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Abstract

In this paper, we consider the homogeneous one-dimensional wave equation defined on (0,π). For every subset ω ⊂ [0,π ] of
positive measure, every T � 2π , and all initial data, there exists a unique control of minimal norm in L2(0, T ;L2(ω)) steering the
system exactly to zero. In this article we consider two optimal design problems. Let L ∈ (0,1). The first problem is to determine
the optimal shape and position of ω in order to minimize the norm of the control for given initial data, over all possible measurable
subsets ω of [0,π ] of Lebesgue measure Lπ . The second problem is to minimize the norm of the control operator, over all such
subsets. Considering a relaxed version of these optimal design problems, we show and characterize the emergence of different
phenomena for the first problem depending on the choice of the initial data: existence of optimal sets having a finite or an infinite
number of connected components, or nonexistence of an optimal set (relaxation phenomenon). The second problem does not admit
any optimal solution except for L = 1/2. Moreover, we provide an interpretation of these problems in terms of a classical optimal
control problem for an infinite number of controlled ordinary differential equations. This new interpretation permits in turn to study
modal approximations of the two problems and leads to new numerical algorithms. Their efficiency will be exhibited by several
experiments and simulations.
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1. Introduction

1.1. The optimal design problems

Let T be a positive real number. Consider the one-dimensional controlled wave equation on [0,π] with Dirichlet
boundary conditions

∂tt y(t, x) − ∂xxy(t, x) = hω(t, x), (t, x) ∈ (0, T ) × (0,π),

y(t,0) = y(t,π) = 0, t ∈ [0, T ],
y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ [0,π], (1)

where hω is a control supported in [0, T ] × ω and ω is a measurable subset of [0,π]. For all initial data (y0, y1) ∈
H 1

0 (0,π) × L2(0,π) and every hω ∈ L2((0, T ) × (0,π)), there exists a unique solution y ∈ C0(0, T ;H 1
0 (0,π)) ∩

C1(0, T ;L2(0,π)) ∩ C2(0, T ;H−1(0,π)) of the Cauchy problem (1). The exact null controllability problem settled
in these spaces consists of finding a control hω steering the control system (1) to

y(T , ·) = ∂ty(T , ·) = 0. (2)

It is well known that, for every subset ω of [0,π] of positive Lebesgue measure, the exact null controllability problem
has a solution whenever T � 2π (see [23]). The Hilbert Uniqueness Method (HUM; see [12,13]) permits to design
such a control, achieving moreover the null controllability in minimal L2((0, T )× (0,π)) norm. This (unique) control
is referred to as the HUM control and is defined as follows. Using the observability inequality

C
∥∥(

φ0, φ1)∥∥2
L2(0,π)×H−1(0,π)

�
T∫

0

∫
ω

φ(t, x)2 dx dt, (3)

where C is a positive constant (only depending on T and ω), valuable for every solution φ of the adjoint system

∂ttφ(t, x) − ∂xxφ(t, x) = 0, (t, x) ∈ (0, T ) × (0,π),

φ(t,0) = φ(t,π) = 0, t ∈ [0, T ],
φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), x ∈ [0,π], (4)

and every T � 2π , the functional

Jω

(
φ0, φ1) = 1

2

T∫
0

∫
ω

φ(t, x)2 dx dt − 〈
φ1, y0〉

H−1,H 1
0

+ 〈
φ0, y1〉

L2 , (5)

has a unique minimizer (still denoted (φ0, φ1)) in the space L2(0,π) × H−1(0,π), for all (y0, y1) ∈ H 1
0 (0,π) ×

L2(0,π). In (5) the notation 〈·,·〉H−1,H 1
0

stands for the duality bracket between H−1(0,π) and H 1
0 (0,π), and the

notation 〈·,·〉L2 stands for the usual scalar product of L2(0,π). The HUM control hω steering (y0, y1) to (0,0) in
time T is then given by

hω(t, x) = χω(x)φ(t, x), (6)

for almost all (t, x) ∈ (0, T ) × (0,π), where χω denotes the characteristic function of the measurable set ω and φ is
the solution of (4) with initial data (φ0, φ1) minimizing Jω.

In this article we are interested in the problem of optimizing the shape and position of the control support ω, over
all possible measurable subsets of [0,π] of given Lebesgue measure. Throughout the article, let L ∈ (0,1) be fixed.
We define the set

UL = {
χω

∣∣ ω is a measurable subset of [0,π] such that |ω| = Lπ
}
, (7)

where |ω| denotes the Lebesgue measure of ω. We consider the two following problems.
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First problem. Let (y0, y1) ∈ H 1
0 (0,π) × L2(0,π) be some fixed initial data. We investigate the problem of mini-

mizing

‖hω‖2
L2((0,T )×(0,π))

=
T∫

0

∫
ω

φ(t, x)2 dx dt, (8)

where hω is the HUM control (6) steering (y0, y1) to (0,0) in time T , over all possible subsets ω of [0,π] such that
χω ∈ UL.

This problem is the most simple among all possible problems of optimal location of actuators for vibration models.
In this minimization problem, the optimal set ω, whenever it exists, depends on the initial data (y0, y1). Although
this problem has some mathematical interest and provides some insight in such shape optimization problems, it is
not really relevant for practical purposes since the knowledge of the initial data of (1) is needed. To discard this
dependence and improve the robustness of the cost function, we consider the following second problem. Recall that,
for every subset ω of [0,π] of positive measure, the so-called HUM operator Γω is defined by

Γω : H 1
0 (0,π) × L2(0,π) → L2((0, T ) × (0,π)

)
,(

y0, y1) 
→ hω,

where hω is the HUM control (6) steering (y0, y1) to (0,0) in time T .

Second problem. We investigate the problem of minimizing the norm of the operator Γω

‖Γω‖ = sup
{‖hω‖L2((0,T )×(0,π))

∣∣ (
y0, y1) ∈ H 1

0 (0,π) × L2(0,π),
∥∥(

y0, y1)∥∥
H 1

0 (0,π)×L2(0,π)
= 1

}
(9)

over the set UL.

1.2. A brief state of the art

Although the literature on such kinds of shape optimization problems is quite abundant in engineering applications
(see e.g. [15,18,24,28]), very few theoretical results and mathematical proofs do exist. In [7,8], similar questions were
investigated for optimal stabilization issues of the one-dimensional wave equation. These two articles are important
because they were the first (and to our knowledge, up to now the only ones) to provide mathematical arguments and
proofs to characterize the optimal set whenever it exists. They have inspired our own works such as the recent one
[20] in which we investigate similar questions for the optimal observability of the wave equation (with practical issues
for the optimal placement of sensors). Concerning the problem investigated in the present article of determining an
optimal control domain, we quote the article [19] whose contribution is to prove the existence of a solution for a
relaxed version of our first problem above. Note that we provide in Theorem 1 (Section 2.1) a more precise result with
a new shorter proof of [19, Theorem 2.1] using the frequential analysis approach used throughout our paper. We also
quote [16] in which the author investigates numerically this relaxed first problem (not only in dimension one), using
shape and topological derivatives of the functional under consideration, and gives numerical simulations providing
evidence that, for a specific initial data, the optimal solution of the relaxed problem is the characteristic function of
some subset ω of [0,π] and thus is solution of the (initial, non-relaxed) first problem. In [17] the authors investigate
the optimal location of the support of the HUM control for the one-dimensional heat equation, with fixed initial data.
They give a first-order optimality condition for a relaxed version and then provide some numerical simulations. We
stress that in these contributions only the first problem is addressed, from the numerical point of view. As said above,
this first problem leads to interesting mathematical properties but is of little practical interest for practical purposes
since it depends on the initial data. Anyway the study of the first problem is interesting since it provides a better insight
in such shape optimization problems and is a benchmark for studying other classes of such problems. But the second
problem is still to be addressed in the context of the heat equation.
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1.3. Short description of our contributions

In this article we provide a complete mathematical analysis of the two shape optimization problems settled above,
and in turn we obtain efficient algorithms for computing the optimal domains. The article is structured as follows.

Section 2 is devoted to solving the first problem (8) (that is, the problem with fixed initial data). First of all, using a
Fourier series expansion of the adjoint φ, we prove existence and uniqueness of a solution of a relaxed version of the
first problem (Theorem 1). Here, the relaxation procedure consists of considering the convex closure of the set UL in
L∞ weak star topology, that is

UL =
{

a ∈ L∞([0,π], [0,1]) ∣∣∣ π∫
0

a(x) dx = Lπ

}
.

If the minimizer a ∈ UL of the relaxed first problem belongs to UL, then it is the characteristic function of a subset
ω of [0,π] of Lebesgue measure Lπ , and then ω is a solution of the (initial) first problem (8). At the opposite,
if a ∈ UL \ UL then the first problem (8) does not have any solution, and we speak of a relaxation phenomenon.
Throughout Section 2 we provide a complete characterization of these phenomena.

More precisely, in Section 2.4 we first provide several possible sufficient conditions ensuring that the first problem
(8) has a solution. For instance we will prove the following result (see the more precise statement of Theorem 2).

Theorem. Let T � 2π and L ∈ (0,1). Assume that the initial data (y0, y1) under consideration have a finite number
of Fourier components. Then the first problem (8) has a unique solution χω ∈ UL, which has a finite number of
connected components.

The uniqueness of the solution must be of course understood up to some subset of zero Lebesgue measure. In
Theorem 3 we provide a variant of this result, valuable only when T is an integer multiple of 2π : we show that the
above sufficient condition can then be weakened to an exponential decrease of the Fourier coefficients of the initial
data. Note that this sufficient condition holds if the initial data are analytic or quasi-analytic.

In Section 2.2 we provide further comments on the relaxed version of the Hilbert Uniqueness Method and on its
well-posedness, showing strict convexity properties.

Section 2.3 is another significant contribution of our work. In this section we provide an interpretation of the first
problem (8) in terms of a classical (however infinite dimensional) optimal control problem, to which we can apply,
up to some slight adaptations, the well-known Pontryagin Maximum Principle and derive necessary and sufficient
optimality conditions for the relaxed first problem. The change of point of view consists in considering the functions
a ∈ UL of the relaxed problem as controls. These results and this interpretation (which is new to the best of our
knowledge) have two important consequences.

First, in the case where T is a multiple integer of 2π , these necessary and sufficient conditions enable us to provide
a complete characterization of all initial data for which

• the first problem (8) has at least one solution,
• the first problem (8) has exactly one solution,
• the first problem (8) does not have any solution (in other words, the relaxation phenomenon occurs).

In turn, we establish some connections between the complexity of the optimal set of the first problem (8), whenever it
exists, and the regularity of the initial data. As a particular case, we prove the following result, showing the sharpness
of the previous sufficient conditions.

Theorem. There exist initial data (y0, y1) of class C∞ such that the first problem (8) has a unique solution ω, which
is a fractal set and thus has an infinite number of connected components.

There exist initial data (y0, y1) of class C∞ such that the first problem (8) does not have any solution.
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We stress that our results stated in Section 2.5 are stronger since we provide a characterization of all possible
initial data for which such or such phenomenon occurs, by establishing a precise correspondence with some classes
of Fourier series.

The second consequence of the interpretation in terms of an optimal control problem is the fact that we are able
to design new and efficient numerical methods in order to compute an approximation of the optimal set whenever it
exists. In Section 2.6 we define and study a modal approximation of the first problem consisting of truncating to N

modes the infinite dimensional control system corresponding to our problem. We thus get a usual finite dimensional
optimal control problem which can be easily analyzed. We prove in Proposition 5 that the truncated first problem
has a unique solution (which is therefore a characteristic function). Moreover, we can apply to this finite dimensional
optimal control problem the usual numerical methods of optimal control, which result into new numerical approaches
to compute approximations of the optimal set. We provide several numerical simulations that show the efficiency of
this new approach to optimal design.

We stress however in Section 2.6.2 on the limitations of numerics in optimal design. Indeed, according to our theo-
retical results, and although we have a nice Γ -convergence result (stated in Proposition 4), such numerical approaches
cannot permit to guess a relaxation phenomenon. By the way note that the occurrence of the relaxation phenomenon
for smooth initial data infirms a conjecture of [16] based on numerical observations.

The second problem (9), consisting of minimizing the norm of the HUM operator, is investigated in Section 3. First,
in Section 3.1 we show that this problem can be reduced to the problem of maximizing the observability constant
in the observability inequality (3), over all possible subsets of [0,π] of Lebesgue measure Lπ . This problem was
investigated and solved in [20], and we briefly report on the results that can be derived, obtaining in particular the
following result.

Theorem. Assume that T is an integer multiple of 2π . Then the optimal value of (9) is 2
LT

, and is reached if and only
if L = 1/2.

Theorems 5 and 6 provide precise results and show that the natural modal truncation of the second problem has a
unique solution sharing particular features such as the spillover phenomenon.

Section 4 contains a conclusion and some open problems. Appendix A is devoted to the proofs of the results.

2. Optimal location of controllers for fixed initial data

This section is devoted to solving the first problem, that is the problem of minimizing (8) on UL for fixed initial
data. Our objective is first to write the functional (8) in a more suitable way for the problem to be further interpreted
in terms of an optimal control problem. For that purpose, we use a series expansion of φ in the Hilbertian basis of
eigenfunctions of the Dirichlet Laplacian. This choice is also motivated by the fact that, in Section 2.6, we will take
advantage of this optimal control formulation to derive efficient numerical methods in order to compute numerically
the optimal domains.

Every solution φ ∈ C0(0,2π;L2(0,π)) ∩ C1(0,2π;H−1(0,π)) of (4) can be expanded as

φ(t, x) =
+∞∑
j=1

(
Aj cos(j t) + Bj sin(j t)

)
sin(jx), (10)

where A = (Aj )j∈N∗ and B = (Bj )j∈N∗ belong to �2(R). By the way, note that

∥∥(
φ0, φ1)∥∥2

L2×H−1 = π

2

+∞∑
j=1

(
A2

j + B2
j

)
. (11)

Let (y0, y1) ∈ H 1
0 (0,π) ×L2(0,π) be fixed initial data. The functional (5) to be minimized in the HUM method, still

denoted Jω, is

Jω(A,B) = Qω(A,B) −
+∞∑

jBj

〈
sin(j ·), y0〉

L2 +
+∞∑

Aj

〈
sin(j ·), y1〉

L2 , (12)

j=1 j=1
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where

Qω(A,B) = 1

2

T∫
0

∫
ω

( +∞∑
j=1

(
Aj cos(j t) + Bj sin(j t)

)
sin(jx)

)2

dx dt. (13)

In (12) the notation sin(j ·) stands for the function x 
→ sin(jx). Note that both series in (12) converge, in particular
the first one, since this term is the duality product 〈φ1, y0〉H−1,H 1

0
, with φ1 ∈ H−1(0,π) and y0 ∈ H 1

0 (0,π). It can be

also seen from the Cauchy–Schwarz inequality, noting the fact that the series of general terms j〈sin(j ·), y0〉L2 and
〈sin(j ·), y1〉L2 belong to �2(R) because y0 ∈ H 1

0 (0,π) and y1 ∈ L2(0,π), and moreover,

∥∥y0
∥∥2

H 1
0 (0,π)

= 2

π

+∞∑
j=1

j2〈sin(j ·), y0〉2
L2,

∥∥y1
∥∥2

L2(0,π)
= 2

π

+∞∑
j=1

〈
sin(j ·), y1〉2

L2 . (14)

2.1. Relaxation procedure, existence and uniqueness result

In this section we provide an existence and uniqueness result for a relaxed version of the first optimization prob-
lem (8). Recall that the HUM control hω is determined by (6), i.e.,

hω(t, x) = χω(x)φχω(t, x),

for almost all (t, x) ∈ (0, T ) × (0,π), where φ is the solution of (4) with initial data (φ0, φ1) that is the unique
minimizer of the HUM functional Jω defined by (5) or equivalently by (12).

The first problem (8) consists of minimizing the functional F defined by

F(χω) =
T∫

0

π∫
0

χω(x)φχω(t, x)2 dx dt, (15)

over the set UL, where φχω is the adjoint state associated with the HUM control, that is

φχω(t, x) =
+∞∑
j=1

(
Aω

j cos(j t) + Bω
j sin(j t)

)
sin(jx),

where (Aω,Bω) is the unique minimizer of Jω over (�2(R))2. Since a minimizer of F over UL defined by (5) does
not necessarily exist, we carry out a relaxation procedure as in [19], consisting of convexifying the problem. This
procedure is very usual in shape optimization problems (see e.g. [3]). Here, the closure of UL for the weak star
topology of L∞ is the convex set

UL =
{

a ∈ L∞([0,π], [0,1]) ∣∣∣ π∫
0

a(x) dx = Lπ

}
. (16)

The relaxed version of the first problem (8) then consists of minimizing the functional F defined by

F(a) =
T∫

0

π∫
0

a(x)φa(t, x)2 dx dt, (17)

over the set UL, where φa is the adjoint state solution of (4) with (φa(0, ·), ∂tφa(0, ·)) = (φ0
a,φ1

a), where (φ0
a,φ1

a) is
the minimizer of the “relaxed” HUM functional Ja defined by

Ja

(
φ0, φ1) = 1

2

T∫ π∫
a(x)φ(t, x)2 dx dt + 〈

φ0, y1〉
L2 − 〈

φ1, y0〉
H−1,H 1

0
, (18)
0 0
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for every (φ0, φ1) ∈ L2(0,π) × H−1(0,π) and every a ∈ UL (this is the natural relaxation of (5)), where φ is the
adjoint state solution of (4) with (φ(0, ·), ∂tφ(0, ·)) = (φ0, φ1). In this relaxed version of the first problem, the char-
acteristic function of ω is replaced with a density function a. Note that the Hilbert Uniqueness Method can be easily
extended to this relaxed case as underlined in the following proposition.

Proposition 1. Let a ∈ UL and T � 2π . The functional Ja defined by (18) has a unique minimizer (Aa,Ba) ∈
(�2(R))2.

The proof of this proposition is done in Appendix A.2. This relaxation procedure permits to ensure existence and
uniqueness results, as stated in the next theorem whose first part (existence) is the main result of [19] as already
mentioned in the introduction.

Theorem 1. The relaxed first problem of minimizing the functional F defined by (17) over the set UL defined by (16)
has a unique solution.

Proof. It follows from the HUM method (minimization of a quadratic functional) that, for every a ∈ UL,

−1

2
F(a) = −1

2

T∫
0

π∫
0

a(x)φ2
a(t, x) dx dt

= 1

2

(〈
φ0

a, y1〉
L2 − 〈

φ1
a, y0〉

H−1,H 1
0

)
= 1

2

T∫
0

π∫
0

a(x)φ2
a(t, x) dx dt + 〈

φ0
a, y1〉

L2 − 〈
φ1

a, y0〉
H−1,H 1

0

= min
(A,B)∈(�2(R))2

Ja(A,B).

Therefore, J is convex (as the opposite of the minimum of affine functions) and lower semicontinuous. The existence
of a minimizer follows since UL is compact for the L∞ weak star topology. The uniqueness is due to the fact that F

is actually strictly convex (see Lemma 4 of Section 2.2 further). �
Remark 1. If the minimizer a ∈ UL of the theorem actually belongs to the set UL and thus is the characteristic
function of a subset ω of [0,π] of Lebesgue measure Lπ , then this set ω is a solution of the (initial, non-relaxed)
first problem (8). Otherwise it means that the (initial) first problem (8) has no solution and we speak of a relaxation
phenomenon. In what follows we will characterize all initial data for which such a relaxation phenomenon occurs.

In the proof of Theorem 1, we only use the lower semicontinuity of F , but note that F is actually continuous for
the weak star topology of L∞, as mentioned in [19].

Lemma 1. The map a 
→ F(a) defined on UL is continuous for the L∞ weak star topology.

In the sequel, we will prove that there exist some initial data (y0, y1) ∈ H 1
0 (0,π)×L2(0,π) for which a relaxation

phenomenon occurs, in other words, the unique solution of the problem of minimizing F defined by (17) belongs to
UL \UL. Thus, we will be led to consider a sequence (χωn)n∈N of UL such that F(χωn) → F(a) as n → +∞, that we
will call a minimizing sequence. The following question is then natural: denote by (yn)n∈N a sequence of solutions of
system (1) associated with the controls

hωn(x, t) = χωn(x)φχωn
(t, x),

where φχωn
denotes the adjoint state provided by the Hilbert Uniqueness Method (with the fixed initial data (y0, y1))

and control domain ωn. Denote also by ya the solution of (1) associated with the control ha(x, t) = a(x)φa(t, x).
Does the sequence (yn)n∈N converge in some sense to ya? The following proposition provides a positive answer to
this question.
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Proposition 2. The sequence (φχωn
)n∈N converges to φa strongly in L2(0, T ;H−1(0,π)) and weakly in L2(0, T ;

L2(0,π)) ∩ H 1(0, T ;H−1(0,π)), and the sequence (yn)n∈N converges to ya strongly in L2(0, T ;L2(0,π)) and
weakly in L2(0, T ;H 1

0 (0,π)) ∩ H 1(0, T ;L2(0,π)).

The proof of this proposition is done in Appendix A.3.

2.2. Further comments on the relaxed control problem

Recall that

F(a) =
T∫

0

π∫
0

a(x)φa(t, x)2 dx dt, (19)

with

φa(t, x) =
+∞∑
j=1

(
Aa

j cos(j t) + Ba
j sin(j t)

)
sin(jx), (20)

where (Aa,Ba) ∈ (�2(R))2 is the minimizer of the quadratic functional Ja defined by (18). Since Ja is convex, the
first-order optimality conditions for the problem of minimizing Ja over (�2(R))2 are necessary and sufficient. They
are written as

Λa(A,B) = C, (21)

where Λa : (�2(R))2 → (�2(R))2 is defined by

Λa(A,B)j =
T∫

0

π∫
0

a(x)

+∞∑
k=1

(
Ak cos(kt) + Bk sin(kt)

)
sin(kx) sin(jx)

(
cos(j t)

sin(j t)

)
dx dt

=
+∞∑
k=1

T∫
0

(
Ak cos(kt) + Bk sin(kt)

) π∫
0

a(x) sin(kx) sin(jx) dx

(
cos(j t)

sin(j t)

)
dt

for every j ∈N
∗, with the notation Λa(A,B) = (Λa(A,B)j )j∈N∗ and Λa(A,B)j ∈R

2, and where

Cj =
( −〈sin(j ·), y1〉L2,L2

〈j sin(j ·), y0〉H−1,H 1
0

)
(22)

for every j ∈ N
∗. The fact that Λa(A,B) ∈ (�2(R))2 for every (A,B) ∈ (�2(R))2 can be seen as follows. There holds

〈
Λa(A,B), (A,B)

〉
(�2(R))2 =

T∫
0

π∫
0

a(x)

( +∞∑
k=1

(
Ak cos(kt) + Bk sin(kt)

)
sin(kx) sin(jx)

)2

dx dt,

for every (A,B) ∈ (�2(R))2. Using Lemmas 6 and 7, we get[
T

2π

]
(πL − sin(πL))

2
�

〈Λa(A,B), (A,B)〉(�2(R))2

‖(A,B)‖2
(�2(R))2

�
([

T

2π

]
+ 1

)
(πL + sin(πL))

2
, (23)

which ensures that 〈Λa(·), ·〉(�2(R))2 is a coercive quadratic form in (�2(R))2. By duality, we immediately deduce the
following lemma.

Lemma 2. The operator Λa is a continuous invertible (and symmetric) operator from (�2(R))2 to (�2(R))2.
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Note that Λa is nothing else but the frequential representation of the Gramian of the relaxed Hilbert Uniqueness
Method.

As a result, denoting by (Aa,Ba) the unique solution of (21), one gets

F(a) = 1

2

〈
Λa

(
Aa,Ba

)
,
(
Aa,Ba

)〉
(�2(R))2 = 1

2

〈
C,Λ−1

a (C)
〉
(�2(R))2 .

An interesting consequence of this expression is that it becomes easier to compute the derivative of F in an admissible
direction h. We have indeed the following result. For every a ∈ UL, we denote by T

a,UL
the tangent cone to the set

UL at a, that is the set of functions h ∈ L∞(0,π) such that, for any sequence of positive real numbers εn decreasing
to 0, there exists a sequence of functions hn ∈ L∞(0,π) converging to h as n → +∞, and a + εnhn ∈ UL for every
n ∈N (see for instance [9, Chapter 7]).

Lemma 3. Let a ∈ UL and h ∈ T
a,UL

. The function F is two times Fréchet-differentiable at a in the direction h and
one has

dF(a).h = −1

2

〈
Λh

(
Aa,Ba

)
,
(
Aa,Ba

)〉
(�2(R))2, (24)

d2F(a).(h,h) = 〈
Λ−1

a

(
Λh

(
Aa,Ba

))
,
(
Λh

(
Aa,Ba

))〉
(�2(R))2 . (25)

Proof. Note that the mapping a ∈ UL 
→ Λa ∈ L((�2(R))2, (�2(R))2) is linear and hence obviously differentiable.
Since the quadratic form 〈Λa(·), ·〉(�2(R))2 is coercive in (�2(R))2, with a constant that is uniform with respect to a,
it follows that the mapping a 
→ Λ−1

a ∈ L((�2(R))2, (�2(R))2) is differentiable. By composition of differentiable
functions, F is differentiable with respect to a, and one has〈

dF(a),h
〉 = −1

2

〈
Λ−1

a ΛhΛ
−1
a (C),C

〉
(�2(R))2

= −1

2

〈
Λh

(
Aa,Ba

)
,
(
Aa,Ba

)〉
(�2(R))2

= −1

2

π∫
0

h(x)

T∫
0

φa(t, x)2 dt dx,

for every h ∈ L∞(0,π). The second derivative is easily obtained as well from a similar computation. �
This computation will be important to apply the Pontryagin Maximum Principle in the sequel. The following

lemma is a direct consequence of all previous remarks.

Lemma 4. The function F is strictly convex on UL.

Proof. Using Lemmas 6 and 7 stated in Appendix A.1, we get, for every (A,B) ∈ (�2(R))2,〈
Λa(A,B), (A,B)

〉
(�2(R))2 �

([
T

2π

]
+ 1

)
(πL + sin(πL))

2

∥∥(A,B)
∥∥2

(�2(R))2,

and hence it follows that Λ−1
a is coercive as well in (�2(R))2. Thus, using Lemma 3, the Hessian of F is coercive and

hence F is strictly convex. �
2.3. Interpretation in terms of optimal control

We now give an interpretation of the relaxed first problem (17) in terms of a classical optimal control problem, to
which we will apply the Pontryagin Maximum Principle. For that purpose, functions a of UL are now considered as
controls, and we consider the control system
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z′
0(x) = a(x),

z′
j,k(x) = a(x) sin(jx) sin(kx), (j, k) ∈ (

N
∗)2

, (26)

for almost every x ∈ π , with initial conditions

z0(0) = 0, zj,k(0) = 0, (j, k) ∈ (
N

∗)2
. (27)

Note the important change of point of view in this presentation. Indeed, the spatial profile of the control of the wave
equation becomes a dynamical control of an infinite dimensional differential system where the space variable of the
wave equation becomes a pseudo-time.

The relaxed first problem of minimizing (17) over UL is then equivalent to the optimal control problem of deter-
mining a control a ∈ UL steering the infinite dimensional control system (26) from the initial conditions (27) to the
final condition

z0(π) = Lπ, (28)

and minimizing the functional F defined by (17), written here as

F(a) = 1

2

〈
C,Λ−1

a (C)
〉
(�2(R))2, (29)

where Λa : (�2(R))2 → (�2(R))2 is the mapping defined as before by Λa(A,B) = (Λa(A,B)j )j∈N∗ and Λa(A,B)j ∈
R

2, with

Λa(A,B)j =
T∫

0

+∞∑
k=1

(
Ak cos(kt) + Bk sin(kt)

)
zj,k(π)

(
cos(j t)

sin(j t)

)
dt,

for every j ∈ N
∗. This change of point of view happens to be relevant to solve the problem, both theoretically and

numerically. For the theoretical part, we will next see that the application of the Pontryagin Maximum Principle
to this optimal control problem leads to a complete characterization of minimizers and of all cases for which the
relaxation phenomenon occurs. The optimal control point of view will also permit to derive time-efficient algorithms
of numerical computation.

Versions of the Pontryagin Maximum Principle in the infinite dimensional setting can be found e.g. in [11]. These
versions suffer however from two severe limitations: the first of which is that the functional state space is required to
be a strictly convex Banach space, and the second is that the final state must satisfy a finite codimension assumption.
In our case here, the second requirement is obviously fulfilled, however the first one is not satisfied a priori. We are
however able to find an appropriate equivalent formulation of our problem, which is suitable for the application of
the Pontryagin Maximum Principle. This leads to the following result for the unique solution a ∈ UL of the relaxed
first problem (stated in Theorem 1), interpreted here as well as the unique solution of the optimal control problem
(26)–(29).

Proposition 3. Let a ∈ UL be the (unique) solution of the relaxed first problem (as stated in Theorem 1). Then there
exists a real number p0 such that

a(x) =
{

1 if ϕ(x) > 0,

0 if ϕ(x) < 0,
(30)

for almost every x ∈ [0,π], where the function ϕ, called switching function, is defined by

ϕ(x) = p0 +
+∞∑

j,k=1

pj,k sin(jx) sin(kx), (31)

and

pj,k = −
T∫

0

(
Aa

j cos(j t) + Ba
j sin(j t)

)(
Aa

k cos(kt) + Ba
k sin(kt)

)
dt, (32)

for every (j, k) ∈ (N∗)2.
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The proof of Proposition 3 is given in Appendix A.4.

Remark 2. Note that the switching function ϕ defined by (31) can be as well written as

ϕ(x) = p0 −
T∫

0

φa(t, x)2 dt. (33)

Since (Aa,Ba) ∈ (�2(R))2, it follows easily from (32) (or directly from (20) and (33)) that (pj,k)j∈N∗ ∈ �1(R).
Therefore the switching function ϕ is continuous on [0,π].

Remark 3. If the switching function ϕ vanishes identically on a subset of positive measure then the value of a(x)

remains undetermined on this subset (this is a usual fact in the application of the Pontryagin Maximum Principle in
optimal control). If this situation does not occur then a is completely determined by (30), and in this case, it can be
noted that, due to the strict convexity of F proved in Lemma 4, the first-order necessary conditions (30)–(32) inferred
from the Pontryagin Maximum Principle are also sufficient.

At this step, we realize that the application of the Pontryagin Maximum Principle leads to a simple characterization
of the minimizer a of Theorem 1 in terms of the switching function ϕ defined by (31) (or (33)). If ϕ does not vanish
identically on any subset of [0,π] of positive measure then the undetermined case does not occur, the optimal con-
trol a (which is said bang-bang) is completely determined by (30), and in that case a is the characteristic function of
some subset ω, which is the (unique) optimal solution of the (non-relaxed) first problem (15). In the next subsection
we provide simple sufficient conditions on the coefficients implying this conclusion. At the opposite, if the switching
function vanishes identically on some subset of [0,π] of positive measure (degenerate case), then the optimal con-
trol a is not bang-bang and thus is not a characteristic function. This means that in that case the (non-relaxed) first
problem (15) does not admit any optimal solution. This is what we call a relaxation phenomenon. In Section 2.4.2 we
characterize all possible initial data for which the relaxation phenomenon occurs.

2.4. Sufficient conditions for the first problem (8)

In this section we prove that, under suitable assumptions on the regularity of the initial data (y0, y1), the first
problem has a unique solution. The main idea is to prove that if the initial data are regular enough then the (unique)
minimizer of the relaxed first problem (17) characterized previously is the characteristic function of a subset ω and
therefore ω is the solution of the initial (non-relaxed) first problem (8).

2.4.1. A first sufficient condition

Theorem 2. Assume that the initial data y0 ∈ H 1
0 (0,π) and y1 ∈ L2(0,π) satisfy the following property: there exists

N ∈N∗ such that
π∫

0

y0(x) sin(jx) dx =
π∫

0

y1(x) sin(jx) dx = 0,

for every j > N . Then the first problem (8) has a unique1 solution χω , where ω is a measurable subset of [0,π] of
Lebesgue measure Lπ . Moreover,

• ω has at most N connected components,
• there exists η > 0 such that ω ⊂ [η,π − η].

1 Similarly to the definition of elements of L∞, the subset ω is unique within the class of all measurable subsets of [0,π ] quotiented by sets of
zero measure. It means that if ω is optimal, thus any set ω ∪ N or ω \ N is also optimal, for every measurable subset N of [0,π ] of zero Lebesgue
measure.
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Proof. Since y0 and y1 have only a finite number of nonzero components in their Fourier series, it follows that Cj = 0
for j > N , where Cj is defined by (22). Then, clearly, the unique solution (Aa,Ba) of (21) is as well of compact
support. Hence, only a finite number of the coefficients pj,k are nonzero. Therefore, the function ϕ is analytic and
hence cannot vanish identically on a subset of positive measure. Then the optimal control a is bang-bang, determined
by (30), and is the characteristic function of some subset ω of [0,π]. Moreover, the switching function ϕ(x) is written
as

ϕ(x) = p0 +
N∑

j,k=1

pj,k sin(jx) sin(kx)

= p0 + 1

2

N−1∑
u=1−N

(
u+N∑

j=u+1

pj,j−u

)
cos(ux) − 1

2

2N∑
u=2

(
u−1∑

j=u−N

pj,u−j

)
cos(ux),

for every x ∈ [0,π]. Since ϕ can be written as a linear combination of the 2N first Tchebychev polynomials, it follows
that ϕ has at most 2N zeros. Finally, since ϕ(0) = ϕ(π) = p0 and ϕ(x) � p0 for every x ∈ [0,π], the existence of
η > 0 follows easily. �

A natural question arises when considering modal approximations (y0,N , y1,N ) of the initial data (y0, y1), defined
by (

y0,N (x)

y1,N (x)

)
=

N∑
k=1

( 〈y0, sin(j ·)〉L2

〈y1, sin(j ·)〉L2

)
sin(jx).

Consider the optimal set ωN ∈ UL solution of the first problem with the initial data (y0,N , y1,N ) (as claimed in
Theorem 2). Let a ∈ UL be the solution of the relaxed first problem with the initial data (y0, y1). According to
Proposition 3, let pN

0 and pN
j,k , for (j, k) ∈ (N∗)2, the coefficients of the switching function ϕN for the truncated

optimal control problem (26)–(29) with the initial data (y0,N , y1,N ). Note that pN
j,k = 0 for j > N or k > N . The

following Γ -convergence result follows easily from the previous optimal control considerations.

Proposition 4. The sequence of finite dimensional optimal control problem (26)–(29) with truncated initial data
(y0,N , y1,N ) Γ -converges to the infinite dimensional optimal control problem (26)–(29) with initial data (y0, y1), in
the sense that, when N tends to +∞, χωN converges to a for the weak star topology of L∞, pN

0 converges to p0, pN
j,k

converges to pj,k for every (j, k) ∈ (N∗)2, and FN(χωN ) converges to F(a).

2.4.2. Sufficient condition when T is an integer multiple of 2π

Throughout this section we assume that T = 2π , the case T = 2pπ with p ∈ N
∗ being obviously deduced from

this case. Note that T = 2π is a very particular time since the orthogonality property leads to a strong simplification
of the expression of the norm of the control as explained next. Let us expand φ(t, x) as in (10). Then the “relaxed”
HUM functional defined by (18) is given by

Ja

(
φ0, φ1) =

+∞∑
j=1

(
π

2

(
A2

j + B2
j

) π∫
0

a(x) sin2(jx) dx − Aj

π∫
0

y1(x) sin(jx) dx + jBj

π∫
0

y0(x) sin(jx) dx

)
,

and for given initial data (y0, y1), the minimization of Ja obviously leads to

Aa
j = 1

π

∫ π

0 y1(x) sin(jx) dx∫ π

0 a(x) sin2(jx) dx
, and Ba

j = − j

π

∫ π

0 y0(x) sin(jx) dx∫ π

0 a(x) sin2(jx) dx
. (34)

Denote

ρj =
(( π∫

y1(x) sin(jx) dx

)2

+
(

j

π∫
y0(x) sin(jx) dx

)2)1/2

, (35)
0 0
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for every j ∈ N
∗. Note that, since (y0, y1) ∈ H 1

0 (0,π) × L2(0,π), it follows that the sequence (ρj )j∈N∗ belongs to
�2(R).

Using these particular and more precise expressions for T = 2π , we immediately derive the following generaliza-
tion of Theorem 2.

Theorem 3. Assume that T = 2π , and that there exist M > 0 and δ > 0 such that

|ρj |� Me−δj , (36)

for every j ∈ N∗. Then the first problem (15) has a unique solution χω, where ω is a measurable subset of [0,π] of
Lebesgue measure Lπ . Moreover,

• ω is symmetric with respect to π/2,
• there exists η > 0 such that ω ⊂ [η,π − η],
• ω has a finite number of connected components.

Remark 4. The assumption (36) holds for instance as soon as y0 and y1 are analytic functions on [0,π]. Actually, the
assumption (36) guarantees the analyticity of the function ϕ, and can be slightly weakened into

|ρj |� Me−w(j),

for every j ∈ N
∗, where w is a positive differentiable function such that t 
→ tw′(t) increases to +∞ and such that∫ +∞

1
w(t)

t2 dt = +∞. Indeed, under this weakened assumption the function ϕ enjoys the following unique contin-
uation property (see [14]): if ϕ is constant on a subset of [0,π] of positive measure then ϕ is constant on [0,π].
Hence, the statement of the theorem holds under this slightened property. More generally this property is related to
quasi-analyticity but up to our knowledge there is no simple necessary and sufficient condition on the coefficients αj

ensuring that unique continuation property.

Remark 5. Given a sequence (ρj )j∈N∗ ∈ �2(R) there exist an infinite number of possible initial data (y0, y1) ∈
H 1

0 (0,π) × L2(0,π) satisfying (35), and all of them lead to the same solution of the first problem (it is indeed a
consequence from the formula (39) in the proof).

Proof of Theorem 3. For this particular case where T = 2π , all previously considered expansions do not involve any
crossed terms. In particular, when interpreting the first problem as an optimal control problem, the control system (26)
reduces here to

z′
0(x) = a(x),

z′
j (x) = a(x) sin2(jx), j ∈ N

∗, (37)

for almost every x ∈ π , with initial conditions

z0(0) = 0, zj (0) = 0, j ∈N
∗. (38)

Using the Parseval identity, we get

F(a) =
2π∫

0

π∫
0

a(x)φ2
a(t, x) dx dt

= π

2

+∞∑
j=1

(
Aa

j
2 + Ba

j
2) π∫

0

a(x) sin2(jx) dx

= 1

2π

+∞∑ ρ2
j∫ π

0 a(x) sin2(jx) dx

j=1
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= 1

2π

+∞∑
j=1

ρ2
j

zj (π)
. (39)

The optimal control problem under consideration consists of steering the control system (37) from the initial condi-
tions (38) to the final condition z0(π) = Lπ , minimizing the functional F defined by (39) with controls a ∈ UL. Note
that in order to apply the Pontryagin Maximum Principle in a strict convex Banach space one has to use the identity
sin2(jx) = 1

2 − 1
2 cos(2jx) and hence to consider the control system given by

w′
0(x) = a(x),

w′
j (x) = 1

2
a(x) cos(2jx), j ∈N

∗, (40)

with initial conditions

w0(0) = 0, wj (0) = 0, j ∈N
∗. (41)

The control system (37) is then inferred from the above one by setting

z0(x) = w0(x), zj,k(x) = 1

2

(
w|j−k|(x) − wj+k(x)

)
, (42)

for almost every x ∈ [0,π] and for all integers j and k.
With these notations, one has

F(a) = 1

2π

+∞∑
j=1

ρ2
j

Lπ
2 − wj(π)

,

and, skipping the details, the application of the Pontryagin Maximum Principle leads to the characterization of the
(unique) optimal control

a(x) =
{

1 if ϕ(x) > 0,

0 if ϕ(x) < 0,
(43)

for almost every x ∈ [0,π], where the switching function ϕ is defined by

ϕ(x) = λ0 + 1

2

+∞∑
j=1

λj cos(2jx), (44)

with

λj = − 1

2π

ρ2
j

(Lπ
2 − wj(π))2

= − 1

2π

ρ2
j

(
∫ π

0 a(x) sin2(jx) dx)2
, (45)

for every j ∈N
∗. Note that

ϕ(x) = λ0 −
T∫

0

φa(t, x)2dt = λ0 − 1

2π

+∞∑
j=1

ρ2
j

(
∫ π

0 a(s) sin2(js) ds)2
sin2(jx), (46)

for every x ∈ [0,π]. Under the assumption (36), it follows from (45) and from Lemma 6 that the decay of the coeffi-
cients λj is exponential, and hence that the switching function ϕ defined by (44) is analytic (see e.g. [1, Chapter 11,
§63]) and thus ϕ cannot vanish identically on a subset of positive measure. Therefore, the optimal control a is
bang-bang, determined by (43), and thus is the characteristic function of some subset ω of [0,π]. The symmetry
property follows from the fact that ϕ(π − x) = ϕ(x) for every x ∈ [0,π]. The existence of η comes from the fact that
ϕ(0) = ϕ(π) is the minimum of ϕ (since λj < 0 for every j ∈N

∗). �



Y. Privat et al. / Ann. I. H. Poincaré – AN 30 (2013) 1097–1126 1111
2.5. Necessary and sufficient conditions when T is an integer multiple of 2π

Theorems 2 and 3 stated previously provide sufficient conditions for the first problem (8) to have a (unique) so-
lution. In the case where T is an integer multiple of 2π , we are actually able to provide a complete characterization
(however not so tractable in practice) of all initial data for which this problem has a (unique) solution, that is, for
which the optimal control solution of the relaxed first problem is actually a solution of the non-relaxed one. This
characterization is based on the fact that the necessary conditions for optimality are also sufficient because of the
strict convexity of F on UL, as already mentioned above. The following result is a particular consequence of the more
precise considerations further.

Theorem 4. Assume that T is an integer multiple of 2π and let L ∈ (0,1) be fixed.

1. There exist initial data (y0, y1) ∈ (C∞(0,π))2 for which the first problem (8) has a solution χω ∈ UL, with ω a
fractal domain of Cantor type.

2. There exist initial data (y0, y1) ∈ (C∞(0,π))2 for which the first problem (8) has no solution, but its relaxed
version has a solution a ∈ UL \ UL.

Let us assume without loss of generality that T = 2π . Theorem 4 is a direct consequence of the following character-
ization of all initial data for which either the first problem has a solution or it has no solution (relaxation phenomenon).

Note first that (λj )j∈N∗ ∈ �1(R), where λj is defined by (45). Therefore, more precisely than in Remark 2, the
switching function ϕ defined by (44) belongs to the set A(0,π) of all functions φ integrable on [0,π] and having a
Fourier series expansion of the form

φ(x) = a0 + 1

2

+∞∑
j=1

aj cos(2jx), (47)

with a0 ∈R and nonpositive coefficients aj satisfying (aj )j∈N∗ ∈ �1(R). Such considerations are classical in harmonic
analysis. In particular, ϕ is continuous, but the above property is stronger.

We are now in a position to derive the following characterizations, mainly based on the fact that the optimal
solution a of the above optimal control problem is the solution of the initial first problem (15) if and only if the
switching function ϕ defined by (44) does not vanish identically on any subset of [0,π] of positive measure.

Characterization of all initial data for which the first problem has a solution. Consider any function ϕ ∈ A(0,π)

such that ϕ(x) �= 0 for almost every x ∈ [0,π], written as

ϕ(x) = λ0 + 1

2

+∞∑
j=1

λj cos(2jx),

with nonpositive coefficients λj satisfying (λj )j∈N∗ ∈ �1(R). Let a be the bang-bang control defined by (30), and let
ρj � 0 be defined by (45) for every j ∈N

∗, that is,

ρj = √−2πλj

π∫
0

a(x) sin2(jx) dx.

Using Lemma 6, it is clear that (ρj )j∈N∗ ∈ �2(R). Such a sequence (ρj )j∈N∗ characterizes a set of initial data
(y0, y1) ∈ H 1

0 (0,π) × L2(0,π) (see Remark 5): these are all initial data for which (35) holds for every j ∈ N
∗.

The control a, defined in such a way, satisfies all necessary and sufficient conditions of the Pontryagin Maximum
Principle and hence is the optimal control of the first problem associated with the initial data (y0, y1), and with the
constant L defined by

∫ π

0 a(x) dx = Lπ (note that L may be equal to 0 or 1, depending on the value of λ0, but these
cases are of course not interesting). Since a is bang-bang, it is the characteristic function of a subset ω of [0,π], which
is the solution of the first problem. Note that, in order to realize a specific value of L, it suffices to tune adequately the
constant λ0 of the Fourier expansion of ϕ so that

∫ π
a(x) dx = Lπ .
0
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The construction above establishes the correspondence between the optimal sets of the first problem and the zero
level sets of functions of A(0,π) that do not vanish almost everywhere. Such level sets may have an intricate structure,
for instance may have a fractal structure. We refer to [21] for the construction of an explicit example where ω is of
Cantor type.

We are able as well to characterize precisely the relaxation phenomenon.

Characterization of the relaxation phenomenon. The data (y0, y1) for which the relaxation phenomenon occurs are
those whose associated coefficients ρj defined by (35) are such that the corresponding switching function ϕ vanishes
identically on a subset I of positive measure (note that this set must be symmetric with respect to π

2 ). The more precise
construction goes as follows.

Consider any nontrivial function ϕ ∈A(0,π) vanishing identically on a subset I of [0,π] of positive measure, with
Fourier coefficients (λj )j∈N∗ as before. Let a be a control function defined by (30) on [0,π] \ I and taking arbitrary
values on I , and satisfying however

∫ π

0 a(x) dx = Lπ . Let (ρj )j∈N∗ ∈ �2(R) be defined by (45), as previously. Such
a sequence characterizes a set of initial data (y0, y1) ∈ H 1

0 (0,π) × L2(0,π). As before the control a defined in such
a way is the optimal control of the relaxed version of the first problem associated with the initial data (y0, y1). Since
a is not bang-bang (it is not a characteristic function on I , by construction), this means that the first problem does not
have any solution and that the relaxation phenomenon occurs.

Remark 6. This set is indeed non-empty, and is even, in some sense, a very large set. To get convinced, it suffices
to note the following fact. Consider any nontrivial function ψ of class C∞ on [0,π], symmetric with respect to π

2 ,
and whose support is contained in [π

2 − α, π
2 + α] for some α > 0 small. The C1 regularity ensures that its Fourier

coefficients are summable. To ensure the nonpositivity of its Fourier coefficients, it suffices to consider the function ϕ

defined by the convolution

ϕ(x) =
∫
R

ψ

(
y + π

2

)
ψ(x − y)dy.

Indeed, the function ϕ defined in such a way is of class C∞ on [0,π], of support contained in [π
2 −2α, π

2 +2α], and all
its Fourier coefficients are nonpositive (by the way note that all functions whose Fourier coefficients are nonpositive
are of this type).

Another explicit example is easily built as follows. Consider a triangle function2 defined on [π
2 − α, π

2 + α], for
some α > 0, equal to 0 outside. Its Fourier coefficients are the values on integers of the Fourier transform of the
triangle function, hence are positive and summable. The rest of the construction is obvious.

To illustrate this correspondence, we yield a concrete example of construction of initial data for which we observe
a relaxation phenomenon.

Example 1. We set T = 2π (for example). Consider the π -periodic switching function φ, symmetric with respect to
π/2 defined by

φ(x) =
{− 4

π
x + 1 on [0,π/4],

0 on [π/4,π/2].
Thus, φ has a Fourier series expansion of the form (47) with a0 = 1

4 and aj = 4(1−(−1)j )

j2 � 0 for every j � 1. Introduce
now the function a(·), π -periodic and symmetric with respect to π/2, such that for every x ∈ [0,π],

a(x) =
{

0 on [0,π/4],
2L + 8L

π
(x − π

2 ) on [π/4,π/2].

2 By triangle function, we mean a function whose graph is an equilateral triangle.
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Using the correspondence detailed before, we obtain that a is the unique solution of problem (17), provided that the
initial data (y0, y1) are such that the coefficients (ρj )j∈N∗ defined by (35) verify

ρj = √−2πaj

π∫
0

a(x) sin2(jx) dx

for every j ∈N
∗.

Remark 7. It is not clear whether the above characterizations can be generalized or not to the case where T is not an
integer multiple of 2π , in particular because the relation between the coefficients (pj,k)j∈N∗ of the switching function
and the coefficients Aa

j ,B
a
j is not easily invertible (note however that the infinite dimensional symmetric matrix whose

coefficients are the pj,k is a Gramian).

2.6. Modal approximation and numerical simulations

2.6.1. Case T = 2π

We propose in this section some numerical simulations in the case where T = 2π . The method we use here works
exactly in the same way in the case where T � 2π is not an integer multiple of 2π except that it is then required
to invert the Gramian operator Λa defined in Section 2.3. In view of numerical simulations, it is natural to truncate
the control system (40) at some order N ∈ N

∗, by considering the optimal control problem of steering the finite
dimensional control system

w′
0(x) = a(x),

w′
j (x) = 1

2
a(x) cos(2jx), j ∈ {1, . . . ,N}, (48)

from the initial conditions

w0(0) = 0, wj (0) = 0, j ∈ {1, . . . ,N} (49)

to the final condition (28) (y(π) = Lπ ), and minimizing

FN(a) = 1

2π

N∑
j=1

ρ2
j

Lπ
2 − wj(π)

. (50)

As in Theorem 1, this optimal control problem has a unique solution aN ∈ UL. The usual Pontryagin Maximum
Principle of [22], applied to this finite dimensional optimal control problem, implies that there exist λ0N � 0 and
(λN

0 , λN
1 , . . . , λN

N) ∈R
N+1, called costates,3 with (λ0, λN

0 , λN
1 , . . . , λN

N) �= (0, . . . ,0), such that

aN(x) =
{

1 if ϕN(x) > 0,

0 if ϕN(x) < 0,
(51)

for almost every x ∈ [0,π], where the function ϕN , called switching function, is defined by

ϕN(x) = λN
0 + 1

2

N∑
j=1

λN
j cos(2jx), (52)

the control aN being undetermined whenever φN vanishes identically on some subinterval. Moreover, one has the
transversality assumptions

λN
j = λ0N

ρ2
j

(Lπ
2 − zN

j (π))2
, (53)

for every j ∈ {1, . . . ,N}. As before, there must hold λ0N �= 0 and we assume next that λ0N = −1.

3 Note that, since the dynamics of (48) do not depend on the state, it follows that the costates are constant.
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Fig. 1. Several numerical simulations.

Since ϕN can be written as a linear combination of the 2N first Tchebychev polynomials, it follows that ϕN has at
most 2N zeros and cannot vanish identically on any subinterval. We finally get the following result.

Proposition 5. The optimal control aN is the characteristic function of a subset ωN of [0,π] of Lebesgue measure
Lπ , which has at most N connected components, is symmetric with respect to π/2, and is such that there exists η > 0
such that ωN ⊂ [η,π − η].

We provide hereafter several numerical simulations based on this modal approximation. This new numerical ap-
proach is based on the interpretation as an optimal control problem. Some results are provided on Fig. 1.

These simulations were obtained with a direct method applied to the optimal control problem described previously
(see e.g. [26] for a description of possible numerical approaches), consisting in discretizing the underlying differential
equations, the control, and to reduce the optimal control problem to some minimization problem with constraints. We
used the code IPOPT (see [29]) combined with AMPL (see [6]) on a standard desktop machine. The resulting code
works out the solution very quickly (for instance, within 3 seconds for N = 50) and is far more efficient than methods
based on gradient methods using topological derivatives. It must however be noted that the problem is one-dimensional
and that we benefit of the interpretation as an optimal control problem, using spectral considerations.
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Another possible method is to implement a shooting method, based on the optimality conditions provided by the
Pontryagin Maximum Principle. Here, it consists of numerically determining the costates (λN

0 , λN
1 , . . . , λN

N) such that
(28) and (32) are satisfied. The shooting method is a combination of a Newton type method and of some integration
method of differential equations. The main difficulty is the initialization of this method but it can be done using a
direct method. We used the code COTCOT (see [2]). The convergence is then obtained instantaneously and can permit,
when combined with a continuation method, to reach very large values of N (see [27] for a survey on these numerical
approaches).

2.6.2. Complexity of the optimal set and limitations of numerics
The graphs presented in the last paragraph represent the optimal set for fixed initial data that have a finite number

of Fourier components. It follows from Theorem 4 that numerical simulations cannot permit in general to guess what
happens when the initial data have an infinite number of components in their Fourier series expansion. Indeed, note
that in [16,17] the authors conjecture the existence of a relaxation phenomenon with smooth initial data, based on
numerical simulations. Although such an intuition seems reasonable, according to our previous theoretical results this
is not the case. In Section 2.5 we have shown a precise correspondence between the regularity of the optimal set
and the regularity of the initial data. We have also characterized all initial data for which the relaxation phenomenon
occurs, leading to Theorem 4. Using Theorem 4, there exist smooth initial data for which the optimal set has a fractal
structure, and thus an infinite number of connected components but for which relaxation does not occur. Of course
this particular feature cannot be guessed from numerical simulations. To summarize, considering as in the previous
section a truncated version of the first problem (8) with the N first Fourier components, two different phenomena
arise at the limit, depending on the initial data under consideration: a relaxation phenomenon, or the emergence of
complex (possibly fractal) optimal sets. In particular the occurrence of relaxation cannot be illustrated on numerical
simulations.

2.6.3. Additional comments on the case T = 2π : study of the case N = 2
In this section, we study the particular case N = 2 of the modal truncature of the first problem. This means that the

only nonzero terms of the sequence (ρj )j∈N∗ are ρ1 and ρ2. In this case, the functional (50) is written as

F 2(χω) = ρ2
1∫ π

0 χω(x) sin2 x dx
+ ρ2

2∫ π

0 χω(x) sin2(2x)dx
.

Setting t = ρ2
1

ρ2
1+ρ2

2
, the minimization problem reduces to the problem of minimizing

t∫ π

0 χω(x) sin2 x dx
+ 1 − t∫ π

0 χω(x) sin2(2x)dx
(54)

over the set UL. The following proposition yields a precise characterization of the minimizers in the case N = 2 and
describes the variations of the optimal set with respect to L.

Proposition 6. Let χω2 be the solution of the minimization problem (54). Then,

• ω2 is symmetric with respect to π/2;
• the set ω2 ∩ [0,π/2] has only one connected component [αt ,αt + πL

2 ];
• α0 = π

4 (1 − L) and α1 = π
2 (1 − L);

• there exists t0(L) ∈ (0,1) such that t 
→ αt is increasing on [0, t0(L)], and is constant equal to α1 on [t0(L),1].

The proof of this proposition, based on lengthy and tedious computations, is provided in Appendix A.5. Fig. 2
illustrates this proposition.

3. Solving of the second problem (9)

This section is devoted to solving the second problem (9), that is the problem of minimizing the norm of the HUM
operator over UL.
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Fig. 2. Graph of the optimal domain ω2 in function of t .

3.1. Reduction of the problem

For every measurable subset ω of [0,π], set

W(χω) = sup

{ ‖hω‖2
L2((0,T )×(0,π))

‖(y0, y1)‖2
H 1

0 (0,π)×L2(0,π)

∣∣∣ (
y0, y1) ∈ H 1

0 (0,π) × L2(0,π) \ {
(0,0)

}}
.

Recall that the second problem consists of minimizing W(χω) over all possible subsets ω of [0,π] of measure equal
to Lπ .

Lemma 5. For every measurable subset ω of [0,π], there holds

W(χω) = 1

CT (χω)
,

where CT (χω) is the largest observability constant in the inequality (3), associated with the wave equation (4), that is

CT (χω) = inf

{ ∫ T

0

∫
ω

φ(t, x)2 dx dt

‖(φ0, φ1)‖2
L2(0,π)×H−1(0,π)

∣∣∣ (
φ0, φ1) ∈ L2(0,π) × H−1(0,π) \ {

(0,0)
}}

,

where φ is the solution of (4).

Remark 8. Expanding φ in Fourier series as in (10), it is easy to see that

CT (χω) = inf
(A,B)∈(�2(R))2∑+∞

j=1(A
2
j +B2

j )=1

{ T∫
0

∫
ω

( +∞∑
j=1

(
Aj cos(j t) + Bj sin(j t)

)
sin(jx)

)2

dx dt

}
.

This lemma illustrates the classical duality between controllability and observability (see [23]), however we provide
a short proof hereafter.
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Proof. Let us expand φ in Fourier series as in (10), and use the operator Λa defined by (21) to rewrite W(χω). One
has

W(χω) = sup
C∈(�2(R))2

〈Λ−1
χω

(C),C〉(�2(R))2

‖C‖2
(�2(R))2

= sup
C∈(�2(R))2

‖Λ−1/2
χω (C)‖2

(�2(R))2

‖C‖2
(�2(R))2

,

where Λ
−1/2
χω denotes the square root of the operator Λ−1

χω
. Introducing ϕ = Λ

−1/2
χω (C), one computes

W(χω) = sup
ϕ∈(�2(R))2

‖ϕ‖2
(�2(R))2

‖Λ1/2
χω (ϕ)‖2

(�2(R))2

= 1

inf{ ‖Λ1/2
χω (ϕ)‖2

(�2(R))2

‖ϕ‖2
(�2(R))2

| ϕ ∈ (�2(R))2}

= 1

inf{ 〈Λχω (ϕ),ϕ〉
(�2(R))2

‖ϕ‖2
(�2(R))2

| ϕ ∈ (�2(R))2}
= 1

CT (χω)
.

The lemma is proved. �
As a consequence, we have

inf
χω∈UL

W(χ) = inf
χω∈UL

1

CT (χω)
= 1

supχω∈UL
CT (χω)

,

and therefore the second problem (9) is equivalent to the new optimization problem

sup
χω∈UL

CT (χω), (55)

that is, the problem of maximizing the observability constant over all possible subsets of [0,π] of Lebesgue measure
Lπ . This problem was investigated in [20], and solved in the case where T is an integer multiple of 2π (the general
case being still open). The problem of maximizing the functional limT →+∞ CT (χω)/T over UL was also solved.

3.2. Case where T is an integer multiple of 2π

In this case, according to the computations of Section 2.4.2, the second problem (9) is exactly equivalent to

sup
χω∈UL

inf
j∈N∗

∫
ω

sin2(jx) dx. (56)

This kind of problem was addressed in [7,8], where a different optimal design problem was studied, concerning
stabilization issues for the one-dimensional wave equation. More precisely, they consider the damped wave equation

∂tt y − ∂xxy + 2kχω∂ty = 0, (t, x) ∈ (0, T ) × (0,π),

y(t,0) = y(t,π) = 0, t ∈ [0, T ],
y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ [0,π],

where k > 0, and investigate the problem of determining the best possible subset ω of [0,π] maximizing the decay
rate of the total energy of the system, among all possible subsets of [0,π] of Lebesgue measure Lπ and having a
finite number of connected components (note that this last restriction is discarded in [20]). This corresponds to choose
in (1) the control hω = −2kχω∂ty, which does not coincide with the HUM control. The overdamping phenomenon is
underlined in [7] (see also [5]), meaning that if k is too large then the decay rate tends to zero. It is moreover explained
that, if k is small enough then the decay rate is equivalent to k infj∈N∗

∫
ω

sin2(jx) dx. This explains their motivation
to investigate the optimization problem (56).



1118 Y. Privat et al. / Ann. I. H. Poincaré – AN 30 (2013) 1097–1126
It is proved in [7,8,20] that the optimization problem (56) does not have any solution except for L = 1/2. In other
words, the supremum is not reached. In particular, as an immediate consequence of [20, Theorem 1], we have the
following result.

Theorem 5. For every L ∈ (0,1), there holds

inf
χω∈UL

W(χω) = 2

LT
, (57)

and the infimum is reached if and only if L = 1/2. Moreover, if L = 1/2 then the problem has an infinite number of
solutions, consisting of all measurable subsets ω ⊂ [0,π] of measure π/2 such that ω and its symmetric ω′ = π − ω

are disjoint and complementary in [0,π].

In particular if L �= 1/2 then the second problem (9) does not have any optimal set. Since it is more realistic from
an engineering point of view to take into consideration only a finite number of modes, the authors of [8] consider
a truncated version of (56) involving only the first N modes, for a given N ∈ N

∗, and investigate the optimization
problem

sup
χω∈UL

min
1�j�N

π∫
0

χω(x) sin2(jx) dx. (58)

The following theorem was proved in [8] but with an erroneous proof, corrected in [20].

Theorem 6. For every N ∈ N
∗, the problem (58) has a unique4 solution χωN , where ωN is a subset of [0,π] of

measure Lπ that is the union of at most N intervals and is symmetric with respect to π/2. Moreover there exists
LN ∈ (0,1] such that, for every L ∈ (0,LN ], the optimal domain ωN satisfies∫

ωN

sin2 x dx =
∫

ωN

sin2(2x)dx = · · · =
∫

ωN

sin2(Nx)dx. (59)

It is explained in [8] that (59) permits to show that the optimal domain ωN concentrates around the nodes kπ
N+1 ,

k = 1, . . . ,N . This implies the well-known spillover phenomenon, according to which the optimal domain ωN solution
of (58) with the N first modes is the worst possible domain for the problem with the N + 1 first modes.

Note that, although (56) has no solution, the optimal solution χωN of (58) converges for the weak star topology of
L∞ to the function a ∈ UL that is the solution of the relaxed problem

max
a∈UL

inf
j∈N∗

π∫
0

a(x) sin2(jx) dx, (60)

as expected, with a convergence of the optimal values.

4. Conclusion and open problems

In this article we have described a frequential approach based on Fourier series expansions, permitting to
derive some existence and uniqueness results and to interpret these problems in terms of optimal control.
The use of the Pontryagin Maximum Principle led to a complete characterization of optimal solutions per-
mitting in particular to characterize all initial data for which the first problem has a solution or not. Effi-
cient numerical algorithms have been derived from this approach and numerical simulations were given on
a modal approximation of the problem. The second problem was shown to be equivalent to the problem of

4 Here the uniqueness must be understood up to some subset of zero Lebesgue measure. In other words if ω is optimal then the union of ω with
any subset of zero measure is also a solution.
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maximizing the observability constant over the class of subsets under consideration. The optimal value of
the second problem was given, although, except for L = 1/2, there does not exist any optimal set. In ac-
cordance with this nonexistence result, the modal approximation of that problem leads to the spillover phe-
nomenon.

We end this article indicating several open directions for future investigation.
In the present article we restricted the study of the second problem to the case where T is an integer multiple of 2π .

Indeed for more general values of T we do not know how to handle the general expressions of quadratic functional like
(13). The problem happens to be related to the one of determining what are the best constants in Ingham’s inequality
(see [20] for detailed comments on this issue).

For every subset ω of [0,π] of positive measure and T � 2π , the observability inequality (3) is satisfied. However
2π is not the smallest possible time for a specific choice of ω. For instance if ω is a subinterval of [0,π] then the
smallest such time is 2 diam((0,π) \ ω). This question is nontrivial if, instead of an interval, the set ω is chosen to be
a fractal measurable set, for example of Cantor kind. To our knowledge, given L ∈ (0,1), the question of determining
the existence or not of a time TL ∈ (0,2π) such that for every ω of measure Lπ , the system (1) is controllable in any
time T � TL, is open.

In the same spirit, another interesting possibility consists of maximizing the criterion

(χω,T ) 
→ inf
(y0,y1)∈H 1

0 (0,π)×L2(0,π)

1

T

T∫
0

π∫
0

hω(t, x)2

‖(y0, y1)‖2
H 1

0 ×L2

dx dt

over the set UL × (0,+∞). The same questions arise when the control domain belongs to a larger class in which it is
not necessarily cylindrical but is rather a measurable space–time set of measure 2πL.

For T � 2π that is not an integer multiple of 2π , the problem of determining the set of all initial data (y0, y1)

for which the HUM control hω is analytic, is open. The answer to this question would permit to make Theorem 2
more precise since the analyticity of the switching function implies the existence of a solution of the first problem (8)
having moreover a finite number of connected components.

In the present article truncations of the functionals were considered with the N first modes. It would be interesting
to consider similar optimal design problems for other classes of initial data, for instance initial data whose Fourier
coefficients satisfy a uniform exponential decreasing property. We could also truncate the Fourier series and keep only
the modes whose index is between two integers N and M .

Our analysis can be extended to the multi-dimensional case, and for wave equations with more general non-
constant coefficients, but such an analysis requires other considerations related to ergodicity features (see [21])
that are beyond the scope of the present article. Here for the one-dimensional wave equation we used many
times the fact that the Hilbertian basis of eigenfunctions of the Dirichlet Laplacian consists of sine functions,
but our approach may be led with more general eigenfunctions, although it may be more technical and not so
precise. For example the derivation of such a precise identity like (59) is probably not easily provable in gen-
eral.

Finally, it is an open question to investigate the shape and position of the support of the HUM control of the
one-dimensional heat equation or more general parabolic systems. This question will be investigated in forthcoming
works.
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Appendix A. Proofs of Section 2

A.1. Preliminaries

We start with some elementary lemmas that play an important role. The following very simple lemma, noticed as
well in [19], is useful.

Lemma 6. Let j ∈N
∗.

1. The problem of minimizing the functional

Kj(a) =
π∫

0

a(x) sin2(jx) dx (61)

over the set UL has a unique solution χωinf
j

∈ UL that is the characteristic function of the measurable set ωinf
j

given by

ωinf
j =

(
0,

Lπ

2j

)
∪

j−1⋃
k=1

(
kπ

j
− Lπ

2j
,
kπ

j
+ Lπ

2j

)
∪

(
π − Lπ

2j
,π

)
,

and the value of the minimum is Lπ
2 − sinLπ

2 > 0.
2. The problem of maximizing the functional Kj over the set UL has a unique solution χω

sup
j

∈ UL that is the char-

acteristic function of the measurable set ω
sup
j given by

ω
sup
j =

j⋃
k=1

(
(2k − 1)π

2j
− Lπ

2j
,
(2k − 1)π

2j
+ Lπ

2j

)
,

and the value of the maximum is Lπ
2 + sinLπ

2 > 0.

Remark 9. Note that the extremal values of Kj , given in this lemma, do not depend on j .

Proof of Lemma 6. It suffices to note that optimal sets exist and are clearly characterized in terms of level sets of the
function x 
→ sin2(jx), for every j ∈N

∗. Using the symmetry properties of this function and the fact that its minimum
on [0,π] is equal to 0 and is reached at every xk = kπ

j
, k ∈ {0,1, . . . , j}, the formula on ωinf

j follows, and the value of
the minimum is given by∫

ωinf
j

sin2(jx) dx = 2j

πL/2j∫
0

sin2 jx dx = 2

πL/2∫
0

sin2 udu = 1

2

(
Lπ − sin(Lπ)

)
.

The proof of the second part is similar. �
The next lemma makes precise a well-known result due to Ingham (see [10]) in the very particular context of

harmonic Fourier series. The bracket notation stands for the integer floor value.

Lemma 7. (See [10].) For every 2π -periodic complex valued function f on R such that f ∈ L2(0,2π;C), for every
T � 2π , there holds

M1(T )

2π∫
0

∣∣f (t)
∣∣2

dt �
T∫

0

∣∣f (t)
∣∣2

dt � M2(T )

2π∫
0

∣∣f (t)
∣∣2

dt,

with M1(T ) = [ T ] and M2(T ) = M1(T ) + 1. Moreover, these constants are sharp.
2π
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Proof. The existence of two positive constants M1(T ) and M2(T ) is a direct consequence of Ingham’s Lemma (see
[10, Theorems 1 and 2]). We define

M1(T ) = inf

{ ∫ T

0 |f (t)|2 dt∫ 2π

0 |f (t)|2 dt

∣∣∣ f ∈ L2(0,2π;C) \ {0}
}
,

and M2(T ) is defined in the same way as a supremum. Notice that given f ∈ L2(0,2π;C), one has

T∫
0

∣∣f (t)
∣∣2

dt =
2π[ T

2π
]∫

0

∣∣f (t)
∣∣2

dt +
T −2π[ T

2π
]∫

0

∣∣f (t)
∣∣2

dt

=
[

T

2π

] 2π∫
0

∣∣f (t)
∣∣2

dt +
T −2π[ T

2π
]∫

0

∣∣f (t)
∣∣2

dt.

The conclusion of the lemma is then obvious. The sharpness of the constants is obtained by considering either the
function g vanishing on (0, T − 2π [ T

2π
]) and equal to 1 on (T − 2π [ T

2π
],2π) or the function 1 − g. �

A.2. Proof of Proposition 1

Using Lemmas 6 and 7, (14) and the Cauchy–Schwarz inequality, one has

Ja(A,B)� π

2

[
T

2π

]
(πL − sin(πL))

2

(‖A‖2
�2(R)

+ ‖B‖2
�2(R)

)
−

√
π

2

∥∥y0
∥∥

H 1
0 (0,π)

‖B‖�2(R) −
√

π

2

∥∥y1
∥∥

L2(0,π)
‖A‖�2(R),

for every (A,B) ∈ (�2(R))2. It follows easily that δ = inf{Ja(A,B) | (A,B) ∈ (�2(R))2} is finite. Consider now a
minimizing sequence (An,Bn)n∈N∗ of Jω such that

Ja

(
An,Bn

)
� δ + 1

n2
,

for every n ∈ N
∗. Fix temporarily n and m, two nonzero integers. Any convex combination t (An,Bn) + (1 −

t)(Am,Bm), with t ∈ [0,1] and (m,n) ∈ (N∗)2 is admissible and thus satisfies Ja(t (A
n,Bn)+ (1 − t)(Am,Bm)) � δ.

Moreover, easy computations show that(
Ja

(
t
(
An,Bn

) + (1 − t)
(
Am,Bm

)) − δ
) + t (1 − t)Qa

((
An,Bn

) − (
Am,Bm

))
= (1 − t)

(
Ja

(
Am,Bm

) − δ
) + t

(
Ja

(
An,Bn

) − δ
)
. (62)

This implies

0 � t (1 − t)Qa

((
An,Bn

) − (
Am,Bm

))
� 1 − t

m2
+ t

n2
.

From Lemmas 6 and 7, and using the observability inequality (3), the quadratic form Qa induces a norm on �2(R) that
is equivalent to the standard Hilbertian norm of �2(R). Hence, (An,Bn)n∈N∗ is a Cauchy sequence in (�2(R))2 and
converges to some (Aa,Ba) ∈ (�2(R))2, which is clearly a minimizer of Ja . The uniqueness of the minimizer follows
from the strict convexity of Ja which is proved in Lemma 4.

A.3. Proof of Proposition 2

By weak compactness of UL, up to a subsequence the sequence (χωn)n∈N converges to some ã ∈ UL for the L∞
weak star topology. Since F is lower semicontinuous for the L∞ weak star topology (see Theorem 1), we have

F( ã )� lim F(χωn) = F(a),

n→+∞
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and necessarily a = ã by uniqueness of the minimizer (see Theorem 1). Using Lemmas 6 and 7, one has

F(χωn) �M1(T )
(πL − sin(πL))

2

∥∥(
φχωn

(0, ·), ∂tφχωn
(0, ·))∥∥2

L2×H−1,

for every n ∈ N and since the sequence (F (χωn))n∈N∗ is bounded, it follows that the sequence (φχωn
(0, ·),

∂tφχωn
(0, ·))n∈N∗ is bounded in L2(0,π) × H−1(0,π). Since (φχωn

)n∈N is a solution of the wave equation (4), it
follows immediately that the sequence (φχωn

)n∈N is bounded in L2(0, T ;L2(0,π)) and (∂tφχωn
)n∈N is bounded in

L2(0, T ;H−1(0,π)). Then by Aubin’s Lemma (see e.g. [25]), it follows that, up to a subsequence, the sequence
(φχωn

)n∈N converges weakly in L2(0, T ;L2(0,π)) ∩ H 1(0, T ;H−1(0,π)) and strongly in L2(0, T ;L2(0,π)) to
some φ̃. Since (χωn)n∈N converges L∞ weakly star to a, this sequence converges also weakly in L2. From this fact
and the uniqueness of the minimizer of the HUM functional Ja , we deduce that the sequence (φχωn

)n∈N converges
weakly in L2(0, T ;L2(0,π)) ∩ H 1(0, T ;H−1(0,π)) and strongly in L2(0, T ;L2(0,π)) to φa .

Since for n ∈ N, yn is solution of (1) with right hand side hχωn
, it follows that (yn)n∈N is bounded in

L2(0, T ;H 1
0 (0,π)) and (∂tyn)n∈N is bounded in L2(0, T ;L2(0,π)). Then by Aubin’s Lemma it follows that, up

to a subsequence, (yn)n∈N converges strongly to ya in L2(0, T ;L2(0,π)) and weakly in L2(0, T ;H 1
0 (0,π)) ∩

H 1(0, T ;L2(0,π)).
In the previous reasonings, since there is only one closure point at the limit, then the convergence is not only up to

subsequence, but for the whole sequence. The proposition follows.

A.4. Proof of Proposition 3

Due to technical requirements, the application of the Pontryagin Maximum Principle in the infinite dimensional
setting requires to work within a strictly convex Banach space (see [11]). The optimal control problem settled above
does not fit exactly (a priori) in this framework since the diagonal coefficients zj,j (π) are bounded below and above
by positive constants (see Lemma 6), and hence a priori the adapted state space is �∞(R), which is not strictly convex.
To overcome this difficulty, it suffices to write the control system (26) in another way so that the new control system
is settled in a strictly convex Banach space. This reduction relies on the identity

sin(jx) sin(kx) = 1

2

(
cos

(
(j − k)x

) − cos
(
(j + k)x

))
. (63)

We consider the control system

w′
m(x) = a(x) cos(mx), m ∈ N, (64)

with initial conditions wm(0) = 0 for every m ∈ N. The control system (26) is then inferred from the above one by
setting

z0(x) = w0(x), zj,k(x) = 1

2

(
w|j−k|(x) − wj+k(x)

)
, (65)

for almost every x ∈ [0,π] and for all integers j and k. Then the optimal control problem (26)–(29) is equivalent
to the reduced problem of determining a control a ∈ UL steering the infinite dimensional control system (64) from
the zero initial conditions to the final condition w0(π) = Lπ (this is (28)), and minimizing the criterion F(a) (easily
rewritten in terms of the wp’s). This reduced optimal control problem now perfectly fits the requirement of having a
strictly convex Banach space. Indeed, for every x ∈ [0,π] and every a ∈ UL, the sequence (wm(x))m∈N∗ belongs5 to
the Hilbert space �2(R), and hence �2(R) can be chosen as the functional state space for this reduced optimal control
problem. It enjoys the strict convexity property.

The second main assumption of [11] required to apply the Pontryagin Maximum Principle is, as mentioned above,
a finite codimension assumption, which is obvious here since the final states zj,k(π) are not fixed (there is only one
constraint, on z0(π) = w0(π)).

5 Indeed, writing wm(x) = ∫ 2π
0 χ[0,x](s)a(s) cos(ms)ds, we see that wm(x) is the scalar product of an element of the usual Fourier basis with

the function s 
→ χ[0,x](s)a(s) which belongs to L2(0,2π) since a(·) ∈ UL .
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Therefore, the infinite dimensional version of the Pontryagin Maximum Principle stated in [11] can be applied
to our problem, and implies the following necessary conditions. There exist p0 � 0 and (qm)m∈N ∈ �2(R) called
costates,6 with (p0, (qm)m∈N) �= 0, such that

a(x) =
{

1 if ϕ(x) > 0,

0 if ϕ(x) < 0,

for almost every x ∈ [0,π], where the function ϕ, called switching function, is defined by

ϕ(x) =
+∞∑
m=0

qm cos(mx).

The control a is however undetermined from the maximization condition of the Pontryagin Maximum Principle in the
case where the switching function ϕ vanishes identically on a subset of positive measure.

To transpose these results to the original optimal control problem (26)–(29), we use the formulas (65), which
indicate how the state coordinates must be changed. To get the corresponding change of costate coordinates, we apply
the result of [4, Appendix], yielding to the relations

q0 = p0 + 1

2

+∞∑
j=1

pj,j , q1 =
∑
j∈N∗

pj,j+1, qm =
∑

j,k∈N∗
j−k=m

pj,k − 1

2

∑
j,k∈N∗
j+k=m

pj,k,

where p0 and the pj,k denote the costates of the original optimal control problem. This change of coordinates leads
exactly to the expression (31), as expected.

Moreover, since the coefficients zj (π) are not fixed, the transversality conditions of the Pontryagin Maximum
Principle (see e.g. [26] for a detailed discussion) imply, using a computation similar to (24), that

pj,k = p0

T∫
0

(
Aa

j cos(j t) + Ba
j sin(j t)

)(
Aa

k cos(kt) + Ba
k sin(kt)

)
dt, (66)

for every (j, k) ∈ (N∗)2. Clearly, the constant p0 cannot be equal to 0, otherwise (66) would imply that pj,k = 0 for
every (j, k) ∈ (N∗)2, and necessarily p0 �= 0, so that the switching function ϕ would be constant, and the optimal
control would be constant on [0,π], either equal to 1 or to 0. This would raise a contradiction with (28) since L ∈
(0,1). Therefore p0 < 0, and since (p0,p0, (pj,k)(j,k)∈(N∗)2) is defined up to a multiplicative scalar, it is then usual
to choose a normalization of the costates so that p0 = −1. This leads finally to (32). The proposition is proved.

Remark 10. Everything works as if the Pontryagin Maximum Principle could be applied directly to the optimal
control problem (26)–(29). However as explained previously for technical reasons we had to consider an equivalent
formulation with a change of coordinates.

A.5. Proof of Proposition 6

First of all, observe that Theorem 5 implies that the set ω2 ∩[0,π/2] has only one connected component. According
to the symmetry property proved in Theorem 5 and since {χω2 = 1} ∩ [0,π/2] has only one component, we write
ω2 = [α,α + πL

2 ] and rewrite the minimization problem (54) as a minimization problem with respect to the variable α.
The functional to minimize is then

α ∈
[

0,
π

2
(1 − L)

]

→

(
t∫

[α,α+ πL
2 ] sin2 x dx

+ 1 − t∫
[α,α+ πL

2 ] sin2(2x)dx

)
.

To solve this minimization problem, it is more convenient to use the change of variable ξ = cos(2α + πL
2 ) so that,

after computation of the integrals, the minimization problem reduces to

6 Note that, since the dynamics of (64) do not depend on the state, it follows that the costates are constant.
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minJt (ξ) = 4t

πL − sin(πL
2 )ξ

+ 4(1 − t)

πL − sin(πL)
2 (2ξ2 − 1)

,

ξ ∈ [−ξ1, ξ1] where ξ1 = cos

(
πL

2

)
> 0. (67)

Let us study the variations of Jt on [−ξ1, ξ1]. One has

J ′
t (ξ ) = 4t sin(πL

2 )

(πL − sin(πL
2 )ξ)2

+ 8(1 − t) sin(πL)ξ

(πL − sin(πL)
2 (2ξ2 − 1))2

,

hence the sign of J ′
t (ξ ) is positive on [0, ξ1] and is equal to the sign of Gt(ξ) on [−ξ1,0], where

Gt(ξ) = 4t sin

(
πL

2

)(
πL − sin(πL)

2

(
2ξ2 − 1

))2

+ 8(1 − t) sin(πL)ξ

(
πL − sin

(
πL

2

)
ξ

)2

.

The first and second derivative of Gt with respect to ξ are

G′
t (ξ ) = 8 sin(πL)

(
2 sin

(
πL

2

)
sin(πL)ξ3 + 3(1 − t) sin2

(
πL

2

)
ξ2

+ sin

(
πL

2

)((
2πL − sin(πL)

)
t − 4πL

)
ξ + (1 − t)π2L2

)
,

G′′
t (ξ ) = 8 sin(πL) sin

(
πL

2

)(
6 sin(πL)ξ2 + 6(1 − t) sin

(
πL

2

)
ξ

+ (
2πL − sin(πL)

)
t − 4πL

)
.

Let us investigate the sign of G′′
t (ξ ) on [−ξ1,0]. Since (2πL − sin(πL)) ∈ [0,2πL] whenever t ∈ [0,1], there holds

G′′
t (0) = 8 sin(πL) sin

(
πL

2

)((
2πL − sin(πL)

)
t − 4πL

)
� 0.

Hence,

G′′
t (−ξ1) = 6 sin(πL) cos2

(
πL

2

)
− 3(1 − t) sin(πL) + (

2πL − sin(πL)
)
t − 4πL

= 3

2
sin(2πL) + (

2πL − 4 sin(πL)
)
t − 4πL � 0.

Indeed, the sign of G′′
t (−ξ1) can be obtained in the following way. Define the function f on [0,π] by f (u) =

3
2 sin(2u) − 4t sinu + 2(t − 2)u, where u plays the role of πL. One has f ′(u) = 6 cos2 u − 4t cosu + 2t − 7 and
f ′′(u) = 4 sinu(t −3 cosu). Hence f ′ is decreasing on [0, arccos(t/3)] and increasing on [arccos(t/3),π ]. Moreover,
f ′(0) = −2t − 1 < 0 and f ′(arccos(t/3)) < 0 since t ∈ [0,1]. Since f ′(π) = 6t − 1, distinguishing between the
two cases t � 1

6 and t > 1
6 , we obtain in the first case that f is decreasing on [0,π] and in the second case the

existence of u1 ∈ (0,π) such that f is decreasing on [0, u1] and then increasing on [u1,π]. Since f (0) = 0 and
f (π) = 2π(t − 2) < 0, in the two cases f is negative, which proves that G′′

t (−ξ1) � 0.
Since G′′

t is a convex polynomial of degree 2 in the variable ξ , the set {G′′
t � 0} is connected and hence, G′′

t (ξ ) � 0
for every ξ ∈ [−ξ1,0].

Let us next investigate the sign of G′
t (ξ ) and of Gt(ξ) on [−ξ1,0]. First, we deduce from the sign of G′′

t (ξ ) on
[−ξ1,0] that G′

t is decreasing on [−ξ1,0] and since G′
t (0) = 8 sin(πL)(1 − t)π2L2, it follows that G′

t (ξ ) � 0 for
every ξ ∈ [−ξ1,0]. Hence, Gt is increasing on [−ξ1,0]. Using the facts that Gt(0) = 8 sin(πL)(1 − t)π2L2 � 0, that
t 
→ Gt(−ξ1) is continuous, affine, has a positive limit when t tends to 1 and a negative one when t tends to 0, we
deduce that
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• if t < t0 then there exists −ξt ∈ [−ξ1,0] such that Gt(ξ) is negative on [−ξ1,−ξt ] and positive on [−ξt ,0]; note
moreover that −ξt is solution of the equation Gt(ξ) = 0;

• if t � t0 then Gt(ξ) � 0 for every ξ ∈ [−ξ1,0],

where t0 ∈ [0,1] is the unique solution of the equation Gt(−ξ1) = 0 where the unknown is t .
We deduce from all previous arguments that

• if t < t0 then Gt is decreasing on [−ξ1,−ξt ] and increasing on [−ξt , ξ1], and thus −ξt = argmin{Jt (ξ), ξ ∈
[−ξ1, ξ1]};

• if t � t0 then Gt is increasing on [−ξ1, ξ1] and thus −ξ1 = argmin{Jt (ξ), ξ ∈ [−ξ1, ξ1]}.

Let us study in particular the case t < t0. It follows from an implicit function argument that the map t ∈ [0, t0] 
→ −ξt

is differentiable, since −ξt is solution of Gt(ξ) = 0. Setting g(t, ξ) = Gt(ξ), there holds moreover, for t ∈ (0, t0),

d(−ξt )

dt
(t) = −

∂g
∂t

(t,−ξt )

∂g
∂ξ

(t,−ξt )
= −8 sin(πL)(πL + sin(πL

2 )ξt )
2

t ∂Gt

∂ξ
(−ξt )

ξt ,

and hence,

sign

(
d(−ξt )

dt
(t)

)
= sign(−ξt ) < 0,

for t > 0, since G′
t (ξ ) � 0 on [−ξ1,0]. Observe also that ξ0 = cos(2α0 + πL

2 ) = 0, since α0 = π
4 (1 − L). Defining αt

as the inverse image of −ξt by the initial change of variable yields the statement.
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