(Λ1 · . . . · Λk),

and, setting U = U1,1,0, the constants CN , cN , ωN, and γN are given by

CN =
∫
RN

|∇U |2 − 1

2∗

∫
RN

U2∗
, cN = 1

2∗

∫
RN U2∗

(
∫
RN U2∗−1)2

, ωN = 1

2∗

∫
RN

U2∗
,

and

γN = 1

(2∗)2

∫
RN

U2∗ − 1

2∗

∫
RN

U2∗
logU + 1

2
ωN log cN .

Thus in order to construct a solution of problem (1.1) such as the one predicted in Theorem 1.1 it remains to find a
critical point of Jε . This will be accomplished in the next two sections.

We finish this section with a symmetry property of the reduction process.

Lemma 2.4. Suppose Ω is invariant under the action of an orthogonal transformation T ∈ O(N). Let OT
k :=

{(Λ, ξ) ∈ Ok: T ξi = ξi ∀i} denote the fixed point set of T in Ok . Then a point (Λ, ξ) ∈ OT
k is a critical point of

Jε if it is a critical point of the constrained functional Jε|OT .
k
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Proof. We first investigate the symmetry inherited by the function φε,λ,ξ obtained in Lemma 2.1. Setting T ξ :=
(T ξ1, . . . , T ξk) for ξ = (ξ1, . . . , ξk) ∈ Ωk , we claim that

φε,λ,ξ = φε,λ,T ξ ◦ T ∀(λ, ξ) ∈ Ok. (2.7)

Indeed, because of the symmetry of the domain, we see that

PΩUε,λi ,ξi
= (PΩUε,λi ,T ξi

) ◦ T

and

Kε,λ,ξ = {f ◦ T | f ∈Kε,λ,T ξ }, K⊥
ε,λ,ξ = {

f ◦ T
∣∣ f ∈ K⊥

ε,λ,T ξ

}
.

Then the function φε,λ,T ξ ◦ T belongs to K⊥
ε,λ,ξ and satisfies (2.2) and (2.3). The uniqueness of the solution φ im-

plies (2.7). Therefore the functional Jε satisfies

Jε(λ, ξ) = Jε(λ, T ξ).

The lemma follows immediately. �
3. A max–min argument: Proof of Theorem 1.1

In this section we will employ the reduction approach to construct the solutions stated in Theorem 1.1. The results
obtained in the previous section imply that our problem reduces to the study of critical points of the functional Jε

defined in (2.5). In what follows, we assume (A1), (A2), (A3). For t1, . . . , tk ∈ (a, b), where (a, b) is from (A3), we
set t = (t1, . . . , tk) and

J̃ε(λ, t) = Jε

(
λ, (t1,0, . . . ,0), (t2,0, . . . ,0), . . . , (tk,0, . . . ,0)

)
.

Lemma 3.1. If (λ, t) is a critical point of J̃ε , then (λ, ξ) is a critical point of Jε , where ξi = (ti ,0, . . . ,0).

Proof. This is an immediate consequence of Lemma 2.4. �
Let us now fix k = 4 and set

a1 = a3 = 1, a2 = a4 = −1.

So we are looking for solutions to problem (1.1) with 2 positive and two negative spikes which are aligned along the
x1-direction with alternating signs. From Lemma 3.1, we need to find a critical point of the function J̃ε(λ, t). The
expansion obtained in Proposition 2.3 implies that our problem reduces to the study of critical points of a functional
which is a small C1-perturbation of

Ψ̃ (Λ, t) = 1

2

4∑
i=1

Λ2
i h(ti , ti) −

∑
i<j

(−1)i+jΛiΛjg(ti , tj ) − log(Λ1 · Λ2 · Λ3 · Λ4),

where Λ = (Λ1,Λ2,Λ3,Λ4) ∈ (0,+∞)4, t = (t1, t2, t3, t4) ∈ (a, b)4 and the functions g and h are the restrictions of
G and H to the x1-axis defined in the introduction. We recall that the function Ψ̃ is well defined in the set

M := {
(Λ, t)

∣∣ Λi > 0, ti ∈ (a, b) ∀i = 1,2,3,4 & t1 < t2 < t3 < t4
}
.

Observe that by assumption (1.4) the function g(·, s) = g(s, ·) is decreasing along the interval (s, b) and increasing
along (a, s). Therefore

g(t1, t4) � g(t1, t3) � g(t1, t2), g(t1, t4) � g(t2, t4) � g(t3, t4) ∀(Λ, t) ∈M. (3.1)

Analogously,

g(t2, t4), g(t1, t3) � g(t2, t3) ∀(Λ, t) ∈ M. (3.2)

In this section we apply a max–min argument to characterize a topologically nontrivial critical value of the function
Ψ̃ in the set M. More precisely we will construct sets D, K , K0 ⊂M satisfying the following properties:
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(P1) D is an open set, K0 and K are compact sets, K is connected and

K0 ⊂ K ⊂D ⊂ D ⊂M;
(P2) If we define the complete metric space F by

F = {
η :K →D

∣∣ η continuous, η(Λ, t) = (Λ, t) ∀(Λ, t) ∈ K0
}
,

then

Ψ̃ ∗ := sup
η∈F

min
(Λ,t)∈K

Ψ̃
(
η(Λ, t)

)
< min

(Λ,t)∈K0
Ψ̃ (Λ, t). (3.3)

(P3) For every (Λ, t) ∈ ∂D such that Ψ̃ (Λ, t) = Ψ ∗, we have that ∂D is smooth at (Λ, t) and there exists a vector
τΛ,t tangent to ∂D at (Λ, t) so that τΛ,t · ∇Ψ̃ (Λ, t) �= 0.

Under these assumptions a critical point (Λ, t) ∈ D of Ψ̃ with Ψ̃ (Λ, t) = Ψ̃ ∗ exists, as a standard deformation
argument involving the gradient flow of Ψ̃ shows. Moreover, since properties (P2)–(P3) continue to hold also for a
function which is C1-close to Ψ̃ , then such a critical point will survive small C1-perturbations.

3.1. Definition of D

We define

D =
{

(Λ, t) ∈M
∣∣∣∣ Φ(Λ, t) := 1

2

4∑
i=1

Λ2
i h(ti , ti) +

∑
i<j

ΛiΛjg(ti , tj ) − log(Λ1Λ2Λ3Λ4) < M

}

where M > 0 is a sufficiently large number to be specified later. It is easy to check that the function Φ satisfies

Φ(Λ, t) → +∞ as (Λ, t) → ∂M. (3.4)

Indeed, for any Λ > 0 and t ∈ (a, b) we have

Λ2

2
h(t, t) − logΛ � Λ2

4
h(t, t) + | logΛ| +

(
Λ2

4
H0 − 2 log+ Λ

)

where log+ denotes the positive part of the logarithm, i.e.

log+ x = max{logx,0},
and H0 > 0 is the minimum value of the Robin’s function in Ω (see (A.1)). Taking into account that the function
H0
4 x2 − 2 logx attains a minimum at x = 2H

−1/2
0 , we deduce

Λ2

2
h(t, t) − logΛ � Λ2

4
h(t, t) + | logΛ| − 2 log+ 2√

H0
∀Λ > 0, t ∈ (a, b). (3.5)

Hence for any (Λ, t) ∈ M we get

Φ(Λ, t) � 1

4

4∑
i=1

Λ2
i h(ti , ti) +

4∑
i=1

| logΛi | +
∑
i<j

ΛiΛjg(ti , tj ) − 8 log+ 2√
H0

. (3.6)

(3.4) follows by using the properties of h and g (see Appendix A). In particular (3.4) implies that D is compactly
contained in M.
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3.2. Definition of K , K0, and proof of (P1)

In this subsection we define the sets K , K0 for which properties (P1)–(P2) hold. We consider the configurations
(Λ, t) such that Λ2 = Λ3, i.e. configurations of the form

(
Λ(μ), t

) =
(

μ1√
μ

,
√

μ,
√

μ,
μ4√
μ

, t1, t2, t3, t4

)
, (3.7)

where t = (t1, t2, t3, t4) ∈ (a, b)4, and μ = (μ1,μ,μ4) ∈ (0,+∞)3. Next we consider the open set

W =
{
(μ, t) ∈ (0,+∞)3 × (a, b)4

∣∣∣ (
Λ(μ), t

) ∈ M, Φ
(
Λ(μ), t

)
<

M

2

}
.

Since we do not know whether W is connected or not, we will define U as a conveniently chosen connected compo-
nent. Let t0 ∈ (a, b) be fixed and choose r0 > 0 sufficiently small such that

[t0 − 4r0, t0 + 4r0] ⊂ (a, b) (3.8)

and

1

2
h(t, t) + 1

2
h(s, s) − g(t, s) � 0 ∀t, s ∈ [t0 − 4r0, t0 + 4r0], t �= s. (3.9)

Setting μ0 = (1,1,1), t0 = (t0, t0 + r0, t0 + 2r0, t0 + 3r0), then (Λ(μ0), t0) ∈ M and, consequently, (μ0, t0) belongs
to W provided that M is sufficiently large. Now we are ready to define U , K and K0:

U := the connected component of W containing (μ0, t0),

K = {(
Λ(μ), t

) ∈M: (μ, t) ∈ U
}
,

K0 = {(
Λ(μ), t

) ∈ M: (μ, t) ∈ ∂U
}
.

Let us observe that, according to (3.4), the following inclusion holds:

K0 ⊂
{
(Λ, t) ∈ K

∣∣∣ Φ(Λ, t) = M

2

}
. (3.10)

K is clearly isomorphic to U by the obvious isomorphism, and K0 ≈ ∂U . In particular, K and K0 are compact sets
and K is connected. Moreover we have K0 ⊂ K ⊂D.

Since Λ2 = Λ3 by the definition of K , using (3.1) we obtain

−
∑
i<j

(−i)i+jΛiΛjg(ti , tj )� Λ2Λ3g(t2, t3) + Λ1Λ4g(t1, t4) ∀(Λ, t) ∈ K. (3.11)

Roughly speaking, the configurations in K have the crucial property that the negative interaction terms associated to
the couples of points with the same sign are dominated by the positive interplay between the couples of points having
opposite signs.

3.3. An upper and a lower estimate for Ψ̃ ∗

Let η ∈ F , so η :K → D is a continuous function such that η(Λ, t) = (Λ, t) for any (Λ, t) ∈ K0. Then we can
compose the following maps

(0,+∞)3 × (a, b)4 ⊃ U ←→ K
η−→ η(K) ⊂D H−→ (0,+∞)3 × (a, b)4

where H = (H1,H2, . . . ,H7) :D → (0,+∞)3 × (a, b)4 is defined by

H1(Λ, t) = Λ1Λ2, H2(Λ, t) = Λ2Λ3, H3(Λ, t) = Λ3Λ4,

H4(Λ, t) = t1, H5(Λ, t) = t2, H6(Λ, t) = t3, H7(Λ, t) = t4.
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We set

T :U → (0,+∞)3 × (a, b)4

to be the resulting composition. Clearly T is a continuous map. We claim that T = id on ∂U . Indeed, if (μ, t) ∈ ∂U ,
then by construction (Λ(μ), t) ∈ K0; consequently η(Λ(μ), t) = (Λ(μ), t), by which, using the definitions (3.7),

H1
(
Λ(μ), t

) = μ1√
μ

√
μ = μ1,

H2
(
Λ(μ), t

) = √
μ

√
μ = μ,

H3
(
Λ(μ), t

) = √
μ

μ4√
μ

= μ4.

This proves that T = id on ∂U . The theory of the topological degree ensures that

deg
(
T ,U, (μ0, t0)

) = deg
(
id,U, (μ0, t0)

) = 1.

Then there exists (μη, sη) ∈ U such that T (μη, sη) = (μ0, t0), i.e., if we set (Λη, tη) := η(Λ(μη), sη) ∈ η(K),

Λ
η
1Λ

η
2 = Λ

η
2Λ

η
3 = Λ

η
3Λ

η
4 = 1, (3.12)

tη = t0. (3.13)

Using (3.9), and taking into account that Λ
η
1 = Λ

η
3, Λ

η
2 = Λ

η
4 by (3.12), we obtain

1

2

(
Λ

η
1

)2
h
(
t0
1 , t0

1

) + 1

2

(
Λ

η
3

)2
h
(
t0
3 , t0

3

) − Λ
η
1Λ

η
3g

(
t0
1 , t0

3

)
� 0, (3.14)

1

2

(
Λ

η
2

)2
h
(
t0
2 , t0

2

) + 1

2

(
Λ

η
4

)2
h
(
t0
4 , t0

4

) − Λ
η
2Λ

η
4g

(
t0
2 , t0

4

)
� 0. (3.15)

Furthermore by (3.12) we also deduce

Λ
η
1Λ

η
4 = 1

Λ
η
2

1

Λ
η
3

= 1

Λ
η
2Λ

η
3

= 1, Λ
η
1Λ

η
2Λ

η
3Λ

η
4 = (

Λ
η
1Λ

η
2

)(
Λ

η
3Λ

η
4

) = 1. (3.16)

Combining (3.13)–(3.16) with the definition of Ψ̃ we get

Ψ̃
(
Λη, tη

)
� g

(
t0
1 , t0

2

) + g
(
t0
2 , t0

3

) + g
(
t0
3 , t0

4

) + g
(
t0
1 , t0

4

)
.

Then we can estimate

min
(Λ,t)∈K

Ψ̃
(
η(Λ, t)

)
� Ψ̃

(
Λη, tη

)
� g

(
t0
1 , t0

2

) + g
(
t0
2 , t0

3

) + g
(
t0
3 , t0

4

) + g
(
t0
1 , t0

4

)
.

By taking the supremum for all the maps η ∈F , we conclude

Ψ̃ ∗ = sup
η∈F

min
(Λ,t)∈K

Ψ̃
(
η(Λ, t)

)
� g

(
t0
1 , t0

2

) + g
(
t0
2 , t0

3

) + g
(
t0
3 , t0

4

) + g
(
t0
1 , t0

4

)
. (3.17)

On the other hand, by taking η = id and using (3.5) and (3.11),

Ψ̃ ∗ � min
(Λ,t)∈K

Ψ̃ (Λ, t) � −8 log+ 2√
H0

. (3.18)

3.4. Proof of (P2)

Let us first recall that the upper estimate for Ψ̃ ∗ obtained in (3.17) holds for any M sufficiently large. Then, by
using (3.10), the max–min inequality (P2) will follow once we have proved that

min
(Λ,t)∈K,Φ(Λ,t)= M

Ψ̃ (Λ, t) → +∞ as M → +∞. (3.19)

2
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To this aim, it will be convenient to provide a lower bound for the functional Ψ̃ over K . Combining (3.5) and (3.11)
we get

Ψ̃ (Λ, t) �
4∑

i=1

Λ2
i

4
h(ti , ti ) +

4∑
i=1

| logΛi | + Λ2Λ3g(t2, t3) + Λ1Λ4g(t1, t4) − 8 log+ 2√
H0

(3.20)

for any (Λ, t) ∈ K .
Now we are going to prove (3.19). Indeed, let (Λn, tn) = (Λn

1,Λn
2,Λn

3,Λn
4, t

n
1 , tn2 , tn3 , tn4 ) ∈ K be such that

Φ(Λn, tn) → +∞. (3.21)

The definition of Φ implies that, up to a subsequence, the following four cases cover all the possibilities for which
(3.21) may occur.

(1) There exists ı̂ such that Λn
ı̂

→ 0.
(2) There exists ı̂ such that Λn

ı̂
→ +∞.

(3) tn1 → a or tn4 → b.
(4) For every i the numbers Λn

i are bounded from above and below by positive constants and there exists ı̂ < ĵ such
that tn

ĵ
− tn

ı̂
→ 0.

If case (1), (2) or (3) holds, then by (3.20), recalling (A.1), we get Ψ̃ (Λn, tn) → +∞, as required.
Assume that case (4) occurs. The definition of Ψ̃ combined with (3.11) implies

Ψ̃ (Λn, tn) � cg
(
tn2 , tn3

) − C

for suitable positive constants c, C. Therefore, if ı̂ � 2 and ĵ � 3, we get tn3 − tn2 → 0, hence Ψ̃ (Λn, tn) → +∞.
It remains to consider the case when, up to a subsequence

tn3 − tn2 � a, tn2 − tn1 → 0,

or

tn3 − tn2 � a, tn4 − tn3 → 0

for some a > 0. Then we deduce tnj − tni � a for every i � 2 < 3 � j . Since g is related to the Green’s function by

(1.2), then g is smooth on the compact sets disjoint from the diagonal; then by the definition of Ψ̃ we get

Ψ̃ (Λn, tn) � c′g
(
tn1 , tn2

) + c′g
(
tn3 , tn4

) − C′

for some c′,C′ > 0 and we conclude

Ψ̃ (Λn, tn) → +∞.

3.5. Proof of (P3)

We shall prove that (P3) holds provided that M is sufficiently large. First we recall that the upper and the lower
estimates for Ψ ∗ obtained in (3.17) and (3.18) hold for any M sufficiently large. Then we proceed by contradiction:
assume that there exist (Λn, tn) = (Λn

1,Λn
2,Λ

n
3,Λn

4, t
n
1 , tn2 , tn3 , tn4 ) ∈M and a vector (βn

1 , βn
2 ) �= (0,0) such that:

Φ(Λn, tn) = n,

Ψ̃ (Λn, tn) = O(1),

βn
1 ∇Ψ̃ (Λn, tn) + βn

2 ∇Φ(Λn, tn) = 0.

The last expression means that ∇Ψ̃ (Λn, tn) and ∇Φ(Λn, tn) are linearly dependent. Observe that, according to the
Lagrange Theorem, this contradicts the nondegeneracy of ∇Ψ̃ on the tangent space at the level Ψ ∗.
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Without loss of generality we may assume(
βn

1

)2 + (
βn

2

)2 = 1 and βn
1 + βn

2 � 0. (3.22)

Considering Φ(Λn, tn) + Ψ̃ (Λn, tn) and Φ(Λn, tn) − Ψ̃ (Λn, tn) we obtain, respectively,

4∑
i=1

(
Λn

i

)2
h
(
tni , tni

) + 2
∑

i<j, (−1)i+j =−1

Λn
i Λ

n
jg

(
tni , tnj

) − 2 log
(
Λn

1Λ
n
2Λn

3Λ
n
4

) = n + O(1) (3.23)

and

2Λn
1Λ

n
3g

(
tn1 , tn3

) + 2Λn
2Λ

n
4g

(
tn2 , tn4

) = n + O(1). (3.24)

The identities βn
1

∂Ψ̃
∂ti

(Λn, tn) + βn
2

∂Φ
∂ti

(Λn, tn) = 0 imply

(
βn

1 + βn
2

)(
Λn

1

)2 ∂h

∂t

(
tni , tni

) −
4∑

j=1
j �=i

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
j

∂g

∂t

(
tni , tnj

) = 0 ∀i = 1,2,3,4. (3.25)

Moreover, from βn
1

∂Ψ̃
∂Λi

(Λn, tn) + βn
2

∂Φ
∂Λi

(Λn, tn) = 0 we obtain the following four identities:(
βn

1 + βn
2

)(
Λn

i

)2
h
(
tni , tni

) − Λn
i

∑
j,j �=i

(
(−1)i+j βn

1 − βn
2

)
Λn

jg
(
tni , tnj

) = βn
1 + βn

2 ∀i = 1,2,3,4, (3.26)

by which, considering the sum in i = 1,2,3,4,

(
βn

1 + βn
2

) 4∑
i=1

(
Λn

i

)2
h
(
tni , tni

) − 2
∑
i<j

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
jg

(
tni , tnj

) = 4
(
βn

1 + βn
2

)
(3.27)

which is equivalent to

βn
1

(
Ψ̃ (Λn, tn) + log

(
Λn

1Λ
n
2Λn

3Λ
n
4

)) + βn
2

(
n + log

(
Λn

1Λ
n
2Λn

3Λ
n
4

)) = 2
(
βn

1 + βn
2

)
. (3.28)

Observe that by (3.23) we have log(Λn
1Λn

2Λ
n
3Λn

4) � −n
2 + O(1), while, by (3.6), (Λn

i )
2 � 4

H0
n + O(1) and hence

log(Λn
1Λn

2Λ
n
3Λn

4) � 2 logn + O(1). Then we easily obtain

n + log
(
Λn

1Λn
2Λ

n
3Λn

4

) → +∞ and
log(Λn

1Λn
2Λ

n
3Λn

4)

n + log(Λn
1Λn

2Λn
3Λ

n
4)

� o(1).

Multiplying (3.28) by βn
1 we get

βn
1 βn

2 = 2βn
1

βn
1 + βn

2

n + log(Λn
1Λn

2Λ
n
3Λn

4)
− (

βn
1

)2 O(1) + log(Λn
1Λn

2Λ
n
3Λn

4)

n + log(Λn
1Λn

2Λ
n
3Λn

4)
� o(1).

Combining this with (3.22) we have

βn
1 � o(1), βn

2 � o(1), 2 � βn
1 + βn

2 � 1 + o(1). (3.29)

Using (3.29), we can divide the identities (3.26) by βn
1 + βn

2 . Then we obtain:

(
Λn

1

)2
h
(
tn1 , tn1

) + Λn
1Λn

2g
(
tn1 , tn2

) − βn
1 − βn

2

βn
1 + βn

2
Λn

1Λ
n
3g

(
tn1 , tn3

) + Λn
1Λn

4g
(
tn1 , tn4

) = 1, (3.30)

(
Λn

2

)2
h
(
tn2 , tn2

) + Λn
2Λn

1g
(
tn1 , tn2

) + Λn
2Λ

n
3g

(
tn2 , tn3

) − βn
1 − βn

2

βn
1 + βn

2
Λn

2Λn
4g

(
tn2 , tn4

) = 1, (3.31)

(
Λn

3

)2
h
(
tn3 , tn3

) − βn
1 − βn

2

βn
1 + βn

2
Λn

3Λ
n
1g

(
tn1 , tn3

) + Λn
3Λ

n
2g

(
tn2 , tn3

) + Λn
3Λn

4g
(
tn3 , tn4

) = 1, (3.32)

(
Λn

4

)2
h
(
tn4 , tn4

) + Λn
1Λn

4g
(
tn1 , tn4

) − βn
1 − βn

2

βn + βn Λn
2Λ

n
4g

(
tn2 , tn4

) + Λn
3Λn

4g
(
tn3 , tn4

) = 1. (3.33)

1 2
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Up to a subsequence, we may assume

tni → t̄i ∈ [a, b] ∀i = 1,2,3,4.

In what follows at many steps of the arguments we will pass to a subsequence, without further notice. We will often
use the symbol c or C for denoting different positive constants independent on n. The value of c, C is allowed to vary
from line to line (and also in the same formula). Motivated by (3.27), we distinguish five cases which will all lead to
a contradiction.

Case 1 (Avoiding blowing up of parameters I). Suppose the following holds:(
βn

1 − βn
2

)
Λn

1Λ
n
3g

(
tn1 , tn3

) → +∞,
(
βn

1 − βn
2

)
Λn

2Λn
4g

(
tn2 , tn4

) → +∞. (3.34)

Then, in particular βn
1 > βn

2 and, dividing (3.30) by
βn

1 −βn
2

βn
1 +βn

2
Λn

1Λ
n
3g(tn1 , tn3 ), we get

Λn
2

Λn
3

· βn
1 + βn

2

βn
1 − βn

2
�

Λn
2

Λn
3

· βn
1 + βn

2

βn
1 − βn

2

g(tn1 , tn2 )

g(tn1 , tn3 )
� 1 + o(1) (3.35)

where the first inequality follows by (3.1). Analogously, dividing (3.33) by
βn

1 −βn
2

βn
1 +βn

2
Λn

2Λ
n
4g(tn2 , tn4 ), and using again

(3.1), we have

Λn
3

Λn
2

· βn
1 + βn

2

βn
1 − βn

2
�

Λn
3

Λn
2

· βn
1 + βn

2

βn
1 − βn

2

g(tn3 , tn4 )

g(tn2 , tn4 )
� 1 + o(1). (3.36)

(3.35) and (3.36) give

βn
1 + βn

2

βn
1 − βn

2
� 1 + o(1)

which implies, using (3.29),

βn
2 = o(1), βn

1 = 1 + o(1). (3.37)

Inserting this into (3.35)–(3.36) we achieve

Λn
2 = Λn

3

(
1 + o(1)

)
, (3.38)

and

g
(
tn1 , tn2

) = g
(
tn1 , tn3

)(
1 + o(1)

)
, g

(
tn3 , tn4

) = g
(
tn2 , tn4

)(
1 + o(1)

)
. (3.39)

Using (3.37)–(3.39) and (3.34), Eqs. (3.30)–(3.33) lead to:(
Λn

1

)2
h
(
tn1 , tn1

) + Λn
1Λn

4g
(
tn1 , tn4

) = o
(
Λn

1Λn
3g

(
tn1 , tn3

))
, (3.40)(

Λn
2

)2
h
(
tn2 , tn2

) + Λn
2Λn

1g
(
tn1 , tn2

) + Λn
2Λn

3g
(
tn2 , tn3

) = (
1 + o(1)

)
Λn

2Λ
n
4g

(
tn2 , tn4

)
, (3.41)(

Λn
3

)2
h
(
tn3 , tn3

) + Λn
2Λn

3g
(
tn2 , tn3

) + Λn
3Λn

4g
(
tn3 , tn4

) = (
1 + o(1)

)
Λn

1Λ
n
3g

(
tn1 , tn3

)
, (3.42)(

Λn
4

)2
h
(
tn4 , tn4

) + Λn
1Λn

4g
(
tn1 , tn4

) = o
(
Λn

2Λn
4g

(
tn2 , tn4

))
. (3.43)

Combining (3.41)–(3.42) with (3.38)–(3.39) we obtain

Λn
2Λ

n
1g

(
tn1 , tn2

)
�

(
1 + o(1)

)
Λn

2Λn
4g

(
tn2 , tn4

) = (
1 + o(1)

)
Λn

3Λn
4g

(
tn3 , tn4

)
�

(
1 + o(1)

)
Λn

1Λn
3g

(
tn1 , tn3

) = (
1 + o(1)

)
Λn

2Λn
1g

(
tn1 , tn2

)
.

Then all the above inequalities are actually equalities, by which (3.41)–(3.42) can be rewritten as(
Λn

2

)2
h
(
tn2 , tn2

) + Λn
2Λn

3g
(
tn2 , tn3

) = o
(
Λn

2Λn
4g

(
tn2 , tn4

))
,(

Λn
3

)2
h
(
tn3 , tn3

) + Λn
2Λn

3g
(
tn2 , tn3

) = o
(
Λn

1Λn
3g

(
tn1 , tn3

))
.
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Now (3.2) applies and gives together with (3.38)

o
(
Λn

4

) = Λn
3 = (

1 + o(1)
)
Λn

2 = o
(
Λn

1

)
.

Substituting in (3.40) and (3.43) yields

h
(
tn1 , tn1

)
, g

(
tn1 , tn4

) = o
(
g
(
tn1 , tn3

))
, h

(
tn4 , tn4

)
, g

(
tn1 , tn4

) = o
(
g
(
tn2 , tn4

))
. (3.44)

We will derive a contradiction from (3.39) and (3.44). Indeed, by h(tn1 , tn1 ) = o(g(tn1 , tn3 )) we deduce g(tn1 , tn3 ) → +∞,
hence |tn1 − tn3 | → 0. Analogously by h(tn4 , tn4 ) = o(g(tn2 , tn4 )) we get |tn2 − tn4 | → 0. Therefore we are in the following
situation

tn1 , tn2 , tn3 , tn4 → t̄ ∈ [a, b] ∀i = 1,2,3,4.

Now, if t̄ = a, then Lemma A.1 yields

h
(
tn1 , tn4

) = 1 + o(1)

σN(N − 2)(tn4 + tn1 − 2a)N−2
� 1 + o(1)

σN(N − 2)(2t1 − 2a)N−2
= (

1 + o(1)
)
h
(
tn1 , tn1

)
and therefore, using (3.44),

|tn1 − tn3 |N−2

|tn1 − tn4 |N−2
= g(tn1 , tn4 ) + h(tn1 , tn4 )

g(tn1 , tn3 ) + h(tn1 , tn3 )
�

g(tn1 , tn4 ) + h(tn1 , tn4 )

g(tn1 , tn3 )
= o(1)

and then tn3 − tn1 = o(tn4 − tn1 ). On the other hand, using again Lemma A.1,

h
(
tn1 , tn4

) = 1 + o(1)

σN(N − 2)(tn4 + tn1 − 2a)N−2
� 1 + o(1)

σN(N − 2)(t4 − a)N−2
= 2N−2(1 + o(1)

)
h
(
tn4 , tn4

)
.

Now (3.44) leads to

|tn2 − tn4 |N−2

|tn1 − tn4 |N−2
= g(tn1 , tn4 ) + h(tn1 , tn4 )

h(tn2 , tn4 ) + h(tn2 , tn4 )
�

g(tn1 , tn4 ) + h(tn1 , tn4 )

g(tn2 , tn4 )
= o(1),

hence tn4 − tn2 = o(tn4 − tn1 ). Combining this with tn3 − tn1 = o(tn4 − tn1 ) we obtain a contradiction. An analogous argument
applies to the case t̄ = b. Finally assume t̄ ∈ (a, b). Then h(tni , tnj ) = O(1) for every i, j , therefore (3.44) yields

|tni − tnj |N−2

|tn1 − tn4 |N−2
= g(tn1 , tn4 ) + O(1)

g(tni , tnj ) + O(1)
= o(1) for (i, j) = (1,3), (2,4).

This gives tn3 − tn1 = o(tn4 − tn1 ) and tn4 − tn2 = o(tn4 − tn1 ) respectively, and the contradiction arises as above.

Case 2 (Avoiding blowing up of parameters II). Suppose the following holds:(
βn

1 − βn
2

)
Λn

1Λ
n
3g

(
tn1 , tn3

) → +∞,
(
βn

1 − βn
2

)
Λn

2Λ
n
4g

(
tn2 , tn4

)
� C. (3.45)

We can treat similarly the case when one interchanges the roles of the couples of indexes (1,3) and (2,4).

Then in particular there holds βn
1 > βn

2 . Using (3.31), (3.33) and the second inequality in (3.45) we obtain(
Λn

2

)2
h
(
tn2 , tn2

)
,Λn

1Λn
2g

(
tn1 , tn2

)
,Λn

2Λ
n
3g

(
tn2 , tn3

)
� C, (3.46)(

Λn
4

)2
h
(
tn4 , tn4

)
,Λn

1Λn
4g

(
tn1 , tn4

)
,Λn

3Λ
n
4g

(
tn3 , tn4

)
� C. (3.47)

By inserting (3.46)–(3.47) into (3.30) and (3.32), we obtain

(
Λn

1

)2
h
(
tn1 , tn1

)
,
(
Λn

3

)2
h
(
tn3 , tn3

) = βn
1 − βn

2

βn
1 + βn

2
Λn

1Λn
3g

(
tn1 , tn3

) + O(1) → +∞. (3.48)

We distinguish three cases. First assume that there exists i0 ∈ {1,2,3,4} such that

tni → a ∀1 � i � i0, |tni − a| � c ∀i > i0. (3.49)



1040 T. Bartsch et al. / Ann. I. H. Poincaré – AN 30 (2013) 1027–1047
By adding (3.25) for i = 1, . . . , i0 we obtain

(
βn

1 + βn
2

) i0∑
i=1

(
Λn

i

)2 ∂h

∂t

(
tni , tni

) −
i0∑

i=1

4∑
j=1
j �=i

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
j

∂g

∂t

(
tni , tnj

) = 0. (3.50)

Now |tni − tnj | � c for i � i0 and j > i0 imply

∂g

∂t

(
tni , tnj

) = O(1) ∀i � i0, ∀j > i0. (3.51)

Considering the sum for i, j � i0 we observe that by Lemma A.1

∂g

∂t

(
tni , tnj

) + ∂g

∂t

(
tnj , tni

) = −∂h

∂t

(
tni , tnj

) − ∂h

∂t

(
tnj , tni

) = 2 + o(1)

σN(tni + tnj − 2a)N−1
∀i, j � i0, i �= j.

Therefore, using again Lemma A.1, the identity of (3.50) becomes

i0∑
i=1

(Λn
i )

2(1 + o(1))

(2tni − 2a)N−1
+ 2

i0∑
i,j=1
i<j

(−1)i+j βn
1 − βn

2

βn
1 + βn

2
· Λn

i Λ
n
j (1 + o(1))

(tnj + tni − 2a)N−1
=

∑
i�i0<j

O
(
Λn

i Λ
n
j

)
. (3.52)

In order to estimate the last sum, we will prove that

Λn
i Λ

n
j = o

(
(Λn

i )
2

(2tni − 2a)N−1

)
+ O(1) ∀i � i0 < j. (3.53)

Indeed, if i � i0 < j and (i, j) �= (1,3), then, either j = 2 or j = 4, and, as a consequence of (3.46)–(3.47), Λn
2,Λn

4 =
O(1); therefore Λn

i Λ
n
j � 1

2 (Λn
i )

2 + 1
2 (Λn

j )
2 � 1

2 (Λn
i )

2 + C and (3.53) holds true. On the other hand, using (3.48),

Λn
1Λ

n
3 = (

1 + o(1)
)(

Λn
1

)2
(

h(tn1 , tn1 )

h(tn3 , tn3 )

)1/2

�
(
1 + o(1)

)(
Λn

1

)2
(

h(tn1 , tn1 )

H0

)1/2

and (3.53) follows by using Lemma A.1.
Next, in order to estimate the second sum in (3.52), we claim that

Λn
i Λ

n
j

(tnj + tni − 2a)N−1
= o

(
(Λn

i )
2

(2tni − 2a)N−1
+ (Λn

j )
2

(2tnj − 2a)N−1

)
if i, j � i0, (−1)i+j = −1. (3.54)

Indeed, take, for instance, the couple (i, j) = (1,2); the other cases are analogous. The claim is obvious if Λn
2 =

o(Λn
1) or Λn

1 = o(Λn
2). Otherwise c � Λn

2
Λn

1
� C and then, using (3.46) and (3.48),

h(tn2 ,tn2 )

h(tn1 ,tn1 )
= o(1), by which, applying

Lemma A.1, tn1 − a = o(tn2 − a). This in turn implies tn1 − a = o(tn1 + tn2 − 2a), and (3.54) follows.
Therefore, recalling that βn

1 > βn
2 , (3.52) becomes

i0∑
i=1

(Λn
i )

2(1 + o(1))

(2tni − 2a)N−1
� C.

Taking into account that
(Λn

1)2

(2tn1 −2a)N−1 � c
(Λn

1)2h(tn1 ,tn1 )

2tn1 −2a
→ +∞ by Lemma A.1 and (3.48), the contradiction follows.

An analogous argument can be applied when there exists i0 ∈ {1,2,3,4} such that

tni → b ∀i0 � i � 4, |tni − b| � c ∀i < i0. (3.55)

So we may assume

tni → t̄i ∈ (a, b) ∀i = 1,2,3,4. (3.56)
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According to the assumption (1.3) we have either ∂h
∂t

(tn1 , tn1 ) � 0 or ∂h
∂t

(tn3 , tn3 ) � 0. Assume, for instance,

∂h

∂t

(
tn1 , tn1

)
� 0

(the case ∂h
∂t

(tn3 , tn3 ) � 0 can be treated analogously). We set {1,2,3,4} = I ∪ J where

I = {
i:

∣∣tni − tn1

∣∣ = o
(∣∣tn1 − tn3

∣∣)}, J = {
i:

∣∣tni − tn1

∣∣� c
(∣∣tn1 − tn3

∣∣)}.
It is obvious that I = {1} or I = {1,2}. Then, adding (3.25) for i ∈ I we get

∑
i∈I

4∑
j=1
j �=i

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
j

∂g

∂t

(
tni , tnj

)
� C

(
Λn

2

)2
. (3.57)

Observe that

∂g

∂t

(
tn1 , tn2

) + ∂g

∂t

(
tn2 , tn1

) = −∂h

∂t

(
tn1 , tn2

) − ∂h

∂t

(
tn2 , tn1

) = O(1)

and Λn
2 � C, Λn

1Λn
2 � C, by (3.46); therefore (3.57) becomes

∑
i∈I

∑
j∈J

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
j

∂g

∂t

(
tni , tnj

)
� C. (3.58)

According to the assumption (1.4) we have ∂g
∂t

(t, s) > 0 if t < s. Since all the sequences tni lie in a compact subset
of Ω , Lemma A.1 implies

c
g(tni , tnj )

|tni − tnj | �
∂g

∂t

(
tni , tnj

)
� C

g(tni , tnj )

|tni − tnj | ∀i, j = 1,2,3,4, i < j. (3.59)

On the other hand, if i ∈ I and j ∈ J , then i < j and |tni − tnj | � c|tn3 − tn1 | by the definition of I , J ; therefore
combining (3.58) and (3.59) we arrive at(

βn
1 − βn

2

)
Λn

1Λ
n
3g

(
tn1 , tn3

)
� C

∑
(i,j)∈I×J
(i,j)�=(1,3)

∣∣(−1)i+j βn
1 − βn

2

∣∣Λn
i Λ

n
jg

(
tni , tnj

) + C. (3.60)

This contradicts (3.45)–(3.47).

Case 3 (Avoiding the boundary). Suppose the following holds: |βn
1 −βn

2 |Λn
1Λn

3g(tn1 , tn3 ) = O(1), |βn
1 −βn

2 |Λn
2Λn

4g(tn2 ,

tn4 ) = O(1), Ia := {i = 1,2,3,4 | t̄i = a} �= ∅ and(
βn

1 + βn
2

) ∑
(i,j)∈Ia

(
Λn

i

)2
h
(
tni , tni

) + 2
∑

i,j∈Ia
i<j

∣∣(−1)i+j βn
1 − βn

2

∣∣Λn
i Λ

n
jg

(
tni , tnj

)
� c. (3.61)

The case corresponding to replacing Ia with Ib can be treated analogously.

First of all we observe that (3.24) implies

βn
1 − βn

2 = o(1). (3.62)

Recalling that (βn
1 )2 + (βn

2 )2 = 1 it follows that

βn
1 + βn

2 = √
2 + o(1). (3.63)

Using (3.30)–(3.33) we obtain(
Λn

i

)2
h
(
tni , tni

)
� C ∀i = 1,2,3,4, (3.64)
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hence Λn
i � C for all i = 1,2,3,4, and

Λn
1Λ

n
2g

(
tn1 , tn2

)
,Λn

1Λn
4g

(
tn1 , tn4

)
,Λn

2Λ
n
3g

(
tn2 , tn3

)
,Λn

3Λn
4g

(
tn3 , tn4

)
� C. (3.65)

Now we multiply (3.25) by tni − a and add for i ∈ Ia

∑
i∈Ia

(
Λn

i

)2 ∂h

∂t

(
tni , tni

)(
tni − a

) −
∑
i∈Ia

4∑
j=1
j �=i

(−1)i+j βn
1 − βn

2

βn
1 + βn

2
Λn

i Λ
n
j

∂g

∂t

(
tni , tnj

)(
tni − a

) = 0. (3.66)

We estimate the terms in each sum in order to obtain a contradiction. Lemma A.1 implies

∂h

∂t

(
tni , tni

) = − 1 + o(1)

σN(2tni − 2a)N−1
= −(N − 2)

(
1 + o(1)

) h(tni , tni )

2(tni − a)
, ∀i ∈ Ia.

By the definition of Ia , there holds |tni − tnj | � c for i ∈ Ia and j /∈ Ia . This implies

∂g

∂t

(
tni , tnj

) = O(1) ∀i ∈ Ia, ∀j /∈ Ia. (3.67)

We split the second sum in (3.66) in two terms: those with j ∈ Ia and those with j /∈ Ia . We use again Lemma A.1
and, considering the sum for i, j ∈ Ia , we observe that

∂g

∂t

(
tni , tnj

)(
tni − a

) + ∂g

∂t

(
tnj , tni

)(
tnj − a

) = − 1

σN |tnj − tni |N−2
+ 1 + o(1)

σN(tnj − 2a + tni )N−2

= −(N − 2)g
(
tni , tnj

) + o(1)

σN(tnj − 2a + tni )N−2
∀i, j ∈ Ia, i �= j.

On the other hand, it is straightforward to prove that the function expy

|t−a|N−2 is convex for t � a, y ∈ R. Therefore

Λn
i Λ

n
j

(tnj − 2a + tni )N−2
= exp

( log(Λn
i )2

2 + log(Λn
j )2

2

)
2N−2

( tni +tnj
2 − a

)N−2
�

(Λn
i )

2

2(2tni − 2a)N−2
+ (Λn

j )
2

2(2tnj − 2a)N−2

� C
((

Λn
i

)2
h
(
tni , tni

) + (
Λn

j

)2
h
(
tnj , tnj

))
� C ∀i, j ∈ Ia, i �= j.

Therefore (3.66) becomes(
βn

1 + βn
2

)∑
i∈Ia

(
Λn

i

)2
h
(
tni , tni

) − 2
∑

(i,j)∈Ia
i<j

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
jg

(
tni , tnj

) = o(1). (3.68)

If Ia = {1} or Ia = {1,2}, then the left-hand sides of (3.61) and (3.68) coincide, differently from the right-hand sides.
If Ia = {1,2,3,4}, then the contradiction arises by comparing (3.68) with (3.27) because of (3.63). So it remains to
consider the case Ia = {1,2,3}. We sum the identities (3.26) for i = 1,2,3 and subtract (3.68) to obtain(

βn
1 + βn

2

)
Λn

1Λ
n
4g

(
tn1 , tn4

) − (
βn

1 − βn
2

)
Λn

2Λ
n
4g

(
tn2 , tn4

) + (
βn

1 + βn
2

)
Λn

3Λ
n
4g

(
tn3 , tn4

) = 3
(
βn

1 + βn
2

) + o(1).

However, combining this with (3.26) for i = 4 gives(
βn

1 + βn
2

)(
Λn

4

)2
h
(
tn4 , tn4

) + 2
(
βn

1 + βn
2

) = o(1)

and the contradiction arises because of (3.63).

Case 4 (Avoiding collisions). Suppose the following holds: |βn
1 −βn

2 |Λn
1Λn

3g(tn1 , tn3 ) = O(1), |βn
1 −βn

2 |Λn
2Λn

4g(tn2 , tn4 )

= O(1) and there exists i0 �= j0 such that t̄i0 = t̄j0 ∈ (a, b) and∣∣(−1)i0+j0βn
1 − βn

2

∣∣Λn
i0
Λn

j0
g
(
tni0, t

n
j0

)
� c.
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As in the previous case we immediately get (3.62)–(3.65). Hence, in particular, Λn
i � C for any i = 1,2,3,4. Set

t̄ = t̄i0 = t̄j0 ∈ (a, b) and I = {i = 1,2,3,4 | t̄i = t̄}. We split I = I1 ∪ I2 where

I1 =
{
i ∈ I

∣∣∣ ∃j ∈ I, j �= i s.t.
∣∣(−1)i+j βn

1 − βn
2

∣∣ Λn
i Λ

n
j

|tni − tnj |N−1
→ +∞

}
,

and

I2 =
{
i ∈ I

∣∣∣ ∀j ∈ I, j �= i:
∣∣(−1)i+j βn

1 − βn
2

∣∣ Λn
i Λ

n
j

|tni − tnj |N−1
� C

}
.

Since the sequences tni lie in a compact subset of Ω for any i ∈ I , Lemma A.1 implies

∂g

∂t

(
tni , tnj

) = − tni − tnj

σN |tni − tnj |N + O(1) ∀i ∈ I, ∀j = 1,2,3,4, i �= j.

Moreover, observe that 1
|tni0 −tnj0

|N−1 � σN(N −2)
g(tni0

,tnj0
)

|tni0 −tnj0
| . Therefore, according to the assumptions, i0, j0 ∈ I1. For any

i ∈ I1 we consider (3.25) and obtain

∑
j∈I1, j �=i

(
(−1)i+j βn

1 − βn
2

)
Λn

i Λ
n
j

tni − tnj

|tni − tnj |N = O(1) ∀i ∈ I1. (3.69)

Using (3.69) for i0, we immediately get the existence of a third index j ∈ I1, j �= i0, j0. Therefore I1 has actually at
least three elements. Assume I1 = {1,2,3,4}. We look at (3.69) for i = 1:

(
βn

1 + βn
2

) Λn
1Λn

2

|tn1 − tn2 |N−1
+ (

βn
1 + βn

2

) Λn
1Λn

4

|tn1 − tn4 |N−1
= (

βn
1 − βn

2

) Λn
1Λn

3

|tn1 − tn3 |N−1
+ O(1) → +∞

which yields βn
1 > βn

2 . Dividing the identity by (βn
1 − βn

2 )
Λn

1Λn
3

|tn1 −tn3 |N−1 , and using |tn1 − tn2 | < |tn1 − tn3 |, we get

βn
1 + βn

2

βn
1 − βn

2
�

Λn
3

Λn
2

(
1 + o(1)

)
.

Next we consider (3.69) for i = 4 and proceed analogously, using now that |tn3 − tn4 | < |tn2 − tn4 |. This leads to:
βn

1 +βn
2

βn
1 −βn

2
� Λn

2
Λn

3
(1 + o(1)), and so

βn
1 + βn

2

βn
1 − βn

2
� 1 + o(1)

in contradiction with (3.62)–(3.63).
It remains to consider the case when I1 has exactly three elements. If I1 = {1,2,4}, then (3.69) for i = 2 gives

(
βn

1 + βn
2

) Λn
1Λn

2

|tn1 − tn2 |N−1
= −(

βn
1 − βn

2

) Λn
2Λn

4

|tn1 − tn4 |N−1
+ O(1) → +∞,

which is absurd if βn
1 � βn

2 . On the other hand, by (3.69) for i = 4

(
βn

1 + βn
2

) Λn
1Λn

4

|tn1 − tn4 |N−1
= (

βn
1 − βn

2

) Λn
2Λ

n
4

|tn2 − tn4 |N−1
+ O(1) → +∞

which gives the contradiction in the case βn
1 < βn

2 . An analogous argument applies to the case I1 = {1,3,4}.
It remains to consider the cases I1 = {1,2,3} and I1 = {2,3,4}. Assume, for instance, I1 = {1,2,3}, the other case

is similar. Then by (3.69) we obtain

Λn
1Λn

2

|tn − tn|N−1
= βn

1 − βn
2

βn + βn · Λn
1Λ

n
3

|tn − tn|N−1
+ O(1) = Λn

2Λ
n
3

|tn − tn|N−1
+ O(1) → +∞. (3.70)
2 1 1 2 3 1 3 2
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In particular we have βn
1 > βn

2 . Using (3.62)–(3.63), the first and the second equality in (3.70) give

Λn
2 = o

(
Λn

3

)
, Λn

2 = o
(
Λn

1

)
,

respectively. Now we multiply the first identity in (3.70) by tn2 − tn1 and the second by tn3 − tn2 and, summing up, we
obtain

(
βn

1 + βn
2

) Λn
1Λ

n
2

|tn2 − tn1 |N−2
− (

βn
1 − βn

2

) Λn
1Λn

3

|tn3 − tn1 |N−2
+ (

βn
1 + βn

2

) Λn
2Λ

n
3

|tn3 − tn2 |N−2
= o(1). (3.71)

We may also assume

Λn
4 � c. (3.72)

Otherwise, if Λn
4 → 0, then (3.26) for i = 4 would give

(
Λn

4

)2
h
(
tn4 , tn4

) + Λn
4

(
Λn

1g
(
tn1 , tn4

) + Λn
3g

(
tn3 , tn4

)) = 1 + βn
1 − βn

2

βn
1 + βn

2
Λn

2Λ
n
4g

(
tn2 , tn4

)
� 1

by which either (Λn
4)2h(tn4 , tn4 ) � 1

2 or Λn
4(Λ

n
1g(tn1 , tn4 ) + Λn

3g(tn3 , tn4 )) � 1
2 . If (Λn

4)2h(tn4 , tn4 ) � 1
2 , then h(tn4 , tn4 ) →

+∞, and, consequently, tn4 → b, so that we are again in Case 3. Otherwise, if Λn
4(Λn

1g(tn1 , tn4 ) + Λn
3g(tn3 , tn4 )) � 1

2 ,
then g(tn1 , tn4 ) + g(tn3 , tn4 ) → +∞. So tn4 → t̄ and then

Λn
1Λn

4

|tn1 − tn4 |N−1
+ Λn

3Λ
n
4

|tn3 − tn4 |N−1
� σN(N − 2)Λn

1Λn
4
g(tn1 , tn4 )

|tn1 − tn4 | + σN(N − 2)Λn
3Λ

n
4
g(tn3 , tn4 )

|tn3 − tn4 | → +∞,

contradicting the fact that 4 /∈ I1.
Now we distinguish three cases. First assume

Λn
1,Λ

n
2,Λn

3 → 0. (3.73)

Then (3.71) can be rewritten as(
βn

1 + βn
2

)
Λn

1Λ
n
2g

(
tn1 , tn2

) − (
βn

1 − βn
2

)
Λn

1Λ
n
3g

(
tn1 , tn3

) + (
βn

1 + βn
2

)
Λn

2Λ
n
3g

(
tn2 , tn3

) = o(1).

We sum the identities (3.26) in i = 1,2,3 and, using the above estimate and (3.73), we obtain(
βn

1 + βn
2

)
Λn

1Λ
n
4g

(
tn1 , tn4

) − (
βn

1 − βn
2

)
Λn

2Λ
n
4g

(
tn2 , tn4

) + (
βn

1 + βn
2

)
Λn

3Λ
n
4g

(
tn3 , tn4

) = 3
(
βn

1 + βn
2

) + o(1).

However, combining this with (3.26) for i = 4 gives(
βn

1 + βn
2

)(
Λn

4

)2
h
(
tn4 , tn4

) + 2
(
βn

1 + βn
2

) = o(1)

and a contradiction arises because of (3.63).
Now assume that

Λn
1,Λ

n
2 → 0, Λn

3 � c. (3.74)

Then Λn
1Λn

2 = o(Λn
2Λ

n
3). According to (3.70) we have

Λn
1Λn

2
|tn2 −tn1 |N−1 = (1 + o(1))

Λn
2Λn

3
|tn3 −tn2 |N−1 , from which we deduce tn2 −

tn1 = o(tn3 − tn2 ). Consequently
Λn

1Λn
2

|tn2 −tn1 |N−2 = o(
Λn

2Λn
3

|tn3 −tn2 |N−2 ), which is equivalent to Λn
1Λ

n
2g(tn1 , tn2 ) = o(Λn

2Λ
n
3g(tn2 , tn3 )).

Now (3.65) implies Λn
1Λn

2g(tn1 , tn2 ) = o(1), hence (3.30) becomes(
βn

1 + βn
2

)
Λn

1Λ
n
4g

(
tn1 , tn4

) = βn
1 + βn

2 + (
βn

1 − βn
2

)
Λn

1Λ
n
3g

(
tn1 , tn3

) + o(1)� βn
1 + βn

2 + o(1)

because βn
1 > βn

2 . Then Λn
1Λ

n
4g(tn1 , tn4 ) � c, which implies g(tn1 , tn4 ) → +∞ by (3.74). So, tn4 → t̄ and then

Λn
1Λn

4

|tn1 − tn4 |N−1
� σN(N − 2)Λn

1Λn
4
g(tn1 , tn4 )

|tn1 − tn4 | → +∞,

in contradiction with 4 /∈ I1.
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An analogous argument applies when

Λn
3,Λn

2 → 0, Λn
1 � c.

Finally, assume that

Λn
2 → 0, Λn

1,Λ
n
3 � c. (3.75)

Then we obtain, using (3.24),

Λn
1Λn

3 �
n

g(tn1 , tn3 )
� Cn

∣∣tn1 − tn3

∣∣N−2 � Cn
(∣∣tn1 − tn2

∣∣N−2 + ∣∣tn2 − tn3

∣∣N−2)� Cn
(
Λn

1Λ
n
2 + Λn

2Λ
n
3

)
where the last inequality follows from (3.70). So, using (3.75), we deduce c � Λn

1Λ3 � CnΛn
2, by which Λn

2 � c
n

.
Combining this with (3.72) and (3.75) we obtain

Λn
1 · Λn

2 · Λn
3 · Λn

4 �
c

n
.

Finally (3.24), (3.64) and (3.65) imply

Ψ̃ ∗ = Ψ̃ (Λn, tn) = −n

2
+ O(1) − log

(
Λn

1Λn
2Λ

n
3Λn

4

)
� −n

2
+ O(1) + logn → −∞

in contradiction with the lower estimate (3.18).

Case 5 (Conclusion).

In order to not fall again in Cases 1–2, we assume:∣∣βn
1 − βn

2

∣∣Λn
1Λn

3g
(
tn1 , tn3

)
� C,

∣∣βn
1 − βn

2

∣∣Λn
2Λn

4g
(
tn2 , tn4

)
� C.

So, as in Cases 3 and 4 we immediately get (3.62)–(3.65) and, in particular, Λn
i � C for any i = 1,2,3,4. Moreover

we may also assume

Λn
i � c ∀i = 1,2,3,4. (3.76)

Indeed, assume for instance, that Λn
1 → 0. Then, by (3.26) for i = 1 we have that, either(

Λn
1

)2
h
(
tn1 , tn1

)
� c, (3.77)

or

∃j = 2,3,4 such that
∣∣(−1)1+j βn

1 − βn
2

∣∣Λn
1Λ

n
jg

(
tn1 , tnj

)
� c. (3.78)

If (3.77) holds, then h(tn1 , tn1 ) → +∞, which implies t̄1 = a or t̄1 = b by (A.1), and we are back in Case 3. On the
other hand, if (3.78) holds, then, g(tn1 , tnj ) → +∞ for some j �= 1, which implies t̄j = t̄1, and we are either in Case 3
(if t̄1 = a, b) or in Case 4 (if t̄1 ∈ (a, b)). Finally (3.24), (3.64), (3.65), (3.76) imply

Ψ̃ ∗ = Ψ̃ (Λn, tn) = −n

2
+ O(1) → −∞

in contradiction with the lower estimate (3.18).

Appendix A. Some properties of the Green’s function

Let Ω be a bounded domain with a C2-boundary. We denote by G(x,y) the Green’s function of −� on Ω under
Dirichlet boundary conditions, and by H(x,y) its regular part, as in the introduction. So H satisfies⎧⎨

⎩
�yH(x, y) = 0, y ∈ Ω,

H(x, y) = 1
N−2

, y ∈ ∂Ω.

(N − 2)σN |x − y|
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We recall that H is a smooth function in Ω × Ω ; moreover G and H are symmetric in x and y and G,H > 0 in
Ω × Ω .

The diagonal H(x,x) is called the Robin’s function of the domain Ω and satisfies

H(x,x) → +∞ as d(x) := dist(x, ∂Ω) → 0. (A.1)

Let H0 be the minimum value of the Robin’s function:

H0 = min
Ω

H(x, x) > 0.

Recall that the Robin’s function of a convex bounded domain is strictly convex [11].
We need the following result concerning the behavior of the regular part H(x,y) near the boundary. To this aim we

fix δ > 0 sufficiently small such that the projection onto ∂Ω is well defined in the region Ω0 := {x ∈ Ω: d(x) < δ};
we denote this projection by p :Ω0 → ∂Ω . It is of class C1 because ∂Ω is of class C2. Moreover, for x ∈ Ω0, we write
x̄ = 2p(x) − x for the reflection of x at ∂Ω and νx = x−p(x)

|x−p(x)| for the inward unit normal at p(x).

Lemma A.1. Let Ω be a bounded domain with a C2-boundary. Then the following expansions hold uniformly for
x ∈ Ω0 and y ∈ Ω :

H(x,y) = 1

(N − 2)σN |x̄ − y|N−2
+ O

(
d(x)

|x̄ − y|N−2

)
,

and

∂H

∂νx

(x, y) = 1

(N − 2)σN

∂

∂νx

(
1

|x̄ − y|N−2

)
+ O

(
1

|x̄ − y|N−2

)
.

We refer to [23] for the proof.
We conclude this section with the following lemma which is concerned with the behaviour of G(·, y) along half-

lines through the domain starting from y. This implies (1.4) for convex domains.

Lemma A.2. Let Ω be a convex and bounded domain with smooth boundary. Then for any x, y ∈ Ω , x �= y, we have

(x − y) · ∇xG(x, y) < 0.

Proof. We use Lemma 3.1 in [15] which states that if Ω is a smooth and bounded domain in R
N , then, for any P ∈ Ω ,

A,B ∈ Ω , A �= B ,

−
∫

∂Ω

(x − P) · νx

∂G(x,A)

∂νx

∂G(x,B)

∂νx

ds = (2 − N)G(A,B) + (P − A)∇xG(A,B) + (P − B)∇xG(B,A),

where νx is the unit inner normal at x ∈ ∂Ω . Now assume that Ω is convex and take P = B . We deduce

(B − A)∇xG(A,B) = −
∫

∂Ω

(x − B) · νx

∂G(x,A)

∂νx

∂G(x,B)

∂νx

ds + (N − 2)G(A,B)

which is strictly positive because (x − B) · νx < 0 for any x ∈ ∂Ω by the convexity of Ω , and because
∂G(x,A)

∂νx
,

∂G(x,B)
∂νx

> 0 on ∂Ω . �
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