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Abstract

We obtain results for the following question where m � 1 and n � 2 are integers.

Question. For which continuous functions f : [0,∞) → [0,∞) does there exist a continuous function ϕ : (0,1) → (0,∞) such
that every C2m nonnegative solution u(x) of

0 � −�mu � f (u) in B2(0) \ {0} ⊂R
n

satisfies

u(x) = O
(
ϕ
(|x|)) as x → 0

and what is the optimal such ϕ when one exists?

Résumé

Nous obtenons des résultats pour la question suivante, avec m � 1 et n� 2 entiers.

Question. Pour quelles fonctions continues f : [0,∞) → [0,∞) existe-t-il une fonction continue ϕ : (0,1) → (0,∞) telle que
chaque solution C2m non-negative u(x) de

0 � −�mu � f (u) dans B2(0) \ {0} ⊂ R
n

satisfasse à

u(x) = O
(
ϕ
(|x|)) lorsque x → 0,

et quelle est la meilleure de ces fonctions ϕ quand elle existe ?
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1. Introduction

In this paper we consider the following question where m � 1 and n� 2 are integers.

Question 1. For which continuous functions f : [0,∞) → [0,∞) does there exist a continuous function ϕ : (0,1) →
(0,∞) such that every C2m nonnegative solution u(x) of

0 � −�mu� f (u) in B2(0) \ {0} ⊂ R
n (1.1)

satisfies

u(x) = O
(
ϕ
(|x|)) as x → 0 (1.2)

and what is the optimal such ϕ when one exists?

We call a function ϕ with the above properties a pointwise a priori bound (as x → 0) for C2m nonnegative solutions
u(x) of (1.1).

As we shall see, when ϕ in Question 1 is optimal, the estimate (1.2) can sometimes be sharpened to

u(x) = o
(
ϕ
(|x|)) as x → 0.

Remark 1.1. Let

Γ (r) =
{

r−(n−2), if n� 3;
log 5

r
, if n = 2.

(1.3)

Since u(x) = Γ (|x|) is a positive solution of −�mu = 0 in B2(0) \ {0}, and hence a positive solution of (1.1), any
pointwise a priori bound ϕ for C2m nonnegative solutions u(x) of (1.1) must be at least as large as Γ , and whenever
ϕ = Γ is such a bound it is necessarily an optimal bound.

Some of our results for Question 1 can be generalized to allow the function f in (1.1) to depend nontrivially on x

and the partial derivatives of u up to order 2m − 1. (See the second paragraph after Proposition 2.1.)
We also consider the following analog of Question 1 when the singularity is at ∞ instead of at the origin.

Question 2. For which continuous functions f : [0,∞) → [0,∞) does there exist a continuous function ϕ : (1,∞) →
(0,∞) such that every C2m nonnegative solution v(y) of

0 � −�mv � f (v) in R
n \ B1/2(0) (1.4)

satisfies

v(y) = O
(
ϕ
(|y|)) as |y| → ∞

and what is the optimal such ϕ when one exists?

The m-Kelvin transform of a function u(x), x ∈ Ω ⊂R
n \ {0}, is defined by

v(y) = |x|n−2mu(x) where x = y/|y|2. (1.5)

By direct computation, v(y) satisfies

�mv(y) = |x|n+2m�mu(x). (1.6)

See [17, p. 221] or [18, p. 660]. Using this fact and some of our results for Question 1, we will obtain results for
Question 2.
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Nonnegative solutions in a punctured neighborhood of the origin in R
n—or near x = ∞ via the m-Kelvin

transform—of problems of the form

−�mu = f (x,u) or 0 � −�mu� f (x,u) (1.7)

when f is a nonnegative function have been studied in [3,4,10–12,17,18] and elsewhere. These problems arise natu-

rally in conformal geometry and in the study of the Sobolev embedding of H 2m into L
2n

n−2m .
Pointwise estimates at x = ∞ of solutions u of problems (1.7) can be crucial for proving existence results for entire

solutions of (1.7) which in turn can be used to obtain, via scaling methods, existence and estimates of solutions of
boundary value problems associated with (1.7), see e.g. [13,14]. An excellent reference for polyharmonic boundary
value problems is [7].

Also, weak solutions of �mu = μ, where μ is a measure on a subset of R
n, have been studied in [2,5,6], and

removable isolated singularities of �mu = 0 have been studied in [11].
Our proofs require Riesz potential estimates as stated, for example, in [9, Lemma 7.12] and a representation formula

for C2m nonnegative solutions of

−�mu� 0 in B2(0) \ {0} ⊂R
n, (1.8)

which we state in Lemma 4.1.

2. Results for Question 1

In this section we state and discuss our results for Question 1. If m � 1 and n� 2 are integers then m and n satisfy
one of the following five conditions:

(i) either m is even or 2m > n;
(ii) m = 1 and n� 3;

(iii) m = 1 and n = 2;
(iv) m � 3 is odd and 2m < n;
(v) m � 3 is odd and 2m = n.

The following three theorems, which we proved in [8,16,15], completely answer Question 1 when m and n satisfy
either (i), (ii), or (iii). Consequently, in this paper, we will only prove results dealing with the case that m and n satisfy
either (iv) or (v).

Theorem 2.1. Suppose m � 1 and n � 2 are integers satisfying (i) and f : [0,∞) → [0,∞) is a continuous function.
Let u(x) be a C2m nonnegative solution of (1.1) or, more generally, of (1.8). Then

u(x) = O
(
Γ

(|x|)) as x → 0, (2.1)

where Γ is given by (1.3).

Theorem 2.2. Let u(x) be a C2 nonnegative solution of (1.1) where the integers m and n satisfy (ii) (resp. (iii)), and
f : [0,∞) → [0,∞) is a continuous function satisfying

f (t) = O
(
tn/(n−2)

) (
resp. log

(
1 + f (t)

) = O(t)
)

as t → ∞. (2.2)

Then u satisfies (2.1).

By Remark 1.1 the bound (2.1) for u in Theorems 2.1 and 2.2 is optimal.
By the following theorem, the condition (2.2) on f in Theorem 2.2 for the existence of a pointwise bound for u is

essentially optimal.

Theorem 2.3. Suppose m and n are integers satisfying (ii) (resp. (iii)), and f : [0,∞) → [0,∞) is a continuous
function satisfying

lim
t→∞

f (t)

n/(n−2)
= ∞

(
resp. lim

t→∞
log(1 + f (t)) = ∞

)
. (2.3)
t t
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Then for each continuous function ϕ : (0,1) → (0,∞) there exists a C2 positive solution u(x) of (1.1) such that

u(x) �= O
(
ϕ
(|x|)) as x → 0.

If m and n satisfy (i), (ii), or (iii), then according to Theorems 2.1, 2.2, and 2.3, either the optimal pointwise bound
for u is given by (2.1) or there does not exist a pointwise bound for u (provided we don’t allow the rather uninteresting
and pathological possibility when m and n satisfy (ii) (resp. (iii)), that f satisfies neither (2.2) nor (2.3)).

The situation is very different and more interesting when m and n satisfy (iv) or (v). In this case, according to the
following results, there are an infinite number of different optimal pointwise bounds for u depending on f .

The following three theorems deal with Question 1 when m and n satisfy (iv).

Theorem 2.4. Let u(x) be a C2m nonnegative solution of (1.1) where the integers m and n satisfy (iv) and
f : [0,∞) → [0,∞) is a continuous function satisfying

f (t) = O
(
tλ

)
as t → ∞

where

0 � λ� 2m + n − 2

n − 2

(
resp.

2m + n − 2

n − 2
< λ <

n

n − 2m

)
.

Then as x → 0,

u(x) = O
(|x|−(n−2)

)
(2.4)(

resp. u(x) = o
(|x|−a

)
where a = 4m(m − 1)

n − λ(n − 2m)

)
. (2.5)

Since a in (2.5) is also given by

a = n − 2 + λ(n − 2) − (2m + n − 2)

n − λ(n − 2m)
(n − 2m) (2.6)

we see that a increases from n − 2 to infinity as λ increases from 2m+n−2
n−2 to n

n−2m
.

By Remark 1.1, the bound (2.4) is optimal and by the following theorem so is the bound (2.5).

Theorem 2.5. Suppose m and n are integers satisfying (iv) and λ and a are constants satisfying

2m + n − 2

n − 2
< λ <

n

n − 2m
and a = 4m(m − 1)

n − λ(n − 2m)
. (2.7)

Let ϕ : (0,1) → (0,1) be a continuous function satisfying limr→0+ ϕ(r) = 0. Then there exists a C∞ positive solution
u(x) of

0 � −�mu� uλ in R
n \ {0} (2.8)

such that

u(x) �= O
(
ϕ
(|x|)|x|−a

)
as x → 0. (2.9)

With regard to Theorem 2.4, it is natural to ask what happens when λ� n
n−2m

. The answer, given by the following
theorem, is that the solutions u can be arbitrarily large as x → 0.

Theorem 2.6. Suppose m and n are integers satisfying (iv) and λ � n
n−2m

is a constant. Let ϕ : (0,1) → (0,∞) be a
continuous function satisfying limr→0+ ϕ(r) = ∞. Then there exists a C∞ positive solution u(x) of (2.8) such that

u(x) �= O
(
ϕ
(|x|)) as x → 0.

The following five theorems deal with Question 1 when m and n satisfy (v). This is the most interesting case.
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Theorem 2.7. Let u(x) be a C2m nonnegative solution of (1.1) where the integers m and n satisfy (v) and f : [0,∞) →
[0,∞) is a continuous function satisfying

f (t) = O
(
tλ

)
as t → ∞

where

0 � λ� 2n − 2

n − 2

(
resp. λ >

2n − 2

n − 2

)
.

Then as x → 0,

u(x) = O
(|x|−(n−2)

)
(2.10)(

resp. u(x) = o

(
|x|−(n−2) log

5

|x|
))

. (2.11)

By Remark 1.1, the bound (2.10) is optimal and by the following theorem so is the bound (2.11).

Theorem 2.8. Suppose m and n are integers satisfying (v) and λ is a constant satisfying

λ >
2n − 2

n − 2
. (2.12)

Let ϕ : (0,1) → (0,1) be a continuous function satisfying limr→0+ ϕ(r) = 0. Then there exists a C∞ positive solution
u(x) of (2.8) such that

u(x) �= O

(
ϕ
(|x|)|x|−(n−2) log

5

|x|
)

as x → 0. (2.13)

By the following theorem u(x) may satisfy a pointwise a priori bound even when f (t) grows, as t → ∞, faster
than any power of t .

Theorem 2.9. Let u(x) be a C2m nonnegative solution of (1.1) where the integers m and n satisfy (v) and f : [0,∞) →
[0,∞) is a continuous function satisfying

log
(
1 + f (t)

) = O
(
tλ

)
as t → ∞

where

0 < λ < 1. (2.14)

Then

u(x) = o
(|x| −(n−2)

1−λ
)

as x → 0. (2.15)

By the following theorem, the estimate (2.15) in Theorem 2.9 is optimal.

Theorem 2.10. Suppose m and n are integers satisfying (v) and λ is a constant satisfying (2.14). Let ϕ : (0,1) → (0,1)

be a continuous function satisfying limr→0+ ϕ(r) = 0. Then there exists a C∞ positive solution u(x) of

0 � −�mu� euλ

in R
n \ {0} (2.16)

such that

u(x) �= O
(
ϕ
(|x|)|x| −(n−2)

1−λ
)

as x → 0. (2.17)

With regard to Theorem 2.9, it is natural to ask what happens when λ � 1. The answer, given by the following
theorem, is that the solutions u can be arbitrarily large as x → 0.
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Theorem 2.11. Suppose m and n are integers satisfying (v) and λ � 1 is a constant. Let ϕ : (0,1) → (0,∞) be a
continuous function satisfying limr→0+ ϕ(r) = ∞. Then there exists a C∞ positive solution of (2.16) such that

u(x) �= O
(
ϕ
(|x|)) as x → 0. (2.18)

Theorems 2.3–2.11 are “nonradial”. By this we mean that if one requires the solutions u(x) in Question 1 to be
radial then, according to the following proposition, the complete answer to Question 1 is very different.

Proposition 2.1. Suppose m � 1 and n � 2 are integers and f : [0,∞) → [0,∞) is a continuous function. Let u(x)

be a C2m nonnegative radial solution of (1.1) or, more generally, of (1.8). Then u satisfies (2.1).

By Remark 1.1, the bound (2.1) for u in Proposition 2.1 is optimal.
Theorems 2.4 and 2.7 are special cases of much more general results, in which, instead of obtaining pointwise

upper bounds (when they exist) for u where u is a nonnegative solution of

0 � −�mu� (u + 1)λ in B2(0) \ {0},
we obtain pointwise upper bounds (when they exist) for |Diu|, i = 0,1,2, . . . ,2m − 1, where u is a solution of

0 � −�mu�
2m−1∑
k=0

|x|−αk
(∣∣Dku

∣∣ + gk(x)
)λk in B2(0) \ {0} ⊂R

n

such that

|x|n−2u(x) is bounded below in B2(0) \ {0},
where the functions gk(x) tend to infinity as x → 0. See Theorems 5.1 and 5.2 in Section 5 for the precise statements
of these more general results.

Estimates for some derivatives of nonnegative solutions of (1.1) when m and n satisfy (i) were obtained in [8].
If m � 1 and n � 2 are integers satisfying (i) then, according to Theorem 2.1, u satisfies a pointwise upper bound

as x → 0 without imposing an upper bound f (u) on −�mu. On the other hand, if m and n do not satisfy (i) then
according to Theorems 2.2–2.11, u satisfies a pointwise upper bound as x → 0 if and only if an appropriate upper
bound f (u) is placed on −�mu. This is due to the following two reasons.

1. According to formulas (4.1)–(4.3) for the fundamental solution Φ of �m in R
n, Φ is bounded below in B1(0)\{0}

if and only if m and n satisfy (i).
2. There is a term in a decomposed version of the representation formula (4.5) for nonnegative solutions u of (1.8)

which is bounded above when Φ is bounded below. However, when Φ is not bounded below, one needs an upper
bound on −�mu to estimate this term. The crux of many of the proofs consists of obtaining this estimate.

The term referred to in 2 can be thought of as the convolution∫
|y|<1

Φ(x − y)�mu(y)dy. (2.19)

However it may happen when m � 2 that −�mu /∈ L1(B1(0)), in which case this convolution is not finite for every
x ∈ R

n. This difficulty is overcome in Lemma 4.1 by replacing Φ(x − y) in (2.19) with the difference of Φ(x − y)

and a partial sum of the Taylor series of Φ at x.

3. Results for Question 2

In this section we state our results for Question 2.
As noted in [8], by applying the m-Kelvin transform (1.5) to the function u in Theorem 2.1, we immediately obtain

the following result concerning Question 2 when m and n satisfy condition (i) at the beginning of Section 2.
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Theorem 3.1. Suppose m � 1 and n � 2 are integers satisfying (i) and f : [0,∞) → [0,∞) is a continuous function.
Let v(y) be a C2m nonnegative solution of (1.4) or, more generally, of

−�mv � 0 in R
n \ B1/2(0).

Then

v(y) = O
(
Γ∞

(|y|)) as |y| → ∞, (3.1)

where

Γ∞(r) =
{

r2m−2, if n� 3;
r2m−2 log 5r, if n = 2.

The estimate (3.1) is optimal because �mΓ∞(|y|) = 0 in R
n \ {0}.

Using the m-Kelvin transform and Theorems 5.1, 5.2, and 5.3 in Section 5 we will prove in Section 6 the following
three theorems dealing with Question 2, the first of which deals with the case that m and n satisfy condition (iv) at the
beginning of Section 2.

Theorem 3.2. Let v(y) be a C2m nonnegative solution of (1.4) where the integers m and n satisfy (iv) and
f : [0,∞) → [0,∞) is a continuous function satisfying

f (t) = O
(
tλ

)
as t → ∞

where

0 < λ <
n

n − 2m
.

Then

v(y) = o
(|y|a) as |y| → ∞ (3.2)

where

a = 2m(n − 2)

n − λ(n − 2m)
= 2m − 2 + 2(1 + λ(m − 1))

n − λ(n − 2m)
(n − 2m).

The next two theorems deal with Question 2 when m and n satisfy condition (v) at the beginning of Section 2.

Theorem 3.3. Let v(y) be a C2m nonnegative solution of (1.4) where the integers m and n satisfy (v) and f : [0,∞) →
[0,∞) is a continuous function satisfying

f (t) = O
(
tλ

)
as t → ∞

where λ > 0. Then

v(y) = o
(|y|n−2 log 5|y|) as |y| → ∞. (3.3)

Theorem 3.4. Let v(y) be a C2m nonnegative solution of (1.4) where the integers m on n satisfy (v) and f : [0,∞) →
[0,∞) is a continuous function satisfying

log
(
1 + f (t)

) = O
(
tλ

)
as t → ∞

where 0 < λ < 1. Then

v(y) = o
(|y| n−2

1−λ
)

as |y| → ∞.

Theorems 3.2–3.4 are optimal for Question 2 in the same way that Theorems 2.4, 2.7, and 2.9 are optimal for
Question 1. For example, according to the following theorem, the bound (3.2) in Theorem 3.2 is optimal. We will
omit the precise statements and proofs of the other optimality results for Theorems 3.2–3.4.
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Theorem 3.5. Suppose m and n are integers satisfying (iv) and λ and a are constants satisfying

0 < λ <
n

n − 2m
and a = 2m(n − 2)

n − λ(n − 2m)
. (3.4)

Let ϕ : (1,∞) → (0,1) be a continuous function satisfying limr→∞ ϕ(r) = 0. Then there exists a C∞ positive solution
v(y) of

0 � −�mv � vλ in R
n \ {0}

such that

v(y) �= O
(
ϕ
(|y|)|y|a) as |y| → ∞.

See [16, Corollary 2.5] for the optimal result concerning Question 2 when m and n satisfy (iii). We have no results
for Question 2 when m and n satisfy (ii), but see [1] for some related results.

4. Preliminary results

A fundamental solution of �m in R
n, where m� 1 and n� 2 are integers, is given by

Φ(x) := A

⎧⎪⎨
⎪⎩

(−1)m|x|2m−n, if 2 � 2m < n; (4.1)

(−1)
n−1

2 |x|2m−n, if 3 � n < 2m and n is odd; (4.2)

(−1)
n
2 |x|2m−n log 5

|x| , if 2 � n� 2m and n is even; (4.3)

where A = A(m,n) is a positive constant whose value may change from line to line throughout this entire paper. In
the sense of distributions, �mΦ = δ, where δ is the Dirac mass at the origin in R

n. For x �= 0 and y �= x, let

Ψ (x, y) = Φ(x − y) −
∑

|α|�2m−3

(−y)α

α! DαΦ(x) (4.4)

be the error in approximating Φ(x − y) with the partial sum of degree 2m − 3 of the Taylor series of Φ at x.
The following lemma, which we proved in [8], gives representation formula (4.5) for nonnegative solutions of

inequality (1.8). See [5,6] for similar results.

Lemma 4.1. Let u(x) be a C2m nonnegative solution of (1.8) where m � 1 and n � 2 are integers. Then∫
|y|<1 |y|2m−2(−�mu(y)) dy < ∞ and

u = N + h +
∑

|α|�2m−2

aαDαΦ in B1(0) \ {0} (4.5)

where aα , |α| � 2m − 2, are constants, h ∈ C∞(B1(0)) is a solution of

�mh = 0 in B1(0),

and

N(x) =
∫

|y|�1

Ψ (x, y)�mu(y)dy for x �= 0.

Lemma 4.2. Suppose f is locally bounded, nonnegative, and measurable in B1(0) \ {0} ⊂ R
n and∫

|y|<1

|y|2m−2f (y)dy < ∞ (4.6)

where m� 2 and n� 2 are integers, m is odd, and 2m� n. Let

N(x) =
∫

−Ψ (x, y)f (y) dy for x ∈ R
n \ {0} (4.7)
|y|<1
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where Ψ is given by (4.4). Then N ∈ C2m−1(Rn \ {0}). Moreover when |β| < 2m and either 2m = n and |β| �= 0 or
2m < n we have(

DβN
)
(x) =

∫
|y|<1

|y−x|<|x|/2

−(
DβΦ

)
(x − y)f (y) dy + O

(|x|2−n−|β|) for x �= 0 (4.8)

and when 2m = n we have

N(x) = A

∫
|y|<1

|y−x|<|x|/2

(
log

|x|
|x − y|

)
f (y)dy + O

(|x|2−n
)

for x �= 0. (4.9)

Proof. Differentiating (4.4) with respect to x we get

Dβ
x Ψ (x, y) = (

DβΦ
)
(x − y) −

∑
|α|�2m−3

(−y)α

α!
(
Dα+βΦ

)
(x) for x �= 0 and y �= x

and so by Taylor’s theorem applied to DβΦ we have∣∣Dβ
x Ψ (x, y)

∣∣ � C|y|2m−2|x|2−n−|β| for |y| < |x|
2

(4.10)

where in this proof C = C(m,n,β) is a positive constant whose value may change from line to line.
Let ε ∈ (0,1) be fixed. Then N = N1 + N2 in R

n \ {0} where

N1(x) =
∫

|y|<ε

−Ψ (x, y)f (y) dy and N2(x) =
∫

ε<|y|<1

−Ψ (x, y)f (y) dy.

It follows from (4.6) and (4.10) that N1 ∈ C∞(Rn \ B2ε(0)) and(
DβN1

)
(x) =

∫
|y|<ε

−DβΨ (x, y)f (y) dy for |x| > 2ε.

Also, by the boundedness of f in B1(0) \ Bε(0), N2 ∈ C2m−1(Rn \ B2ε(0)) and for |β| < 2m we have(
DβN2

)
(x) =

∫
ε<|y|<1

−DβΨ (x, y)f (y) dy for |x| > 2ε.

Thus since ε ∈ (0,1) was arbitrary, we have N ∈ C2m−1(Rn \ {0}) and for |β| < 2m we have(
DβN

)
(x) =

∫
|y|<1

−Dβ
x Ψ (x, y)f (y) dy for x �= 0. (4.11)

Case 1. Suppose |β| < 2m and either 2m = n and |β| �= 0 or 2m < n. Then for 0 < |x|/2 < |y| we have∣∣∣∣ ∑
|α|�2m−3

(−y)α

α! Dα+βΦ(x)

∣∣∣∣� C
∑

|α|�2m−3

|y||α||x|2m−n−|α|−|β| � C|y|2m−2|x|2−n−|β|

and for 0 < |x|/2 < |y| and |y − x| > |x|/2 we have∣∣(DβΦ
)
(x − y)

∣∣ � C|x − y|2m−n−|β| � C|x|2m−n−|β| � C|y|2m−2|x|2−n−|β|.
Thus (4.6), (4.10) and (4.11) imply (4.8).

Case 2. Suppose 2m = n. Then for 0 < |x|/2 < |y| we have∣∣∣∣ ∑ (−y)α

α! DαΦ(x)

∣∣∣∣� C
∑

|y||α||x|2m−n−|α| � C|y|2m−2|x|2−n
1�|α|�2m−3 1�|α|�2m−3
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and if 0 < |x|/2 < |y| and |y − x| > |x|/2 then using the fact that | log z| � log 4z for z � 1/2 we have

∣∣−Φ(x − y) + Φ(x)
∣∣ = A

∣∣∣∣log
|x − y|

|x|
∣∣∣∣� A log 4

|x − y|
|x|

� A
|y|n−2

|x|n−2

( |x|
|y|

)n−2

log 4

(
1 + |y|

|x|
)

� A
|y|n−2

|x|n−2
max
r�1/2

r2−n log 4(1 + r).

Thus (4.9) follows from (4.6), (4.7), and (4.10). �
Lemma 4.3. Suppose u(x) is a C2m nonnegative solution of (1.8), where m � 2 and n� 2 are integers, m is odd, and
2m� n. Let {xj }∞j=1 ⊂R

n and {rj }∞j=1 ⊂R be sequences such that

0 < 4|xj+1| � |xj | � 1/2 and 0 < rj � |xj |/4. (4.12)

Define fj :B2(0) → [0,∞) by

fj (η) = |xj |2m−2rn
j f (y) where y = xj + rj η and f = −�mu. (4.13)

Then ∫
|η|<2

fj (η) dη → 0 as j → ∞ (4.14)

and when |β| < 2m and either 2m = n and |β| �= 0 or 2m < n we have for |ξ | < 1 that(
rj

|xj |
)n−2m+|β|

|xj |n−2+|β|∣∣(Dβu
)
(xj + rj ξ)

∣∣� C

(
rj

|xj |
)n−2m+|β|

+ εj +
∫

|η|<2

Afj (η)dη

|ξ − η|n−2m+|β| (4.15)

and when 2m = n we have for |ξ | < 1 that

|xj |n−2

log
|xj |
rj

u(xj + rj ξ) � C

log
|xj |
rj

+ εj + 1

log
|xj |
rj

∫
|η|<2

A

(
log

5

|ξ − η|
)

fj (η) dη (4.16)

where in (4.15) and (4.16) the constant A depends only on m and n, the constant C is independent of ξ and j , the
constants εj are independent of ξ , and εj → 0 as j → ∞.

Proof. By Lemma 4.1, f satisfies (4.6) and for |β| < 2m we have(
Dβu

)
(x) = (

DβN
)
(x) + O

(|x|2−n−|β|) for 0 < |x| � 3/4 (4.17)

where N is given by (4.7).
If

|y − x| < |x|/2, |y − xj | > 2rj , and |x − xj | < rj

then

|x − y| > rj and 2|y| > |x| > |xj | − rj > |xj |/2

and thus when |β| < 2m and either 2m = n and |β| �= 0 or 2m < n we have

∣∣(DβΦ
)
(x − y)

∣∣ � A

|x − y|n−2m+|β| �
A

r
n−2m+|β|
j

� A|y|2m−2

r
n−2m+|β|
j |xj |2m−2

and when 2m = n we have

log
|x|

|x − y| � log
5
4 |xj |
r

� 2 · 4n−2 |y|n−2

|x |n−2
log

|xj |
r

.

j j j
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Thus by (4.6) and Lemma 4.2, when |β| < 2m and either 2m = n and |β| �= 0 or 2m < n we have

∣∣(DβN
)
(x)

∣∣ � ∫
|y−xj |<2rj

Af (y) dy

|x − y|n−2m+|β| + A

∫
|y−x|<|x|/2 |y|2m−2f (y)dy

r
n−2m+|β|
j |xj |2m−2

+ C

|xj |n−2+|β|

�
∫

|y−xj |<2rj

Af (y) dy

|x − y|n−2m+|β| + εj

r
n−2m+|β|
j |xj |2m−2

+ C

|xj |n−2+|β| for |x − xj | < rj (4.18)

and when 2m = n we have

N(x) � A

∫
|y−xj |<2rj

(
log

|x|
|x − y|

)
f (y)dy + 2A4n−2

( ∫
|y−x|<|x|/2

|y|n−2f (y)dy

) log
|xj |
rj

|xj |n−2
+ C

|xj |n−2

� A

∫
|y−xj |<2rj

(
log

|x|
|x − y|

)
f (y)dy + εj

log
|xj |
rj

|xj |n−2
+ C

|xj |n−2
for |x − xj | < rj (4.19)

where in (4.18) and (4.19) the constant A depends only on m and n, the constant C is independent of x and j , the
constants εj are independent of x, and εj → 0 as j → ∞.

For |η| < 2 and y given by (4.13) we have |xj | < 2|y|. Thus∫
|η|<2

fj (η) dη =
∫

|y−xj |<2rj

|xj |2m−2f (y)dy

� 22m−2
∫

|y−xj |<|xj |/2

|y|2m−2f (y)dy → 0 as j → ∞ (4.20)

because f satisfies (4.6).
If |β| < 2m and either 2m = n and |β| �= 0 or 2m < n then by (4.18) and (4.13) we have for |ξ | < 1 that(

rj

|xj |
)n−2m+|β|

|xj |n−2+|β|∣∣(DβN
)
(xj + rj ξ)

∣∣
� C

(
rj

|xj |
)n−2m+|β|

+ εj + r
n−2m+|β|
j |xj |2m−2

∫
|η|<2

Af (y)rn
j dη

r
n−2m+|β|
j |ξ − η|n−2m+|β|

= C

(
rj

|xj |
)n−2m+|β|

+ εj +
∫

|η|<2

Afj (η)dη

|ξ − η|n−2m+|β| . (4.21)

If 2m = n and |ξ | < 1 then by (4.19), (4.13), and (4.20) we have

|xj |n−2

log
|xj |
rj

N(xj + rj ξ) � C

log
|xj |
rj

+ εj + |xj |n−2

log
|xj |
rj

A

∫
|η|<2

(
log

5|xj |
rj |ξ − η|

)
|xj |2−nfj (η) dη

� C

log
|xj |
rj

+ εj + 1

log
|xj |
rj

∫
|η|<2

A

(
log

5

|ξ − η|
)

fj (η) dη. (4.22)

Inequalities (4.15) and (4.16) now follow from (4.21), (4.22), and (4.17). �
Lemma 4.4. Suppose m � 2 and n � 2 are integers, m is odd, and 2m � n. Let ψ : (0,1) → (0,1) be a continuous
function such that limr→0+ ψ(r) = 0. Let {xj }∞j=1 ⊂R

n be a sequence such that

0 < 4|xj+1| � |xj | � 1/2 (4.23)
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and
∞∑

j=1

εj < ∞ where εj = ψ
(|xj |

)
. (4.24)

Let {rj }∞j=1 ⊂R be a sequence satisfying

0 < rj � |xj |/5. (4.25)

Then there exist a positive function u ∈ C∞(Rn \ {0}) and a positive constant A = A(m,n) such that

20 �−�mu � εj

|xj |2m−2rn
j

in Brj (xj ), (4.26)

−�mu(x) = 0 in R
n \

(
{0} ∪

∞⋃
j=1

Brj (xj )

)
, (4.27)

and

u�

⎧⎪⎨
⎪⎩

Aεj

|xj |2m−2rn−2m
j

in Brj (xj ) if 2m < n,

Aεj

|xj |n−2 log
|xj |
rj

in Brj (xj ) if 2m = n.
(4.28)

Proof. Let ϕ :Rn → [0,1] be a C∞ function whose support is B1(0). Define ϕj :Rn → [0,1] by

ϕj (y) = ϕ(η) where y = xj + rj η.

Then ∫
Rn

ϕj (y) dy =
∫
Rn

ϕ(η)rn
j dη = rn

j I (4.29)

where I = ∫
Rn ϕ(η) dη > 0. Let

f =
∞∑

j=1

Mjϕj where Mj = εj

|xj |2m−2rn
j

. (4.30)

Since the functions ϕj have disjoint supports, f ∈ C∞(Rn \ {0}) and by (4.25), (4.29), (4.30), and (4.24) we have

∫
Rn

|y|2m−2f (y)dy =
∞∑

j=1

Mj

∫
|y−xj |<rj

|y|2m−2ϕj (y) dy

� 22m−2I

∞∑
j=1

Mj |xj |2m−2rn
j

= 22m−2I

∞∑
j=1

εj < ∞. (4.31)

Using the fact that

|x − xj | < rj � |xj |/5 implies Brj (xj ) ⊂ B |x|
2
(x), (4.32)

we have for 2m < n, x = xj + rj ξ , and |ξ | < 1 that∫
|y−x|<|x|/2

1

|x − y|n−2m
f (y)dy �

∫
|y−x |<r

1

|x − y|n−2m
Mjϕj (y) dy
j j
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=
∫

|η|<1

1

rn−2m
j

Mj

|ξ − η|n−2m
ϕ(η)rn

j dη

= εj

|xj |2m−2rn−2m
j

∫
|η|<1

ϕ(η)

|ξ − η|n−2m
dη

� Jεj

|xj |2m−2rn−2m
j

where J = min|ξ |�1

∫
|η|<1

ϕ(η)dη

|ξ − η|n−2m
.

Similarly, using (4.32) we have for 2m = n, x = xj + rj ξ , and |ξ | < 1 that∫
|y−x|<|x|/2

(
log

|x|
|x − y|

)
f (y)dy �

∫
|y−xj |<rj

(
log

|x|
|x − y|

)
Mjϕj (y) dy

�
∫

|η|<1

(
log

4
5 |xj |

rj |ξ − η|
)

Mjϕ(η)rn
j dη

= εj

|xj |n−2

∫
|η|<1

(
log

2

|ξ − η| + log
|xj |
rj

− log
5

2

)
ϕ(η)dη

� Iεj

|xj |n−2
log

|xj |
rj

− I

|xj |n−2
log

5

2
.

Thus defining N by (4.7), where f is given by (4.30), it follows from (4.31) and Lemma 4.2 that there exists a positive
constant C independent of ξ and j such that if we define u :Rn \ {0} → R by

u(x) = N(x) + C|x|−(n−2)

then u is a C∞ positive solution of

−�mu = f in R
n \ {0} (4.33)

and for some positive constant A = A(m,n), u satisfies (4.28).
Also, (4.33) and (4.30) imply that u satisfies (4.26) and (4.27). �

Remark 4.1. Suppose the hypotheses of Lemma 4.4 hold and u is as in Lemma 4.4.

Case 1. Suppose 2m < n. Then it follows from (4.26), (4.27), and (4.28) that u is a C∞ positive solution of

0 � −�mu� |x|τ uλ in R
n \ {0}, λ > 0, τ ∈R,

provided

ψ(|xj |)
|xj |2m−2rn

j

� 2−|τ ||xj |τ
(

Aψ(|xj |)
|xj |2m−2rn−2m

j

)λ

which holds if and only if

r
n−λ(n−2m)
j � 2|τ |

Aλ

|xj |(λ−1)(2m−2)−τ

ψ(|xj |)λ−1
. (4.34)

Case 2. Suppose 2m = n. Then it follows from (4.26), (4.27), and (4.28) that u is a C∞ positive solution of

0 � −�mu� f (u) in R
n \ {0},

where f : [0,∞) → [0,∞) is a nondecreasing continuous function, provided

ψ(|xj |)
|xj |n−2rn � f

(
Aψ(|xj |)
|xj |n−2

log
|xj |
rj

)
. (4.35)
j
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If f (u) = uλ,λ > 1, then (4.35) holds if and only if

log
|xj |
rj

�
( |xj |

rj

) n
λ |xj |a
Aψ(|xj |) λ−1

λ

where a = (n − 2)(λ − 1) − n

λ
.

If f (u) = euλ
, λ > 0, then (4.35) holds if and only if

log
ψ(|xj |)
|xj |2n−2

+ n log
|xj |
rj

�
(

Aψ(|xj |)
|xj |n−2

log
|xj |
rj

)λ

.

Lemma 4.5. Suppose p > 1 and R ∈ (0,2) are constants and g :Rn → R is defined by

g(ξ) =
∫

|η|<R

(
log

5

|ξ − η|
)

f (η)dη

where f ∈ L1(BR(0)) (resp. f ∈ Lp(BR(0))). Then

‖g‖Lp(BR(0)) � C‖f ‖L1(BR(0))

(
resp. ‖g‖L∞(BR(0)) � C‖f ‖Lp(BR(0))

)
,

where C = C(n,p,R) is a positive constant.

Proof. Define p′ by 1
p

+ 1
p′ = 1. Then by Hölder’s inequality we have∫

|ξ |<R

∣∣g(ξ)
∣∣p dξ �

∫
|ξ |<R

[ ∫
|η|<R

(
log

5

|ξ − η|
)∣∣f (η)

∣∣1/p∣∣f (η)
∣∣1/p′

dη

]p

dξ

�
∫

|ξ |<R

[( ∫
|η|<R

(
log

5

|ξ − η|
)p∣∣f (η)

∣∣dη

)1/p( ∫
|η|<R

∣∣f (η)
∣∣dη

)1/p′]p

dξ

=
( ∫

|η|<R

∣∣f (η)
∣∣dη

)p/p′ ∫
|η|<R

( ∫
|ξ |<R

(
log

5

|ξ − η|
)p

dξ

)∣∣f (η)
∣∣dη

� C(n,p,R)

( ∫
|η|<R

∣∣f (η)
∣∣dη

)p

.

The parenthetical part follows from Hölder’s inequality. �
5. Proofs when the singularity is at the origin

In this section we prove Theorems 2.4–2.11 and Proposition 2.1 which deal with the case that the singularity is at
the origin. Theorem 2.4 will follow easily from the following more general result.

Theorem 5.1. Suppose u(x) is a C2m solution of

0 � −�mu� K

2m−1∑
k=0

|x|−αk
(∣∣Dku

∣∣ + gk(x)
)λk in B2(0) \ {0} ⊂R

n (5.1)

such that

|x|n−2u(x) is bounded below in B2(0) \ {0}, (5.2)

where K > 0, λk , and αk are constants, m � 2 and n� 2 are integers, m is odd, 2m < n, and for k = 0,1, . . . ,2m− 1
we have

0 � λk <
n

(5.3)

n − 2m + k
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and gk :B2(0) \ {0} → [1,∞) is a continuous function. Let

ak = (n − 2 + k) + b(n − 2m + k)

where

b = max
{

0, max
0�k�2m−1

αk + λk(n − 2 + k) − (2m + n − 2)

n − λk(n − 2m + k)

}
. (5.4)

(i) If for k = 0,1, . . . ,2m − 1 we have

gk(x) = O
(|x|−ak

)
as x → 0 (5.5)

then for i = 0,1, . . . ,2m − 1 we have∣∣Diu(x)
∣∣ = O

(|x|−ai
)

as x → 0.

(ii) If b > 0 and for k = 0,1, . . . ,2m − 1 we have

gk(x) = o
(|x|−ak

)
as x → 0 (5.6)

and

λk > 0 (5.7)

then for i = 0,1, . . . ,2m − 1 we have∣∣Diu(x)
∣∣ = o

(|x|−ai
)

as x → 0.

Proof. It suffices to prove Theorem 5.1 when u is nonnegative. To see this choose M > 0 such that

v(x) := u(x) + M|x|−(n−2) > 0 for 0 < |x| < 2,

which is possible by (5.2), and then apply Theorem 5.1 to v after noting that −�mv = −�mu and∣∣Dku(x) − Dkv(x)
∣∣ = O

(|x|−(n−2+k)
) =

{
O(|x|−ak ) if b = 0,

o(|x|−ak ) if b > 0.

Suppose for contradiction that part (i) (resp. part (ii)) is false. Then there exist i ∈ {0,1,2, . . . ,2m − 1} and a
sequence {xj }∞j=1 ⊂R

n such that

0 < 4|xj+1| < |xj | < 1/2,

and

|xj |ai
∣∣Diu(xj )

∣∣ → ∞ as j → ∞ (5.8)(
resp. lim inf

j→∞ |xj |ai
∣∣Diu(xj )

∣∣ > 0
)
. (5.9)

Let rj = |xj |b+1/4. Then xj and rj satisfy (4.12). Let fj be as in Lemma 4.3. Since

rj

|xj | = |xj |b
4

(5.10)

it follows from (4.15) with |β| = i and ξ = 0 that

|xj |n−2+i+b(n−2m+i)

4n−2m+i

∣∣Diu(xj )
∣∣ � C|xj |(n−2m+i)b + εj +

∫
|η|<2

Afj (η)dη

|η|n−2m+i
.

Hence (5.8) (resp. (5.9)) implies∫
|η|<2

fj (η) dη

|η|n−2m+i
→ ∞ as j → ∞ (5.11)

(
resp. lim inf

j→∞

∫
fj (η) dη

|η|n−2m+i
> 0

)
. (5.12)
|η|<2
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On the other hand, (4.13), (5.1), and (4.15) imply for |ξ | < 1 that

fj (ξ) � |xj |2m+n−2
(

rj

|xj |
)n

K

2m−1∑
k=0

|xj + rj ξ |−αk
(∣∣Dku(xj + rj ξ)

∣∣ + gk(xj + rj ξ)
)λk

� C

2m−1∑
k=0

|xj |2m+n−2(
rj

|xj | )
n|xj |−αk

(|xj |n−2+k(
rj

|xj | )n−2m+k)λk

((
rj

|xj |
)n−2m+k

+ εj +
∫

|η|<2

fj (η) dη

|ξ − η|n−2m+k

+ |xj |n−2+k

(
rj

|xj |
)n−2m+k

gk(xj + rj ξ)

)λk

, (5.13)

where C is a constant independent of ξ and j whose value may change from line to line. But (5.10) and (5.4) imply

|xj |2m+n−2(
rj

|xj | )
n|xj |−αk

(|xj |n−2+k(
rj

|xj | )n−2m+k)λk
= |xj |(2m+n−2)−λk(n−2+k)−αk

(
rj

|xj |
)n−λk(n−2m+k)

� |xj |(2m+n−2)−λk(n−2+k)−αk+(n−λk(n−2m+k))b

� 1,

|xj |n−2+k

(
rj

|xj |
)n−2m+k

� |xj |n−2+k+b(n−2m+k)

= |xj |ak ,

and (
rj

|xj |
)n−2m+k

� |xj |b(n−2m+k).

Hence by (5.5) (resp. (5.6)) and (5.13) we have

fj (ξ) � C

2m−1∑
k=0

(
1 +

∫
|η|<2

fj (η) dη

|ξ − η|n−2m+k

)λk

for |ξ | < 1 (5.14)

(
resp. fj (ξ) � C

2m−1∑
k=0

(
εj +

∫
|η|<2

fj (η) dη

|ξ − η|n−2m+k

)λk

for |ξ | < 1

)
. (5.15)

Since ∫
2R�|η|<2

fj (η) dη

|ξ − η|n−2m+k
� 1

Rn−2m+k

∫
|η|<2

fj (η) dη for |ξ | < R < 1

we have by (5.14) (resp. (5.15)) and (4.14) that

fj (ξ) � C

2m−1∑
k=0

(
1

Rn−2m+k
+

∫
|η|<2R

fj (η) dη

|ξ − η|n−2m+k

)λk

for |ξ | < R � 1 (5.16)

where C is independent of ξ, j , and R (resp.

fj (ξ) � C

2m−1∑
k=0

(
εj

Rn−2m+k
+

∫
|η|<2R

fj (η) dη

|ξ − η|n−2m+k

)λk

for |ξ | < R � 1 (5.17)

where εj is independent of ξ and R and εj → 0 as j → ∞).
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We can assume the λk in (5.16) satisfy, instead of (5.3), the stronger condition

0 < λk <
n

n − 2m + k
(5.18)

because slightly increasing those λk in (5.16) which are zero will increase the right side of (5.16). By (5.3) and (5.7)
the λk in (5.17) already satisfy (5.18).

It follows from (5.16) (resp. (5.17)) and Riesz potential estimates (see [9, Lemma 7.12]) that if the functions fj are
bounded (resp. tend to zero) in Lp(B2R(0)) for some p � 1 and R ∈ (0,1] then the functions fj are bounded (resp.
tend to zero) in Lq(BR(0)), 0 < q � ∞, provided

1

p
− 1

qλk

<
2m − k

n
for k = 0,1, . . . ,2m − 1,

which holds if and only if

1

p
− 1

q
< min

0�k�2m−1

(
(2m − k)λk

n
− λk − 1

p

)
.

However,

inf
p�1

(2m − k)λk

n
− λk − 1

p
= min

{
n − λk(n − 2m + k)

n
,
λk(2m − k)

n

}

which, by (5.18), is bounded below by some positive constant independent of k. So starting with (4.14) and iterating
the above Lp to Lq comment a finite number of times, we see that there exists R0 ∈ (0,1) such that the functions
fj are bounded (resp. tend to zero) in L∞(BR0(0)) which together with (4.14) contradicts (5.11) (resp. (5.12)) and
thereby completes the proof of Theorem 5.1. �
Proof of Theorem 2.4. For some constant K > 0, u satisfies

0 � �mu� K
(
uλ + 1

)
in B2(0) \ {0} ⊂ R

n. (5.19)

Thus u satisfies (5.1) with λ0 = λ, α0 = 0, g0(x) ≡ 1, and λk = 1, αk = −(n − 2 + k), gk(x) ≡ 1 for k = 1,2, . . . ,

2m − 1.
Let b and ak be as in Theorem 5.1. Then

b = 0

(
resp. b = λ(n − 2) − (2m + n − 2)

n − λ(n − 2m)
> 0

)

and so a0 = n − 2 (resp. a0 = a, where a is given by (2.6)). Hence (2.4) (resp. (2.5)) follows from part (i) (resp.
part (ii)) of Theorem 5.1. �
Proof of Theorem 2.5. Define ψ : (0,1) → (0,1) by

ψ(r) = max
{
ϕ(r)p, r

n−λ(n−2m)
λ−1

b
2
}

(5.20)

where

b := λ(n − 2) − (2m + n − 2)

n − λ(n − 2m)
and p := n − λ(n − 2m)

4m

are positive by (2.7). Let {xj }∞j=1 ⊂ R
n be a sequence satisfying (4.23) and (4.24). Define rj > 0 by (4.34) with the

greater than sign replaced with an equal sign and with τ = 0. Then by (5.20)

rj = A
−λ

n−λ(n−2m)
|xj |1+b

ψ(|xj |)
λ−1

n−λ(n−2m)

� A
−λ

n−λ(n−2m) |xj |1+b/2. (5.21)

Thus by taking a subsequence of j , rj will satisfy (4.25).
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Let u be as in Lemma 4.4. Then by Case 1 of Remark 4.1, u is a C∞ positive solution of (2.8) and by (4.28), (5.21),
(5.20), and (2.6) we have

u(xj ) �
Aψ(|xj |)
|xj |2m−2

A
λ(n−2m)

n−λ(n−2m) ψ(|xj |)
(λ−1)(n−2m)
n−λ(n−2m)

|xj |(n−2m)(1+b)

= C(m,n,λ)
ψ(|xj |)

2m
n−λ(n−2m)

|xj |n−2+(n−2m)b

� C(m,n,λ)
ϕ(|xj |)1/2

|xj |a
which implies (2.9). �
Proof of Theorem 2.6. Define ψ : (0,1) → (0,1) by ψ(r) = rm−1. Let {xj }∞j=1 ⊂R

n be a sequence satisfying (4.23),
(4.24), and

1

Aλ

|xj |(λ−1)(2m−2)

ψ(|xj |)λ−1
= A−λ|xj |(λ−1)(m−1) < 1 (5.22)

where A = A(m,n) is as in Lemma 4.4. Let {rj }∞j=1 ⊂R be a sequence satisfying (4.25) and

Aψ(|xj |)
|xj |2m−2rn−2m

j

> ϕ
(|xj |

)2
. (5.23)

Since rj < 1 and n − λ(n − 2m) � 0, we see that the left side of (4.34) is greater than or equal to one. Thus (5.22)
implies (4.34) with τ = 0. Let u be as in Lemma 4.4. Then by (4.28) and (5.23)

u(xj )

ϕ(|xj |) � ϕ
(|xj |

) → ∞ as j → ∞

and by Case 1 of Remark 4.1, u is a C∞ positive solution of (2.8). �
Theorem 2.7 will follow easily from the following more general result.

Theorem 5.2. Suppose u is a C2m solution of (5.1) satisfying (5.2) where K > 0, λk , and αk are constants; m � 2,
and n� 2 are integers, m is odd, 2m = n;

λ0 � 0 and 0 � λk < n/k for k = 1,2, . . . , n − 1; (5.24)

and gk :B2(0) \ {0} → [1,∞) is a continuous function. Let

b = max{0, b0, b1, . . . , bn−1} where bk = αk + λk(n − 2 + k) − (2n − 2)

n − kλk

.

(i) Suppose as x → 0 we have

g0(x) =
{

O(|x|−(n−2)) if b = 0,

O(|x|−(n−2) log 5
|x| ) if b > 0 (5.25)

and for k = 1,2, . . . , n − 1 we have

gk(x) =
{

O(|x|−(n−2+k)) if b = 0,

O(|x|−(n−2+k)a(x)−k) if b > 0,
(5.26)

where

a(x) = min

{ |x|b0

(log 5 )λ0/n
, |x|b1 , . . . , |x|bn−1

}
. (5.27)
|x|
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Then as x → 0 we have

u(x) =
{

O(|x|−(n−2)) if b = 0,

O(|x|−(n−2) log 5
|x| ) if b > 0 (5.28)

and for i = 1,2, . . . , n − 1 we have

∣∣Diu(x)
∣∣ =

{
O(|x|−(n−2+i)) if b = 0,

O(|x|−(n−2+i)a(x)−i ) if b > 0.
(5.29)

(ii) Suppose b > 0,

λk > 0 for k = 0,1, . . . , n − 1, (5.30)

and as x → 0 we have

g0(x) = o

(
|x|−(n−2) log

5

|x|
)

(5.31)

and

gk(x) = o
(|x|−(n−2+k)a(x)−k

)
for k = 1,2, . . . , n − 1, (5.32)

where a(x) is defined by (5.27). Then as x → 0 we have

u(x) = o

(
|x|−(n−2) log

5

|x|
)

(5.33)

and ∣∣Diu(x)
∣∣ = o

(|x|−(n−2+i)a(x)−i
)

for i = 1,2, . . . , n − 1. (5.34)

Proof. As in the proof of Theorem 5.1, it suffices to prove Theorem 5.2 when u is nonnegative.
For b � 0 and 0 < |x| < 2 we define

ab(x) =
{

1
4 if b = 0,

a(x) if b > 0

where a(x) is given by (5.27). Then

log
1

a0(x)
= log 4 and lim

x→0

log 1
ab(x)

log 5
|x|

= b when b > 0. (5.35)

Thus (5.28), (5.29), (5.33), and (5.34) are equivalent to

u(x) = O

(
|x|−(n−2) log

1

ab(x)

)
, (5.36)∣∣Diu(x)

∣∣ = O
(|x|−(n−2+i)ab(x)−i

)
, (5.37)

u(x) = o

(
|x|−(n−2) log

1

ab(x)

)
, (5.38)∣∣Diu(x)

∣∣ = o
(|x|−(n−2+i)ab(x)−i

)
(5.39)

and similarly for (5.25), (5.26), (5.31), and (5.32).
Suppose for contradiction that part (i) (resp. part (ii)) of Theorem 5.2 is false. Then there exists i0 ∈ {0,1, . . . ,

n − 1} such that the estimates (5.36), (5.37) (resp. (5.38), (5.39)) for Diu do not hold when i = i0. Thus there is a
sequence {xj }∞j=1 ⊂R

n satisfying

0 < 4|xj+1| < |xj | < 1/2 and ab(xj ) �
1

4
(5.40)

such that
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lim inf
j→∞

|xj |n−2

log 1
ab(xj )

u(xj ) = ∞ (resp. > 0) if i0 = 0, (5.41)

lim inf
j→∞ |xj |n−2+i0ab(xj )

i0
∣∣Di0u(xj )

∣∣ = ∞ (resp. > 0) if i0 ∈ {1,2, . . . , n − 1}. (5.42)

Let

rj = |xj |ab(xj ). (5.43)

Then by (5.40), the sequences xj and rj satisfy (4.12). Let fj be as in Lemma 4.3.
Using (5.43), (5.41), and (5.42), it follows from (4.16) and (4.15) with ξ = 0 and |β| = i0 that

lim inf
j→∞

∫
|η|<2

(
log

5

|η|
)

fj (η) dη = ∞ (resp. > 0) if i0 = 0 (5.44)

and

lim inf
j→∞

∫
|η|<2

fj (η)

|η|i0 dη = ∞ (resp. > 0) if i0 ∈ {1,2, . . . , n − 1}. (5.45)

On the other hand, (4.13), (5.1), (4.16), and (4.15) imply for |ξ | < 1 that

fj (ξ) � |xj |2n−2
(

rj

|xj |
)n

C

n−1∑
k=0

|xj |−αk
(∣∣Dku(xj + rj ξ)

∣∣ + gk(xj + rj ξ)
)λk

� CB0j

(
1

log
|xj |
rj

+ εj + 1

log
|xj |
rj

∫
|η|<2

(
log

5

|ξ − η|
)

fj (η) dη + G0j (ξ)

)λ0

+ C

n−1∑
k=1

Bkj

((
rj

|xj |
)k

+ εj +
∫

|η|<2

fj (η)

|ξ − η|k dη + Gkj (ξ)

)λk

where C is a constant independent of ξ and j whose value may change from line to line,

B0j :=
|xj |2n−2(

rj
|xj | )

n|xj |−α0

(
|xj |n−2

log
|xj |
rj

)λ0

=
(ab(xj )(log 1

ab(xj )
)λ0/n

|xj |b0

)n

� C,

Bkj :=
|xj |2n−2(

rj
|xj | )

n|xj |−αk

((
rj

|xj | )k|xj |n−2+k)λk
=

(
ab(xj )

|xj |bk

)n−kλk

� 1,

G0j (ξ) := |xj |n−2

log
|xj |
rj

g0(xj + rj ξ) = |xj |n−2

log 1
ab(xj )

g0(xj + rj ξ) � C,

Gkj (ξ) :=
(

rj

|xj |
)k

|xj |n−2+kgk(xj + rj ξ) = ab(xj )
k|xj |n−2+kgk(xj + rj ξ)� C,

where we have used (5.35) and (5.27). Therefore for |ξ | < 1 we have

fj (ξ) � C

[(
1 +

∫
|η|<2

(
log

5

|ξ − η|
)

fj (η) dη

)λ0

+
n−1∑
k=1

(
1 +

∫
|η|<2

fj (η) dη

|ξ − η|k
)λk

]
(5.46)

(
resp. fj (ξ) � C

[(
εj +

∫
|η|<2

(
log

5

|ξ − η|
)

fj (η) dη

)λ0

+
n−1∑
k=1

(
εj +

∫
|η|<2

fj (η) dη

|ξ − η|k
)λk

])
, (5.47)

where εj is independent of ξ , and εj → 0 as j → ∞.
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We can assume the λk in (5.46) satisfy, instead of (5.24), the stronger condition

λ0 > 0 and 0 < λk < n/k for k = 1,2, . . . , n − 1 (5.48)

because slightly increasing those λk in (5.46) which are zero will increase the right side of (5.46). By (5.24) and (5.30)
the λk in (5.47) already satisfy (5.48).

Using an argument very similar to the one used at the end of the proof of Theorem 5.1 to show that (5.14) (resp.
(5.15)) leads to a contradiction of (5.11) (resp. (5.12)), one can show that (5.46) (resp. (5.47)) leads to a contradiction
of (5.44) (resp. (5.45))—the only significant difference being that where we used Riesz potential estimates in the proof
of Theorem 5.1, we must now use Riesz potential estimates and Lemma 4.5. �
Proof of Theorem 2.7. For some constant K > 0, u satisfies (5.19). Thus u satisfies (5.1) with λk , αk , and gk(x) as
in the proof of Theorem 2.4. Let b be as in Theorem 5.2. Then

b = 0

(
resp. b = λ(n − 2) − (2n − 2)

n
> 0

)
.

Hence (2.10) (resp. (2.11)) follows from part (i) (resp. part (ii)) of Theorem 5.2. �
Proof of Theorem 2.8. It follows from (2.12) that

a := (n − 2)(λ − 1) − n

λ
> 0.

Define ψ : (0,1) → (0,1) and ρ : (0,1) → (0,∞) by

ψ(r) = max
{√

ϕ(r), r
aλ

2(λ−1)
}

(5.49)

and

ρ(r) = n

λA

ra

ψ(r)
λ−1
λ

(5.50)

where A = A(m,n) is as in Lemma 4.4. By (5.49)

ρ(r) � n

λA
ra/2. (5.51)

Thus there exists a sequence {xj }∞j=1 ⊂R
n satisfying (4.23), (4.24), and

e−1 > ρj := ρ
(|xj |

) → 0 as j → ∞ (5.52)

such that if we define the sequence {rj }∞j=1 by

( |xj |
rj

)n/λ

= 1

ρj

log
1

ρj

(5.53)

then rj satisfies (4.25). By (5.53), (5.52), and (5.50) we have

log
|xj |
rj

= λ

n
log

(
1

ρj

log
1

ρj

)

� λ

n
log

1

ρj

(5.54)

= λ

n
ρj

( |xj |
rj

)n/λ

= 1

A

|xj |a
ψ(|x |) λ−1

λ

( |xj |
rj

)n/λ

. (5.55)

j
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Let u be as in Lemma 4.4. Then by (5.55) and Case 2 of Remark 4.1, u is a C∞ positive solution of (2.8) and by
Lemma 4.4 we have

u(xj ) �
Aψ(|xj |)
|xj |n−2

log
|xj |
rj

and by (5.54) and (5.51),

log
|xj |
rj

� λ

n
log

1

ρj

� λ

n
log

(
λA

n
|xj |−a/2

)

= λ

n

(
a

2
log

1

|xj | + log
λA

n

)
.

Thus by (5.49) we have

lim inf
j→∞

u(xj )√
ϕ(|xj |)|xj |−(n−2) log 1

|xj |
� A

λa

2n
> 0

from which we obtain (2.13). �
By scaling u in Theorem 2.9, the following theorem implies Theorem 2.9.

Theorem 5.3. Let u(x) be a C2m nonnegative solution of

0 � −�mu� euλ+gλ

in B2(0) \ {0} ⊂R
n (5.56)

where n � 2 and m � 2 are integers, m is odd, 2m = n, 0 < λ < 1, and g :B2(0) \ {0} → [0,∞) is a continuous
function such that

g(x) = o
(|x| −(n−2)

1−λ
)

as x → 0. (5.57)

Then

u(x) = o
(|x| −(n−2)

1−λ
)

as x → 0. (5.58)

Proof. Suppose for contradiction that (5.58) does not hold. Then there exists a sequence {xj }∞j=1 ⊂R
n such that

0 < 4|xj+1| < |xj | < 1/2

and

lim inf
j→∞ |xj | n−2

1−λ u(xj ) > 0. (5.59)

Define rj > 0 by

log
1

rj
= |xj |

−(n−2)λ
1−λ . (5.60)

Then

log
|xj |
rj

= log
1

rj
− log

1

|xj | = |xj |
−(n−2)λ

1−λ

[
1 − |xj |

(n−2)λ
1−λ log

1

|xj |
]

= |xj |
−(n−2)λ

1−λ
(
1 + o(1)

)
as j → ∞. (5.61)

So, by taking a subsequence of j if necessary, we can assume rj < |xj |/4.

Let fj be as in Lemma 4.3. Multiplying (4.16) by |xj |
(n−2)λ

1−λ log
|xj |
rj

and using (5.61) we get for |ξ | < 1 that

|xj | n−2
1−λ u(xj + rj ξ) � εj + |xj |

(n−2)
1−λ

∫
A

(
log

5

|ξ − η|
)

fj (η)

|xj |n−2
dη (5.62)
|η|<2
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where the constant A depends only on m and n, the constants εj are independent of ξ , and εj → 0 as j → ∞.
Substituting ξ = 0 in (5.62) and using (5.59) and (4.14) we get

lim inf
j→∞ |xj | n−2

1−λ

∫
|η|<1

(
log

5

|η|
)

fj (η)

|xj |n−2
dη > 0. (5.63)

By (4.13), (5.56), (5.62), and (5.57) we have

fj (ξ)

|xj |n−2rn
j

� e
uj (ξ)λ+Mλ

j for |ξ | < 1 (5.64)

where

uj (ξ) =
∫

|η|<2

A

(
log

5

|ξ − η|
)

fj (η)

|xj |n−2
dη

and the positive constants Mj satisfy

Mj |xj | n−2
1−λ → 0 and Mj → ∞ as j → ∞. (5.65)

Let Ωj = {ξ ∈ B1(0): uj (ξ) > Mj }. Then for ξ ∈ Ωj it follows from (5.64) that

fj (ξ)2

(|xj |n−2rn
j )2

� e4uj (ξ)λ

� exp

[( ∫
|η|<2

bj

(
log

5

|ξ − η|
)

fj (η)∫
B2

fj

dη

)λ]
(5.66)

where

bj = 41/λA|xj |−(n−2) max

{∫
B2

fj , |xj | n−2
2

}
.

By (4.14),

bj |xj |n−2 → 0 and bj → ∞ as j → ∞. (5.67)

Hence by (5.66), Jensen’s inequality, and the fact that exp(tλ) is concave up for t large we have for ξ ∈ Ωj that

fj (ξ)2

(|xj |n−2rn
j )2

�
∫

|η|<2

exp

(
bλ
j

(
log

5

|ξ − η|
)λ) fj (η)∫

B2
fj

dη

and consequently

∫
Ωj

fj (ξ)2

(|xj |n−2rn
j )2

dξ �
∫

|η|<2

( ∫
|ξ |<1

exp

(
bλ
j

(
log

5

|ξ − η|
)λ)

dξ

)
fj (η)∫
B2

fj

dη

� max
|η|�2

∫
|ξ |<1

exp

(
bλ
j

(
log

5

|ξ − η|
)λ)

dξ

=
∫

|ξ |<1

exp

(
bλ
j

(
log

5

|ξ |
)λ)

dξ

= I1 + I2 (5.68)
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where

I1 =
∫

|ξ |<1

log 5
|ξ | <(bλ

j λ)
1

1−λ

exp

(
bλ
j

(
log

5

|ξ |
)λ)

dξ and I2 =
∫

log 5
|ξ | >(bλ

j λ)
1

1−λ

exp

(
bλ
j

(
log

5

|ξ |
)λ)

dξ.

Clearly

I1

|B1(0)| � exp
((

bj

(
bλ
j λ

) 1
1−λ

)λ) = exp
(
(bjλ)

λ
1−λ

)
� exp

(
b

λ
1−λ

j

)
and using Jensen’s inequality and the fact that e

bλ
j (log t)λ is concave down as a function of t for log t > (bλ

j λ)
1

1−λ one
can show that

I2 � exp
(
Cb

λ
1−λ

j

)
where C depends only on n. Therefore by (5.68) and (5.60),∫

Ωj

(
fj (ξ)

|xj |n−2

)2

dξ � exp
(−2n|xj |

−(n−2)λ
1−λ

)
exp

(
Cb

λ
1−λ

j

)

= exp
(
Cb

λ
1−λ

j − 2n|xj |
−(n−2)λ

1−λ
) → 0 as j → ∞

by (5.67). Thus by Hölder’s inequality

lim
j→∞

∫
Ωj

(
log

5

|η|
)

fj (η)

|xj |n−2
dη = 0.

Hence defining gj :B1(0) → [0,∞) by

gj (ξ) :=
{

fj (ξ) for ξ ∈ B1 \ Ωj ,
0 for ξ ∈ Ωj ,

it follows from (5.63) and (5.65) that

1

Mλ
j

∫
|η|<1

(
log

5

|η|
)

gj (η) dη → ∞ as j → ∞. (5.69)

By (4.14), we have∫
|η|<1

gj (η) dη → 0 as j → ∞ (5.70)

and by (5.64) we have

gj (ξ)� e
2Mλ

j in B1(0). (5.71)

For fixed j , think of gj (η) as the density of a distribution of mass in B1 satisfying (5.69), (5.70), and (5.71). By
moving small pieces of this mass nearer to the origin in such a way that the new density (which we again denote by
gj (η)) does not violate (5.71), we will not change the total mass

∫
B1

gj (η) dη but
∫
B1

(log 5/|η|)gj (η) dη will increase.
Thus for some ρj ∈ (0,1) the functions

gj (η) =
{

e
2Mλ

j for |η| < ρj ,
0 for ρj < |η| < 1

satisfy (5.69), (5.70), and (5.71), which, as elementary and explicit calculations show, is impossible because Mj → ∞
as j → ∞. This contradiction proves Theorem 5.3. �
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Proof of Theorem 2.10. Define ψ : (0,1) → (0,1) by

ψ(r) = max
{
ϕ(r)

1−λ
2 , r

n−2
2

}
.

Since ψ(r) � r
n−2

2 there exists a sequence {xj }∞j=1 ⊂ R
n satisfying (4.23) and (4.24) such that if we define the

sequence {rj }∞j=1 ⊂ (0,∞) by

log
|xj |
rj

=
[

1

2n

(
Aψ(|xj |)
|xj |n−2

)λ] 1
1−λ

, (5.72)

where A = A(m,n) is as in Lemma 4.4, then rj will satisfy (4.25) and

log
1

|xj |2n−2
< log

|xj |
rj

.

Thus

log
ψ(|xj |)
|xj |2n−2 + n log

|xj |
rj

(
Aψ(|xj |)
|xj |n−2 log

|xj |
rj

)λ
�

2n log
|xj |
rj

(
Aψ(|xj |)
|xj |n−2 log

|xj |
rj

)λ

=
(log

|xj |
rj

)1−λ

1
2n

(
Aψ(|xj |)
|xj |n−2 )λ

= 1. (5.73)

Let u be as in Lemma 4.4. Then by (5.73) and Case 2 of Remark 4.1, u is a C∞ positive solution of (2.16) and by
Lemma 4.4 and (5.72) we have

u(xj ) �
Aψ(|xj |)
|xj |n−2

[
1

2n

(
Aψ(|xj |)
|xj |n−2

)λ] 1
1−λ

=
(

Aψ(|xj |)
2n

) 1
1−λ 1

|xj | n−2
1−λ

�
(

A

2n

) 1
1−λ

√
ϕ
(|xj |

)|xj |− n−2
1−λ

which implies (2.17). �
Proof of Theorem 2.11. Define ψ : (0,1) → (0,1) by ψ(r) = r

n−2
2 . Choose a sequence {xj }∞j=1 ⊂ R

n satisfying
(4.23), (4.24), and

Aψ(|xj |)
|xj |n−2

> n + 1 (5.74)

where A = A(m,n) is as in Lemma 4.4. Choose a sequence {rj }∞j=1 ⊂R satisfying (4.25),

log
1

|xj |2n−2
< log

|xj |
rj

(5.75)

and

(n + 1) log
|xj |
rj

> ϕ
(|xj |

)2
. (5.76)

Then, since ψ(|xj |) < 1, it follows from (5.75) and (5.74) that

log
ψ(|xj |)
|x |2n−2

+ n log
|xj |
r

� (n + 1) log
|xj |
r

�
(

(n + 1) log
|xj |
r

)λ

�
(

Aψ(|xj |)
|x |n−2

log
|xj |
r

)λ

. (5.77)

j j j j j j



1094 S.D. Taliaferro / Ann. I. H. Poincaré – AN 30 (2013) 1069–1096
Let u be as in Lemma 4.4. Then by (5.77) and Case 2 of Remark 4.1, u is a C∞ positive solution of (2.16) and by
Lemma 4.4, (5.74) and (5.76) we have

u(xj ) � ϕ(xj )
2

which implies (2.18). �
We now prove Proposition 2.1. It follows immediately from the following more general proposition, which is easier

to prove than Proposition 2.1.

Proposition 5.1. Suppose u is a C2m radial solution of

�mu� AΓ in B1(0) \ {0} ⊂R
n, (5.78)

where m� 1 and n� 2 are integers, Γ is given by (1.3), and A is a positive constant. Then

u� CΓ in B1(0) \ {0} (5.79)

for some positive constant C.

Proof. We use induction. Suppose m = 1. Let g = �u. Then for 0 < r � 1 we have

u(r) = u(1) − u′(1)

1∫
r

ρ1−n dρ +
1∫

r

s1−n

1∫
s

g(ρ)ρn−1 dρ ds. (5.80)

Since g �AΓ we have

1∫
s

g(ρ)ρn−1 dρ � A

1∫
0

Γ (ρ)ρn−1 dρ < ∞.

Hence (5.79) follows from (5.80).
Suppose inductively that the proposition is true for m − 1 where m � 2 and u is a C2m radial solution of (5.78).

Then by the m = 1 case, �m−1u � A1Γ in B1(0) \ {0} for some positive constant A1. Thus (5.79) follows from the
inductive assumption. �
6. Proofs when the singularity is at infinity

In this section we prove Theorems 3.2–3.5, which deal with the case that the singularity is at infinity.
Since the proofs of Theorems 3.2 and 3.3 are similar, we prove them together.

Proof of Theorem 3.2 (resp. 3.3). For some constant K > 0, v(y) satisfies

0 � −�mv �K(v + 1)λ in R
n \ B1/2(0).

Let u(x) be defined by (1.5). Then, by (1.6), u(x) is a nonnegative solution of

0 � −�mu� K|x|−α0
(
u + g0(x)

)λ
in B2(0) \ {0},

where α0 = 2m + n − (n − 2m)λ and

g0(x) = |x|−(n−2m) = o
(|x|−(n−2)

)
as x → 0.

Thus u satisfies (5.1) and (5.2) with λ0 = λ and λk = 1, αk = −(n− 2 + k), gk(x) ≡ 1 for k = 1,2, . . . ,2m− 1. Using
these values of λk and αk in b, as defined in Theorem 5.1 (resp. 5.2), we get

b = λ(2m − 2) + 2
> 0.
n − λ(n − 2m)
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It therefore follows from part (ii) of Theorem 5.1 (resp. 5.2), that as x → 0 we have

u(x) = o
(|x|−a0

) (
resp. u(x) = o

(
|x|−(n−2) log

5

|x|
))

,

where a0 = (n − 2m)b + n − 2. This estimate for u(x) is equivalent, via (1.5), to (3.2) (resp. (3.3)). �
By scaling and translating v in Theorem 3.4, we see that the following theorem implies Theorem 3.4.

Theorem 6.1. Let v(y) be a C2m nonnegative solution of

0 � −�mv � evλ+gλ

in R
n \ B1/2(0) (6.1)

where m � 2 and n � 2 are integers, m is odd, 2m = n, 0 < λ < 1, and g :Rn \ B1/2(0) → [1,∞) is a continuous
function satisfying

g(y) = o
(|y| n−2

1−λ
)

as |y| → ∞. (6.2)

Then

v(y) = o
(|y| n−2

1−λ
)

as |y| → ∞. (6.3)

Proof. Let u(x) be defined by (1.5). Then by (6.1) and (1.6) we have

0 � −|x|2n�mu(x) � exp

(
u(x)λ + g

(
x

|x|2
)λ)

and thus by (6.2),

0 � −�mu(x) � exp

(
u(x)λ + o

((
1

|x|
)) λ(n−2)

1−λ
)

in B2(0) \ {0}.
Hence Theorem 5.3 implies

u(x) = o
(|x|− (n−2)

1−λ
)

as x → 0

and so (6.3) holds. �
Proof of Theorem 3.5. By using the m-Kelvin transform (1.5), we see that to prove Theorem 3.5 it suffices to prove
that there exists a C∞ positive solution u(x) of

0 � −�mu� |x|τ uλ in R
n \ {0}, (6.4)

where

τ = λ(n − 2m) − n − 2m

such that

u(x) �= O
(
ϕ
(|x|−1)|x|−(a+n−2m)

)
as x → 0. (6.5)

Define ψ : (0,1) → (0,1) by

ψ(r) = max
{
ϕ
(
r−1)p

, rb
n−λ(n−2m)

λ
}

(6.6)

where

b := λ(m − 1) + 1

n − λ(n − 2m)
and p := n − λ(n − 2m)

2n
.

By (3.4), b and p are positive. Also

1 + 2b = λ(2m − 2) − 2m + 2 − τ
and a = 2m − 2 + (n − 2m)2b. (6.7)
n − λ(n − 2m)
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Let {xj }∞j=1 ⊂R
n be a sequence satisfying (4.23) and (4.24). Define rj > 0 by

r
n−λ(n−2m)
j = 2|τ |

Aλ

|xj |λ(2m−2)−2m+2−τ

ψ(|xj |)λ
where A = A(m,n) is as in Lemma 4.4. Then rj satisfies (4.34) and by (6.6) and (6.7),

rj = C(m,n,λ)
|xj |1+2b

ψ(|xj |)
λ

n−λ(n−2m)

� C(m,n,λ)|xj |1+b. (6.8)

Thus by taking a subsequence of j, rj will satisfy (4.25). Let u be as in Lemma 4.4. Then by Case 1 of Remark 4.1,
u is a C∞ positive solution of (6.4) and by (4.28), (6.6), (6.7), and (6.8) we have

u(xj ) �
C(m,n,λ)ψ(|xj |)

|xj |2m−2

ψ(|xj |)
λ(n−2m)

n−λ(n−2m)

|xj |(1+2b)(n−2m)

= C(m,n,λ)ψ(|xj |)
n

n−λ(n−2m)

|xj |(n−2m)+(2m−2)+(n−2m)2b

� C(m,n,λ)
ϕ(|xj |−1)1/2

|xj |a+n−2m

which implies (6.5). �
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