

Available online at www.sciencedirect.com

[Ann. I. H. Poincaré – AN 30 \(2013\) 1159–1174](http://dx.doi.org/10.1016/j.anihpc.2012.12.013)

www.elsevier.com/locate/anihpc

On the limit $p \to \infty$ of global minimizers for a *p*-Ginzburg–Landau-type energy

Yaniv Almog^{a,∗}, Leonid Berlyand^b, Dmitry Golovaty^c, Itai Shafrir^d

^a *Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA*

^b *Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA*

^c *Department of Theoretical and Applied Mathematics, The University of Akron, Akron, OH 44325, USA* ^d *Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel*

Received 18 July 2012; received in revised form 27 November 2012; accepted 7 December 2012

Available online 21 January 2013

Abstract

We study the limit $p \to \infty$ of global minimizers for a *p*-Ginzburg–Landau-type energy

$$
E_p(u) = \int_{\mathbb{R}^2} |\nabla u|^p + \frac{1}{2} (1 - |u|^2)^2.
$$

The minimization is carried over maps on \mathbb{R}^2 that vanish at the origin and are of degree one at infinity. We prove locally uniform The minimization is carried over maps on \mathbb{R}^2 that vanish at the origin and are of degree one at infinity. We prove locally uniform convergence of the minimizers on \mathbb{R}^2 and obtain an explicit formula for the $N \geqslant 3$ are presented as well.

© 2013 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

For any $d \in \mathbb{Z}$, $N \geq 2$ and $p > N$ consider the class of maps

$$
\mathcal{E}_p^d = \{ u \in W_{loc}^{1,p}(\mathbb{R}^N, \mathbb{R}^N) : E_p(u) < \infty, \text{ deg}(u) = d \},
$$

where

$$
E_p(u) = \int_{\mathbb{R}^N} |\nabla u|^p + \frac{1}{2} (1 - |u|^2)^2.
$$

By deg (u) we mean the degree of *u* "at infinity", which is properly defined since by Morrey's inequality (cf. $[4, 1]$ $[4, 1]$ [Theorem 9.12\]\)](#page-15-0), for any map $u \in W_{loc}^{1,p}(\mathbb{R}^N, \mathbb{R}^N)$ with $\int_{\mathbb{R}^N} |\nabla u|^p < \infty$ we have

$$
u \in C_{loc}^{\alpha}(\mathbb{R}^2, \mathbb{R}^2)
$$
, where $\alpha = 1 - N/p$

Corresponding author.

E-mail address: almog@math.lsu.edu (Y. Almog).

^{0294-1449/\$ –} see front matter © 2013 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.<http://dx.doi.org/10.1016/j.anihpc.2012.12.013>

(except, perhaps, for a set of measure zero in \mathbb{R}^2) and

$$
|u(x) - u(y)| \leqslant C_{p,N} \|\nabla u\|_{L^p(\mathbb{R}^N)} |x - y|^{\alpha}, \quad \forall x, y \in \mathbb{R}^N.
$$
\n⁽¹⁾

In fact, according to the proof given in $[4]$, one can select

$$
C_{p,N} = \frac{2^{2-N/p}}{1 - N/p}.
$$
 (2)

It then easily follows (see [\[1\]](#page-15-0) for the case $N = 2$; the proof for any integer value of $N > 2$ is identical) that

$$
\lim_{|x| \to \infty} |u(x)| = 1.
$$
\n(3)

Consequently, *u* has a well-defined degree, deg(*u*), equal to the degree of the S^{N-1} -valued map $\frac{u}{|u|}$ on any large circle ${|z| = R}, R \gg 1.$

In what follows, we assume that $N = 2$ and, whenever appropriate, interpret \mathbb{R}^2 -valued maps as complex-valued functions of the variable $z = x + iy$. We will return to the case $N \ge 3$ at the end of the Introduction and present some partial results for this case (Section [4\)](#page-12-0).

For any $d \in \mathbb{Z}$, let

$$
I_p(d) = \inf \{ E_p(u): u \in \mathcal{E}_p^d \}. \tag{4}
$$

It has been established in [\[1\]](#page-15-0) that $I_p(1)$ is attained for each $p > 2$ and $N = 2$. Denote by u_p a global minimizer of E_p in \mathcal{E}_p^1 . It is clear that E_p is invariant with respect to translations and rotations. However, it is still unknown whether *uniqueness* of the minimizer u_p , modulo the above symmetries, is guaranteed. Such a uniqueness result would imply that, up to a translation and a rotation, u_p must take the form $f(r)e^{i\theta}$ (with $r = |x|$). Note that radial symmetry of a nontrivial *local minimizer* in the case $p = 2$ was established by Mironescu in [\[7\]](#page-15-0) (with a contribution from Sandier [\[8\]\)](#page-15-0). One way of inquiring whether the global minimizer u_p is radially symmetric or not for $p > 2$, is by looking at the limiting behavior of ${u_p}_{p>2}$ as $p \to \infty$, which is the focus of the present contribution. We have already studied in [\[2\]](#page-15-0) the behavior of minimizers in the class of radially symmetric functions when *p* is large and, in addition, showed their local stability for $2 < p \leq 4$. The results presented in this work seem to support the radial symmetry conjecture (as in the case $p = 2$ [\[7\]\)](#page-15-0); indeed, in the limit $p \to \infty$, we obtain the same asymptotic behavior for u_p as in the case of radially symmetric minimizers [\[2\].](#page-15-0)

In view of the translational and rotational invariance properties of E_p , we may assume for each $p > 2$ that

$$
u_p(0) = 0
$$
 and $u_p(1) \in [0, \infty)$. (5)

Our first main result is the following

Theorem 1. For each $p > 2$, let u_p denote a minimizer of E_p in \mathcal{E}_p^1 satisfying (5). Then, for a sequence $p_n \to \infty$, we *have* $u_{p_n} \to u_\infty$ *in* $C_{loc}(\mathbb{R}^2)$ *and weakly in* $\bigcap_{p>1} W^{1,p}_{loc}(\mathbb{R}^2, \mathbb{R}^2)$ *, where* u_∞ *satisfies*

$$
\begin{cases} u_{\infty}(z) = \frac{z}{\sqrt{2}} & \text{on } B(0, \sqrt{2}) = \{|z| < \sqrt{2}\}, \\ |u_{\infty}(z)| = 1 & \text{on } \mathbb{R}^2 \setminus B(0, \sqrt{2}). \end{cases} \tag{6}
$$

Furthermore, the convergence $|u_{p_n}| \to |u_{\infty}|$ *is uniform on* \mathbb{R}^2 *.*

Theorem 1 fails to identify the values in S^1 that the map u_{∞} assumes on $\mathbb{R}^2 \setminus B(0, \sqrt{2})$. A natural conjecture Theorem 1 tails to identify the values in S^2 that the map u_{∞} assume appears to be that $u_{\infty}(z) = \frac{z}{|z|}$ on $\mathbb{R}^2 \setminus B(0, \sqrt{2})$, i.e., that $u_{\infty} = F$ where

$$
F(z) = \begin{cases} \frac{z}{\sqrt{2}} & \text{on } B(0, \sqrt{2}), \\ \frac{z}{|z|} & \text{on } \mathbb{R}^2 \setminus B(0, \sqrt{2}). \end{cases}
$$
 (7)

For simplicity, whenever appropriate, we will use the abbreviated notation u_p for u_{p_n} . Our second main result For simplicity, whenever appropriate, we will use the aboreviated hotation u_p for u_{p_n} . σ establishes explicit estimates for the rate of convergence of u_p to u_{∞} inside the disc $B(0, \sqrt{2})$.

Theorem 2. *Under the assumptions of Theorem* [1](#page-1-0)*, for every* β < 1 *and* a < $\sqrt{2}$ *, there exists* $C_{\beta,a}$ > 0 *such that for all* $p > 2$

$$
||u_p - u_\infty||_{L^\infty(B(0,a))} \leqslant \frac{C_{\beta,a}}{p^{\beta/2}}.
$$
\n
$$
(8)
$$

Finally we consider the minimization of *Ep* in dimensions higher than 2. Although it is presently unknown whether $I_p(1)$ $I_p(1)$ $I_p(1)$ is attained for every $p > N \geq 3$, by using the same technique as in the proof of Theorem 1 we can show that the minimizer of E_p exists for sufficiently large values of p :

Theorem 3. For every $N \geq 3$ there exists p_N such that for every $p > p_N$ the minimum value $I_p(1)$ of E_p is attained $in \mathcal{E}_p^1$ by some $u_p \in W_{loc}^{1,p}(\mathbb{R}^N, \mathbb{R}^N)$ *.*

In view of Theorem 3 it makes sense to investigate the asymptotic behavior of the set of minimizers $\{u_p\}_{p>2}$ as p tends to infinity for every $N \geq 3$. This is presented in the following

Theorem 4. For each $p > p_N$, let u_p denote a minimizer of E_p in \mathcal{E}_p^1 satisfying $u_p(0) = 0$. Then, for a sequence $p_n \rightarrow \infty$ *, we have*

$$
u_{p_n} \to u_{\infty} \text{ in } C_{loc}(\mathbb{R}^N) \text{ and weakly in } \bigcap_{p>1} W_{loc}^{1,p}(\mathbb{R}^N, \mathbb{R}^N),
$$
\n
$$
(9)
$$

where u_{∞} *satisfies*

$$
\begin{cases}\n u_{\infty}(x) = \frac{\mathcal{U}x}{\sqrt{N}} & \text{on } B(0, \sqrt{N}), \\
 |u_{\infty}(x)| = 1 & \text{on } \mathbb{R}^N \setminus B(0, \sqrt{N}),\n\end{cases} (10)
$$

for some orthogonal $N \times N$ *matrix* U *with* $det(U) = 1$ *. We also have*

$$
\|\nabla u_{\infty}\|_{L^{\infty}(\mathbb{R}^N)} = 1\tag{11}
$$

and the convergence $|u_p| \to |u_\infty|$ *is uniform on* \mathbb{R}^N *.*

Remark 1.1. We may alternatively state that (subsequences of) minimizers of E_p over \mathcal{E}_p^1 satisfying $u(0) = 0$ converge to a minimizer for the following problem:

$$
\inf \left\{ \int_{\mathbb{R}^N} \left(1 - |u|^2 \right)^2 : u \in W^{1,\infty}(\mathbb{R}^N, \mathbb{R}^N), \ u(0) = 0, \ \|\nabla u\|_{\infty} \leq 1 \right\}.
$$
\n(12)

The latter result can, most probably, be appropriately formulated in terms of *Γ* -convergence. Theorem 4 shows that the minimizers of (12) are given by the set of maps in $W^{1,\infty}(\mathbb{R}^N, \mathbb{R}^N)$ satisfying (10)–(11). The infinite size of this the minimizers of (12) are given by the set of maps in $W^{1,\infty}(\mathbb{R}^n, \mathbb{R}^n)$ satisfying (10)–(11). The infinite size of this set is the source of our difficulty in identifying the limit map u_{∞} outside the ball set is the source of our difficulty in identitying the limit map u_{∞} outside the ball $B(0, \sqrt{N})$. To confirm the natural conjecture that $u_{\infty}(x) = \frac{\partial x}{|x|}$ for $|x| > \sqrt{N}$, a more delicate analysis of the energies equation satisfied by u_p is required. In fact, our present arguments can be used to prove the same convergence result as in Theorem 4 not only for the minimizers $\{u_p\}$, but also for a sequence of "almost minimizers" $\{v_p\}$, satisfying $E_p(v_p) \leq I_p(1) + o(1)$ as $p \to \infty$.

2. Proof of Theorem [1](#page-1-0)

We first recall the upper-bound for the energy that was proved in [\[2\]](#page-15-0) using the test function $U_p(re^{i\theta}) = f_p(r)e^{i\theta}$ with

$$
f_p(r) = \begin{cases} \frac{1}{\sqrt{2}}(1 - \frac{\ln p}{p})r, & r < \frac{\sqrt{2}}{1 - \frac{\ln p}{p}},\\ 1, & r \ge \frac{\sqrt{2}}{1 - \frac{\ln p}{p}}. \end{cases}
$$

Lemma 2.1. *We have*

$$
I_p(1) \leqslant \frac{\pi}{3} + C \frac{\ln p}{p}, \quad \forall p > 3. \tag{13}
$$

Remark 2.1. From (13) we clearly obtain that

$$
\int_{\mathbb{R}^2} |\nabla u_p|^p \leqslant C, \quad \forall p > 3,
$$
\n(14)

where C is independent of p . While this estimate is sufficient for our purpose, it should be noted that one can derive a more precise estimate

$$
\int_{\mathbb{R}^2} |\nabla u_p|^p = \frac{2}{p} I_p(1) \leqslant \frac{C}{p},
$$

via a Pohozaev-type identity (see [\[1, Lemma 4.1\]\)](#page-15-0).

Our next lemma provides a key estimate that will lead to a lower-bound for $I_p(1)$.

Lemma 2.2. *Let* $\rho \in (0, 1)$ *be a regular value of* u_p (*which by Sard's lemma holds for almost every* ρ) *and set*

$$
A_{\rho} = \{ z \in \mathbb{R}^2 \colon \left| u_p(z) \right| < \rho \}. \tag{15}
$$

Then, for any component V_ρ *of* A_ρ *with* deg $(u, \partial V_\rho) = d$ *, we have for large p*

$$
\int_{V_{\rho}} \left(1 - |u_p|^2\right)^2 \ge |d| \left\{ 4\pi \left(\frac{\rho^4}{2} - \frac{\rho^6}{3}\right) + o(1) \right\},\tag{16}
$$

where $o(1)$ *denotes a quantity that tends to zero as p goes to infinity, uniformly for* $\rho \in (0, 1)$ *.*

Proof. Since ρ is a regular value of u_p , we can conclude from [\(3\)](#page-1-0) that ∂V_ρ is a finite union of closed and simple C^1 curves, and hence deg $(u, \partial V_\rho)$ is well-defined. Since the image of V_ρ by u_ρ covers the disc $B(0, \rho)$ (algebraically) *d* times, it follows by Hölder's inequality that

$$
\pi |d|\rho^2 = \left| \int\limits_{V_\rho} (u_p)_x \times (u_p)_y \right| \leq \frac{1}{2} \int\limits_{V_\rho} |\nabla u_p|^2 \leq \frac{1}{2} \mu(V_\rho) \frac{p-2}{p} \left(\int\limits_{V_\rho} |\nabla u_p|^p \right)^{\frac{2}{p}},\tag{17}
$$

where μ denotes the Lebesgue measure in \mathbb{R}^2 , which, in turn, yields

$$
\mu(V_{\rho}) \geq \frac{(2\pi |d|\rho^2)^{\frac{p}{p-2}}}{(\int_{V_{\rho}} |\nabla u_{p}|^p)^{\frac{2}{p-2}}}.
$$
\n(18)

From (18) and (14) , we get

$$
\int_{V_{\rho}} (1 - |u_p|^2)^2 = \int_{(1 - \rho^2)^2}^{1} \mu\left(\left\{(1 - |u_p|^2)^2 > t\right\} \cap V_{\rho}\right) dt
$$
\n
$$
= \int_{0}^{\rho} 4r(1 - r^2) \mu(A_r \cap V_{\rho}) dr \ge \int_{0}^{\rho} 4r(1 - r^2) \frac{(2\pi |d|r^2)^{\frac{p}{p-2}}}{\left(\int_{V_r} |\nabla u_p|^p\right)^{\frac{2}{p-2}}} dr
$$
\n
$$
\ge |d| \left\{ \int_{0}^{\rho} 4r(1 - r^2)(2\pi r^2) dr + o(1) \right\} = |d| \left\{ 4\pi \left(\frac{\rho^4}{2} - \frac{\rho^6}{3}\right) + o(1) \right\}.
$$
 (19)

Corollary 2.1. There exist $\rho_0 \in (\frac{3}{4}, 1)$, p_0 and R_0 such that for all $p > p_0$ the set A_{ρ_0} has a component $V_{\rho_0} \subset B(0, R_0)$ *for which* $deg(u, \partial V_{\rho_0}) = 1$ *and* $|u_p| \geq \frac{1}{2}$ *on* $\mathbb{R}^2 \setminus V_{\rho_0}$ *.*

Proof. Note that by [\(2\)](#page-1-0) one can select uniformly bounded $C_{p,2}$ in [\(1\)](#page-1-0) for $p \ge 3$. This fact, together with [\(14\)](#page-3-0) implies equicontinuity of the maps $\{u_p\}_{p\geqslant 3}$ on \mathbb{R}^2 . Therefore, there exists $\lambda > 0$ such that

$$
\left|u_p(z_0)\right| \leqslant \frac{1}{2} \quad \Rightarrow \quad \left|u_p(z)\right| \leqslant \frac{3}{4} \quad \text{on } B(z_0, \lambda) \quad \Rightarrow \quad \int\limits_{B(z_0, \lambda)} \left(1 - \left|u_p\right|^2\right)^2 \geqslant \nu := \pi \lambda^2 \left(\frac{7}{16}\right)^2. \tag{20}
$$

Fix $\rho_0 \in (\frac{3}{4}, 1)$ such that

$$
4\pi \left(\frac{\rho_0^4}{2} - \frac{\rho_0^6}{3}\right) > \max\left(\frac{\pi}{3}, \frac{2\pi}{3} - \nu\right).
$$
 (21)

Let V_{ρ_0} be a component of A_{ρ_0} with deg $(u_p, \partial V_{\rho_0}) \neq 0$ (we may assume w.l.o.g. that ρ_0 is a regular value of u_p). By (13) , (16) and (21) , it follows that there can be only one such component when *p* is sufficiently large (and thus $deg(u_p, \partial V_{p_0}) = 1$). Moreover, by (20) and (21), on any other component of A_{p_0} (if there is one) we must have $|u_p| > \frac{1}{2}.$

It remains necessary to show that V_{ρ_0} is embedded in a sufficiently large disc. Similarly to (20), there exists $\lambda_0 > 0$ such that

$$
\left|u_p(z_0)\right| \leq \rho_0 \quad \Rightarrow \quad \left|u_p(z)\right| \leq \frac{1+\rho_0}{2} \quad \text{on } B(z_0, \lambda_0)
$$
\n
$$
\Rightarrow \quad \int\limits_{B(z_0, \lambda_0)} \left(1 - \left|u_p\right|^2\right)^2 \geq v_0 := \pi \lambda_0^2 \left(1 - \left(\frac{1+\rho_0}{2}\right)^2\right)^2. \tag{22}
$$

Since V_{ρ_0} is connected and $0 \in V_{\rho_0}$, the set $\{|z|: z \in V_{\rho_0}\}\$ is the interval $[0, R)$ for some positive *R*. For any integer *k* for which $2k\lambda_0 \le R$ there exists a set of points $\{z_j\}_{j=0}^{k-1} \subset V_{\rho_0}$ with $|z_j| = 2j\lambda_0$. By (22) and [\(13\)](#page-3-0) we have for sufficiently large *p* that

$$
kv_0 \leqslant \sum_{j=0}^{k-1} \int\limits_{B(z_j,\lambda_0)} \left(1 - |u_p|^2\right)^2 < c_0 := \frac{2\pi}{3} + 1.
$$

It follows that *R* is bounded from above by $R_0 := 2\lambda_0(\frac{c_0}{v_0} + 1)$. \Box

In order to complete the proof of Theorem [1](#page-1-0) we need to establish the convergence of $\{u_{p_n}\}_{n=1}^{\infty}$ to u_{∞} and to identify the limit. We begin with the following lemma

Lemma 2.3. *For a sequence* $p_n \to \infty$ *we have*

$$
\lim_{n \to \infty} u_{p_n} = u_{\infty} \text{ in } C_{loc}(\mathbb{R}^2) \text{ and weakly in } \bigcap_{p>1} W_{loc}^{1,p}(\mathbb{R}^2, \mathbb{R}^2).
$$
 (23)

Furthermore, the limit map u_{∞} *is a degree-one map in* $W^{1,\infty}(\mathbb{R}^2, \mathbb{R}^2)$ *satisfying also* [\(5\)](#page-1-0) *and*

$$
\|\nabla u_{\infty}\|_{\infty} \leq 1. \tag{24}
$$

Proof. Fix any $q > 3$. Since $||u_p||_{L^{\infty}} \le 1$ (see [\[1\]\)](#page-15-0), we have by [\(13\)](#page-3-0) on each disc $B(0, m)$, $m \ge 1$, that

$$
||u_p||_{W^{1,q}(B(0,m))} \leq C_m, \quad p > q.
$$

It follows that for all $m \ge 1$, there exists a sequence $p_n \uparrow \infty$, such that $\{u_{p_n}\}$ converges weakly in $W^{1,q}(B(0,m))$ to a limit u_{∞} . By Morrey's theorem, the convergence holds in $C(B(0,m))$ as well. Since the latter is true for every $m \geq 1$ and every $q > 3$, we may apply a diagonal subsequence argument to find a subsequence satisfying [\(23\)](#page-4-0). The fact that u_{∞} has degree one too follows from [\(23\)](#page-4-0) and Corollary [2.1.](#page-4-0)

Finally, in order to prove [\(24\)](#page-4-0), it suffices to note that for any disc $B \subset \mathbb{R}^2$, $\lambda > 1$ and $q > 1$, we have by [\(14\)](#page-3-0) and the weak lower semicontinuity of the *L^q* -norm,

$$
\lambda^{q} \mu\big(\big\{|\nabla u_{\infty}| > \lambda\big\} \cap B\big) \leq \int\limits_{B} |\nabla u_{\infty}|^{q} \leq \liminf\limits_{p \to \infty} \int\limits_{B} |\nabla u_{p}|^{q} \leq \liminf\limits_{p \to \infty} \mu(B)^{1-q/p} \bigg(\int\limits_{B} |\nabla u_{p}|^{p}\bigg)^{q/p} \leq \mu(B). \tag{25}
$$

Letting *q* tend to ∞ in (25) yields $\mu({\vert \nabla u_{\infty} \vert > \lambda} \cap B) = 0$. The conclusion [\(24\)](#page-4-0) follows since the disc *B* and $\lambda > 1$ are arbitrary. \square

A similar argument to the one used in the proof of Lemma [2.2](#page-3-0) yields

Proposition 1.

$$
\lim_{p \to \infty} \frac{1}{2} \int_{\mathbb{R}^2} (1 - |u_p|^2)^2 = \lim_{p \to \infty} I_p(1) = \frac{\pi}{3} = \frac{1}{2} \int_{\mathbb{R}^2} (1 - |F|^2)^2,
$$

where F is as defined in [\(7\)](#page-1-0)*.*

Proof. As in [\(18\)](#page-3-0) we have

$$
\mu(A_{\rho}) \geq \frac{(2\pi\rho^2)^{\frac{p}{p-2}}}{\left(\int_{A_{\rho}} |\nabla u_{p}|^{p}\right)^{\frac{2}{p-2}}}.
$$
\n(26)

Therefore,

$$
\int_{\mathbb{R}^2} (1 - |u_p|^2)^2 = \int_0^1 \mu \big((1 - |u_p|^2)^2 > t \big) dt
$$
\n
$$
= \int_0^1 4\rho \big(1 - \rho^2 \big) \mu(A_\rho) d\rho \ge \int_0^1 4\rho \big(1 - \rho^2 \big) \frac{(2\pi\rho^2)^{\frac{p}{p-2}}}{\left(\int_{A_\rho} |\nabla u_p|^p \right)^{\frac{2}{p-2}}} d\rho. \tag{27}
$$

Since $\int_{A_\rho} |\nabla u_p|^p \leq I_p(1) \leq C$, taking the limit inferior of both sides of (27) yields, with the aid of [\(7\)](#page-1-0)

$$
\liminf_{p \to \infty} \int_{\mathbb{R}^2} (1 - |u_p|^2)^2 \ge \int_0^1 4\rho (1 - \rho^2) \Big(\liminf_{p \to \infty} (2\pi \rho^2)^{\frac{p}{p-2}} \Big) d\rho
$$

=
$$
\int_0^1 4\rho (1 - \rho^2) \mu (|F| < \rho) d\rho = \int_{\mathbb{R}^2} (1 - |F|^2)^2 = \frac{2\pi}{3},
$$
 (28)

and the proposition follows by combining (28) with [\(13\)](#page-3-0). \Box

Remark [2](#page-12-0).2. In fact, for any *d* we have $\lim_{p\to\infty} I_p(d) = \frac{|d|\pi}{3}$ (see Proposition 2 in Section [4\)](#page-12-0).

We can now complete the proof of Theorem [1.](#page-1-0)

Proof of Theorem [1.](#page-1-0) For each $\rho \in (0, 1]$, let $D_{\rho} = \{z \in \mathbb{R}^2 : |u_{\infty}(z)| < \rho\}$. Using arguments similar to those used to establish Proposition 1, we obtain

$$
\int_{\mathbb{R}^2} \left(1 - |u_{\infty}|^2\right)^2 = \int_0^1 \mu \left(\left(1 - |u_{\infty}|^2\right)^2 > t\right) dt = \int_0^1 4\rho \left(1 - \rho^2\right) \mu(D_\rho) d\rho.
$$
\n(29)

Since $deg(u_{\infty}) = 1$ by Lemma [2.3,](#page-4-0) using [\(24\)](#page-4-0) yields

$$
\pi \rho^2 \leq \left| \int_{D_\rho} (u_\infty)_x \times (u_\infty)_y \right| \leq \int_{D_\rho} |(u_\infty)_x \times (u_\infty)_y| \leq \frac{1}{2} \int_{D_\rho} |\nabla u_\infty|^2 \leq \frac{1}{2} \mu(D_\rho).
$$
\n(30)

From (29)–(30) it follows that

$$
\int_{\mathbb{R}^2} \left(1 - |u_{\infty}|^2\right)^2 \ge \int_0^1 8\pi \rho \left(1 - \rho^2\right) \rho^2 d\rho = \frac{2\pi}{3}.
$$
\n(31)

On the other hand, by Lemma [2.3](#page-4-0) and Proposition [1,](#page-5-0) for every $R > 0$

$$
\int_{B(0,R)} \left(1 - |u_{\infty}|^2\right)^2 = \lim_{n \to \infty} \int_{B(0,R)} \left(1 - |u_{p_n}|^2\right)^2 \leq \frac{2\pi}{3},
$$

which together with (31) implies that

$$
\int_{\mathbb{R}^2} (1 - |u_{\infty}|^2)^2 = \frac{2\pi}{3}.
$$
\n(32)

Therefore, for any $\rho \in (0, 1)$, pointwise equalities between the integrands in (30) must hold almost everywhere in D_{ρ} . It follows that

$$
\begin{cases}\n(u_{\infty})_x \perp (u_{\infty})_y, & |(u_{\infty})_x| = |(u_{\infty})_y| \text{ and } |(u_{\infty})_x|^2 + |(u_{\infty})_y|^2 = 1, \\
\text{sign}\{(u_{\infty})_x \times (u_{\infty})_y\} \equiv \sigma \in \{-1, 1\},\n\end{cases} (33)
$$

a.e. in D_1 . From (33) we conclude that u_{∞} is a conformal map a.e. in D_1 (it cannot be anti-conformal because $deg(u_{\infty}) = 1$) with $|\nabla u_{\infty}| \equiv 1$. Hence, u_{∞} must be of the form $u_{\infty}(z) = az + b$ with $|a| = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2}$. Since *u*_∞ satisfies [\(5\)](#page-1-0), we finally conclude that (6) holds.

Finally, to prove that $|u_p| \to |u_\infty|$ uniformly on \mathbb{R}^2 assume, on the contrary, that for some $\rho_0 < 1$ there exists a sequence $\{z_n\}_{n=1}^{\infty}$ with $|z_n| \to \infty$ such that $|u_{p_n}(z_n)| \le \rho_0$ for all *n*. But then using [\(22\)](#page-4-0) we are led immediately to a contradiction with Proposition [1](#page-5-0) since we have already established that

$$
\lim_{n \to \infty} \int_{\mathbb{R}^2} (1 - |u_{p_n}|^2)^2 = \lim_{n \to \infty} \int_{B(0, \sqrt{2})} (1 - |u_{p_n}|^2)^2 = \frac{2\pi}{3}.
$$

3. Proof of Theorem [2](#page-2-0)

Let

$$
\frac{\partial}{\partial z} \stackrel{def}{=} \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right); \qquad \frac{\partial}{\partial \bar{z}} \stackrel{def}{=} \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).
$$

We begin with a simple lemma that establishes the existence of an approximate holomorphic map for a given map *u* such that the L^2 -norm of $\frac{\partial u}{\partial \bar{z}}$ is "small". To this end we introduce some additional notation. For a function $f \in L^1(\Omega)$ we denote by f_{Ω} its average value over Ω , i.e.,

$$
f_{\Omega} = \frac{1}{\mu(\Omega)} \int\limits_{\Omega} f.
$$

We further set $\nabla \cdot u = (u_{v}, -u_{x}).$

Lemma 3.1. *Let Ω be a bounded, simply connected domain in* \mathbb{R}^2 *with* $\partial \Omega \in C^1$ *. Let* $u = u_r + iu_i \in H^1(\Omega, \mathbb{C})$ *satisfy*

$$
\int_{\Omega} |\nabla u + i \nabla_{\perp} u|^2 \leqslant \epsilon^2,\tag{34}
$$

for some $\epsilon > 0$ *. Then, there exists v which is holomorphic in* Ω *and such that* $v_{\Omega} = u_{\Omega}$ *,*

$$
\int_{\Omega} |\nabla (u - v)|^2 \leqslant 4\epsilon^2
$$
\n(35)

and

$$
\int_{\Omega} |\nabla u|^2 = \int_{\Omega} |\nabla v|^2 + \int_{\Omega} |\nabla (u - v)|^2.
$$
\n(36)

Proof. Consider the Hilbert space $\mathcal{H} = \{U \in H^1(\Omega, \mathbb{C}) : U_\Omega = 0\}$ with the norm $||U||^2_{\mathcal{H}} = \int_{\Omega} |\nabla U|^2$ and its closed subspace $K = \{V \in \mathcal{H}: V \text{ is holomorphic in } \Omega\}$. Let $v = V + u_{\Omega}$ where $V \in \mathcal{K}$ is the nearest point projection of $u - u_{\Omega} \in \mathcal{H}$ on K. Clearly *v* satisfies (36). To prove (35), it is sufficient, in view of the definition of *v*, to construct a single function $\tilde{v} \in H^1(\Omega, \mathbb{C})$, which is holomorphic in Ω , and satisfies

$$
\int_{\Omega} |\nabla (u - \tilde{v})|^2 \leq 4\epsilon^2. \tag{37}
$$

Set $\tilde{v} = \tilde{v}_r + i\tilde{v}_i$ where $\tilde{v}_r \in H_0^1(\Omega, \mathbb{C}) + u_r$ is harmonic and \tilde{v}_i is the conjugate harmonic function to \tilde{v}_r satisfying $(\tilde{v}_i)_{\Omega} = (u_i)_{\Omega}$. Let $\phi \in C_0^{\infty}(\Omega, \mathbb{C})$. Clearly,

$$
\int_{\Omega} \nabla \bar{\phi} \cdot \nabla_{\perp} w = 0, \quad \forall w \in H^{1}(\Omega, \mathbb{C}),
$$
\n(38)

and since \tilde{v} is harmonic, we have

$$
\int_{\Omega} \nabla \bar{\phi} \cdot \nabla \tilde{v} = 0. \tag{39}
$$

By density of $C_0^{\infty}(\Omega, \mathbb{C})$ in $H_0^1(\Omega, \mathbb{C})$, (38)–(39) hold for every $\phi \in H_0^1(\Omega, \mathbb{C})$. In particular, employing the identity

$$
\nabla \tilde{v} + i \nabla_{\perp} \tilde{v} = 0,\tag{40}
$$

and using (38) we obtain for $\phi = u_r - \tilde{v}_r$ that

$$
\|\nabla(u_r - \tilde{v}_r)\|_2^2 = \Re \int_{\Omega} \nabla(u_r - \tilde{v}_r) \cdot \nabla(u - \tilde{v}) = \Re \int_{\Omega} \nabla(u_r - \tilde{v}_r) \cdot \left\{\nabla(u - \tilde{v}) + i\nabla_{\perp}(u - \tilde{v})\right\}
$$

$$
= \Re \int_{\Omega} \nabla(u_r - \tilde{v}_r) \cdot (\nabla u + i\nabla_{\perp}u) \le \|\nabla(u_r - \tilde{v}_r)\|_2 \|\nabla u + i\nabla_{\perp}u\|_2.
$$
(41)

Hence, by (34) and (41) ,

$$
\left\| \nabla (u_r - \tilde{v}_r) \right\|_2 \leqslant \epsilon. \tag{42}
$$

Set $w = u - \tilde{v}$. By (34) and (40)

$$
\|\nabla w + i\nabla_{\perp} w\|_2 \leqslant \epsilon. \tag{43}
$$

However, as w_r is real we have by (42)

$$
\|\nabla w_r + i\nabla_\perp w_r\|_2 = \sqrt{2}\|\nabla w_r\|_2 \leqslant \sqrt{2}\epsilon. \tag{44}
$$

Since

$$
\nabla w + i \nabla_{\perp} w = \nabla w_r + i \nabla_{\perp} w_r + i (\nabla w_i + i \nabla_{\perp} w_i),
$$

we get from (43) – (44) that

$$
\|\nabla w_i\|_2 = \frac{1}{\sqrt{2}} \|\nabla w_i + i\nabla_\perp w_i\|_2 \leq \frac{1}{\sqrt{2}} \big(\|\nabla w + i\nabla_\perp w\|_2 + \|\nabla w_r + i\nabla_\perp w_r\|_2\big) \leq \bigg(1 + \frac{1}{\sqrt{2}}\bigg)\epsilon,
$$

which together with [\(42\)](#page-7-0) clearly implies [\(37\)](#page-7-0) \Box

By Poincaré inequality and [\(35\)](#page-7-0) we immediately deduce:

Corollary 3.1. *Let v be given by Lemma* [3.1](#page-7-0)*. Then,*

$$
||u - v||_{H^1(\Omega)} \le C\epsilon,
$$

where C depends only on Ω . (45)

Lemma 3.2. *Let f be holomorphic in* $Ω ⊂ ℝ²$ *. Suppose that for every disc* $B(x₀, s) ⊂ Ω$ *we have*

$$
\int_{B(x_0,s)} (|f|^2 - 1) \le \epsilon,\tag{46}
$$

for some $\epsilon > 0$ *. Then,*

$$
||f||_{L^{\infty}(\Omega_s)}^2 \leq 1 + \frac{\epsilon}{\mu(B(x_0, s))},
$$

where

$$
\Omega_s = \big\{ x \in \Omega \big| d(x, \partial \Omega) > s \big\}.
$$

Proof. As *f* is holomorphic, $|f|^2$ is subharmonic. By the mean value principle we obtain for any $x_0 \in \Omega_s$

$$
\left|f(x_0)\right|^2 \leq \frac{1}{\mu(B(x_0, s))} \int\limits_{B(x_0, s)} |f|^2 = 1 + \frac{1}{\mu(B(x_0, s))} \int\limits_{B(x_0, s)} (|f|^2 - 1),\tag{47}
$$

from which the lemma easily follows. \square

Lemma 3.3. *Let f be holomorphic in* $B_R = B(0, R) \subset \mathbb{R}^2$ *. Suppose that*

$$
\int_{B_R} \left(1 - |f|^2\right) \leqslant \epsilon,\tag{48}
$$

for some $\epsilon > 0$ *. Suppose further that*

$$
\|f\|_{L^{\infty}(B_R)}^2 \leq 1 + \epsilon. \tag{49}
$$

Then, there exist $\alpha \in [-\pi, \pi)$ *and* $C > 0$ *, depending only on R, such that*

$$
\left| f(x) - e^{i\alpha} \right| \leqslant C \frac{\epsilon}{d_x^2}, \quad x \in B_R,\tag{50}
$$

where $d_x = R - |x|$ *.*

Proof. By (48) – (49) ,

$$
\int_{B_R} | |f|^2 - 1 - \epsilon | = \int_{B_R} (1 - |f|^2) + \pi R^2 \epsilon \leq C \epsilon,
$$

hence,

$$
\int_{B_R} | |f|^2 - 1 | \leqslant C\epsilon \tag{51}
$$

(we denote by *C* and *c* different constants, depending on *R* only). Since the function $||f||^2 - 1$ is subharmonic, we deduce from (51) that for every $x \in B_R$,

$$
||f(x)|^{2} - 1|| \le \frac{1}{\pi d_{x}^{2}} \int_{B(x,d_{x})} | |f|^{2} - 1|| \le \frac{c\epsilon}{d_{x}^{2}}.
$$
\n(52)

It follows in particular that

$$
\left|f(x)\right|^2 \geqslant \frac{1}{2}, \qquad |x| \leqslant R - \sqrt{2c\epsilon}.\tag{53}
$$

In $B(0, R - \sqrt{2c\epsilon})$ we may write then $f = e^{U+iV}$, where *V* is the conjugate harmonic function of *U* that satisfies *V*(0) ∈ [−π, π). By (52) we have

$$
|U(x)| \leqslant \frac{C\epsilon}{d_x^2}, \qquad |x| \leqslant R - \sqrt{2c\epsilon}.
$$
\n
$$
(54)
$$

From (54) we get an interior estimate for the derivatives of *U* (see (2.31) in [\[5\]\)](#page-15-0):

$$
\left|\nabla U(x)\right| \leqslant C\frac{\epsilon}{d_x^3}, \qquad |x| \leqslant R - \sqrt{4c\epsilon}.\tag{55}
$$

Note that by the Cauchy–Riemann equations, (55) holds for *V* as well, i.e.,

$$
\left|\nabla V(x)\right| \leqslant C\frac{\epsilon}{d_x^3}, \qquad |x| \leqslant R - \sqrt{4c\epsilon}.\tag{56}
$$

For any $x \in B(0, R - \sqrt{4c\epsilon}) \setminus \{0\}$ we obtain, using (56), the estimate

$$
\left| V(x) - V(0) \right| \leqslant \int\limits_{d_x}^R \left| \nabla V \left((R - s) \frac{x}{|x|} \right) \right| ds \leqslant C \epsilon \int\limits_{d_x}^R \frac{ds}{s^3} \leqslant \frac{C \epsilon}{d_x^2}.
$$
\n
$$
(57)
$$

Therefore, setting $\alpha = V(0)$ and using (54) and (57), we obtain for every $x \in B(0, R - \sqrt{4c\epsilon})$ that

$$
\left|f(x) - e^{i\alpha}\right| \leq \left|f(x) - e^{iV(x)}\right| + \left|e^{iV(x)} - e^{iV(0)}\right| \leq \left|e^{U(x)} - 1\right| + \left|V(x) - V(0)\right| \leq \frac{C\epsilon}{d_x^2}.
$$

For $x \in B_R \setminus B(0, R - \sqrt{4c\epsilon})$, i.e., when $d_x \le \sqrt{4c\epsilon}$, we have clearly $|f(x) - e^{i\alpha}| \le 2 + \epsilon$, so choosing *C* big enough yields [\(50\)](#page-8-0) for all $x \in B_R$. □

Let A_{ρ} be defined in [\(15\)](#page-3-0). The following lemma lists some of its properties.

Lemma 3.4. *There exist* $p_0 > 2$ *and* $C > 0$ *such that for all* $p > p_0$ *and* $\rho > \frac{1}{2}$ *we have*

$$
\mu(A_{\rho}) \geqslant 2\pi \rho^2 \bigg(1 - \frac{C}{p}\bigg),\tag{58a}
$$

$$
\int_{0}^{1} \rho \left(1 - \rho^{2}\right) \left|\mu(A_{\rho}) - 2\pi \rho^{2}\right| d\rho \leq C \frac{\ln p}{p}.\tag{58b}
$$

Proof. The estimate [\(58a](#page-9-0)) follows directly from [\(26\)](#page-5-0) and [\(14\)](#page-3-0). Since by (58a)

$$
\mu(A_{\rho}) \geqslant \left| \mu(A_{\rho}) - 2\pi \rho^2 \right| + 2\pi \rho^2 - \frac{C}{p},
$$

we obtain using (27) that

$$
I_p(1) \geq \int_0^1 2\rho \Big(1-\rho^2\Big) \mu(A_\rho) d\rho \geq \int_0^1 2\rho \Big(1-\rho^2\Big) \Big| \mu(A_\rho) - 2\pi \rho^2 \Big| d\rho + \frac{\pi}{3} - \frac{C}{p}.
$$

Combining the above with [\(13\)](#page-3-0) yields [\(58b](#page-9-0)). \Box

Lemma 3.5. *Let* $\ln p/p \ll \delta_p < 1/4$ *. There exists* $1 - 2\delta_p < \rho < 1 - \delta_p$ *, such that for all* $p > p_0$

$$
\int_{A_{\rho}} |\nabla u_{p} + i \nabla_{\perp} u_{p}|^{2} \leq C \delta_{p}^{-2} \frac{\ln p}{p}.
$$
\n(59)

Proof. By [\(58b](#page-9-0)) there exists $1 - 2\delta_p < \rho < 1 - \delta_p$ such that

$$
\left|\mu(A_{\rho}) - 2\pi\rho^2\right| \leqslant C\delta_p^{-2} \frac{\ln p}{p}.\tag{60}
$$

Applying (60) yields

$$
\frac{1}{4} \int_{A_{\rho}} |\nabla u_{p} + i \nabla_{\perp} u_{p}|^{2} = \int_{A_{\rho}} \left[\frac{1}{2} |\nabla u_{p}|^{2} - (u_{p})_{x} \times (u_{p})_{y} \right]
$$
\n
$$
= \int_{A_{\rho}} \frac{1}{2} |\nabla u_{p}|^{2} - \pi \rho^{2} \le \frac{1}{2} \left(\int_{A_{\rho}} |\nabla u_{p}|^{p} \right)^{2/p} \mu(A_{\rho})^{1 - 2/p} - \pi \rho^{2}
$$
\n
$$
\le \frac{1}{2} \left(1 + \frac{C}{p} \right) \left(2\pi \rho^{2} + C \delta_{p}^{-2} \frac{\ln p}{p} \right)^{1 - 2/p} - \pi \rho^{2} \le \frac{C}{\delta_{p}^{2}} \frac{\ln p}{p}.
$$
\n(61)

Proof of Theorem [2.](#page-2-0) Set $\eta = \frac{\sqrt{2}-a}{10}$ and then

$$
b_j = a + j\eta, \quad j = 1, ..., 9.
$$

Let *ρ* be given by Lemma 3.5 for $\delta_p = \eta/\sqrt{2}$, so that $\rho \in (b_8/\sqrt{2}, b_9/\sqrt{2})$. We can also assume without loss of generality that ρ is a regular value for $|u_p|$. By Theorem [1](#page-1-0) we have for sufficiently large p ,

$$
B(0, b_8) \subset A_\rho \subset B(0, b_9). \tag{62}
$$

By (62) and Lemma 3.5 we have

$$
\int\limits_{B(0,b_8)} |\nabla u_p + i \nabla_\perp u_p|^2 \leq \int\limits_{A_\rho} |\nabla u_p + i \nabla_\perp u_p|^2 \leq \frac{C}{(a-\sqrt{2})^2} \frac{\ln p}{p} = C_a \frac{\ln p}{p}.
$$

Applying Corollary [3.1](#page-8-0) yields the existence of a holomorphic function v_p in $B(0, b_8)$ such that $(v_p)_{B(0, b_8)} =$ $(u_p)_{B(0,b_8)}$ and such that [\(36\)](#page-7-0) holds with $u = u_p, v = v_p$ and

$$
||u_p - v_p||_{H^1(B(0,b_8))}^2 \le C_a \frac{\ln p}{p}.\tag{63}
$$

We denote $w_p(z) = \sqrt{2}v'_p(z)$ (where $v'_p = \frac{\partial v_p}{\partial z}$ is the derivative of the holomorphic map v_p) and note that $|w_p(z)| =$ $|\nabla v_p(z)|$. As *a* is kept fixed, we suppress in the sequel the dependence of the constants on *a*.

For any ball $B \subset B(0, b_8)$ we apply the same estimates as in [\(17\)](#page-3-0),

1170 *Y. Almog et al. / Ann. I. H. Poincaré – AN 30 (2013) 1159–1174*

$$
\int\limits_B |\nabla u_p|^2 - 1 \leqslant \bigg(\int\limits_{B(0,b_8)} |\nabla u_p|^p\bigg)^{2/p} \mu(B)^{1-2/p} - \mu(B) \leqslant (1+C/p) \big(\mu(B)\big)^{1-2/p} - \mu(B) \leqslant \frac{C}{p}.
$$

Combining the above with [\(36\)](#page-7-0) yields

$$
\int\limits_B (|w_p|^2 - 1) = \int\limits_B (|\nabla v_p|^2 - 1) \leq \int\limits_B |\nabla u_p|^2 - 1 \leqslant \frac{C}{p}, \quad \forall B \subset B(0, b_8).
$$

By Lemma [3.2](#page-8-0) it then follows that

$$
||w_p||_{L^{\infty}(B(0,b_7))}^2 \le 1 + \frac{C_1}{p}.
$$
\n(64)

Next, we apply Lemma [3.5](#page-10-0) again, this time with $\delta_p = 3\eta/\sqrt{2}$, to find a corresponding $\tilde{\rho} \in (b_4/\sqrt{2})$ 2*,b*7*/* 2 *)*. For *p* large we have $B(0, b_4) \subset A_{\tilde{\rho}} \subset B(0, b_7)$. Arguing as in [\(17\)](#page-3-0) we obtain, using [\(60\)](#page-10-0),

$$
\int_{A_{\tilde{\rho}}} |\nabla u_p|^2 - 1 \geq 2 \int_{A_{\tilde{\rho}}} (u_p)_x \times (u_p)_y - \mu(A_{\tilde{\rho}}) \geq 2\pi \tilde{\rho}^2 - \mu(A_{\tilde{\rho}}) \geq -C \frac{\ln p}{p}.
$$

By (36) , once again, we have that

$$
\int_{A_{\tilde{\rho}}} \left(|w_p|^2 - 1 \right) \geqslant -C \frac{\ln p}{p}.\tag{65}
$$

Next, we apply the same argument as the one used in the beginning of the proof of Lemma [3.3](#page-8-0) to obtain, using (64) and (65),

$$
\int\limits_{A_{\tilde{\rho}}} \left| |w_p|^2 - 1 - \frac{C_1}{p} \right| = \int\limits_{A_{\tilde{\rho}}} \left(1 - \frac{C_1}{p} - |w_p|^2 \right) \leqslant C \frac{\ln p}{p}.
$$

Hence, also

$$
\int_{B(0,b_4)} |w_p|^2 - 1| \le \int_{A_{\tilde{\rho}}} |w_p|^2 - 1| \le C \frac{\ln p}{p}.
$$
\n(66)

We can now use (64) and (66) and apply Lemma [3.3](#page-8-0) to obtain the existence of $\alpha_p \in [-\pi, \pi)$ such that

$$
\left|w_p(z) - e^{i\alpha_p}\right| \leqslant C \frac{\ln p}{p}, \quad z \in B(0, a). \tag{67}
$$

Consequently, there exists a constant γ_p such that

$$
\left|\sqrt{2}v_p(z) - e^{i\alpha_p}z - \gamma_p\right| \leqslant C\frac{\ln p}{p}, \quad z \in B(0, a). \tag{68}
$$

Set

 $U = u_p - v_p.$

For every $q > 2$ we have for $p > q$, by [\(63\)](#page-10-0), (68), and the fact that $|u_p| \leq 1$,

$$
||U||_{L^{q}(B(0,a))}^{q} \leq ||U||_{L^{\infty}(B(0,a))}^{q-2} ||U||_{L^{2}(B(0,a))}^{2} \leq C\left(\frac{\ln p}{p}\right).
$$

Furthermore, by Hölder's inequality, (67), [\(63\)](#page-10-0) and [\(13\)](#page-3-0) we have that

$$
\|\nabla U\|_{L^q(B(0,a))}^q \leqslant \|\nabla U\|_{L^2(B(0,a))}^{2\frac{p-q}{p-2}}\|\nabla U\|_{L^p(B(0,a))}^{p\frac{q-2}{p-2}} \leqslant C \bigg(\frac{\ln p}{p}\bigg)^{\frac{p-q}{p-2}}.
$$

Consequently, for each fixed *q >* 2 we have

$$
||U||_{W^{1,q}(B(0,a))} \leq C \left(\frac{\ln p}{p}\right)^{\frac{p-q}{q(p-2)}}.
$$
\n(69)

By Sobolev embedding the bound in (69) holds also for $||U||_{L^{\infty}(B(0,a))}$ and, in particular, we get that for every 0 < β < 1,

$$
||U||_{L^{\infty}(B(0,a))} \leqslant C_{\beta} p^{-\beta/2}.
$$
\n⁽⁷⁰⁾

Combining (70) and [\(68\)](#page-11-0) we obtain that

$$
\left|\sqrt{2}u_p(z)-e^{i\alpha_p}z-\gamma_p\right|\leqslant C_\beta p^{-\beta/2}, \quad z\in B(0,a).
$$

As $u_p(0) = 0$, it immediately follows that $|\gamma_p| \leq C_\beta p^{-\beta/2}$, and hence

$$
\left|\sqrt{2}u_p(z) - e^{i\alpha_p}z\right| \leqslant C_\beta p^{-\beta/2}, \quad z \in B(0, a). \tag{71}
$$

Substituting $z = 1$ into (71) we obtain using [\(5\)](#page-1-0) that $|\alpha_p| \leq C_\beta p^{-\beta/2}$ and [\(8\)](#page-2-0) follows. \Box

4. The problem in dimension $N \geqslant 3$

This section is mainly devoted to the proofs of Theorem [3](#page-2-0) and Theorem [4.](#page-2-0) We begin with the computation of $\lim_{p\to\infty} I_p(d)$. Denote by ω_N the volume of the unit ball in \mathbb{R}^N . It turns out that the constant

$$
\tau_N := \frac{4\omega_N}{(N+2)(N+4)} N^{N/2} \tag{72}
$$

generalizes the constant $\frac{\pi}{3}$ in [\(13\)](#page-3-0) for dimensions higher than $N = 2$.

Proposition 2. *We have*

$$
\lim_{p \to \infty} I_p(d) = |d|\tau_N. \tag{73}
$$

Proof. (i) First we establish an upper bound. When $d = 1$, following a construction similar to the one used in the proof of Lemma [2.1,](#page-3-0) we define a map *Up* by

$$
U_p(x) = \begin{cases} \frac{x}{r_p}, & |x| < r_p, \\ \frac{x}{|x|}, & |x| \ge r_p, \end{cases} \tag{74}
$$

with $r_p := \frac{\sqrt{N}}{1 - \ln n}$ $\frac{\sqrt{N}}{1-\frac{\ln p}{p}}$. A direct computation shows that for $p \ge N+1$ we have

$$
E_p(U_p) \leq \frac{1}{2} \int_{B(0,r_p)} (1 - |U_p|^2)^2 + C \frac{\ln p}{p} = \frac{1}{2} \int_0^{\sqrt{N}} \left(1 - \frac{r^2}{N}\right)^2 N \omega_N r^{N-1} dr + C \frac{\ln p}{p}
$$

=
$$
\frac{4\omega_N}{(N+2)(N+4)} N^{N/2} + C \frac{\ln p}{p}.
$$
 (75)

Next we turn to the case $d > 1$. Fix *d* distinct points q_1, \ldots, q_d in \mathbb{R}^N with

$$
\delta := \frac{1}{4} \min \bigl\{ |q_i - q_j| \colon i \neq j \bigr\} > 4\sqrt{N}.
$$

Fix *K* satisfying

$$
K > \max_{1 \leq j \leq d} |q_j| + 4\delta,
$$

and set $\Omega = B(0, K) \setminus \bigcup_{j=1}^d \overline{B(q_j, \delta)}$. Fix a smooth map $V : \overline{\Omega} \to S^{N-1}$ satisfying

$$
V(x) = \frac{x - q_j}{|x - q_j|} \text{ on } \partial B(q_j, \delta), \quad j = 1, \dots, d.
$$

Let $M = \|\nabla V\|_{L^{\infty}(\Omega)}$ and fix $R > M\sqrt{N-1}$. We finally define

$$
W_p(x) = \begin{cases} U_p(x - Rq_j), & x \in B(Rq_j, r_p), j = 1, ..., d, \\ \frac{x - Rq_j}{|x - Rq_j|}, & x \in B(Rq_j, R\delta) \setminus B(Rq_j, r_p), j = 1, ..., d, \\ V(x/R), & x \in R\Omega, \\ V(K \frac{x}{|x|}), & x \in \mathbb{R}^N \setminus B(0, RK). \end{cases}
$$

By our construction $\|\nabla W_p\|_{L^{\infty}(\mathbb{R}^N \setminus \bigcup_{j=1}^d B(q_j,r_p))} \le \gamma < 1$, and hence, it follows from [\(75\)](#page-12-0) that

$$
E_p(W_p) \le d\tau_N + o(1),\tag{76}
$$

which is the desired upper bound.

(ii) We next obtain a lower bound. Assume that $d \geq 1$ and let *u* denote a map in \mathcal{E}_p^d . We attempt to prove that

$$
E_p(u) \geq d\tau_N + o(1) \quad \text{as } p \to \infty,\tag{77}
$$

where $o(1)$ is a quantity that goes to zero when *p* goes to infinity (i.e., it is independent of *u*). We establish (77) for $u \in C^{\infty}(\mathbb{R}^N, \mathbb{R}^N)$. The proof for any $u \in \mathcal{E}_p^d$ then follows by density. Furthermore, in view of (76), we may suppose that

$$
E_p(u) \le d\tau_N + 1. \tag{78}
$$

We continue to argue as in the proof of Lemma [2.2.](#page-3-0) Given a regular value $\rho \in (0, 1)$ of *u*, let V_ρ denote a component or a finite union of components of $A_\rho = \{x \in \mathbb{R}^N : |u(x)| < \rho\}$ with deg $(u, \partial V_\rho) = D$. We claim that

$$
\int_{V_{\rho}} \left(1 - |u|^2\right)^2 \ge |D| \left\{ 4\omega_N N^{N/2} \left(\frac{\rho^{N+2}}{N+2} - \frac{\rho^{N+4}}{N+4}\right) + o(1) \right\},\tag{79}
$$

as $p \to \infty$, where the decay of the $o(1)$ term is uniform on $\rho \in (0, 1)$. To obtain the generalization of [\(17\)](#page-3-0) to any *N*, we use Hadamard's inequality and the inequality of arithmetic and geometric means (see $\lceil 3 \rceil$ for both inequalities) as follows:

$$
|D|\omega_N \rho^N = \left| \int\limits_{V_\rho} \det(\nabla u) \right| \leq \int\limits_{V_\rho} \prod_{j=1}^N \left| \frac{\partial u}{\partial x_j} \right| \leq \frac{1}{N^{N/2}} \int\limits_{V_\rho} |\nabla u|^N \leq \frac{1}{N^{N/2}} \mu(V_\rho)^\frac{p-N}{p} \left(\int\limits_{V_\rho} |\nabla u|^p \right)^\frac{N}{p} . \tag{80}
$$

From (80) we get a lower bound for $\mu(V_\rho)$ which yields (79) by the same argument as in [\(19\)](#page-3-0) (thanks to (78) we have a bound for $\int_{V_\rho} |\nabla u|^p$). Finally we apply (79) with $V_\rho = A_\rho$ (so that $D = d$) and let $\rho \uparrow 1^-$ to obtain (77). \Box

We next prove Theorem [3,](#page-2-0) or the existence of a minimizer in [\(4\)](#page-1-0) for sufficiently large values of *p* (we emphasize that for $N = 2$ this existence has been established in [\[1\]](#page-15-0) for *any* $p > 2$, hence we expect it to hold for any $p > N$ when $N \geqslant 3$).

Proof of Theorem [3.](#page-2-0) For any fixed $p \ge N+1$ consider a minimizing sequence $\{v_n\} \subset \mathcal{E}_1$. We may assume that these maps are smooth, satisfy $v_n(0) = 0$ and thanks to (77) that

$$
E_p(v_n) \leqslant I_p(1) + \frac{1}{n} \leqslant C, \quad \forall n. \tag{81}
$$

Combined together, (81) and Morrey's inequality [\(1\)](#page-1-0) imply equicontinuity of the sequence $\{v_n\}$. Hence we can repeat with slight modifications (e.g., using (79) instead of (16)) the arguments of Corollary [2.1](#page-4-0) to arrive at an analogous conclusion: there exist $\rho_0 \in (\frac{3}{4}, 1)$ as well as $p_N > N + 1$ and R_0 such that for all $p > p_N$ the set $A_{\rho_0}^{(n)} := \{|v_n(x)| < \rho\}$ has a component $V_{\rho_0}^{(n)} \subset B(0, R_0)$ for which

$$
\deg(v_n, \partial V_{\rho_0}^{(n)}) = 1 \quad \text{and} \quad |v_n| \geqslant \frac{1}{2} \quad \text{on } \mathbb{R}^2 \setminus V_{\rho_0}^{(n)}.
$$

Next, for $p > p_N$, let $\{v_{n_k}\}_{k=1}^{\infty}$ be a subsequence of the minimizing sequence $\{v_n\}$ that converges weakly in $W_{loc}^{1,p}$ and strongly in C_{loc} to a limit *v*. Since $|v(x)| \ge \frac{1}{2}$ for $|x| \ge R_0$ by (82) we conclude that $v \in \mathcal{E}_1$. By lower semicontinuity

$$
E_p(v) \le \liminf_{n \to \infty} E_p(v_n) = I_p(1)
$$

and hence, v is the desired minimizer. \Box

We conclude this section with the proof of Theorem [4.](#page-2-0)

Proof of Theorem [4.](#page-2-0) The arguments we use here are similar in nature to those employed in the proofs of Lemma [2.3](#page-4-0) and Theorem [1.](#page-1-0) We first extract a bounded subsequence $\{u_{p_n}\}$ in $W^{1,q}(B(0,m))$ for some $q > N + 1$ and any fixed integer *m*. Passing to a subsequence, we may assume that the subsequence converges weakly in $W^{1,q}(B(0,m))$ and strongly in $C(B(0, m))$ to a limit u_{∞} . Repeating the process for each *m* and different values of *q* and passing then to a diagonal subsequence yields a subsequence satisfying (9) . The estimates (77) and (1) – (2) imply equicontinuity of the maps $\{u_{p_n}\}$ on \mathbb{R}^N . This implies, in conjunction with [\(73\)](#page-12-0), as in the proof of Corollary [2.1](#page-4-0) and Theorem [3,](#page-2-0) that there exist ρ_0 , R_0 and a component $V_{\rho_0}^{(n)}$ of $A_{\rho_0}^{(n)} = \{|u_{p_n}(x)| < \rho_0\}$, such that the analog of (82) holds for u_{p_n} , namely

$$
\deg(u_{p_n}, \partial V_{\rho_0}^{(n)}) = 1 \quad \text{and} \quad |u_{p_n}| \geqslant \frac{1}{2} \quad \text{on } \mathbb{R}^2 \setminus V_{\rho_0}^{(n)}.
$$

It follows that the degree of the limit u_{∞} equals to one as claimed. In addition the inequality

$$
\|\nabla u_{\infty}\|_{L^{\infty}(\mathbb{R}^N)} \leq 1\tag{83}
$$

follows by an argument identical to the one used in the proof of [\(24\)](#page-4-0).

Next, we attempt to obtain the explicit formulae in [\(10\)](#page-2-0). As in the proof of Theorem [1](#page-1-0) we denote by D_ρ the domain

$$
D_{\rho} = \left\{ x \in \mathbb{R}^{N} : \left| u_{\infty}(x) \right| < \rho \right\} \quad \forall \rho \in (0, 1].
$$

As in (29) , we have

$$
\int_{\mathbb{R}^N} \left(1 - |u_\infty|^2\right)^2 = \int_0^1 \mu\left(\left(1 - |u_\infty|^2\right)^2 > t\right) dt = \int_0^1 4\rho\left(1 - \rho^2\right) \mu(D_\rho) d\rho.
$$
\n(84)

Since deg $(u_{\infty}) = 1$, using (83), Hadamard's inequality, and the AM-GM inequality as in [\(80\)](#page-13-0) yields

$$
\omega_N \rho^N \leqslant \left| \int\limits_{D_\rho} \det(\nabla u_\infty) \right| \leqslant \int\limits_{D_\rho} \left| \det(\nabla u_\infty) \right| \leqslant \int\limits_{D_\rho} \prod_{j=1}^N \left| \frac{\partial u_\infty}{\partial x_j} \right| \leqslant \frac{1}{N^{N/2}} \int\limits_{D_\rho} \left| \nabla u_\infty \right|^N \leqslant \frac{1}{N^{N/2}} \mu(D_\rho),\tag{85}
$$

and hence,

$$
\mu(D_{\rho}) \geq N^{N/2} \omega_N \rho^N. \tag{86}
$$

On the other hand, the same argument as in the proof of Theorem [1](#page-1-0) gives

$$
\int_{\mathbb{R}^N} \left(1 - |u_{\infty}|^2\right)^2 = \lim_{n \to \infty} \int_{\mathbb{R}^N} \left(1 - |u_{p_n}|^2\right)^2 = 2\tau_N = \int_0^1 4\rho \left(1 - \rho^2\right) N^{N/2} \omega_N \rho^N d\rho. \tag{87}
$$

Combining (84) with $(86)–(87)$ implies that

$$
\mu(D_{\rho}) = N^{N/2} \omega_N \rho^N, \quad \rho < 1.
$$

Thus equalities must hold between all integrals in [\(85\)](#page-14-0), and hence also, almost everywhere, between the integrands. Consequently, the rows of the Jacobian matrix ∇u_{∞} are orthogonal to each other a.e. in D_1 , and each row has norm equal to \sqrt{N} and the sign of det (∇u_{∞}) must be constant (and hence positive because the degree of u_{∞} is equal to 1). In particular we deduce that u_{∞} is conformal in the sense that it is a *weak solution* of the Cauchy–Riemann system in *D*₁ as defined in [6, Chapter 5]. Namely, $u_{\infty} \in W_{loc}^{1,N}(D_1,\mathbb{R}^N)$ (in our case it belongs even to $W^{1,\infty}$), det (∇u_{∞}) has constant sign in D_1 and

$$
(\nabla u_{\infty})^T \nabla u_{\infty} = \left(\det(\nabla u_{\infty})\right)^{2/N} \mathbf{1} \quad \text{a.e. in } D_1.
$$
\n(88)

The generalization of Liouville's theorem for this case (see [6, Chapter 5]) implies that u_{∞} must be a "Mobius map", i.e., of the form

$$
u_{\infty}(x) = b + \frac{\alpha \mathcal{U}(x-a)}{|x-a|^{\epsilon}}
$$
\n(89)

for some $b \in \mathbb{R}^N$, $\alpha \in \mathbb{R}$, $a \in \mathbb{R}^N \setminus D_1$, $\mathcal U$ an orthogonal matrix and ϵ is either 0 or 2. However, since in our case we already know that

$$
|\nabla u_{\infty}(x)| = 1 \quad \text{a.e. in } D_1,\tag{90}
$$

it follows that $\epsilon = 0$ in (89). Using the fact that $u_{\infty}(0) = 0$ and det $(\nabla u_{\infty}) > 0$ in conjunction with (90), leads to [\(10\)](#page-2-0). From (90) we conclude that the inequality in [\(83\)](#page-14-0) is, in fact, an equality and [\(11\)](#page-2-0) readily follows. Finally, the uniform convergence of $|u_p|$ follows as in the case $N = 2$. \Box

Acknowledgement

I. Shafrir was supported in part by US–Israel BSF grant no. 2010194. Y. Almog, L. Berlyand, and D. Golovaty were supported in part by NSF grants DMS-1109030, DMS-1106666, and DMS-1009849, respectively. Their travel was supported by US–Israel BSF grant no. 2010194.

References

- [1] Y. Almog, L. Berlyand, D. Golovaty, I. Shafrir, Global minimizers for a p-Ginzburg–Landau-type energy in \mathbb{R}^2 , J. Funct. Anal. 256 (2009) 2268–2290.
- [2] Y. Almog, L. Berlyand, D. Golovaty, I. Shafrir, Radially symmetric minimizers for a *p*-Ginzburg–Landau type energy in R2, Calc. Var. Partial Differential Equations 42 (2011) 517–546.
- [3] E.F. Beckenbach, R. Bellman, Inequalities, second revised printing, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, vol. 30, Springer-Verlag, New York, 1965.
- [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011.
- [5] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.
- [6] T. Iwaniec, G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York, 2001.
- [7] P. Mironescu, Les minimiseurs locaux pour l'équation de Ginzburg–Landau sont à symétrie radiale, C. R. Acad. Sci. Paris, Sér. I Math. 323 (1996) 593–598.
- [8] E. Sandier, Locally minimising solutions of $-\Delta u = u(1 |u|^2)$ in \mathbb{R}^2 , Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 349–358.