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Abstract

This paper is concerned with the analysis of a mathematical model arising in plasma physics, more specifically in fusion research.
It directly follows, Han-Kwan (2010) [18], where the three-dimensional analysis of a Vlasov–Poisson equation with finite Larmor
radius scaling was led, corresponding to the case of ions with massless electrons whose density follows a linearized Maxwell–
Boltzmann law. We now consider the case of electrons in a background of fixed ions, which was only sketched in Han-Kwan
(2010) [18]. Unfortunately, there is evidence that the formal limit is false in general. Nevertheless, we formally derive from the
Vlasov–Poisson equation a fluid system for particular monokinetic data. We prove the local in time existence of analytic solutions
and rigorously study the limit (when the inverse of the intensity of the magnetic field and the Debye length vanish) to a new
anisotropic fluid system. This is achieved thanks to Cauchy–Kovalevskaya type techniques, as introduced by Caflisch (1990) [7]
and Grenier (1996) [14]. We finally show that this approach fails in Sobolev regularity, due to multi-fluid instabilities.

Keywords: Gyrokinetic limit; Finite Larmor radius approximation; Anisotropic quasineutral limit; Anisotropic hydrodynamic systems; Analytic
regularity; Cauchy–Kovalevskaya theorem; Ill-posedness in Sobolev spaces

1. Introduction

1.1. Presentation of the problem

The main goal of this paper is to derive some fluid model in order to understand the behaviour of a quasineutral gas
of electrons in a neutralizing background of fixed ions and submitted to a strong external magnetic field. For simplicity,
we consider that the magnetic field has fixed direction and intensity. The density of the electrons is governed by the
classical Vlasov–Poisson equation. We first introduce some notations:

Notations.
Let (e1, e2, e‖) be a fixed orthonormal basis of R3.

• The subscript ⊥ stands for the orthogonal projection on the plane (e1, e2), while the subscript ‖ stands for the
projection on e‖.
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• For any vector X = (X1,X2,X‖), we define X⊥ as the vector (X2,−X1,0) = X ∧ e‖.
• We define the differential operators �x‖ = ∂2

x‖ and �x⊥ = ∂2
x1

+ ∂2
x2

.

Then the magnetic field we consider can be taken as:

B = B̄e‖,

where B̄ > 0 is a constant. In order to describe the turbulent behaviour of the plasma (we refer to Appendix A for
physical explanations), we study the following scaled Vlasov–Poisson system (for t > 0, x ∈ T

3 := R
3/Z3, v ∈ R

3

and ε is a small positive constant):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfε + v⊥
ε

.∇xfε + v‖.∇xfε +
(

Eε + v ∧ e‖
ε

)
.∇vfε = 0

Eε = (−∇x⊥Vε,−ε∇x‖Vε)

−ε2�x‖Vε − �x⊥Vε =
∫

fε dv −
∫

fε dv dx

fε,t=0 = fε,0 � 0,

∫
fε,0 dv dx = 1.

(1.1)

The non-negative quantity fε(t, x, v) is interpreted as the distribution function of the electrons: this means that
fε(t, x, v) dx dv is the probability of finding particles at time t with position x and velocity v; Vε(t, x) and Eε(t, x) are
respectively the electric potential and force. Finally, v∧e‖

ε
corresponds to the Lorentz force and is due to the magnetic

field B .
This corresponds to the so-called finite Larmor radius scaling for the Vlasov–Poisson equation, which was intro-

duced by Frénod and Sonnendrücker in the mathematical literature [10]. The 2D version of the system (obtained when
one restricts to the perpendicular dynamics) and the limit ε → 0 were studied in [10] and more recently in [3,11,9,20].
We also refer to the recent work [21] of Hauray and Nouri, dealing with the well-posedness theory with a diffusive
version of a related 2D system.

A version of the full 3D system describing ions with massless electrons was studied by the author in [18]. In this
former work, we considered that the density of electrons follows a linearized Maxwell–Boltzmann law. This means
that we studied the following Poisson equation for the electric potential:

Vε − ε2�x‖Vε − �x⊥Vε =
∫

fε dv −
∫

fε dv dx. (1.2)

In this case it was shown after some filtering that the number density fε weakly converges as ε → 0 to some solution
f to another kinetic system exhibiting the so-called E × B drift in the orthogonal plane, but with trivial dynamics in
the parallel direction. This last feature seemed somehow disappointing.

We observed in [18] that in the case where the Poisson equation reads (which precisely corresponds to the case of
(1.1)):

−ε2�x‖Vε − �x⊥Vε =
∫

fε dv −
∫

fε dv dx, (1.3)

we could expect to make a pressure appear in the limit process ε → 0, due to some incompressibility constraint.
Indeed, passing formally to the limit ε → 0 (and assuming that fε converges to f and Vε converges to V in some
sense), we obtain:

−�x⊥V =
∫

f dv −
∫

f dv dx,

and integrating this equation with respect to x⊥, we finally get the incompressibility constraint:∫
f dv dx⊥ =

∫
f dv dx.

Unfortunately, we were not able to rigorously derive a kinetic limit or even a fluid limit from (1.1). This is not
only due to technical mathematical difficulties. This is related to the existence of instabilities for the Vlasov–Poisson
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equation, such as the double-humped instabilities (see Guo and Strauss [16]) and their counterpart in the multi-fluid
Euler equations, such as the two-stream instabilities (see Cordier, Grenier and Guo [8]). Such instabilities actually
take over in the limit ε → 0 and the formal limit is false in general, unless fε,0 does not depend on parallel variables,
which corresponds to the 2D problem studied by Frénod and Sonnendrücker [10].

Actually, we can observe that if on the contrary the initial data fε,0 depends only on parallel variables, we obtain
the one-dimensional quasineutral system (the first equation is simply the one-dimensional Vlasov equation, note that
there is no more magnetic field):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tfε + v‖∂x‖fε − ∂x‖Vε∂v‖fε = 0,

−ε∂2
x‖Vε =

∫
fε dv −

∫
fε dv dx‖,

fε,t=0 = fε,0 � 0,

∫
fε,0 dv dx‖ = 1.

(1.4)

The formal limit is easily obtained, by taking ε = 0:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tf + v‖∂x‖f − ∂x‖V ∂v‖f = 0,∫
f dv =

∫
f dv dx‖,

ft=0 = f0 � 0,

∫
f0 dv dx‖ = 1.

(1.5)

In [15], an explicit example of Grenier shows that the formal limit is false in general, because of the double-humped
instability:

Theorem 1.1. (See Grenier [15].) We define an initial data f0 by:

f0(x, v) = 1 for − 1 � v � −1/2 and 1/2 � v � 1

= 0 elsewhere.

For any N and s in N, and for any ε < 1, there exist for i = 1,2,3,4, vε
i (x) ∈ Hs(T) with ‖vε

1(x) + 1‖Hs � εN ,
‖vε

2(x) + 1/2‖Hs � εN , ‖vε
3(x) − 1/2‖Hs � εN , ‖vε

4(x) − 1‖Hs � εN , such that the solution fε(t, x, v) associated to
the initial data defined by:

fε,0(x, v) = 1 for vε
1(x) � v � vε

2(x) and vε
3(x) � v � vε

4(x)

= 0 elsewhere,

does not converge to f0 in the following sense:

lim inf
ε→0

sup
t�T

∫ ∣∣fε(t, x, v) − f0(v)
∣∣v2 dv dx > 0 (1.6)

for any T > 0 and also for T = εα , with α < 1/2.

In order to overcome the effects of these instabilities for the usual quasineutral limit, there are two possibilities:

• One consists in restricting to particular initial profiles chosen in order to be stable (this would imply in particular
some monotony conditions on the data, such as the Penrose condition [26]).

• The other one consists in considering data with analytic regularity, in which case the instabilities (which turn out
to be essentially of “Sobolev” nature) do not have any effect.

Here the situation is worst: by opposition to the usual quasineutral limit (see [6,15]), restricting to stable profiles is
not sufficient. This is due to the anisotropy of the problem and the dynamics in the perpendicular variables.

In this paper, we illustrate this phenomenon by studying the following fluid system, formally derived from the
kinetic system (1.1) by considering some physically relevant monokinetic data (we refer to Appendix A for the detailed
formal derivation).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρε + ∇⊥.
(
E⊥

ε ρε

) + ∂‖(v‖,ερε) = 0,

∂t v‖,ε + ∇⊥.
(
E⊥

ε v‖,ε
) + v‖,ε∂‖(v‖,ε) = −ε∂‖φε(t, x) − ∂‖Vε(t, x‖),

E⊥
ε = −∇⊥φε,

−ε2∂2‖φε − �⊥φε = ρε −
∫

ρε dx⊥,

−ε∂2‖Vε =
∫

ρε dx⊥ − 1,

(1.7)

where:

• ρε(t, x⊥, x‖) : R+ ×T
3 →R

+∗ can be interpreted as a charge density,
• v‖,ε(t, x⊥, x‖) :R+ ×T

3 → R can be interpreted as a “parallel” current density,
• φε(t, x‖) and Vε(t, x) are electric potentials.

Although we have considered monokinetic data, (1.7) is intrinsically a “multi-fluid” system, because of the depen-
dence on x⊥. Hence, we still have to face the two-stream instabilities [8]: because of these, the limit is false in Sobolev
regularity and we thus decide to study the associated Cauchy problem for analytic data.

We then prove the limit to a new fluid system which is strictly speaking compressible but also somehow “in-
compressible in average”. This rather unusual feature is due to the anisotropy of the model. The fluid system is the
following (obtained formally by taking ε = 0):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇⊥.
(
E⊥ρ

) + ∂‖(v‖ρ) = 0,

∂t v‖ + ∇⊥.
(
E⊥v‖

) + v‖∂‖(v‖) = −∂‖p(t, x‖),

E⊥ = ∇⊥�−1
⊥

(
ρ −

∫
ρ dx⊥

)
,∫

ρ dx⊥ = 1.

(1.8)

We observe that this system can be interpreted as an infinite system of Euler-type equations, coupled together
through the “parameter” x⊥ by the constraint:∫

ρ dx⊥ = 1.

It has some interesting features:

• This system is anisotropic in x⊥ and x‖ and it somehow combines two features of the incompressible Euler
equations. The 2D part of the dynamics of the equation for ρ is nothing but the vorticity formulation of 2D

incompressible Euler. Nevertheless, physically speaking, ρ should be interpreted here as a density rather than
a vorticity. The dynamics in the parallel direction is similar to the dynamics of incompressible Euler written in
velocity. We finally observe that the pressure p only depends on the parallel variable x‖ and not on x⊥.

• This does not strictly speaking describe an incompressible fluid, since (E⊥, v‖) is not divergence free. Somehow,
the fluid is hence compressible. But the constraint

∫
ρ dx⊥ = 1 can be interpreted as a constraint of “incompress-

ibility in average” which allows one to recover the pressure law from the other unknowns. Indeed, we easily get,
by integrating with respect to x⊥ the equation satisfied by ρ:

∂x‖

∫
ρv‖ dx⊥ = 0. (1.9)

So by plugging this constraint in the equation satisfied by ρv‖, that is:

∂t (ρv‖) + ∇⊥.
(
E⊥ρ‖v‖

) + ∂‖
(
ρv2‖

) = −∂‖p(t, x‖)ρ,

we get the (one-dimensional) elliptic equation allowing to recover −∂x‖p:

−∂2‖p(t, x‖) = ∂2‖
∫

ρv2‖ dx⊥,
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from which we get:

−∂‖p(t, x‖) = ∂‖
∫

ρv2‖ dx⊥. (1.10)

• From the point of view of plasma physics, E⊥.∇⊥ corresponds to the so-called electric drift. By analogy with the
so-called drift-kinetic equations [29], we can call this system a drift-fluid equation. To the best of our knowledge,
this is the very first time such a model is exhibited in the literature.

From now on, when there is no risk of confusion, we will sometimes write v and vε instead of v‖ and v‖,ε .

1.2. Organization of the paper

The outline of this paper is as follows. In Section 2, we will state the main results of this paper that are: the existence
of analytic solutions to (1.7) locally in time but uniformly in ε (Theorem 2.1), the strong convergence to (1.8) with
a complete description of the plasma oscillations (Theorem 2.2) and the existence and uniqueness of local analytic
solutions to (1.8), in Proposition 2.1.

Section 3 is devoted to the proof of Theorem 2.1. First we recall some elementary features of the analytic spaces
we consider (Section 3.1), then we implement an approximation scheme for our Cauchy–Kovalevskaya type existence
theorem. The results are based on a decomposition of the electric field allowing for a good understanding of the
so-called plasma waves (Section 3.2).

In Section 4, we prove Theorem 2.2, by using the uniform in ε estimates we have obtained in the previous theorem.
The proof relies on another decomposition of the electric field, in order to exhibit the effects of the plasma waves as ε

goes to 0.
Then, in Section 5, we discuss the sharpness of our results:

• In Sections 5.1 and 5.2, we discuss the analyticity assumption and explain why we cannot lower down the regu-
larity to Sobolev. In Section 5.3, we explain why it is not possible to obtain global in time results. We obtain these
results by considering some well-chosen initial data and using results of Brenier on multi-fluid Euler systems [5].

• Because of the two-stream instabilities, studying the limit with the relative entropy method is bound to fail.
Nevertheless we found it interesting to try to apply the method and see at which point things get nasty: this is the
object of Section 5.4, where we study a kinetic toy model which retains the main unstable feature of system (1.7).

The two last sections are respectively a short conclusion and Appendix A where we explain the scaling and the
formal derivation of system (1.7).

2. Statement of the results

In order to prove both the existence of strong solutions to systems (1.7) and (1.8) and also prove the results of
convergence, we follow the construction of Grenier [14], with some modifications adapted to our problem.

In [14], Grenier studies the quasineutral limit of the family of coupled Euler–Poisson systems:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tρ
ε
Θ + div

(
ρε

Θvε
Θ

) = 0,

∂t v
ε
Θ + vε

Θ.∇(
vε
Θ

) = Eε,

rotEε = 0,

ε divEε =
∫
M

ρε
Θμ(dΘ) − 1,

(2.1)

with (M,Θ,μ) a probability space.
Following the proof of the Cauchy–Kovalevskaya theorem given by Caflisch [7], Grenier proved the local existence

of analytic functions (with respect to x) uniformly with respect to ε and then, after filtering the fast oscillations due to
the force field, showed the strong convergence to the system:



1132 D. Han-Kwan / Ann. I. H. Poincaré – AN 30 (2013) 1127–1157
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρΘ + div(ρΘvΘ) = 0,

∂t vΘ + vε
Θ.∇(vΘ) = E,

rotE = 0,∫
ρΘμ(dΘ) = 1.

(2.2)

We notice that the class of systems studied by Grenier is close to system (1.7), if we take x = x‖, Θ = x⊥ and
(M,μ) = (T2, dx⊥), the main difference being that we have to deal with a dynamics in Θ = x⊥.

Hence, we introduce the same spaces of analytic functions as in [14], but this time depending also on Θ = x⊥.

Definition. Let δ > 1. We define Bδ the space of real functions φ on T
3 such that

|φ|δ =
∑
k∈Z3

∣∣Fφ(k)
∣∣δ|k| < +∞, (2.3)

where Fφ(k) is the k-th Fourier coefficient of φ defined by:

Fφ(k) =
∫
T3

φ(x)e−i2πk.x dx.

The first theorem proves the existence of local analytic solutions of (1.7) with a life span uniform in ε.

Theorem 2.1. Let δ0 > 1. Let ρε(0) and vε(0) be two bounded families of Bδ0 such that
∫

ρε(0)dx = 1 and:∣∣∣∣
∫

ρε(0) dx⊥ − 1

∣∣∣∣
δ0

� C
√

ε, (2.4)

where C > 0 is some given universal constant. Then there exists η > 0 such that for every δ1 ∈]1, δ0[, for any ε > 0,
there exists a unique strong solution (ρε, vε) to (1.7) bounded uniformly in C([0, η(δ0 − δ1)[,Bδ1) with initial condi-
tions (ρε(0), vε(0)). Moreover,

√
ε∂‖Vε is uniformly bounded in C([0, η(δ0 − δ1)[,Bδ1).

Remark 2.1.

• The condition (2.4) implies that
√

ε∂‖Vε(0) is bounded uniformly in Bδ0 (this is the correct scale in view of the
energy conservation).

• Note that for all t � 0,
∫

ρε dx = 1. Hence the Poisson equation −ε∂2‖Vε = ∫
ρε dx⊥ − 1 can always be solved.

• As explained in the introduction, due to the two-streams instabilities, we have to restrict to data with analytic
regularity: the Sobolev version of these results is false in general (see [8] and the discussion of Section 5).

We can then prove the convergence result:

Theorem 2.2. Let (ρε, vε) be solutions to the system (1.7) for 0 � t � T satisfying for some s > 7/2 the following
uniform estimates:

(H) : sup
t�T ,ε

(‖ρε‖Hs
x⊥,x‖ + ‖vε‖Hs

x⊥,x‖ + ‖√ε∂x‖Vε‖Hs
x‖

)
< +∞. (2.5)

Then, up to a subsequence, we get the following convergences

ρε → ρ,

vε − 1

i

(
E+eit/

√
ε − E−e−it/

√
ε
) → v,

strongly respectively in C([0, T ],H s′
x⊥,x‖) and C([0, T ],H s′−1

x⊥,x‖) for all s′ < s, and

−√
ε∂x‖Vε − (

E+eit/
√

ε + E−e−it/
√

ε
) → 0,
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strongly in C([0, T ],H s′
x‖) for all s′ < s − 1, and where (ρ, v) is solution to the asymptotic system (1.8) on [0, T ] with

initial conditions:

ρ(0) = lim
ε→0

ρε(0),

v(0) = lim
ε→0

(
vε(0) −

∫
ρεvε dx⊥(0)

)
and E+(t, x‖),E−(t, x‖) are gradient correctors which satisfy the transport equations:

∂tE± +
(∫

ρv dx⊥
)

∂x‖E± = 0,

with initial data:

E+(0) = lim
ε→0

1

2

(
−√

ε∂x‖Vε(0) + i

∫
ρεvε dx⊥(0)

)
, (2.6)

E−(0) = lim
ε→0

1

2

(
−√

ε∂x‖Vε(0) − i

∫
ρεvε dx⊥(0)

)
. (2.7)

Remark 2.2.

• It is clear that solutions built in Theorem 2.1 satisfy (H).
• If instead of (H) we make the stronger assumption, for δ > 1,(

H ′) : sup
t�T ,ε

(‖ρε‖Bδ + ‖vε‖Bδ + ‖√ε∂x‖Vε‖Bδ

)
< +∞ (2.8)

(which is still satisfied by the solutions built in Theorem 2.1), then we get the same strong convergences in
C([0, T ],Bδ′) for all δ′ < δ.
Using Lemma 3.1(ii), (iv), the proof under assumption (H ′) is the same as under assumption (H).

• The “well-prepared” case corresponds to the case when:

lim
ε→0

−√
ε∂x‖Vε(0) = 0,

lim
ε→0

∫
ρεvε dx⊥(0) = 0.

Then there is no corrector.

With the same method used for Theorem 2.1, we can also prove a theorem of existence and uniqueness of analytic
solutions to system (1.8).

Proposition 2.1. Let δ0 > 1. For initial data ρ(0), v(0) ∈ Bδ0 satisfying

ρ(0)� 0, (2.9)∫
ρ(0) dx⊥ = 1 (2.10)

and

∂‖
∫

ρ(0)v(0) dx⊥ = 0, (2.11)

there exists η > 0 depending on δ0 and on the initial conditions only such that there is a unique strong solution
(ρ, v‖,p) to the system (1.8) with ρ,v ∈ C([0, η(δ0 − δ1)[,Bδ1) for all 1 < δ1 < δ0.

Remark 2.3. The uniqueness proved in Proposition 2.1 allows to say that the convergences of Theorem 2.2 hold
without having to consider subsequences, provided that the whole sequences of initial data converge to some functions
in Bδ0 satisfying the assumptions of Proposition 2.1.
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3. Proof of Theorem 2.1

3.1. Functional analysis on Bδ spaces

First we define the time dependent analytic spaces we will work with.
Let β be an arbitrary constant in ]0,1[ (take for instance β = 1/2 to fix ideas) and η > 0 a parameter to be chosen

later.

Definition. Let δ0 > 1. We define the space B
η
δ0

= {u ∈ C0([0, η(δ0 − 1)],Bδ0−t/η)}, endowed with the norm

‖u‖δ0 = sup{
1 < δ � δ0,

0 � t � η(δ0 − δ)

(∣∣u(t)
∣∣
δ
+

(
δ0 − δ − t

η

)β ∣∣∇u(t)
∣∣
δ

)
,

where the norm |u|δ was defined in (2.3):

|u|δ =
∑
k∈Z3

∣∣Fu(k)
∣∣δ|k|,

We now gather from [14] a few elementary properties of these spaces, that we recall for the reader’s convenience.

Lemma 3.1. For all δ > 1:

(i) The spaces Bδ and B
η
δ are Banach algebra. More precisely, if φ1, φ2 ∈ Bδ , and ψ1,ψ2 ∈ B

η
δ then:

|φ1φ2|δ � |φ1|δ|φ2|δ,
‖ψ1ψ2‖δ � ‖ψ1‖δ‖ψ2‖δ.

(ii) If δ′ < δ then Bδ ⊂ Bδ′ , the embedding being continuous and compact.
(iii) For all s ∈ R, Bδ ⊂ Hs , the embedding being continuous and compact.
(iv) For all 1 < δ′ < δ, if φ ∈ Bδ ,

|∇φ|δ′ � δ

δ − δ′ |φ|δ.
(v) If u is in B

η
δ0

and if δ′ + t/η < δ0 then

∣∣∂2
xi ,xj

u(t)
∣∣
δ′ � 2‖u‖δ0δ0

(
δ0 − δ′ − t

η

)−β−1

.

For further properties of these spaces we refer to the recent work of Mouhot and Villani [25], in which similar
analytic spaces (and more sophisticated versions) are considered. The fact that considering analytic functions is useful
both for the quasineutral limit (as studied here) and for the study of Landau damping (as done in [25]) is not a pure
coincidence. Indeed, it turns out that because of scaling properties, these two questions are related (we refer for
instance to the introduction of [19]).

Proof of Lemma 3.1. For the reader’s convenience, we briefly sketch the proof (more details can be found in [14]).
Point (i) can be readily checked from the Fourier series characterization. We give an elementary proof for (ii) which
is not given in [14]. The embedding is obvious. We consider for N ∈N the map iN defined by:

iN (φ) =
∑

|k|�N

Fφ(k)ei2πx.k.

We then compute:

∣∣(Id − iN )φ
∣∣
δ′ =

∑ ∣∣Fφ(k)
∣∣δ′|k| �

(
δ′

δ

)N ∑ ∣∣Fφ(k)
∣∣δ|k| �

(
δ′

δ

)N

|φ|δ.

|k|>N |k|>N
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So the embedding Bδ ⊂ Bδ′ is compact as the limit of finite rank operators. Point (iii) can be proved similarly. Point
(iv) relies on the elementary estimate:

|k|δ′|k| � δ

δ − δ′ δ
|k|.

For (v), consider δ = δ′ + δ0−δ′−t/η
2 and apply (iv). �

We will also need the following elementary observation:

Remark 3.1. Let φ ∈ Bδ . Then:∣∣∣∣
∫

φ dx⊥
∣∣∣∣
δ

� |φ|δ.

Proof. We simply compute:∣∣∣∣
∫

φ dx⊥
∣∣∣∣
δ

=
∑

k=(0,k)∈N2×N

∣∣F(φ)(k)
∣∣δ|k| �

∑
k∈N3

∣∣F(φ)
∣∣δ|k| = |φ|δ. �

3.2. Description of plasma oscillations

To simplify notations, we set Eε,‖ = −∂x‖Vε(t, x‖) (which has nothing to do with E⊥
ε ). In this paragraph, we want

to understand the oscillatory behaviour of Eε,‖. We will see that the dynamics in x⊥ does not interfere too much with
the equations on Eε,‖, so that we get almost the same description of oscillations as in Grenier’s paper [14].

First we differentiate twice with respect to time the Poisson equation satisfied by Vε :

ε∂2
t ∂x‖Eε,‖ = ∂2

t

∫
ρε dx⊥. (3.1)

Integrating with respect to x⊥ the equation satisfied by ρε , we obtain:

∂t

∫
ρε dx⊥ = −

∫
∇⊥.

(
E⊥

ε ρε

)
dx⊥︸ ︷︷ ︸

=0

−∂x‖

∫
ρεvε dx⊥. (3.2)

Then we integrate with respect to x⊥ the equation satisfied by ρεvε , that is:

∂t (ρεvε) + ∇⊥.
(
E⊥

ε ρεvε

) + ∂x‖
(
v2
ε ρε

) = −ρε

(
ε∂x‖φε(t, x) + ∂x‖Vε(t, x‖)

)
and we get:

−∂t

∫
ρεvε dx⊥ = ∂x‖

∫
ρεv

2
ε dx⊥ − Eε,‖

∫
ρε dx⊥ +

∫
ρε(ε∂x‖φε) dx⊥, (3.3)

so that, combining (3.2) and (3.3):

∂2
t

∫
ρε dx⊥ = ∂2

x‖

∫
ρεv

2
ε dx⊥ − ∂x‖

(
Eε,‖

∫
ρε dx⊥

)
+ ∂x‖

∫
ρε(ε∂x‖φε) dx⊥. (3.4)

Recall that by the Poisson equation:∫
ρε dx⊥ = 1 + ∂x‖Eε,‖.

Thus it comes by (3.1) and (3.4):

ε∂2
t ∂x‖Eε,‖ + ∂x‖Eε,‖ = ∂2

x‖

∫
ρεv

2
ε dx⊥ − ε∂x‖ [Eε,‖∂x‖Eε,‖] + ∂x‖

∫
ρε(ε∂x‖φε) dx⊥. (3.5)
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Eq. (3.5) is the wave equation allowing to describe the essential oscillations. At least formally, this equation in-
dicates that there are time oscillations with frequency 1√

ε
and magnitude 1√

ε
created by the right-hand side of the

equation which acts like a source. We observe here that the source is expected to be of order O(1): indeed, by as-
sumption on the data at t = 0, we can check that this quantity is bounded in a Bδ space.

In particular if we want to prove strong convergence results we will have to introduce non-trivial correctors in order
to get rid of these oscillations. We notice also that (3.5) is very similar to the wave equation obtained in [14] (the only
difference is a new term in the source), so that most of the calculations and estimates on Eε,‖ we will need are done
in [14].

We have just observed that Eε,‖ roughly behaves like 1√
ε
e±it/

√
ε . Hence if we consider the average in time:

Gε =
t∫

0

Eε,‖(s, x‖) ds, (3.6)

we expect that Gε is bounded uniformly with respect to ε in some functional space. We have the representation lemma
which will be very useful to obtain a priori estimates:

Lemma 3.2. The following identity holds:

F‖Gε(t, k‖) =
t∫

0

(
1

ik‖

[
1 − cos

(
t − s√

ε

)]
F‖gε(s, k‖)

)
ds +F‖G0

ε, (3.7)

denoting by F‖ the Fourier transform with respect to the parallel variable only and k‖ the Fourier variable and where:

gε = ∂2
x‖

∫
ρεv

2
ε dx⊥ − ε∂x‖ [Eε,‖∂x‖Eε,‖] + ∂x‖

∫
ρε(ε∂x‖φε) dx⊥, (3.8)

G0
ε = √

εEε,‖(0, x‖) sin

(
s√
ε

)
− ε∂tEε,‖(0, x‖)

(
cos

(
s√
ε

)
− 1

)
. (3.9)

Proof of Lemma 3.2. We use Duhamel’s formula for the “wave” equation (3.5) to get the following identity:

F‖Eε(t, k‖) = 1√
ε

t∫
0

(
1

ik‖
sin

(
t − s√

ε

)
F‖gε(s, k‖)

)
ds +F‖E0

ε , (3.10)

with gε defined in (3.8) and

E0
ε,‖ = Eε,‖(0, x) cos

(
s√
ε

)
+ √

ε∂tEε,‖(0, x) sin

(
s√
ε

)
. (3.11)

Then we can integrate this formula to recover (3.7). �
We now introduce the translated current (which corresponds to some filtering of the time oscillations created by

the electric field):

wε = vε − Gε, (3.12)

so that the transport equations of system (1.7) now read:{
∂tρε + ∇⊥.

(
E⊥

ε ρε

) + ∂‖
(
(wε + Gε)ρε

) = 0,

∂twε + ∇⊥.
(
E⊥

ε (wε + Gε)
) + (wε + Gε)∂‖(wε + Gε) = −ε∂‖φε(t, x‖).

(3.13)
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3.3. Approximation scheme

To construct a solution, we use the usual approximation scheme for Cauchy–Kovalevskaya type of results [7]. The
principle is to define ρn

ε ,wn
ε ,Gn

ε ,V
n
ε ,φn

ε by recursion:

Initialization. First of all, for 0 < t < η(δ0 − 1), G0
ε(t) is given by formula (3.9); then for 0 < t < η(δ0 − 1), we can

define:

ρ0
ε (t) = ρε(0),

w0
ε (t) = vε(0) − G0

ε(t),

−ε2∂2
x‖φ

0
ε − �x⊥φ0

ε = ρ0
ε −

∫
ρ0

ε dx⊥,

E⊥,0
ε = −∇⊥φ0

ε ,

and −∂x‖V
0
ε (t) = ∂tG

0
ε(t).

Recursion. For 0 < t < η(δ0 − 1), we define ρn+1
ε ,wn+1

ε by the transport equations:{
∂tρ

n+1
ε + ∇⊥.

(
E⊥,n

ε .ρn
ε

) + ∂‖
((

wn
ε + Gn

ε

)
ρn

ε

) = 0,

∂tw
n+1
ε + ∇⊥.

(
E⊥,n

ε

(
wn

ε + Gn
ε

)) + (
wn

ε + Gn
ε

)
∂‖

(
wn

ε + Gn
ε

) = −ε∂‖φn
ε (t, x‖),

(3.14)

with the initial conditions: ρn+1
ε (0) = ρε(0) and wn+1

ε = vε(0) − G0
ε .

Then we can define φn+1
ε as the solution to the Poisson equation:

−ε2∂2
x‖φ

n+1
ε − �x⊥φn+1

ε = ρn+1
ε −

∫
ρn+1

ε dx⊥,

E⊥,n+1
ε = −∇⊥φn+1

ε .

Furthermore, we can define Gn+1
ε (t) by a variant of formula (3.7):

F‖Gn+1
ε (t, k‖) =

t∫
0

(
1

ik‖

[
1 − cos

(
t − s√

ε

)]
F‖gn

ε (s, k‖)
)

ds +F‖G0
ε, (3.15)

with gn
ε = ∂2

x‖
∫

ρn
ε (wn

ε + Gn
ε )

2 dx⊥ − ε∂x‖ [En
ε,‖∂x‖E

n
ε,‖] + ∂x‖

∫
ρn

ε (ε∂x‖φ
n
ε ) dx⊥.

Finally we define:

−ε∂x‖V
n+1
ε = ∂tG

n+1(t).

3.4. A priori estimates

Let n� 0. The goal is now to prove some a priori estimates for Gn+1
ε , ρn+1

ε and wn+1
ε (in terms of Gn

ε ,ρ
n
ε and wn

ε ).
We are also able to get similar estimates on E⊥,n+1

ε and ε∂x‖φ
n+1
ε , thanks to the Poisson equation satisfied by φn+1

ε .
Ultimately the goal is to prove that if the parameter η is chosen small enough, then all these sequences are Cauchy
sequences in B

η
δ0

.

3.4.1. Estimate on Gn+1
ε and

√
εEn+1

ε,‖
The first aim in this paragraph is to estimate ‖Gn+1

ε ‖δ0 , using (3.15). We have:

∣∣Gn+1
ε

∣∣
δ
�

∣∣∣∣∣
t∫

0

F−1
‖

(
1

ik‖

[
1 − cos

(
t − s√

ε

)]
F‖gn

ε (s, k‖)
)

ds

∣∣∣∣∣
δ

+ ∣∣G0
ε

∣∣
δ

� 2

t∫ ∣∣∣∣F−1
‖

(
1

ik‖
F‖gn

ε (s, k‖)
)∣∣∣∣

δ

ds + ∣∣G0
ε

∣∣
δ
,

0
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with:

1

ik‖
F‖gn

ε =F‖
(

∂x‖

∫
ρε

(
wn

ε + Gn
ε

)2
dx⊥

)
− εF‖

(
En

ε,‖∂x‖E
n
ε,‖

) +F‖
(∫

ρn
ε

(
ε∂x‖φ

n
ε

)
dx⊥

)
.

Thanks to Remark 3.1 and Lemma 3.1(i), we first estimate:∣∣∣∣
∫

∂x‖
(
ρn

ε

(
wn

ε + Gn
ε

)2)
dx⊥

∣∣∣∣
δ

�
∣∣∂x‖

(
ρn

ε

(
wn

ε + Gn
ε

)2)∣∣
δ

�
(

δ0 − δ − s

η

)−β∥∥ρn
ε

(
wn

ε + Gn
ε

)2∥∥
δ0

�
(

δ0 − δ − s

η

)−β∥∥ρn
ε

∥∥
δ0

∥∥wn
ε + Gn

ε

∥∥2
δ0

. (3.16)

Similarly, we prove:

ε
∣∣En

ε,‖∂x‖E
n
ε,‖

∣∣
δ
� 1

2

∣∣∂x‖
(√

εEn
ε,‖

)2∣∣
δ

� 1

2

(
δ0 − δ − s

η

)−β∥∥(√
εEn

ε,‖
)2∥∥

δ0

� 1

2

(
δ0 − δ − s

η

)−β∥∥√
εEn

ε,‖
∥∥2

δ0
, (3.17)

∣∣∣∣
∫

∂x‖
(
ρn

ε

(
ε∂x‖φ

n
ε

))
dx⊥

∣∣∣∣
δ

�
(

δ0 − δ − s

η

)−β∥∥ρn
ε

∥∥
δ0

∥∥ε∂x‖φ
n
ε

∥∥
δ0

.

Thus, we finally obtain:

∣∣Gn+1
ε

∣∣
δ
� 2

t∫
0

(
δ0 − δ − s

η

)(−β)(‖ρε‖δ0

∥∥wn
ε + Gn

ε

∥∥2
δ0

+ ∥∥√
εEn

ε,‖
∥∥2

δ0
+ ∥∥ρn

ε

∥∥
δ0

∥∥ε∂x‖φ
n
ε

∥∥
δ0

)
ds + ∣∣G0

ε

∣∣
δ
.

In what follows, C(δ0, β) is a constant depending only on δ0 and β that may change from one line to another. As
before, one can show (this time we use Lemma 3.1(v)) that:

∣∣∂x‖G
n+1
ε

∣∣
δ
� C(δ0, β)

t∫
0

(
δ0 − δ − s

η

)(−β−1)(∥∥ρn
ε

∥∥
δ0

∥∥wn
ε + Gn

ε

∥∥2
δ0

+ ∥∥√
εEn

ε,‖
∥∥2

δ0
+ ∥∥ρn

ε

∥∥
δ0

∥∥ε∂x‖φ
n
ε

∥∥
δ0

)
ds

+ ∣∣∂x‖G
0
ε

∣∣
δ
.

Hence using the elementary estimates

t∫
0

ds

(δ0 − δ − s
η
)β

� η
2

1 − β
δ

1−β

0 ,

t∫
0

ds

(δ0 − δ − s
η
)β+1

� 2η

β

(
δ0 − δ − t

η

)−β

,

we get:∥∥Gn+1
ε

∥∥
δ0
� ηC(δ0, β)

((∥∥wn
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)2∥∥ρn
ε

∥∥
δ0

+ ∥∥√
εEn

ε,‖
∥∥2

δ0
+ ∥∥ρn

ε

∥∥
δ0

∥∥ε∂x‖φ
n
ε

∥∥
δ0

) + ∥∥G0
ε

∥∥
δ0

. (3.18)

Finally, we compare two solutions (wn+1
ε , ρn+1

ε ,Gn+1
ε ) and (wn+2

ε , ρn+2
ε ,Gn+2

ε ) (observe that these have the same
initial data),
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∣∣Gn+2
ε − Gn+1

ε

∣∣
δ
�

t∫
0

∣∣∣∣F−1
‖

(
1

ik‖

[
1 − cos

(
t − s√

ε

)][
F‖gn+1

ε (s, k‖) −F‖gn
ε (s, k‖)

])∣∣∣∣
δ

ds. (3.19)

We decompose the products appearing in gn+1
ε − gn

ε in the following way:

ρn+1
ε

(
wn+1

ε

)2 − ρn
ε

(
wn

ε

)2 = (
ρn+1

ε − ρn
ε

)(
wn+1

ε

)2 + (
wn+1

ε − wn
ε

)(
wn+1

ε + wn
ε

)
ρn

ε ,

and we proceed likewise for the other terms. Then we obtain the following estimate with the same method as before:∥∥Gn+1
ε − Gn+2

ε

∥∥
δ0
� ηC(δ0, β)

((∥∥wn+1
ε − wn

ε

∥∥
δ0

+ ∥∥Gn+1
ε − Gn

ε

∥∥
δ0

)
× (∥∥wn+1

ε

∥∥
δ0

+ ∥∥wn
ε

∥∥
δ0

+ ∥∥Gn+1
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)(∥∥ρn+1
ε

∥∥
δ0

+ ∥∥ρn
ε

∥∥
δ0

)
+ ∥∥ρn+1

ε − ρn
ε

∥∥
δ0

(∥∥wn+1
ε

∥∥2
δ0

+ ∥∥wn
ε

∥∥2
δ0

+ ∥∥Gn+1
ε

∥∥2
δ0

+ ∥∥Gn
ε

∥∥2
δ0

)
+ ∥∥ρn+1

ε − ρn
ε

∥∥
δ0

(∥∥ε∂x‖φ
n+1
ε

∥∥
δ0

+ ∥∥ε∂x‖φ
n
ε

∥∥
δ0

)
+ ∥∥ε∂x‖φ

n+1
ε − ε∂x‖φ

n
ε

∥∥
δ0

(∥∥ρn+1
ε

∥∥
δ0

+ ∥∥ρn
ε

∥∥
δ0

)
+ ∥∥√

εEn+1
ε,‖ − √

εEn
ε,‖

∥∥
δ0

(∥∥√
εEn+1

ε,‖
∥∥

δ0
+ ∥∥√

εEn
ε,‖

∥∥
δ0

))
. (3.20)

Likewise we get the same kind of estimates for ‖√εEn+1
ε,‖ ‖δ0 since from (3.10) we have the formula:

F‖
(√

εEn+1
ε,‖

)
(t, k‖) =

t∫
0

(
1

ik‖

[
sin

(
t − s√

ε

)]
F‖gn

ε (s, k‖)
)

ds +F‖
(√

εE0
ε,‖

)
, (3.21)

3.4.2. Estimate on E⊥,n+1
ε and ε∂x‖φ

n+1
ε

We now use the scaled Poisson equation satisfied by φn+1
ε to get some similar a priori estimates. For the reader’s

convenience, we first recall this equation:

−ε2∂2
x‖φ

n+1
ε − �⊥φn+1

ε = ρn+1
ε −

∫
ρn+1

ε dx⊥.

The principle here is to look at the symbols of the operators involved in the Poisson equation. Accordingly, we
compute in Fourier variables:

ε2k2‖Fφn+1
ε + |k⊥|2Fφn+1

ε =F
(

ρn+1
ε −

∫
ρn+1

ε dx⊥
)

. (3.22)

Thus it comes:

Fφn+1
ε = F(ρn+1

ε − ∫
ρn+1

ε dx⊥)

ε2k2‖ + |k⊥|2 .

Since
∫
(ρn+1

ε − ∫
ρn+1

ε dx⊥) dx⊥ = 0, we have for all k‖ ∈ Z:

F
(

ρn+1
ε −

∫
ρn+1

ε dx⊥
)

(0, k‖) = 0.

Thus we get, for all k⊥, k‖ ∈ Z:

∣∣Fφn+1
ε

∣∣� |F(ρn+1
ε − ∫

ρn+1
ε dx⊥)|

|k⊥|2 .

In particular we easily get, using the relation E⊥,n+1
ε = −∇⊥φn+1

ε :

∣∣FE⊥,n+1
ε

∣∣� |F(ρn+1
ε − ∫

ρn+1
ε dx⊥)| �

∣∣∣∣F
(

ρn+1
ε −

∫
ρn+1

ε dx⊥
)∣∣∣∣.
|k⊥|
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Hence:∥∥E⊥,n+1
ε

∥∥
δ0
� 2

∥∥ρn+1
ε

∥∥
δ0

. (3.23)

Likewise, using the elementary inequality ab � 1
2 (a2 + b2) and |k⊥|� 1:

∣∣F(
ε∂x‖φ

n+1
ε

)∣∣� ε|k‖|
∣∣F(ρε − ∫

ρε dx⊥)
∣∣

ε2k2‖ + |k⊥|2 � 1

2

∣∣∣∣F
(

ρn+1
ε −

∫
ρn+1

ε dx⊥
)∣∣∣∣,

and consequently:∥∥ε∂x‖φ
n+1
ε

∥∥
δ0
�

∥∥ρn+1
ε

∥∥
δ0

. (3.24)

Finally, if we compare two solutions at step n + 1 and n + 2:∥∥E⊥,n+2
ε − E⊥,n+1

ε

∥∥
δ0

+ ∥∥ε∂x‖φ
n+2
ε − ε∂x‖φ

n+1
ε

∥∥
δ0
� 2

∥∥ρn+2
ε − ρn+1

ε

∥∥
δ0

. (3.25)

3.4.3. Estimate on ρn+1
ε and wn+1

ε

We now use the conservation laws satisfied by ρn+1
ε and wn+1

ε to get the appropriate estimates. We first recall that
the density ρn+1

ε satisfies the equation:

∂tρ
n+1
ε + ∇⊥.

(
E⊥,n

ε ρn
ε

) + ∂‖
((

wn
ε + Gn

ε

)
ρn

ε

) = 0.

Writing ρn+1
ε = ∫ t

0 ∂tρ
n+1
ε ds + ρε(0), we get:

∣∣ρn+1
ε

∣∣
δ
�

t∫
0

∣∣∂tρ
n+1
ε

∣∣
δ
ds + ∣∣ρε(0)

∣∣
δ
.

With the same kind of computations as before and using estimate (3.23) we get:

∣∣∇⊥.
(
E⊥,n

ε ρn
ε

)∣∣
δ
�

(
δ0 − δ − s

η

)−β∥∥E⊥,n
ε

∥∥
δ0

∥∥ρn
ε

∥∥
δ0
� 2

(
δ0 − δ − s

η

)−β∥∥ρn
ε

∥∥2
δ0

,

∣∣∂‖
((

wn
ε + Gn

ε

)
ρε

)∣∣
δ
�

(
δ0 − δ − s

η

)−β∥∥wn
ε + Gn

ε

∥∥
δ0

∥∥ρn
ε

∥∥
δ0

.

As a consequence we obtain:

∣∣ρn+1
ε

∣∣
δ
�

∣∣ρε(0)
∣∣
δ
+ C(δ0, β)

t∫
0

(
δ0 − δ − s

η

)−β∥∥ρn
ε

∥∥
δ0

(∥∥ρn
ε

∥∥
δ0

+ ∥∥wn
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)
ds.

Similarly we estimate |∂xi
ρn+1

ε |δ by differentiating with respect to xi the equation satisfied by ρn+1
ε . Finally we

get: ∥∥ρn+1
ε

∥∥
δ0
� ηC(δ0, β)

∥∥ρn
ε

∥∥
δ0

(∥∥ρn
ε

∥∥
δ0

+ ∥∥wn
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

) + ∥∥∇ρε(0)
∥∥

δ0
. (3.26)

If we compare solutions at steps n + 1 and n + 2, we get likewise:∥∥ρn+2
ε − ρn+1

ε

∥∥
δ0
� ηC(δ0, β)

((∥∥ρn+1
ε

∥∥
δ0

+ ∥∥ρn
ε

∥∥
δ0

)(∥∥wn+1
ε − wn

ε

∥∥
δ0

+ ∥∥Gn+1
ε − Gn

ε

∥∥
δ0

)
+ (∥∥ρn+1

ε

∥∥
δ0

+ ∥∥ρn
ε

∥∥
δ0

+ ∥∥wn+1
ε

∥∥
δ0

+ ∥∥wn
ε

∥∥
δ0

+ ∥∥Gn+1
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)
× (∥∥ρn+1

ε − ρn
ε

∥∥
δ0

))
. (3.27)

In the same fashion, we recall that wn+1
ε satisfies the following transport equation:

∂tw
n+1
ε + ∇⊥.

(
E⊥,n

ε

(
wn

ε + Gn
ε

)) + (
wn

ε + Gn
ε

)
∂‖

(
wn

ε + Gn
ε

) = −ε∂‖φn
ε (t, x‖),
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and we can once again estimate the δ0 norm of wn+1
ε :∥∥wn+1

ε

∥∥
δ0
� ηC(δ0, β)

((∥∥wn
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)∥∥ρn
ε

∥∥
δ0

+ (∥∥wn
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)2 + ∥∥ε∂‖φn
ε

∥∥
δ0

)
, (3.28)

and if we compare two solutions at steps n + 1 and n + 2:∥∥wn+2
ε − wn+1

ε

∥∥
δ0
� ηC(δ0, β)

((∥∥ρn+1
ε

∥∥
δ0

+ ∥∥ρn
ε

∥∥
δ0

)(∥∥wn+1
ε − wn

ε

∥∥
δ0

+ ∥∥Gn+1
ε − Gn

ε

∥∥
δ0

)
+ (∥∥wn+1

ε

∥∥
δ0

+ ∥∥wn
ε

∥∥
δ0

+ ∥∥Gn+1
ε

∥∥
δ0

+ ∥∥Gn
ε

∥∥
δ0

)
× (∥∥wn+1

ε − wn
ε

∥∥
δ0

+ ∥∥Gn+1
ε − Gn

ε

∥∥
δ0

+ ∥∥ρn+1
ε − ρn

ε

∥∥
δ0

)
× ∥∥ε∂‖φn+1

ε − ε∂‖φn+1
ε

∥∥
δ0

)
. (3.29)

3.5. Finding a fixed point

We are now in position to use our estimates to prove the existence and uniqueness of a fixed point.
First let C1 defined by:

C1 = sup
η�1

{∥∥ρε(0)
∥∥

δ0
,
∥∥wε(0)

∥∥
δ0

,
∥∥Gε(0)

∥∥
δ0

,
∥∥√

εEε(0)
∥∥

δ0
,1

}
.

Let C2 = C1 + 1. It is possible to choose η small enough with respect to C1 to propagate the following estimates
by recursion (we refer to [14] for more details; more explicitly η = 1

200C(δ0,β)C3
2

is for instance convenient). At step n

(n� 1), the property reads:

(i) ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∥∥ρn
ε

∥∥
δ0
� C2,∥∥wn

ε

∥∥
δ0
� C2,∥∥Gn

ε

∥∥
δ0
� C2,∥∥√

εEn
ε,‖

∥∥
δ0
� C2.

(ii) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥ρn
ε − ρn−1

ε

∥∥
δ0
� C2

2n
,

∥∥wn
ε − wn−1

ε

∥∥
δ0
� C2

2n
,

∥∥Gn
ε − Gn−1

ε

∥∥
δ0
� C2

2n
,

∥∥√
εEn

ε,‖ − √
εEn−1

ε,‖
∥∥

δ0
� C2

2n
.

One first checks that (i) is satisfied for n = 0. In particular for the last condition, we use (2.4). As in [14], checking
that (ii) is satisfied for n = 1 in fact needs a special treatment which is very similar to the general case, so we will not
detail it.

To propagate these estimates for n � 1, we use the crucial estimates (3.20), (3.27), (3.29). Let us briefly explain
the passage from step (n + 1) to step (n + 2) by examining the case of property (ii) for Gn

ε (the other cases are treated
similarly). Using (3.20) and the properties (i) and (ii) at step n + 1 we have:∥∥Gn+1

ε − Gn+2
ε

∥∥
δ0
� ηC(δ0, β)

C2

2n+1
30C2,

and with our choice of η, we notice that ηC(δ0, β) C2
2n+1 30C2

2 � C2
2n+2 , which proves the property (ii) for Gε at step

(n + 2).
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This proves that the sequences ρn
ε ,wn

ε ,Gn
ε ,

√
εEε,E

⊥,n
ε , ε∂x‖φ

n
ε are Cauchy sequences (with respect to n) in B

η
δ0

,

and consequently converge strongly in B
η
δ0

, the estimates being uniform in ε. It is clear that the limit satisfies system

(1.7). The requirement δ1 < δ0 and the explicit life span in Theorem 2.1 come directly from the definition of the B
η
δ0

spaces.
For the uniqueness part, one can simply notice that the estimates we have shown allow us to prove that the appli-

cation F defined by:

F(ρε,wε) =
( ∫ t

0 (−∇⊥.(E⊥
ε ρε) − ∂‖((wε + Gε)ρε)) ds∫ t

0 (−∇⊥.(E⊥
ε (wε + Gε)) − (wε + Gε)∂‖(wε + Gε) − ε∂‖φε(t, x‖)) ds

)
,

is a contraction on the closed subset B of Bδ0 × Bδ0 , defined by:

B = {
ρ,w ∈ Bδ0; ‖ρ‖δ0 � C, ‖w‖δ0 � C

}
,

with C large enough, provided that η is chosen small enough. The uniqueness of the analytic solution then follows.

3.6. Proof of Proposition 2.1

We can lead the same analysis as for the proof of Theorem 2.1, but even simpler since here we do not have to deal
anymore with the fast oscillations in time. The only slightly different point is to estimate the norm of

∫ t

0 −∂‖p ds =∫ t

0 ∂‖
∫

ρv2 dx⊥ ds, which is straightforward:

∥∥∥∥∥
t∫

0

∂‖pds

∥∥∥∥∥
δ0

� ηC‖ρ‖δ0‖v‖2
δ0

.

Then as before, we can use a contraction argument to prove the proposition.

4. Proof of Theorem 2.2

Step 1: Another average in time for Eε,‖

We have observed previously that the wave equation (3.5) describing the time oscillations of Eε,‖ was the same as
the one appearing in Grenier’s work, except for a slight change in the source. Therefore the following decomposition
taken from [14, Proposition 3.1.1] identically holds, since the proof only relies on the fact that the source gε (defined
in (3.8)) is bounded in L∞

t H s−1
x , which is still the case here, under the assumptions of Theorem (2.2).

Lemma 4.1. Under assumption (H), there exist E
(1)
ε , E

(2)
ε and Wε such that Eε,‖ = E

(1)
ε + E

(2)
ε and a positive

constant C independent of ε such as:

(i) ‖√εE
(1)
ε ‖

L∞(Hs−1
x‖ )

� C.

(ii) ∂tWε = E
(1)
ε , ‖Wε‖L∞(Hs−1

x‖ )
� C and Wε ⇀ 0 in L2.

(iii) Wε(0) = −ε∂tEε,‖(0) = ∫
ρε(0)vε(0) dx⊥.

(iv) ‖E(2)
ε ‖

L∞(Hs−1
x‖ )

� C.

(v)
∫

E
(1)
ε dx‖ = ∫

E
(2)
ε dx‖ = 0.

Roughly speaking, this lemma allows to decompose Eε,‖ into an oscillating part with magnitude 1√
ε

that we will
have to filter out and a bounded part that will give rise to the pressure term.
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Step 2: Uniform bound on E⊥
ε and ∂x‖φε

Under hypothesis (H), using the Poisson equation satisfied by φε , one can check that E⊥
ε and ∂x‖φε are bounded

in L∞
t (H s−1) uniformly with respect to ε (we do not need any gain of elliptic regularity). Indeed, since:∫ (

ρε −
∫

ρε dx⊥
)

dx⊥ = 0,

we can use the trivial bound on the symbol

1

|k⊥|2 + ε2|k‖|2 � 1, for k⊥ 
= 0

to get

‖φε‖Hs
x⊥,x‖ �

∥∥∥∥ρ −
∫

ρ dx⊥
∥∥∥∥

Hs
x⊥,x‖

.

Hence the result holds.

Step 3: Passage to the limit

Let wε = vε − Wε . According to assumption (H) and Lemma 4.1, wε is uniformly bounded in L∞
t ([0, T ],H s−1).

On the other hand, we have:

∂twε + ∇⊥.
(
E⊥

ε wε

) + wε∂x‖wε = −ε∂x‖φε + E(2)
ε − wε∂x‖Wε − Wε∂x‖wε − Wε∂x‖Wε. (4.1)

(Notice that ∇⊥.(E⊥
ε Wε) = Wε∇⊥.(E⊥

ε ) = 0.)
Thus, using the uniform bounds of assumption (H) and the fact the Hs−2

x is an algebra, we can easily see that ∂twε

is bounded in L∞
t ([0, T ],H s−2). Thanks to the Aubin–Lions lemma (see for instance [27]), wε converges strongly

(up to a subsequence) to some function w in C([0, T ],H s′−1) for all s′ < s.
According to Step 2, ε∂x‖φε ⇀ 0 in the distributional sense.

Since wε strongly converges in C([0, T ],H s′−1), it also converges strongly in L2([0, T ],L2) and by Lemma 4.1(ii),
Wε weakly converges to 0 in L2([0, T ],L2). Thus, the following convergence also holds in the sense of distributions:

−wε∂x‖Wε − Wε∂x‖wε ⇀ 0,

and −Wε∂x‖Wε + E
(2)
ε weakly converges (up to a subsequence) to some function F since this term is uniformly

bounded in L∞([0, T ],H s−2
x‖ ).

Furthermore, we observe that:∫ (−Wε∂x‖Wε + E(2)
ε

)
dx‖ =

∫ (
−1

2
∂x‖W

2
ε + E(2)

ε

)
dx‖ = 0,

using Lemma 4.1(v). This implies that
∫

F dx‖ = 0, and thus there exists p such that F = −∂x‖p.
Since E⊥

ε is uniformly bounded in L∞
t ([0, T ],H s−1), it also weakly converges, up to a subsequence, to some

function E⊥.
We now use the strong limit of wε in C([0, T ],H s′−1) in order to pass to the limit in the sense of distributions in

the convection terms. As a consequence, we obtain, passing to the limit in the sense of distributions:

∂tw + ∇⊥.
(
E⊥w

) + w∂x‖w = −∂x‖p. (4.2)

We recall now that the equation satisfied by ρε is:

∂tρε + ∇⊥.
(
E⊥

ε ρε

) + ∂‖(wερε) = −∂‖(Wερε).
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Proceeding similarly, we infer that ρε converges strongly, up to a subsequence, to ρ in C([0, T ],H s′
) for all s′ < s,

that satisfies the equation:

∂tρ + ∇⊥.
(
E⊥ρ

) + ∂‖(wρ) = 0.

One can likewise take limits in the Poisson equations. We finally obtain (1.8).

Step 4: Equations for the correctors

The final step relies on the following lemma proved in Grenier’s paper [14, Proposition 3.3.4] (the main point is to
notice that the application ϕ �→ e±it/

√
εϕ is an isometry on L∞(Hs) for any s).

Lemma 4.2. There exist two correctors E+(t, x‖) and E−(t, x‖) in C([0, T ],H s−1) such that, for all s′ < s:

• ‖√εE
(1)
ε − eit/

√
εE+ − e−it/

√
εE−‖C([0,T ],H s′−1)

→ 0,

• ‖Wε − 1
i
(eit/

√
εE+ − e−it/

√
εE−)‖C([0,T ],H s′−1)

→ 0.

In particular we can deduce that:

e−it/
√

ε
√

εE(1)
ε ⇀ E+

(and similarly eit/
√

ε
√

εE
(1)
ε ⇀ E−).

Then, the idea is to use Lemmas 4.1 and 4.2 and the wave equation (3.5) in order to obtain the equations satisfied
by E±. Let us show how one can obtain the equation for E− (the method being similar for E+). Let us denote
Fε = √

εeit/
√

εEε,‖. One can then observe that:

ε∂2
t Eε,‖ + Eε,‖ = e−it/

√
ε
(√

ε∂2
t Fε − 2i∂tFε

)
.

Furthermore, by Lemmas 4.1 and 4.2, Fε weakly converges (in the distributional sense) to E−. Using (3.5), we obtain
an equation satisfied by Fε :

√
ε∂2

t ∂x‖Fε − 2i∂t ∂x‖Fε = eit/
√

ε∂2
x‖

∫
ρε(wε + Wε)

2 dx⊥

+ eit/
√

ε∂x‖

∫
ρε(ε∂x‖φε) dx⊥ − eit/

√
εε∂x‖ [Eε,‖∂x‖Eε,‖]. (4.3)

We first show that
√

ε∂2
t ∂x‖Fε,‖ weakly converges to 0 in the distributional sense. For this purpose let Ψ (t, x‖) a

smooth test function compactly supported in R
+∗ ×R. We have by integration by parts:∫ √

ε∂2
t ∂x‖FεΨ dt dx‖ = −

∫ √
ε∂tFε∂t ∂x‖Ψ dt dx‖

=
∫ √

εFε∂
2
t ∂x‖Ψ dt dx‖,

and we can conclude that the contribution of this term vanishes as ε vanishes since Fε is uniformly bounded in
C([0, T ],H s′−1

x‖ ) by Lemma 4.1. Likewise, we show that −2i∂tFε converges in the distributional sense to −2i∂tE−.

By Step 3, we recall that ρε converges strongly (up to a subsequence) in C([0, T ],H s′
) (with s′ < s). Let us show

that ε∂x‖φε also converges strongly (up to a subsequence) in C([0, T ],H s′
). To that purpose, we rely once again on

the Poisson equation satisfied by φε , that we recall below:

−ε2∂2
x‖φε − �⊥φε = ρε −

∫
ρε dx⊥.

By the same symbolic analysis as before, one can easily check, using assumption (H), that ε∂x‖φε is uniformly
bounded in L∞

t (H s
x ). Deriving the Poisson equation with respect to time, we obtain:

−ε2∂2
x‖∂tφε − �⊥∂tφε = ∂tρε −

∫
∂tρε dx⊥.

Using this time the uniform estimates on ∂tρε , we deduce that ε∂t ∂x‖φε is uniformly bounded in L∞
t (H s−2

x ).
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Therefore, using the Aubin–Lions lemma, we have proved our claim.
We deduce that ∂x‖

∫
ρε(ε∂x‖φε) dx⊥ converge strongly (up to a subsequence) in C([0, T ],H s′−1

x‖ ), so we can see
that:

eit/
√

ε∂x‖

∫
ρε(ε∂x‖φε) dx⊥ ⇀ 0

in the sense of distributions.
In order to take the limit in the other terms, we have to be a little more precise. By Lemmas 4.1 and 4.2, we can

write:
√

εEε,‖ = eit/
√

εE+ + e−it/
√

εE− + rε,

Wε = 1

i

(
eit/

√
εE+ − e−it/

√
εE−

) + sε,

where rε and sε converge strongly to 0 in C([0, T ],H s′−1
x‖ ). Consequently we deduce that eit/

√
εε∂x‖ [Eε,‖∂x‖Eε,‖]

converges to 0 in the sense of distributions. Indeed, we have:

eit/
√

εε∂x‖ [Eε,‖∂x‖Eε,‖] = 1

2
eit/

√
ε∂2

x‖
(
r2
ε + e2it/

√
εE2+ + e−2it/

√
εE2−

+ 2E+E− + 2eit/
√

εE+rε + 2e−it/
√

εE−rε
)
.

Thus, as rε converges strongly to 0 in C([0, T ],H s′−1
x‖ ), there is no resonance effect and this converges to 0 in the

sense of distributions. Now we write:

∂2
x‖

∫
ρε(wε + Wε)

2 dx⊥ = ∂2
x‖

∫
ρεw

2
ε dx⊥ + ∂2

x‖

(∫
ρε dx⊥

)
W 2

ε + 2∂2
x‖

∫
ρεwεWε dx⊥.

Since ∂2
x‖

∫
ρεw

2
ε dx⊥ strongly converges in C([0, T ],H s′−1

x‖ ), the contribution of the first term, that is

eit/
√

ε∂2
x‖

∫
ρεw

2
ε dx⊥, vanishes. For the second term, we first notice that

∫
ρε dx⊥ is strongly convergent in

C([0, T ],H s′
x‖). Then, we can check as before that there is no resonance effect and the contribution of

eit/
√

ε∂2
x‖(

∫
ρε dx⊥)W 2

ε vanishes. For the last term, ρεwε strongly converges to ρv in C([0, T ],H s′−1
x ); using once

again the decomposition of Wε , we obtain that the limit in the distributional sense of eit/
√

ε2∂2
x‖

∫
ρεwεWε dx⊥ is

2i(
∫

ρv dx⊥)∂x‖(∂x‖E−).
As a result, ∂x‖E± satisfy the transport equations:

∂t (∂x‖E±) +
(∫

ρv dx⊥
)

∂x‖(∂x‖E±) = 0.

There remains to provide some initial data for these equations. This is achieved thanks to the strong convergences
in Lemma 4.2 that hold in particular for t = 0. More precisely, we have by Lemma 4.2:

E+,|t=0 = 1

2
lim
ε→0

[
iWε,|t=0 + √

εE(1)
ε

]
, E−,|t=0 = 1

2
lim
ε→0

[−iWε,|t=0 + √
εE(1)

ε

]
.

By Lemma 4.1(iii), we have:

lim
ε→0

Wε,|t=0 = lim
ε→0

∫
ρεvε dx⊥(0),

and by (iv) we have

lim
ε→0

√
εE(1)

ε = lim
ε→0

−√
ε∂x‖Vε(0).

This yields the initial conditions (2.6) and (2.7).
The proof of the theorem is now complete.
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5. Discussion on the sharpness of the results

5.1. On the analytic regularity

Let us recall that the multi-fluid system (2.2) is ill-posed in Sobolev spaces (see [4]), because of the two-stream
instabilities (remind that this is due to the coupling between the different phases of the fluid).

For system (1.8), we expect the situation to be similar. Due to the dependence on x⊥ and the constraint
∫

ρ dx⊥ = 1,
system (1.8) is by nature a coupled multi-fluid system. Nevertheless, one could maybe imagine that the dynamics in
the x⊥ variable could yield some mixing in x⊥ and x‖ (in the spirit of hypoellipticity results) and thus could perhaps
bring stability. Here we explain why this is not the case.

The idea is to consider for (1.8) shear flows like initial data. This will allow to exactly recover the multi-fluid
equations (2.2). Writing x⊥ = (x1, x2), we take:

E⊥
0 = (

0, ϕ(x1, x‖),0
)
,

and consequently since by definition:

ρ0 = divx E0 + 1,

we infer that ρ0 = ∇⊥ ∧ E⊥
0 = −ϕ′(x1, x‖) + 1. We also assume that v0(x1, x‖) does not depend on x2.

Then we observe that:

∇⊥.
(
E⊥

0 ρ0
) = 0,

∇⊥.
(
E⊥

0 v0
) = 0.

With such initial data, system (1.8) reduces to:⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∂‖(v‖ρ) = 0,

∂t v‖ + v‖∂‖(v‖) = −∂‖p(t, x‖),∫
ρ dx1 = 1,

(5.1)

and we observe that there is no more dynamics in the x⊥ variable. This is nothing but system (2.2) in dimension 1,
with M = [0,1[ and μ the Lebesgue measure.

Now, let us consider measure type of data in the x1 variable for ρ and v (this corresponds to a “degenerate” version
of the shear flows defined above). In particular if we choose:

ϕ = 1

2
δ
x1� 1

4
ρ0,1(x‖) + 1

2
δ
x1� 1

2
ρ0,2(x‖),

we get:

ρ0 = 1

2
δ
x1= 1

4
ρ0,1(x‖) + 1

2
δ
x2= 1

2
ρ0,2(x‖),

v0 = 1

2
δ
x1= 1

4
v0,1(x‖) + 1

2
δ
x1= 1

2
v0,2(x‖) (5.2)

and we obtain the following system for α = 1,2:⎧⎨
⎩

∂tρα + ∂‖(vαρα) = 0,

∂t vα + vα∂‖(vα) = −∂‖p(t, x‖),
ρ1 + ρ2 = 1.

(5.3)

This particular system was given as an example by Brenier in [4] to illustrate ill-posedness in Sobolev spaces of the
multi-fluid equations. Indeed let us first denote q = ρ1v1. Using the constraint ρ1 + ρ2 = 1, we easily obtain that

p‖ = −q2
(

1 + 1
)

.

ρ1 1 − ρ1
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We can then observe that the system:⎧⎨
⎩

∂tρ1 + ∂‖q = 0,

∂tq + ∂‖
(

q2

ρ1

)
= −ρ1∂‖p(t, x‖)

(5.4)

is elliptic in space–time, and consequently it is ill-posed in Sobolev spaces.
Actually this example is not completely satisfying, since it is singular in x1. Nevertheless we can consider the

convolution of this initial data with a standard mollifier, which yields the same qualitative behaviour.

5.2. On the analytic regularity in the perpendicular variable

We observe that if the initial datum (ρ(0), v(0)) does not depend on x‖, then the fluid system (1.8) reduces to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇⊥.
(
E⊥ρ

) = 0,

∂t v‖ + ∇⊥.
(
E⊥v‖

) = 0,

E⊥ = ∇⊥�−1
⊥

(
ρ −

∫
ρ dx⊥

)
,∫

ρ dx⊥ = 1.

(5.5)

Thus, ρ satisfies 2D incompressible Euler system, written in vorticity formulation. This systems admits a unique
global strong solution provided that ρ(0) ∈ Hs(T2) (with s > 1), by a classical result of Kato [22] and even a unique
global weak solution provided that ρ(0) ∈ L∞(T2), by a classical result of Yudovic [30].

In the other hand, v‖ satisfied a transport equation with the force field E⊥. If we only assume for instance that v0
is a positive Radon measure, then using the classical log-Lipschitz estimate on E⊥ (we refer to [24, Chapter 8]), we
get a unique global weak solution v‖ by the method of characteristics.

One could think that it should be possible to build solutions to the final fluid system (1.8) with similar “weak”
regularity in the x⊥ variable (while keeping analyticity in the x‖ variable). Actually this is not possible in general: this
is related to the fact that E⊥ depends also on x‖ in general and this entails that we also need analytic regularity in the
x⊥ variable to get analytic regularity in the x‖ variable (see estimations such as (3.26)).

5.3. On the local in time existence

In [5], Brenier considers potential velocity fields, that are velocity fields of the form vΘ = ∇xΦΘ , for the multi-fluid
system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ = 1, . . . ,M, M ∈ N
∗,

∂tρΘ + div(ρΘvΘ) = 0,

∂t vΘ + vΘ.∇(vΘ) = −∇xp,

M∑
Θ=1

ρΘ = 1.

(5.6)

In this case the equation on the velocities becomes:

∂tΦΘ + 1

2
|∇xΦΘ |2 + p = 0. (5.7)

It is proved in [5] that any strong solution satisfying

inf
Θ,t,x

ρΘ(t, x) > 0

cannot be global in time unless the initial energy vanishes:

M∑ ∫
ρΘ,t=0|uΘ,t=0|2 dx = 0. (5.8)
Θ=1
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This striking result relies on a variational interpretation of these Euler equations. Using the same particular initial
data as in Section 5.1, this indicates that for system (1.8) also, there is no global strong solution, unless there is no
dependence on x⊥ or x‖.

Indeed, we observe that if the initial datum (ρ(0), v(0)) does not depend on x⊥, the fluid system (1.8) does not
make sense anymore (as for incompressible Euler in dimension 1). When the initial datum (ρ(0), v(0)) does not
depend on x‖, we have seen that we recover 2D incompressible Euler and there is indeed global existence (of strong
or weak solutions).

5.4. The relative entropy method applied to a toy model: failure of the multi-current limit

5.4.1. The toy model
It seems very appealing to try to use the relative entropy method (which was introduced by Brenier [4] for Vlasov

type of systems) to study the limit ε → 0, as it would open the way to the study of the limit for solutions to the initial
system (1.1) with low regularity. The only requirements would be that the initial data of (1.1) is closed in some sense
(which will be made precise later) to a Dirac mass in velocity, and that the two first moments of the initial data are in
a small neighborhood (say in L2 topology) of the smooth initial data for the limit system (1.8). Nevertheless it is not
possible to overcome the two-stream instabilities in this framework. We intend here to show why.

The toy model we consider in this paragraph is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tf
θ
ε + v.∇xf

θ
ε + Eε.∇vf

θ
ε = 0,

Eε = −∇xVε,

−ε�xVε =
∫ ∫

f θ
ε dv dμ − 1,

f θ
ε,t=0 = f θ

ε,0,

∫ ∫
f θ

ε dv dx dθ = 1.

(5.9)

with t > 0, x ∈ T
3, v ∈R

3 and where θ lies in [0,1] equipped with a probability measure μ which is:

• either a sum of Dirac masses with total mass 1, such as:

μ =
N−1∑
i=0

1

N
δθ=i/N .

In this case, we model a plasma made of N phases (or N types of charged particles).
• or the Lebesgue measure, in which case we model a continuum of phases.

Actually, we could have considered more general probability measures but we restrict to these cases for simplicity.
This system can be seen as the kinetic counterpart of a simplified version of (1.7), which focuses on the unstable
feature of the system. Of course we could have considered directly the fluid version, that is:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ
θ
ε + ∇x.

(
ρθ

ε uθ
ε

) = 0,

∂tu
θ
ε + uθ

ε .∇xu
θ
ε = Eε,

Eε = −∇xVε,

−ε�xVε =
∫

ρθ
ε dμ − 1

(5.10)

but the proofs are essentially the same and the study of system (5.9) has some interests of its own.
One can observe that the energy associated to (5.9) is the following non-increasing (formally conserved) functional:

Eε(t) = 1

2

∫ ∫
f θ

ε |v|2 dv dx dμ + 1

2
ε

∫
|∇xVε |2 dx. (5.11)

We assume that there exists a constant K > 0 independent of ε, such as Eε(0) � K . We also assume that f θ
0 ∈

L∞
θ L1

x,v ∩ L∞
θ L∞

x,v , uniformly in ε. Then we can consider global weak solutions (f θ
ε ,Vε) to (5.9), in the sense of
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Arsenev [1]. That these solutions exist follows from a slight adaptation of the original proof in [1], which dealt with
the usual Vlasov–Poison equation. These solutions satisfy that uniformly in ε, f θ

ε ∈ L∞
t,θL

1
x,v ∩ L∞

t,θL
∞
x,v . In addition,

for any ε and any t � 0:

Eε(t) �K. (5.12)

Let (ρθ , uθ ) be the local strong solution, defined on [0, T ], to the system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ
θ + ∇x.

(
ρθuθ

) = 0,

∂tu
θ + uθ .∇xu

θ = −∇xV ,∫
ρθ dμ = 1.

(5.13)

with initial data (ρθ
0 , uθ

0) (which we actually have to take with analytic regularity in general). Observe here that the
“incompressibility in average” constraint reads:

∇x.

∫
ρθuθ dμ = 0. (5.14)

The case where uθ
0 genuinely depends on θ corresponds to the setting for two-stream instabilities [8]. In this case, as

expected, we will not be able to conclude. On the contrary, when uθ
0 does not depend on θ , this precisely corresponds

to the case where two-stream instabilities are avoided, and in that particular case, the relative entropy method will
yield convergence: this is the result of Proposition 5.1.

5.4.2. The relative entropy method
Following the approach of Brenier [4] for the quasineutral limit of the Vlasov–Poisson equation with a single

phase, we consider the relative entropy (built as a modulation of the energy Eε ):

Hε(t) = 1

2

∫ ∫
f θ

ε

∣∣v − uθ (t, x)
∣∣2

dv dx dμ + 1

2
ε

∫
|∇xVε − ∇xV |2 dx. (5.15)

We assume that the system is well prepared in the sense that Hε(0) → 0 when ε → 0. The goal is to find some
stability inequality in order to show that we also have Hε(t) → 0 for t ∈ [0, T ].

We have, since the energy is non-increasing:

d

dt
Hε(t) �

∫ ∫
∂tf

θ
ε

(
1

2

∣∣uθ
∣∣2 − v.uθ

)
dv dx dμ +

∫ ∫
f θ

ε ∂t

(
1

2

∣∣uθ
∣∣2 − v.uθ

)
dv dx dμ

+ 1

2
ε

∫
∂t |∇xV |2 dx − ε

∫
∇xVε.∂t∇xV dx − ε

∫
∂t∇xVε.∇xV dx. (5.16)

We clearly have ε
∫

∂t |∇xV |2 dx =O(ε). Moreover, we get, by Cauchy–Schwarz inequality:

ε

∣∣∣∣
∫

∇xVε.∂t∇xV dx

∣∣∣∣� √
ε‖√ε∇xVε‖L∞

t L2
x
‖∂t∇xV ‖L∞

t L2
x
,

which is of order O(
√

ε) by the conservation of energy.
For the last term of (5.16), we compute with successive integrations by parts:

−ε

∫
∂t∇xVε.∇xV dx = ε

∫
∂t�xVεV dx

= −
∫

∂t

(∫
f θ

ε dv dμ

)
V dx

=
∫

∇x.

(∫
f θ

ε v dv dμ

)
V dx

= −
∫ (∫

f θ
ε v dv dμ

)
.∇xV dx. (5.17)
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In this computation we have used the Poisson equation as well as the local conservation of mass (obtained by inte-
grating the Vlasov equation in (5.9) against v):

∂t

∫
f θ

ε dv + ∇x.

(∫
vf θ

ε dv

)
= 0.

In the other hand we can compute:∫ ∫
∂tf

θ
ε

(
1

2

∣∣uθ
∣∣2 − v.uθ

)
dv dx dμ +

∫ ∫
f θ

ε ∂t

(
1

2

∣∣uθ
∣∣2 − v.uθ

)
dv dx dμ

= −
∫ ∫ (

v.∇xf
θ
ε + Eε.∇vf

θ
ε

)(1

2

∣∣uθ
∣∣2 − v.uθ

)
dv dx dμ +

∫ ∫
f θ

ε

(
uθ − v

)
.∂tu

θ dv dx dμ

= −
∫ ∫

f θ
ε v.

((
uθ − v

)
.∇xu

θ
)
dv dx dμ −

∫
f θ

ε Eε.u
θ dv dx dμ +

∫ ∫
f θ

ε

(
uθ − v

)
.∂tu

θ dv dx dμ

=
∫ ∫

f θ
ε

(
uθ − v

)
.
((

uθ − v
)
.∇xuθ

)
dv dx dμ +

∫ ∫
f θ

ε

(
uθ − v

)
.
(
∂tu

θ + uθ .∇xu
θ
)
dv dx dμ

−
∫

f θ
ε Eε.u

θ dv dx dμ. (5.18)

All the trouble comes from the last term:∫
f θ

ε Eε.u
θ dv dx dμ.

When no assumption is made on uθ , it can be of order O(1/
√

ε). This wild term can be interpreted as the appearance
of the two-stream instabilities. Therefore we have to make an additional assumption in order to avoid this instability.
This is done by assuming that uθ initially does not depend on θ (which yields that uθ does not depend on θ by
uniqueness), in which case we can write:

uθ = u

and consequently, we have

−
∫

f θ
ε Eε.udv dx dμ =

∫
(ε�xVε − 1)Eε.udx. (5.19)

We first compute:

−
∫

ε

∫
�xVε∇xVε.udx = −ε

∫
∇x : (∇xVε ⊗ ∇xVε)udx + ε

∫
1

2
∇x |∇xVε |2udx

= ε

∫
D(u) : (∇xVε ⊗ ∇xVε) dx − ε

∫
1

2
|∇xVε |2 divx udx,

with D(u) = 1
2 (∂xi

uj + ∂xj
ui)i,j .

In addition, the incompressibility constraint (5.14) becomes ∇x.u = 0, and thus:∫
Eε.udx =

∫
Vε∇x.udx = 0.

Gathering all pieces together, we obtain:

Hε(t) �Hε(0) + Rε(t) + C

t∫
0

‖∇xu‖Hε(s) ds

+
t∫ ∫ ∫

f θ
ε (u − v)(∂tu + u.∇xu) dμdv dx ds −

t∫ ∫ ∫
f θ

ε v.∇xV dμdv dx ds, (5.20)
0 0



D. Han-Kwan / Ann. I. H. Poincaré – AN 30 (2013) 1127–1157 1151
where C > 0 is a universal constant, Rε(t) → 0 as ε goes to 0. Furthermore, we remark that:∫ (∫
f θ

ε dv dμ

)
u.∇xV dv =

∫
u.∇xV − ε

∫
�xVεu.∇xV . (5.21)

The first term is equal to 0 according to the incompressibility constraint, while the second is of order O(
√

ε), by the
energy inequality. We finally get the stability inequality:

Hε(t) �Hε(0) + R̃ε(t) + C

t∫
0

‖∇xu‖Hε(s) ds

+
t∫

0

∫ ∫
f θ

ε (u − v)(∂tu + u.∇xu + ∇xV )dμdv dx ds, (5.22)

where C > 0 is a universal constant, R̃ε(t) → 0 as ε goes to 0 and the last term is 0 by definition of (u,V ).
As result, by Gronwall’s inequality, we infer that Hε(t) → 0, uniformly locally in time. To conclude, by a classical

interpolation argument using the fact that fε |v|2 is uniformly in L∞
t L1

x,v,θ and that fε is uniformly in L∞
t L1

t,x,v , we

infer that ρθ
ε := ∫

f θ
ε dv and J θ

ε := ∫
f θ

ε v dv are uniformly bounded in L∞
t (L1

θ,x). Thus, up to a subsequence, there

exist ρθ and J θ (at least in L∞
t (L1

θ,x)) such that ρθ
ε weakly converges in the sense of measures to ρθ (resp. J θ

ε to J θ ).
Passing to the limit in the local conservation of charge, which reads:

∂tρ
θ
ε + ∇x.J

θ
ε = 0,

we obtain:

∂tρ
θ + ∇x.J

θ = 0.

The goal is now to prove that J θ = ρθu.
By a simple use of Cauchy–Schwarz inequality, we have:∫ ∫ |ρθ

ε u − J θ
ε |2

ρθ
ε

dx dμ �
∫ ∫

f θ
ε |v − u|2 dv dx dμ. (5.23)

Using a classical convexity argument due to Brenier [6], one can prove that the functional (ρ, J ) �→ ∫ |ρu−J |2
ρ

dx dμ

is lower semi-continuous with respect to the weak convergence of measures. We finally obtain by passing to the limit
that:

J θ = ρθu.

By uniqueness of the solution to the limit system, provided that the whole sequence (ρθ
ε,0) weakly converges to ρθ

0 ,
we obtain the convergences without having to extract subsequences.

Finally we have proved the result:

Proposition 5.1. Let (f θ
ε ,Vε) be a global weak solution in the sense of Arsenev to (5.9). Assume that for some

functions (ρθ
0 , u0) in (L1

θ,x × Hs
x ), with s > 5/2 (we emphasize on the fact that u0 does not depend on θ , in order to

avoid two-stream instabilities) satisfying⎧⎨
⎩

∫
ρθ

0 dμ = 1,

∇x.u0 = 0,

(5.24)

and such that we initially have:

1

2

∫ ∫
f θ

ε,t=0

∣∣v − u0(x)
∣∣2

dv dx dμ + 1

2
ε

∫
|∇xVε,t=0 − ∇xVt=0|2 dx → 0 (5.25)

and
∫

f θ
ε dv ⇀ ρθ in the weak L1 sense.
0
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Let (u,V ) is the (unique) local strong solution (defined on [0, T [) to the incompressible Euler system:{
∂tu + u.∇xu = −∇xV ,

∇x.u = 0,
(5.26)

with initial data u(t = 0) = u0. Then for all t ∈ [0, T [,
1

2

∫ ∫
f θ

ε

∣∣v − u(t, x)
∣∣2

dv dx dμ + 1

2
ε

∫
|∇xVε − ∇xV |2 dx → 0, (5.27)

where (u,V ) is the local strong solution to the incompressible Euler system:{
∂tu + u.∇xu = −∇xV ,

∇x.u = 0.
(5.28)

Moreover, ρθ
ε := ∫

f θ
ε dv converges in the weak L1 sense to ρθ the unique solution to:

∂tρ
θ + u.∇xρ

θ = 0, (5.29)

with ρθ (t = 0) = ρθ
0 and J θ

ε := ∫
f θ

ε v dv converges in the weak L1 sense to ρθu.

6. Conclusion

In this work, we have provided a first analysis of the mathematical properties of the three-dimensional finite Larmor
radius approximation (FLR), for electrons in a fixed background of ions. We have shown that the limit is illposed in
the sense that we have to restrict to data with both particular profiles and analytic regularity. In particular, we have
pointed out that the analytic assumption is not only a mere technical assumption, but is necessary if one choses to
consider strong solutions. In addition, the results are only local-in-time.

On the other hand, we proved in [18] that the FLR approximation for ions with massless electrons is by opposition
very stable, in the sense that we can deal with initial data with no prescribed profile and weak (that is in a Lebesgue
space) regularity.

This rigorously justifies why physicists rather consider the equations on ions rather than those on electrons, espe-
cially for numerical experiments (we refer for instance to Grandgirard et al. [13]).
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Appendix A. Formal derivation of the drift-fluid problem

Scaling of the Vlasov equation

Let us recall that our purpose is to describe the behaviour of a gas of electrons in a neutralizing background of ions
at thermodynamic equilibrium, submitted to a large magnetic field. For simplicity, we consider a magnetic field with
a fixed direction e‖ (also denoted by ez) and a fixed large magnitude B̄ .

Because of the strong magnetic field, the dynamics of particles in the parallel direction e‖ is completely different
to their dynamics in the orthogonal plane. We therefore consider anisotropic characteristic spatial lengths in order to
consider dimensionless quantities:

x̃⊥ = x⊥
L⊥

, x̃⊥ = x‖
L‖

,

t̃ = t

τ
, ṽ = v

vth
,

f (t, x⊥, x‖, v) = f̄ f̃ (t̃ , x̃⊥, x̃‖, ṽ), V (t, x⊥, x‖) = V̄ Ṽ (t̃ , x̃⊥, x̃‖), E(t, x⊥, x‖) = ĒẼ(t̃ , x̃⊥, x̃‖).
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This yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t̃ f̃ε + vthτ

L⊥
ṽ⊥.∇x̃⊥ f̃ε + vthτ

L‖
ṽ‖.∇x̃‖ f̃ε +

(
eĒτ

mvth
Ẽε + eB̄

m
τ ṽ ∧ e‖

)
.∇ṽ f̃ε = 0,

Ē

V̄
Ẽε =

(
− 1

L⊥
∇x̃⊥ Ṽε,− 1

L‖
∇x̃‖ Ṽε

)
,

−ε0V̄

L2⊥
�x̃⊥ Ṽε − ε0V̄

L2‖
�x̃‖ Ṽε = ef̄ v3

th

(∫
f̃ε dṽ − 1

)
,

f̃ε,|t̃=0 = f̃0,ε, f̄ L2⊥L‖v3
th

∫
f̃0,ε dṽ dx̃ = 1.

(A.1)

In order to keep normalization, it is first natural to set f̄ L2⊥L‖v3
th = 1.

We set now Ω = eB̄
m

: this is the cyclotron frequency (also referred to as the gyrofrequency). We also consider the
so-called electron Larmor radius (or electron gyroradius) rL defined by:

rL = vth

Ω
= mvth

eB̄
. (A.2)

This quantity can be physically understood as the typical radius of the helix around axis e‖ described by the particles,
due to the intense magnetic field.

We also introduce the so-called Debye length:

λ2
D = ε0V̄

ef̄ v3
th

,

which is interpreted as the typical length above which the plasma can be interpreted as being neutral.
The Vlasov equation now reads:

∂t̃ f̃ε + rL

L⊥
Ωτṽ⊥.∇x̃⊥ f̃ε + rL

L‖
Ωτṽ‖.∇x̃‖ f̃ε +

(
Ē

B̄vth
ΩτẼε + Ωτṽ ∧ e‖

)
.∇ṽ f̃ε = 0.

The strong magnetic field ordering consists in:

Ωτ = 1

ε
,

Ē

B̄vth
= ε,

with ε > 0 is a small parameter.
The spatial scaling we perform is the so-called finite Larmor radius scaling (see Frénod and Sonnendrucker [10]

for a reference in the mathematical literature): basically the idea is to consider the typical perpendicular spatial length
L⊥ with the same order as the so-called electron Larmor radius. This allows to describe the turbulent behaviour of the
plasma at fine scales, see [23]. On the contrary, the parallel observation length L‖ is taken much larger:

rL

L⊥
= 1,

rL

L‖
= ε. (A.3)

This is typically an anisotropic situation.
This particular scaling allows, at least in a formal sense, to observe more precise effects in the orthogonal plane

than with the isotropic scaling (studied for instance in [12]):

rL

L⊥
= ε,

rL

L‖
= ε.

In particular we wish to observe the so-called electric drift E⊥ (also referred to as the E × B drift) whose effect is
of great concern in tokamak physics (see [17] for instance).

The quasineutral ordering we adopt is the following:

λD

L
= √

ε. (A.4)

‖
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After straightforward calculations (we refer to [10] for details), we get the following Vlasov–Poisson system in
dimensionless form, for t � 0, x = (x⊥, x‖) ∈ T

2 ×T, v = (v⊥, v‖) ∈ R
2 ×R:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfε + v⊥
ε

.∇xfε + v‖.∇xfε +
(

Eε + v ∧ ez

ε

)
.∇vfε = 0,

Eε =
(

−1

ε
∇x⊥Vε,−∇x‖Vε

)
,

−ε�x‖Vε − 1

ε
�x⊥Vε =

∫
fε dv −

∫
fε dv dx,

fε,t=0 = fε,0.

(A.5)

which yields, after setting V̄ε = 1
ε
Vε (by a slight abuse of notation, we still denote Vε instead of V̄ε ),⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tfε + v⊥
ε

.∇xfε + v‖.∇xfε +
(

Eε + v ∧ ez

ε

)
.∇vfε = 0,

Eε = (−∇x⊥Vε,−ε∇x‖Vε),

−ε2�x‖Vε − �x⊥Vε =
∫

fε dv −
∫

fε dv dx,

fε,t=0 = fε,0.

(A.6)

Remark 6.1. It seems physically relevant to consider scalings such as:

λD/L‖ ∼ εα, (A.7)

with α � 1. However with such a scaling, the systems seem too degenerate with respect to ε and we have not been
able to handle this situation. The scaling we study is nevertheless relevant for some extreme magnetic regimes in
tokamaks.

Hydrodynamic equations

In order to isolate this quasineutral problem, thanks to the linearity of the Poisson equation, we split the electric
field into two parts:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eε = E1
ε + E2

ε ,

E1
ε = (−∇x⊥V 1

ε ,−ε∇x‖V
1
ε

)
,

−ε2�x‖V
1
ε − �x⊥V 1

ε =
∫

fε dv −
∫

fε dv dx⊥,

E2
ε = −∂x‖V

2
ε ,

−ε�x‖V
2
ε =

∫
fε dv dx⊥ −

∫
fε dv dx.

(A.8)

In order to make the fast oscillations in time due to the singularly penalized operator v⊥
ε

.∇x disappear, we perform
the same change of variables as in [11], to get the so-called gyro-coordinates:

xg = x⊥ + v⊥, vg = v⊥. (A.9)

We easily compute the equation satisfied by the new distribution function gε(t, xg, vg, v‖) = fε(t, x, v),

∂tgε + v‖∂x‖gε + E1
ε,‖

(
t, xg − v⊥

g

)
∂v‖gε + E2

ε (t, xg,‖)∂v‖gε

+ E1
ε,⊥

(
t, xg − v⊥

g

)
.
(∇vggε − ∇⊥

xg
gε

) + 1

ε
v⊥
g .∇vggε = 0.

Notice here that in the process, the so-called electric drift E⊥ appears since:

−E1
ε,⊥

(
t, xg − v⊥

g

)
.∇⊥

x gε = E1,⊥
ε

(
t, xg − v⊥

g

)
.∇xggε.
g
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The equation satisfied by the charge density ρε = ∫
gε dv states:

∂tρε + ∂x‖

∫
v‖gε dv + ∇⊥

xg
.

∫
E1

ε,⊥
(
t, xg − v⊥

g

)
gε dv = 0. (A.10)

One can observe that since E1
ε,⊥ is a gradient:

divvg E1
ε,⊥

(
t, xg − v⊥

g

) = 0.

Thus, integrating the equation satisfied by gε against (vg, v‖), we deduce that the one satisfied by the current density

Jε = ∫
gεv dv(= ( ∫

gεv⊥ dv∫
gεv‖dv

)
) is the following:

∂tJε + ∂x‖

∫
v‖

(
vg

v‖

)
gε dv + ∇⊥

xg
.

∫
E1

ε,⊥
(
t, xg − v⊥

g

)(
vg

v‖

)
gε dv

=
∫ (

E1
ε,⊥(t, xg − v⊥

g )

0

)
gε dv +

∫ (
0

E1
ε,‖(t, xg − v⊥

g )

)
gε dv

+
(

0
E2

ε (t, xg,‖)ρε

)
+ J⊥

ε

ε
. (A.11)

We now assume that we deal with special monokinetic data of the form:

gε(t, x, v) = ρε(t, x)δv‖=v‖,ε (t,x)δvg=0. (A.12)

This assumption is nothing but the classical “cold plasma” approximation together with the assumption that the
transverse particle velocities are isotropically distributed (which is physically relevant, see [28]): in other words, the
average motion of particles in the perpendicular plane is only due to the advection by the electric drift E⊥.

For the sake of readability, we denote by now ∇xg = ∇⊥ and ∇x‖ = ∇‖. Note in particular that with these monoki-
netic data, we have in particular J⊥

ε = 0. Then we get formally the hydrodynamic model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρε + ∇⊥.
(
E⊥

ε ρε

) + ∂‖(v‖,ερε) = 0,

∂t (ρεv‖,ε) + ∇⊥.
(
E⊥

ε ρεv‖,ε
) + ∂‖

(
ρεv

2‖,ε
) = −ε∂‖φε(t, x)ρε − ∂‖Vε(t, x‖)ρε,

E⊥
ε = −∇⊥φε,

−ε2∂2‖φε − �⊥φε = ρε −
∫

ρε dx⊥,

−ε∂2‖Vε =
∫

ρε dx⊥ − 1.

(A.13)

One can use the first equation to simplify the second one (the systems are equivalent provided that we work with
regular solutions and that ρε > 0):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρε + ∇⊥.
(
E⊥

ε ρε

) + ∂‖(v‖,ερε) = 0,

∂t v‖,ε + ∇⊥.
(
E⊥

ε v‖,ε
) + v‖,ε∂‖(v‖,ε) = −ε∂‖φε(t, x) − ∂‖Vε(t, x‖),

E⊥
ε = −∇⊥φε,

−ε2∂2‖φε − �⊥φε = ρε −
∫

ρε dx⊥,

−ε∂2‖Vε =
∫

ρε dx⊥ − 1.

(A.14)

Remarks A.1.

1. Notice here that we do not deal with the usual charge density and current density, since these ones are taken within
the gyro-coordinates.
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2. We mention that we could have considered the more general case:

gε(t, x, v) =
∫
M

ρΘ
ε (t, x)δv‖=vΘ‖,ε (t,x)ν(dΘ)δvg=0 (A.15)

where (M,Θ,ν) is a probability space which allows to model more realistic plasmas than “cold plasmas” and
covers many interesting physical data, like multi-sheet electrons or water-bags data (we refer for instance to [2]
and references therein). We will not do so for the sake of readability but we could deal with it with exactly the
same analytic framework: the analogues of Theorems 2.1 and 2.2 identically hold. We get in the end the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
Θ + ∇⊥.

(
E⊥ρΘ

) + ∂‖
(
vΘ‖ ρΘ

) = 0,

∂t v
Θ‖ + ∇⊥.

(
E⊥vΘ‖

) + vΘ‖ ∂‖
(
vΘ‖

) = −∂‖p(t, x‖),

E⊥ = ∇⊥�−1
⊥

(∫
ρΘ dν −

∫
ρΘ dx⊥ dν

)
,∫

ρΘ(t, x) dx⊥ dν = 1.

(A.16)

As before, the equations are coupled through x⊥ and here also through the new parameter Θ .
3. Actually, the choice:

gε(t, x, v) = ρε(t, x)δv=vε(t,x) (A.17)

leads to an ill-posed system. Indeed, we have to solve in this case equations of the form v⊥
ε = vε,⊥(t, x − v⊥

ε )

where vε,⊥ is the unknown. We cannot say if this relation is invertible, even locally.
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