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Abstract

We study the limit p → ∞ of global minimizers for a p-Ginzburg–Landau-type energy

Ep(u) =
∫
R2

|∇u|p + 1

2

(
1 − |u|2)2

.

The minimization is carried over maps on R
2 that vanish at the origin and are of degree one at infinity. We prove locally uniform

convergence of the minimizers on R
2 and obtain an explicit formula for the limit on B(0,

√
2 ). Some generalizations to dimension

N � 3 are presented as well.

1. Introduction

For any d ∈ Z, N � 2 and p > N consider the class of maps

Ed
p = {

u ∈ W
1,p

loc

(
R

N,RN
)
: Ep(u) < ∞, deg(u) = d

}
,

where

Ep(u) =
∫
RN

|∇u|p + 1

2

(
1 − |u|2)2

.

By deg(u) we mean the degree of u “at infinity”, which is properly defined since by Morrey’s inequality (cf. [4,
Theorem 9.12]), for any map u ∈ W

1,p

loc (RN,RN) with
∫
RN |∇u|p < ∞ we have

u ∈ Cα
loc

(
R

2,R2), where α = 1 − N/p
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(except, perhaps, for a set of measure zero in R
2) and∣∣u(x) − u(y)

∣∣ � Cp,N‖∇u‖Lp(RN)|x − y|α, ∀x, y ∈R
N. (1)

In fact, according to the proof given in [4], one can select

Cp,N = 22−N/p

1 − N/p
. (2)

It then easily follows (see [1] for the case N = 2; the proof for any integer value of N > 2 is identical) that

lim|x|→∞
∣∣u(x)

∣∣ = 1. (3)

Consequently, u has a well-defined degree, deg(u), equal to the degree of the SN−1-valued map u
|u| on any large circle

{|z| = R}, R 
 1.
In what follows, we assume that N = 2 and, whenever appropriate, interpret R2-valued maps as complex-valued

functions of the variable z = x + iy. We will return to the case N � 3 at the end of the Introduction and present some
partial results for this case (Section 4).

For any d ∈ Z, let

Ip(d) = inf
{
Ep(u): u ∈ Ed

p

}
. (4)

It has been established in [1] that Ip(1) is attained for each p > 2 and N = 2. Denote by up a global minimizer
of Ep in E1

p . It is clear that Ep is invariant with respect to translations and rotations. However, it is still unknown
whether uniqueness of the minimizer up , modulo the above symmetries, is guaranteed. Such a uniqueness result
would imply that, up to a translation and a rotation, up must take the form f (r)eiθ (with r = |x|). Note that radial
symmetry of a nontrivial local minimizer in the case p = 2 was established by Mironescu in [7] (with a contribution
from Sandier [8]). One way of inquiring whether the global minimizer up is radially symmetric or not for p > 2, is
by looking at the limiting behavior of {up}p>2 as p → ∞, which is the focus of the present contribution. We have
already studied in [2] the behavior of minimizers in the class of radially symmetric functions when p is large and,
in addition, showed their local stability for 2 < p � 4. The results presented in this work seem to support the radial
symmetry conjecture (as in the case p = 2 [7]); indeed, in the limit p → ∞, we obtain the same asymptotic behavior
for up as in the case of radially symmetric minimizers [2].

In view of the translational and rotational invariance properties of Ep , we may assume for each p > 2 that

up(0) = 0 and up(1) ∈ [0,∞). (5)

Our first main result is the following

Theorem 1. For each p > 2, let up denote a minimizer of Ep in E1
p satisfying (5). Then, for a sequence pn → ∞, we

have upn → u∞ in Cloc(R
2) and weakly in

⋂
p>1 W

1,p

loc (R2,R2), where u∞ satisfies{
u∞(z) = z√

2
on B(0,

√
2 ) = {|z| < √

2 },∣∣u∞(z)
∣∣ = 1 on R2 \ B(0,

√
2 ).

(6)

Furthermore, the convergence |upn | → |u∞| is uniform on R
2.

Theorem 1 fails to identify the values in S1 that the map u∞ assumes on R
2 \ B(0,

√
2 ). A natural conjecture

appears to be that u∞(z) = z
|z| on R

2 \ B(0,
√

2 ), i.e., that u∞ = F where

F(z) =
⎧⎨
⎩

z√
2

on B(0,
√

2 ),

z
|z| on R

2 \ B(0,
√

2 ).
(7)

For simplicity, whenever appropriate, we will use the abbreviated notation up for upn . Our second main result
establishes explicit estimates for the rate of convergence of up to u∞ inside the disc B(0,

√
2 ).
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Theorem 2. Under the assumptions of Theorem 1, for every β < 1 and a <
√

2, there exists Cβ,a > 0 such that for all
p > 2,

‖up − u∞‖L∞(B(0,a)) �
Cβ,a

pβ/2
. (8)

Finally we consider the minimization of Ep in dimensions higher than 2. Although it is presently unknown whether
Ip(1) is attained for every p > N � 3, by using the same technique as in the proof of Theorem 1 we can show that the
minimizer of Ep exists for sufficiently large values of p:

Theorem 3. For every N � 3 there exists pN such that for every p > pN the minimum value Ip(1) of Ep is attained

in E1
p by some up ∈ W

1,p

loc (RN,RN).

In view of Theorem 3 it makes sense to investigate the asymptotic behavior of the set of minimizers {up}p>2 as p

tends to infinity for every N � 3. This is presented in the following

Theorem 4. For each p > pN , let up denote a minimizer of Ep in E1
p satisfying up(0) = 0. Then, for a sequence

pn → ∞, we have

upn → u∞ in Cloc
(
R

N
)

and weakly in
⋂
p>1

W
1,p

loc

(
R

N,RN
)
, (9)

where u∞ satisfies{
u∞(x) = U x√

N
on B(0,

√
N ),

|u∞(x)| = 1 on R
N \ B(0,

√
N ),

(10)

for some orthogonal N × N matrix U with det(U) = 1. We also have

‖∇u∞‖L∞(RN) = 1 (11)

and the convergence |up| → |u∞| is uniform on R
N .

Remark 1.1. We may alternatively state that (subsequences of) minimizers of Ep over E1
p satisfying u(0) = 0 converge

to a minimizer for the following problem:

inf

{ ∫
RN

(
1 − |u|2)2: u ∈ W 1,∞(

R
N,RN

)
, u(0) = 0, ‖∇u‖∞ � 1

}
. (12)

The latter result can, most probably, be appropriately formulated in terms of Γ -convergence. Theorem 4 shows that
the minimizers of (12) are given by the set of maps in W 1,∞(RN,RN) satisfying (10)–(11). The infinite size of this
set is the source of our difficulty in identifying the limit map u∞ outside the ball B(0,

√
N ). To confirm the natural

conjecture that u∞(x) = Ux
|x| for |x| > √

N , a more delicate analysis of the energies Ep(up) or of the Euler–Lagrange
equation satisfied by up is required. In fact, our present arguments can be used to prove the same convergence result
as in Theorem 4 not only for the minimizers {up}, but also for a sequence of “almost minimizers” {vp}, satisfying
Ep(vp) � Ip(1) + o(1) as p → ∞.

2. Proof of Theorem 1

We first recall the upper-bound for the energy that was proved in [2] using the test function Up(reiθ ) = fp(r)eiθ

with

fp(r) =

⎧⎪⎨
⎪⎩

1√
2
(1 − lnp

p
)r, r <

√
2

1− lnp
p

,

1, r �
√

2
1− lnp

p

.
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Lemma 2.1. We have

Ip(1) � π

3
+ C

lnp

p
, ∀p > 3. (13)

Remark 2.1. From (13) we clearly obtain that∫
R2

|∇up|p � C, ∀p > 3, (14)

where C is independent of p. While this estimate is sufficient for our purpose, it should be noted that one can derive
a more precise estimate∫

R2

|∇up|p = 2

p
Ip(1)� C

p
,

via a Pohozaev-type identity (see [1, Lemma 4.1]).

Our next lemma provides a key estimate that will lead to a lower-bound for Ip(1).

Lemma 2.2. Let ρ ∈ (0,1) be a regular value of up (which by Sard’s lemma holds for almost every ρ) and set

Aρ = {
z ∈R

2:
∣∣up(z)

∣∣ < ρ
}
. (15)

Then, for any component Vρ of Aρ with deg(u, ∂Vρ) = d , we have for large p∫
Vρ

(
1 − |up|2)2 � |d|

{
4π

(
ρ4

2
− ρ6

3

)
+ o(1)

}
, (16)

where o(1) denotes a quantity that tends to zero as p goes to infinity, uniformly for ρ ∈ (0,1).

Proof. Since ρ is a regular value of up , we can conclude from (3) that ∂Vρ is a finite union of closed and simple C1-
curves, and hence deg(u, ∂Vρ) is well-defined. Since the image of Vρ by uρ covers the disc B(0, ρ) (algebraically)
d times, it follows by Hölder’s inequality that

π |d|ρ2 =
∣∣∣∣
∫
Vρ

(up)x × (up)y

∣∣∣∣� 1

2

∫
Vρ

|∇up|2 � 1

2
μ(Vρ)

p−2
p

( ∫
Vρ

|∇up|p
) 2

p

, (17)

where μ denotes the Lebesgue measure in R
2, which, in turn, yields

μ(Vρ) � (2π |d|ρ2)
p

p−2

(
∫
Vρ

|∇up|p)
2

p−2

. (18)

From (18) and (14), we get

∫
Vρ

(
1 − |up|2)2 =

1∫
(1−ρ2)2

μ
({(

1 − |up|2)2
> t

} ∩ Vρ

)
dt

=
ρ∫

0

4r
(
1 − r2)μ(Ar ∩ Vρ)dr �

ρ∫
0

4r
(
1 − r2) (2π |d|r2)

p
p−2

(
∫
Vr

|∇up|p)
2

p−2

dr

� |d|
{ ρ∫

0

4r
(
1 − r2)(2πr2)dr + o(1)

}
= |d|

{
4π

(
ρ4

2
− ρ6

3

)
+ o(1)

}
. � (19)
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Corollary 2.1. There exist ρ0 ∈ ( 3
4 ,1),p0 and R0 such that for all p > p0 the set Aρ0 has a component Vρ0 ⊂ B(0,R0)

for which deg(u, ∂Vρ0) = 1 and |up| � 1
2 on R

2 \ Vρ0 .

Proof. Note that by (2) one can select uniformly bounded Cp,2 in (1) for p � 3. This fact, together with (14) implies
equicontinuity of the maps {up}p�3 on R2. Therefore, there exists λ > 0 such that

∣∣up(z0)
∣∣ � 1

2
⇒ ∣∣up(z)

∣∣ � 3

4
on B(z0, λ) ⇒

∫
B(z0,λ)

(
1 − |up|2)2 � ν := πλ2

(
7

16

)2

. (20)

Fix ρ0 ∈ ( 3
4 ,1) such that

4π

(
ρ4

0

2
− ρ6

0

3

)
> max

(
π

3
,

2π

3
− ν

)
. (21)

Let Vρ0 be a component of Aρ0 with deg(up, ∂Vρ0) �= 0 (we may assume w.l.o.g. that ρ0 is a regular value of up).
By (13), (16) and (21), it follows that there can be only one such component when p is sufficiently large (and thus
deg(up, ∂Vρ0) = 1). Moreover, by (20) and (21), on any other component of Aρ0 (if there is one) we must have
|up| > 1

2 .
It remains necessary to show that Vρ0 is embedded in a sufficiently large disc. Similarly to (20), there exists λ0 > 0

such that∣∣up(z0)
∣∣ � ρ0 ⇒ ∣∣up(z)

∣∣ � 1 + ρ0

2
on B(z0, λ0)

⇒
∫

B(z0,λ0)

(
1 − |up|2)2 � ν0 := πλ2

0

(
1 −

(
1 + ρ0

2

)2)2

. (22)

Since Vρ0 is connected and 0 ∈ Vρ0 , the set {|z|: z ∈ Vρ0} is the interval [0,R) for some positive R. For any integer
k for which 2kλ0 � R there exists a set of points {zj }k−1

j=0 ⊂ Vρ0 with |zj | = 2jλ0. By (22) and (13) we have for
sufficiently large p that

kν0 �
k−1∑
j=0

∫
B(zj ,λ0)

(
1 − |up|2)2

< c0 := 2π

3
+ 1.

It follows that R is bounded from above by R0 := 2λ0(
c0
ν0

+ 1). �
In order to complete the proof of Theorem 1 we need to establish the convergence of {upn}∞n=1 to u∞ and to identify

the limit. We begin with the following lemma

Lemma 2.3. For a sequence pn → ∞ we have

lim
n→∞upn = u∞ in Cloc

(
R

2) and weakly in
⋂
p>1

W
1,p

loc

(
R

2,R2). (23)

Furthermore, the limit map u∞ is a degree-one map in W 1,∞(R2,R2) satisfying also (5) and

‖∇u∞‖∞ � 1. (24)

Proof. Fix any q > 3. Since ‖up‖L∞ � 1 (see [1]), we have by (13) on each disc B(0,m), m� 1, that

‖up‖W 1,q (B(0,m)) � Cm, p > q.

It follows that for all m � 1, there exists a sequence pn ↑ ∞, such that {upn} converges weakly in W 1,q (B(0,m)) to a
limit u∞. By Morrey’s theorem, the convergence holds in C(B(0,m)) as well. Since the latter is true for every m � 1
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and every q > 3, we may apply a diagonal subsequence argument to find a subsequence satisfying (23). The fact that
u∞ has degree one too follows from (23) and Corollary 2.1.

Finally, in order to prove (24), it suffices to note that for any disc B ⊂ R
2, λ > 1 and q > 1, we have by (14) and

the weak lower semicontinuity of the Lq -norm,

λqμ
({|∇u∞| > λ

} ∩ B
)
�

∫
B

|∇u∞|q � lim inf
p→∞

∫
B

|∇up|q � lim inf
p→∞ μ(B)1−q/p

(∫
B

|∇up|p
)q/p

� μ(B). (25)

Letting q tend to ∞ in (25) yields μ({|∇u∞| > λ} ∩ B) = 0. The conclusion (24) follows since the disc B and λ > 1
are arbitrary. �

A similar argument to the one used in the proof of Lemma 2.2 yields

Proposition 1.

lim
p→∞

1

2

∫
R2

(
1 − |up|2)2 = lim

p→∞ Ip(1) = π

3
= 1

2

∫
R2

(
1 − |F |2)2

,

where F is as defined in (7).

Proof. As in (18) we have

μ(Aρ) � (2πρ2)
p

p−2

(
∫
Aρ

|∇up|p)
2

p−2

. (26)

Therefore,

∫
R2

(
1 − |up|2)2 =

1∫
0

μ
((

1 − |up|2)2
> t

)
dt

=
1∫

0

4ρ
(
1 − ρ2)μ(Aρ)dρ �

1∫
0

4ρ
(
1 − ρ2) (2πρ2)

p
p−2

(
∫
Aρ

|∇up|p)
2

p−2

dρ. (27)

Since
∫
Aρ

|∇up|p � Ip(1) � C, taking the limit inferior of both sides of (27) yields, with the aid of (7)

lim inf
p→∞

∫
R2

(
1 − |up|2)2 �

1∫
0

4ρ
(
1 − ρ2)(lim inf

p→∞
(
2πρ2) p

p−2
)

dρ

=
1∫

0

4ρ
(
1 − ρ2)μ(|F | < ρ

)
dρ =

∫
R2

(
1 − |F |2)2 = 2π

3
, (28)

and the proposition follows by combining (28) with (13). �
Remark 2.2. In fact, for any d we have limp→∞ Ip(d) = |d|π

3 (see Proposition 2 in Section 4).

We can now complete the proof of Theorem 1.

Proof of Theorem 1. For each ρ ∈ (0,1], let Dρ = {z ∈ R2: |u∞(z)| < ρ}. Using arguments similar to those used to
establish Proposition 1, we obtain
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∫
R2

(
1 − |u∞|2)2 =

1∫
0

μ
((

1 − |u∞|2)2
> t

)
dt =

1∫
0

4ρ
(
1 − ρ2)μ(Dρ)dρ. (29)

Since deg(u∞) = 1 by Lemma 2.3, using (24) yields

πρ2 �
∣∣∣∣
∫
Dρ

(u∞)x × (u∞)y

∣∣∣∣�
∫
Dρ

∣∣(u∞)x × (u∞)y
∣∣� 1

2

∫
Dρ

|∇u∞|2 � 1

2
μ(Dρ). (30)

From (29)–(30) it follows that

∫
R2

(
1 − |u∞|2)2 �

1∫
0

8πρ
(
1 − ρ2)ρ2 dρ = 2π

3
. (31)

On the other hand, by Lemma 2.3 and Proposition 1, for every R > 0∫
B(0,R)

(
1 − |u∞|2)2 = lim

n→∞

∫
B(0,R)

(
1 − |upn |2

)2 � 2π

3
,

which together with (31) implies that∫
R2

(
1 − |u∞|2)2 = 2π

3
. (32)

Therefore, for any ρ ∈ (0,1), pointwise equalities between the integrands in (30) must hold almost everywhere in Dρ .
It follows that{

(u∞)x ⊥ (u∞)y,
∣∣(u∞)x

∣∣ = ∣∣(u∞)y
∣∣ and

∣∣(u∞)x
∣∣2 + ∣∣(u∞)y

∣∣2 = 1,

sign
{
(u∞)x × (u∞)y

} ≡ σ ∈ {−1,1},
(33)

a.e. in D1. From (33) we conclude that u∞ is a conformal map a.e. in D1 (it cannot be anti-conformal because
deg(u∞) = 1) with |∇u∞| ≡ 1. Hence, u∞ must be of the form u∞(z) = az+b with |a| = 1√

2
. Since u∞ satisfies (5),

we finally conclude that (6) holds.
Finally, to prove that |up| → |u∞| uniformly on R

2 assume, on the contrary, that for some ρ0 < 1 there exists a
sequence {zn}∞n=1 with |zn| → ∞ such that |upn(zn)| � ρ0 for all n. But then using (22) we are led immediately to a
contradiction with Proposition 1 since we have already established that

lim
n→∞

∫
R2

(
1 − |upn |2

)2 = lim
n→∞

∫
B(0,

√
2 )

(
1 − |upn |2

)2 = 2π

3
. �

3. Proof of Theorem 2

Let

∂

∂z

def= 1

2

(
∂

∂x
− i

∂

∂y

)
; ∂

∂z̄

def= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

We begin with a simple lemma that establishes the existence of an approximate holomorphic map for a given map u

such that the L2-norm of ∂u
∂z̄

is “small”. To this end we introduce some additional notation. For a function f ∈ L1(Ω)

we denote by fΩ its average value over Ω , i.e.,

fΩ = 1

μ(Ω)

∫
Ω

f.

We further set ∇⊥u = (uy,−ux).
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Lemma 3.1. Let Ω be a bounded, simply connected domain in R
2 with ∂Ω ∈ C1. Let u = ur + iui ∈ H 1(Ω,C) satisfy∫

Ω

|∇u + i∇⊥u|2 � ε2, (34)

for some ε > 0. Then, there exists v which is holomorphic in Ω and such that vΩ = uΩ ,∫
Ω

∣∣∇(u − v)
∣∣2 � 4ε2 (35)

and ∫
Ω

|∇u|2 =
∫
Ω

|∇v|2 +
∫
Ω

∣∣∇(u − v)
∣∣2

. (36)

Proof. Consider the Hilbert space H = {U ∈ H 1(Ω,C): UΩ = 0} with the norm ‖U‖2
H = ∫

Ω
|∇U |2 and its closed

subspace K = {V ∈ H: V is holomorphic in Ω}. Let v = V + uΩ where V ∈ K is the nearest point projection of
u − uΩ ∈ H on K. Clearly v satisfies (36). To prove (35), it is sufficient, in view of the definition of v, to construct a
single function ṽ ∈ H 1(Ω,C), which is holomorphic in Ω , and satisfies∫

Ω

∣∣∇(u − ṽ)
∣∣2 � 4ε2. (37)

Set ṽ = ṽr + iṽi where ṽr ∈ H 1
0 (Ω,C) + ur is harmonic and ṽi is the conjugate harmonic function to ṽr satisfying

(ṽi)Ω = (ui)Ω . Let φ ∈ C∞
0 (Ω,C). Clearly,∫

Ω

∇φ̄ · ∇⊥w = 0, ∀w ∈ H 1(Ω,C), (38)

and since ṽ is harmonic, we have∫
Ω

∇φ̄ · ∇ṽ = 0. (39)

By density of C∞
0 (Ω,C) in H 1

0 (Ω,C), (38)–(39) hold for every φ ∈ H 1
0 (Ω,C). In particular, employing the identity

∇ṽ + i∇⊥ṽ = 0, (40)

and using (38) we obtain for φ = ur − ṽr that

∥∥∇(ur − ṽr )
∥∥2

2 = �
∫
Ω

∇(ur − ṽr ) · ∇(u − ṽ) = �
∫
Ω

∇(ur − ṽr ) · {∇(u − ṽ) + i∇⊥(u − ṽ)
}

= �
∫
Ω

∇(ur − ṽr ) · (∇u + i∇⊥u) �
∥∥∇(ur − ṽr )

∥∥
2

∥∥∇u + i∇⊥u
∥∥

2. (41)

Hence, by (34) and (41),∥∥∇(ur − ṽr )
∥∥

2 � ε. (42)

Set w = u − ṽ. By (34) and (40)

‖∇w + i∇⊥w‖2 � ε. (43)

However, as wr is real we have by (42)

‖∇wr + i∇⊥wr‖2 = √
2‖∇wr‖2 �

√
2ε. (44)
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Since

∇w + i∇⊥w = ∇wr + i∇⊥wr + i(∇wi + i∇⊥wi),

we get from (43)–(44) that

‖∇wi‖2 = 1√
2
‖∇wi + i∇⊥wi‖2 �

1√
2

(‖∇w + i∇⊥w‖2 + ‖∇wr + i∇⊥wr‖2
)
�

(
1 + 1√

2

)
ε,

which together with (42) clearly implies (37) �
By Poincaré inequality and (35) we immediately deduce:

Corollary 3.1. Let v be given by Lemma 3.1. Then,

‖u − v‖H 1(Ω) � Cε, (45)

where C depends only on Ω .

Lemma 3.2. Let f be holomorphic in Ω ⊂R
2. Suppose that for every disc B(x0, s) ⊂ Ω we have∫

B(x0,s)

(|f |2 − 1
)
� ε, (46)

for some ε > 0. Then,

‖f ‖2
L∞(Ωs)

� 1 + ε

μ(B(x0, s))
,

where

Ωs = {
x ∈ Ω

∣∣ d(x, ∂Ω) > s
}
.

Proof. As f is holomorphic, |f |2 is subharmonic. By the mean value principle we obtain for any x0 ∈ Ωs∣∣f (x0)
∣∣2 � 1

μ(B(x0, s))

∫
B(x0,s)

|f |2 = 1 + 1

μ(B(x0, s))

∫
B(x0,s)

(|f |2 − 1
)
, (47)

from which the lemma easily follows. �
Lemma 3.3. Let f be holomorphic in BR = B(0,R) ⊂R

2. Suppose that∫
BR

(
1 − |f |2)� ε, (48)

for some ε > 0. Suppose further that

‖f ‖2
L∞(BR) � 1 + ε. (49)

Then, there exist α ∈ [−π,π) and C > 0, depending only on R, such that∣∣f (x) − eiα
∣∣� C

ε

d2
x

, x ∈ BR, (50)

where dx = R − |x|.

Proof. By (48)–(49),∫ ∣∣|f |2 − 1 − ε
∣∣ =

∫ (
1 − |f |2) + πR2ε � Cε,
BR BR
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hence,∫
BR

∣∣|f |2 − 1
∣∣� Cε (51)

(we denote by C and c different constants, depending on R only). Since the function ||f |2 − 1| is subharmonic, we
deduce from (51) that for every x ∈ BR ,

∣∣∣∣f (x)
∣∣2 − 1

∣∣� 1

πd2
x

∫
B(x,dx)

∣∣|f |2 − 1
∣∣� cε

d2
x

. (52)

It follows in particular that

∣∣f (x)
∣∣2 � 1

2
, |x| � R − √

2cε. (53)

In B(0,R − √
2cε ) we may write then f = eU+iV , where V is the conjugate harmonic function of U that satisfies

V (0) ∈ [−π,π). By (52) we have

∣∣U(x)
∣∣ � Cε

d2
x

, |x| �R − √
2cε. (54)

From (54) we get an interior estimate for the derivatives of U (see (2.31) in [5]):

∣∣∇U(x)
∣∣� C

ε

d3
x

, |x| � R − √
4cε. (55)

Note that by the Cauchy–Riemann equations, (55) holds for V as well, i.e.,

∣∣∇V (x)
∣∣ � C

ε

d3
x

, |x| � R − √
4cε. (56)

For any x ∈ B(0,R − √
4cε ) \ {0} we obtain, using (56), the estimate

∣∣V (x) − V (0)
∣∣ �

R∫
dx

∣∣∣∣∇V

(
(R − s)

x

|x|
)∣∣∣∣ds � Cε

R∫
dx

ds

s3
� Cε

d2
x

. (57)

Therefore, setting α = V (0) and using (54) and (57), we obtain for every x ∈ B(0,R − √
4cε ) that

∣∣f (x) − eiα
∣∣� ∣∣f (x) − eiV (x)

∣∣ + ∣∣eiV (x) − eiV (0)
∣∣� ∣∣eU(x) − 1

∣∣ + ∣∣V (x) − V (0)
∣∣ � Cε

d2
x

.

For x ∈ BR \B(0,R −√
4cε ), i.e., when dx �

√
4cε, we have clearly |f (x)− eiα| � 2+ ε, so choosing C big enough

yields (50) for all x ∈ BR . �
Let Aρ be defined in (15). The following lemma lists some of its properties.

Lemma 3.4. There exist p0 > 2 and C > 0 such that for all p > p0 and ρ > 1
2 we have

μ(Aρ) � 2πρ2
(

1 − C

p

)
, (58a)

1∫
0

ρ
(
1 − ρ2)∣∣μ(Aρ) − 2πρ2

∣∣dρ � C
lnp

p
. (58b)
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Proof. The estimate (58a) follows directly from (26) and (14). Since by (58a)

μ(Aρ) �
∣∣μ(Aρ) − 2πρ2

∣∣ + 2πρ2 − C

p
,

we obtain using (27) that

Ip(1) �
1∫

0

2ρ
(
1 − ρ2)μ(Aρ)dρ �

1∫
0

2ρ
(
1 − ρ2)∣∣μ(Aρ) − 2πρ2

∣∣dρ + π

3
− C

p
.

Combining the above with (13) yields (58b). �
Lemma 3.5. Let lnp/p � δp < 1/4. There exists 1 − 2δp < ρ < 1 − δp , such that for all p > p0∫

Aρ

|∇up + i∇⊥up|2 � Cδ−2
p

lnp

p
. (59)

Proof. By (58b) there exists 1 − 2δp < ρ < 1 − δp such that

∣∣μ(Aρ) − 2πρ2
∣∣� Cδ−2

p

lnp

p
. (60)

Applying (60) yields

1

4

∫
Aρ

|∇up + i∇⊥up|2 =
∫
Aρ

[
1

2
|∇up|2 − (up)x × (up)y

]

=
∫
Aρ

1

2
|∇up|2 − πρ2 � 1

2

(∫
Aρ

|∇up|p
)2/p

μ(Aρ)1−2/p − πρ2

� 1

2

(
1 + C

p

)(
2πρ2 + Cδ−2

p

lnp

p

)1−2/p

− πρ2 � C

δ2
p

lnp

p
. � (61)

Proof of Theorem 2. Set η =
√

2−a
10 and then

bj = a + jη, j = 1, . . . ,9.

Let ρ be given by Lemma 3.5 for δp = η/
√

2, so that ρ ∈ (b8/
√

2, b9/
√

2 ). We can also assume without loss of
generality that ρ is a regular value for |up|. By Theorem 1 we have for sufficiently large p,

B(0, b8) ⊂ Aρ ⊂ B(0, b9). (62)

By (62) and Lemma 3.5 we have∫
B(0,b8)

|∇up + i∇⊥up|2 �
∫
Aρ

|∇up + i∇⊥up|2 � C

(a − √
2)2

lnp

p
= Ca

lnp

p
.

Applying Corollary 3.1 yields the existence of a holomorphic function vp in B(0, b8) such that (vp)B(0,b8) =
(up)B(0,b8) and such that (36) holds with u = up, v = vp and

‖up − vp‖2
H 1(B(0,b8))

� Ca

lnp

p
. (63)

We denote wp(z) = √
2v′

p(z) (where v′
p = ∂vp

∂z
is the derivative of the holomorphic map vp) and note that |wp(z)| =

|∇vp(z)|. As a is kept fixed, we suppress in the sequel the dependence of the constants on a.
For any ball B ⊂ B(0, b8) we apply the same estimates as in (17),
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∫
B

|∇up|2 − 1 �
( ∫

B(0,b8)

|∇up|p
)2/p

μ(B)1−2/p − μ(B) � (1 + C/p)
(
μ(B)

)1−2/p − μ(B) � C

p
.

Combining the above with (36) yields∫
B

(|wp|2 − 1
) =

∫
B

(|∇vp|2 − 1
)
�

∫
B

|∇up|2 − 1 � C

p
, ∀B ⊂ B(0, b8).

By Lemma 3.2 it then follows that

‖wp‖2
L∞(B(0,b7))

� 1 + C1

p
. (64)

Next, we apply Lemma 3.5 again, this time with δp = 3η/
√

2, to find a corresponding ρ̃ ∈ (b4/
√

2, b7/
√

2 ). For
p large we have B(0, b4) ⊂ Aρ̃ ⊂ B(0, b7). Arguing as in (17) we obtain, using (60),∫

Aρ̃

|∇up|2 − 1 � 2
∫
Aρ̃

(up)x × (up)y − μ(Aρ̃) � 2πρ̃2 − μ(Aρ̃)� −C
lnp

p
.

By (36), once again, we have that∫
Aρ̃

(|wp|2 − 1
)
�−C

lnp

p
. (65)

Next, we apply the same argument as the one used in the beginning of the proof of Lemma 3.3 to obtain, using (64)
and (65),∫

Aρ̃

∣∣∣∣|wp|2 − 1 − C1

p

∣∣∣∣ =
∫
Aρ̃

(
1 − C1

p
− |wp|2

)
� C

lnp

p
.

Hence, also∫
B(0,b4)

∣∣|wp|2 − 1
∣∣� ∫

Aρ̃

∣∣|wp|2 − 1
∣∣� C

lnp

p
. (66)

We can now use (64) and (66) and apply Lemma 3.3 to obtain the existence of αp ∈ [−π,π) such that

∣∣wp(z) − eiαp
∣∣ � C

lnp

p
, z ∈ B(0, a). (67)

Consequently, there exists a constant γp such that

∣∣√2vp(z) − eiαpz − γp

∣∣� C
lnp

p
, z ∈ B(0, a). (68)

Set

U = up − vp.

For every q > 2 we have for p > q , by (63), (68), and the fact that |up|� 1,

‖U‖q

Lq(B(0,a)) � ‖U‖q−2
L∞(B(0,a))‖U‖2

L2(B(0,a))
� C

(
lnp

p

)
.

Furthermore, by Hölder’s inequality, (67), (63) and (13) we have that

‖∇U‖q

Lq(B(0,a)) � ‖∇U‖2 p−q
p−2

L2(B(0,a))
‖∇U‖p

q−2
p−2

Lp(B(0,a)) � C

(
lnp

) p−q
p−2

.

p



Y. Almog et al. / Ann. I. H. Poincaré – AN 30 (2013) 1159–1174 1171
Consequently, for each fixed q > 2 we have

‖U‖W 1,q (B(0,a)) � C

(
lnp

p

) p−q
q(p−2)

. (69)

By Sobolev embedding the bound in (69) holds also for ‖U‖L∞(B(0,a)) and, in particular, we get that for every 0 <

β < 1,

‖U‖L∞(B(0,a)) � Cβp−β/2. (70)

Combining (70) and (68) we obtain that∣∣√2up(z) − eiαpz − γp

∣∣� Cβp−β/2, z ∈ B(0, a).

As up(0) = 0, it immediately follows that |γp| � Cβp−β/2, and hence∣∣√2up(z) − eiαpz
∣∣ � Cβp−β/2, z ∈ B(0, a). (71)

Substituting z = 1 into (71) we obtain using (5) that |αp|� Cβp−β/2 and (8) follows. �
4. The problem in dimension N � 3

This section is mainly devoted to the proofs of Theorem 3 and Theorem 4. We begin with the computation of
limp→∞ Ip(d). Denote by ωN the volume of the unit ball in R

N . It turns out that the constant

τN := 4ωN

(N + 2)(N + 4)
NN/2 (72)

generalizes the constant π
3 in (13) for dimensions higher than N = 2.

Proposition 2. We have

lim
p→∞ Ip(d) = |d|τN . (73)

Proof. (i) First we establish an upper bound. When d = 1, following a construction similar to the one used in the
proof of Lemma 2.1, we define a map Up by

Up(x) =
{ x

rp
, |x| < rp,

x
|x| , |x| � rp,

(74)

with rp :=
√

N

1− lnp
p

. A direct computation shows that for p �N + 1 we have

Ep(Up) � 1

2

∫
B(0,rp)

(
1 − |Up|2)2 + C

lnp

p
= 1

2

√
N∫

0

(
1 − r2

N

)2

NωNrN−1 dr + C
lnp

p

= 4ωN

(N + 2)(N + 4)
NN/2 + C

lnp

p
. (75)

Next we turn to the case d > 1. Fix d distinct points q1, . . . , qd in R
N with

δ := 1

4
min

{|qi − qj |: i �= j
}

> 4
√

N.

Fix K satisfying

K > max |qj | + 4δ,

1�j�d
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and set Ω = B(0,K) \ ⋃d
j=1 B(qj , δ). Fix a smooth map V : Ω → SN−1 satisfying

V (x) = x − qj

|x − qj | on ∂B(qj , δ), j = 1, . . . , d.

Let M = ‖∇V ‖L∞(Ω) and fix R > M
√

N − 1. We finally define

Wp(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Up(x − Rqj ), x ∈ B(Rqj , rp), j = 1, . . . , d,

x−Rqj

|x−Rqj | , x ∈ B(Rqj ,Rδ) \ B(Rqj , rp), j = 1, . . . , d,

V (x/R), x ∈ RΩ,

V (K x
|x| ), x ∈R

N \ B(0,RK).

By our construction ‖∇Wp‖
L∞(RN\⋃d

j=1 B(qj ,rp))
� γ < 1, and hence, it follows from (75) that

Ep(Wp) � dτN + o(1), (76)

which is the desired upper bound.
(ii) We next obtain a lower bound. Assume that d � 1 and let u denote a map in Ed

p . We attempt to prove that

Ep(u) � dτN + o(1) as p → ∞, (77)

where o(1) is a quantity that goes to zero when p goes to infinity (i.e., it is independent of u). We establish (77) for
u ∈ C∞(RN,RN). The proof for any u ∈ Ed

p then follows by density. Furthermore, in view of (76), we may suppose
that

Ep(u) � dτN + 1. (78)

We continue to argue as in the proof of Lemma 2.2. Given a regular value ρ ∈ (0,1) of u, let Vρ denote a component
or a finite union of components of Aρ = {x ∈RN : |u(x)| < ρ} with deg(u, ∂Vρ) = D. We claim that∫

Vρ

(
1 − |u|2)2 � |D|

{
4ωNNN/2

(
ρN+2

N + 2
− ρN+4

N + 4

)
+ o(1)

}
, (79)

as p → ∞, where the decay of the o(1) term is uniform on ρ ∈ (0,1). To obtain the generalization of (17) to any N ,
we use Hadamard’s inequality and the inequality of arithmetic and geometric means (see [3] for both inequalities) as
follows:

|D|ωNρN =
∣∣∣∣
∫
Vρ

det(∇u)

∣∣∣∣ �
∫
Vρ

N∏
j=1

∣∣∣∣ ∂u

∂xj

∣∣∣∣� 1

NN/2

∫
Vρ

|∇u|N � 1

NN/2
μ(Vρ)

p−N
p

( ∫
Vρ

|∇u|p
)N

p

. (80)

From (80) we get a lower bound for μ(Vρ) which yields (79) by the same argument as in (19) (thanks to (78) we have
a bound for

∫
Vρ

|∇u|p). Finally we apply (79) with Vρ = Aρ (so that D = d) and let ρ ↑ 1− to obtain (77). �
We next prove Theorem 3, or the existence of a minimizer in (4) for sufficiently large values of p (we emphasize

that for N = 2 this existence has been established in [1] for any p > 2, hence we expect it to hold for any p > N when
N � 3).

Proof of Theorem 3. For any fixed p � N + 1 consider a minimizing sequence {vn} ⊂ E1. We may assume that these
maps are smooth, satisfy vn(0) = 0 and thanks to (77) that

Ep(vn)� Ip(1) + 1

n
� C, ∀n. (81)

Combined together, (81) and Morrey’s inequality (1) imply equicontinuity of the sequence {vn}. Hence we can repeat
with slight modifications (e.g., using (79) instead of (16)) the arguments of Corollary 2.1 to arrive at an analogous
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conclusion: there exist ρ0 ∈ ( 3
4 ,1) as well as pN > N +1 and R0 such that for all p > pN the set A

(n)
ρ0 := {|vn(x)| < ρ}

has a component V
(n)
ρ0 ⊂ B(0,R0) for which

deg
(
vn, ∂V (n)

ρ0

) = 1 and |vn| � 1

2
on R

2 \ V (n)
ρ0

. (82)

Next, for p > pN , let {vnk
}∞k=1 be a subsequence of the minimizing sequence {vn} that converges weakly in W

1,p

loc and
strongly in Cloc to a limit v. Since |v(x)| � 1

2 for |x|� R0 by (82) we conclude that v ∈ E1. By lower semicontinuity

Ep(v) � lim inf
n→∞ Ep(vn) = Ip(1)

and hence, v is the desired minimizer. �
We conclude this section with the proof of Theorem 4.

Proof of Theorem 4. The arguments we use here are similar in nature to those employed in the proofs of Lemma 2.3
and Theorem 1. We first extract a bounded subsequence {upn} in W 1,q (B(0,m)) for some q > N + 1 and any fixed
integer m. Passing to a subsequence, we may assume that the subsequence converges weakly in W 1,q (B(0,m)) and
strongly in C(B(0,m)) to a limit u∞. Repeating the process for each m and different values of q and passing then to a
diagonal subsequence yields a subsequence satisfying (9). The estimates (77) and (1)–(2) imply equicontinuity of the
maps {upn} on R

N . This implies, in conjunction with (73), as in the proof of Corollary 2.1 and Theorem 3, that there

exist ρ0, R0 and a component V
(n)
ρ0 of A

(n)
ρ0 = {|upn(x)| < ρ0}, such that the analog of (82) holds for upn , namely

deg
(
upn, ∂V (n)

ρ0

) = 1 and |upn | �
1

2
on R

2 \ V (n)
ρ0

.

It follows that the degree of the limit u∞ equals to one as claimed. In addition the inequality

‖∇u∞‖L∞(RN) � 1 (83)

follows by an argument identical to the one used in the proof of (24).
Next, we attempt to obtain the explicit formulae in (10). As in the proof of Theorem 1 we denote by Dρ the domain

Dρ = {
x ∈R

N :
∣∣u∞(x)

∣∣ < ρ
} ∀ρ ∈ (0,1].

As in (29), we have

∫
RN

(
1 − |u∞|2)2 =

1∫
0

μ
((

1 − |u∞|2)2
> t

)
dt =

1∫
0

4ρ
(
1 − ρ2)μ(Dρ)dρ. (84)

Since deg(u∞) = 1, using (83), Hadamard’s inequality, and the AM-GM inequality as in (80) yields

ωNρN �
∣∣∣∣
∫
Dρ

det(∇u∞)

∣∣∣∣ �
∫
Dρ

∣∣det(∇u∞)
∣∣ � ∫

Dρ

N∏
j=1

∣∣∣∣∂u∞
∂xj

∣∣∣∣� 1

NN/2

∫
Dρ

|∇u∞|N � 1

NN/2
μ(Dρ), (85)

and hence,

μ(Dρ) � NN/2ωNρN. (86)

On the other hand, the same argument as in the proof of Theorem 1 gives

∫
RN

(
1 − |u∞|2)2 = lim

n→∞

∫
RN

(
1 − |upn |2

)2 = 2τN =
1∫

0

4ρ
(
1 − ρ2)NN/2ωNρN dρ. (87)

Combining (84) with (86)–(87) implies that

μ(Dρ) = NN/2ωNρN, ρ < 1.
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Thus equalities must hold between all integrals in (85), and hence also, almost everywhere, between the integrands.
Consequently, the rows of the Jacobian matrix ∇u∞ are orthogonal to each other a.e. in D1, and each row has norm
equal to

√
N and the sign of det(∇u∞) must be constant (and hence positive because the degree of u∞ is equal to 1).

In particular we deduce that u∞ is conformal in the sense that it is a weak solution of the Cauchy–Riemann system in
D1 as defined in [6, Chapter 5]. Namely, u∞ ∈ W

1,N
loc (D1,R

N) (in our case it belongs even to W 1,∞), det(∇u∞) has
constant sign in D1 and

(∇u∞)T ∇u∞ = (
det(∇u∞)

)2/N 1 a.e. in D1. (88)

The generalization of Liouville’s theorem for this case (see [6, Chapter 5]) implies that u∞ must be a “Mobius map”,
i.e., of the form

u∞(x) = b + αU(x − a)

|x − a|ε (89)

for some b ∈ R
N , α ∈ R, a ∈ R

N \ D1, U an orthogonal matrix and ε is either 0 or 2. However, since in our case we
already know that∣∣∇u∞(x)

∣∣ = 1 a.e. in D1, (90)

it follows that ε = 0 in (89). Using the fact that u∞(0) = 0 and det(∇u∞) > 0 in conjunction with (90), leads to (10).
From (90) we conclude that the inequality in (83) is, in fact, an equality and (11) readily follows. Finally, the uniform
convergence of |up| follows as in the case N = 2. �
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