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Abstract

Smoluchowski coagulation equation for a class of homogeneous coagulation rates of degree λ ∈ [0,2). On the one hand for
any initial datum fin ∈ L̇1

1 we build a weak solution which conserves the mass when λ � 1 and loses mass in finite time (gelation
phenomenon) when λ > 1. We then extend this existence result to a measure framework allowing dust source term. In that case
we prove that the income dust instantaneously aggregates and the solution does not contain dust phase. On the other hand, we
investigate the qualitative properties of self-similar solutions to the Smoluchowski’s coagulation equation when λ < 1. We prove
regularity results and sharp uniform small and large size behaviour for the self-similar profiles.

Résumé

Nous considérons l’équation de Smoluchowski pour une classe de taux homogènes de degré λ ∈ [0,2). D’une part, pour toute
donnée initiale fin ∈ L̇1

1 nous construisons une solution qui conserve la masse lorsque λ � 1 et qui perd de la masse en temps
fini (phénomène de gélification) lorsque λ > 1. Nous étendons ensuite ce résultat à un contexte mesure qui permet de prendre
en compte un terme de source « poussière ». Dans ce cas, nous démontrons que la poussière entrant dans le système s’agglomère
instantanément et que la solution ne contient pas de phase poussière. D’autre part, nous étudions les propriétés qualitatives des
solutions auto-similaires lorsque λ < 1. Nous démontrons des résultats de régularité et établissons des estimations uniformes sur le
comportement du profil auto-similaire pour les petites et les grandes tailles de particules.
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1. Introduction

The Smoluchowski coagulation equation is a well known model used to describe the dynamics of a system of
particles undergoing aggregation events. The present paper is devoted to the analysis of such a model both in the free
regime and in a forced regime, in which matter is added to the system by means of a source term. More precisely, if we
denote by f (t, y) � 0 the density of particles with mass y ∈ R+ := [0,∞) at time t � 0, the spatially homogeneous
coagulation equation with source term is

∂f

∂t
(t, y) = Q(f )(t, y) + s(t, y) in R

2+, (1.1)

f (0, ·) = fin in R+, (1.2)

where the coagulation operator Q models the growth mechanism resulting from the encounter of two mother particles
and the source term s takes into account the addition of matter to the system. The aggregation mechanism may be
schematically written as

{y} + {y′} a−→ {y′′} with y′′ = y + y′,

where a = a(y, y′) is the rate of occurrence of the aggregation of two particles of mass y and y′. The operator Q is
then given by



Q(f ) = Q+(f ) − Q−(f ), Q+(f )(y) = 1

2

y∫
0

a(y − y′, y′)f (y − y′)f (y′)dy′,

Q−(f )(y) =
∞∫

0

a(y, y′)f (y)f (y′)dy′.

(1.3)

We refer to the books and review papers of F. Leyvraz [27], P. Laurençot and S. Mischler [23], D.J. Aldous [1],
J.H. Seinfeld [39], S.K. Friedlander [17] and R.L. Drake [11] for a basic physical description and motivations and
an overview of available mathematical results on coagulation models as well as to the references therein for a more
precise physical and mathematical analysis.

In this paper, we assume that the coagulation rate a is a homogeneous function of y and y′ of degree λ, i.e.
a(ry, ry′) = rλa(y, y′) for all r > 0. More precisely, we assume

a(y, y′) = yα(y′)β + yβ(y′)α, −1 � α � β � 1, λ := α + β ∈ [0,2], (α,β) �= (0,1). (1.4)

Our results are still valid for linear combinations of several such rates and also for coagulation rates of the form:

a(y, y′) = (
yν + (y′)ν

)µ(
yσ + (y′)σ

)
, νµ + σ ∈ [0,1) (1.5)

(see also [16]). An important particular case is the Smoluchowski’s rate aS introduced in [41] which is defined choos-
ing ν = 1/3, µ = 1 and σ = −1/3 in (1.5). In order to obtain our results in that case one has to take α = −1/3,
β = 1/3 in the statement of the theorems below. Nevertheless, for the sake of brevity, we only write the detailed
statements and proofs for the coagulation rates (1.4).

In the Cauchy problem (1.1), (1.2) the initial datum fin and the source term s are such that yfin and ys(t, ·) are
nonnegative measurable functions on (0,∞) or nonnegative Borel measures on [0,∞) satisfying (at least)

∞∫
0

y dfin(y) < ∞ and sup
t>0

∞∫
0

ys(t,dy) < ∞. (1.6)

The most fundamental property of this equation is the formal conservation of mass:

∀T > 0

∞∫
yf (T ,dy) =

∞∫
yfin(dy) +

T∫ ∞∫
ys(t,dy).
0 0 0 0
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This mass conservation property is proved to be true for the solutions of the Cauchy problem (1.1), (1.2) for a coagu-
lation rate satisfying (1.4) with λ � 1 while it breaks down in finite time (gelation phenomenon) for a coagulation rate
satisfying (1.4) with λ > 1 and s ≡ 0 (see point (3) just below).

Let us emphasise first that we are specially concerned with the case where yfin and ys(t, ·) contain a Dirac mass
(for example yfin = σinδy=0 and ys(t, ·) = σ(t)δy=0). This corresponds to the physical situation where part of the
matter which constitutes the system (or in other words, part of the mass of the system) is not in the particle phase
but in the, so-called, dust phase, i.e. the portion of mass contained in the zero size particles is positive. Dust can be
introduced initially in the system (in the initial datum) or can be injected along the evolution of the system (thanks to
the source term). When all the mass in the system is contained in the dust phase we have yf (t, y) = ω(t)δy=0 whereas
when all the system is constituted of particles yf (t, y) does not charge the origin (for instance it is an L1 function). In
other words, from a mathematical point of view, a system containing some dust is simply described by a density f (y)

such that yf (y) charges the origin, i.e. yf (y) � ωδy=0 for some ω > 0.
It is very classical in growth models (in the largest sense) to consider physical situations where two phases coexist.

Let us give some examples.

(1) The fragmentation equation, which models a linear instantaneous breakage mechanism of particles of positive
size, may generate dust in finite time when the fragmentation rate is strong enough (if the rate of fragmentation
is singular for small sizes). It is the shattering phenomenon described for instance in [30,2] and the references
therein.

(2) The Lifshitz–Slyozov equation [28] provides a model of exchange of matter contained in two different phases
(vapour and liquid or liquid and solid for instance): a bath of “elementary particles” (which corresponds to the
dust phase here) and particles immersed in the bath. The underlying physical mechanisms are the evaporation and
the condensation.

(3) It is commonly accepted (see for instance the pioneer paper by Leyvraz [26] and the review paper [27]) that the
Smoluchowski coagulation equation provides a model of finite time phase transition. More precisely, for a coag-
ulation rate a given by (1.4) with λ ∈ (1,2] it has been shown in [26,18,13] that particles (of finite size) aggregate
so quickly that particles of infinite size (the gel) are created in finite time: that is the gelation phenomenon.

To our knowledge, there are very few works on Smoluchowski coagulation equation involving dust phase. We
have only quoted two papers. On the one hand, the mathematical paper [15] by Fournier and Giet in which the
authors consider the coagulation-fragmentation equation with singular fragmentation rate. For such a model dust
is a priori produced by the strong fragmentation mechanism (see point (1) above) and then has also to be taken
into account in the coagulation mechanism. On the other hand, the physical paper [12] by Duffa and Nguyen-Bui,
where the authors are interested in modelling the formation of soot from smoke produced by combustion. In such a
situation, the fire generates smoke (elementary benzene molecules) which immediately transforms (by instantaneous
aggregation) in soot (particles constituted of more than an hundred of benzene molecules) which in turn follows a
standard coagulation mechanism. The authors then describe the system by the density of soot particles, whose growth
dynamic is determined by the Smoluchowski coagulation equation, and the smoke as a source term s of dust with
therefore ys(t,dy) = σ(t)δy=0.

There are a great number of physical situations (combustion, aerosols, . . . ) where matter is added to a system of
particles by the mean of dust, i.e. “elementary particles” whose typical size is very small with respect to the size of
observable particles. Physical modelling of such a situation is considered in [17,29,7,36] among others. In these works
the Smoluchowski coagulation equation with (singular) source term is extensively used. The way to take into account
the new matter is to consider a source term s such that ys(t,dy) = σ(t)φ(y) where φ correspond to the distributional
density of new matter and the simplest choice is to consider φ(y) = δy=y0 . Arguing that very small particles are very
unstable the authors take y0 > 0. This choice greatly simplifies the mathematical study, although the precise choice of
y0 is not always clearly determined.

In the first part of this work we consider the Cauchy problem for Eq. (1.1). We revisit the Cauchy problem with
non negative measurable initial data fin satisfying (1.6) and s ≡ 0. We prove a regularising effect of the coagulation
equation near the origin and give some new estimates on the long and short time behaviour of the moments of the
solutions when λ ∈ [0,1).
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We next consider the case of the Cauchy problem for Eq. (1.1) with a source term s and initial datum fin in a
measure framework and such that (1.6) holds. Measure solution is commonly considered in mathematical studies, see
for instance [37], while measure solution allowing dust in considered in [15]. Our main result is that dust, which may
be present in the initial condition or added to the system thanks to the source term, becomes instantaneously part of
the particle phase.

We finally consider the self similar solutions problem for Eq. (1.1) with s ≡ 0 and λ ∈ [0,1). The self similar solu-
tions are particular solutions which are invariant by some scaling transformation which depends on the homogeneity λ

of the coagulation rate a. More precisely these solutions are exactly those which are invariant by the preserving mass
scaling

f (t, y) → µ
2

1−λ f
(
µt,µ

1
1−λ y

)
. (1.7)

As a consequence a self-similar solution has the form

F(t, y) = t−
2

1−λ G
(
yt−

1
1−λ

)
, (1.8)

where the so-called self-similar profile G satisfies the self-similar profile equation

DG + (1 − λ)Q(G) = 0, (1.9)

and where D is the following linear transport operator preserving the mass

Dg = 2g + y∂yg. (1.10)

An other immediate consequence is that any self similar solution F is mass preserving:

∀t > 0

∞∫
0

yF(t, y)dy =
∞∫

0

yG(y)dy =: ρ. (1.11)

As it was shown by van Dongen and Ernst in [10], the function By−1−λ for some normalisation positive constant B ,
is a self-similar solution of the coagulation equation but has no finite mass. When λ = 1 the self similar solutions have
a different form. When λ > 1, gelation occurs and such self-similar solutions do not exist.

Notice that all the mass of the self similar solutions is initially in the dust phase. Namely there holds:

F(t, y)y ⇀
t→0

ρδy=0. (1.12)

They are therefore particular solutions with initial data containing dust phase. Since no uniqueness result of the
solutions of (1.1) with Dirac mass initial condition is known, we do not know whether any solution with Dirac mass
initial condition is a self-similar solution.

On the other hand, it is conjectured that the self-similar solution of given mass is unique and that, for a large set
of initial data, the corresponding solutions of the coagulation equation behave asymptotically, as t → +∞, like the
self-similar solution with same mass:

f (t, y) ∼
t→∞ F(t, y). (1.13)

Explicit self similar solutions are known for the constant kernel a(y, y′) = 1 (M. von Smoluchowski [40]), for a
additive kernel a(y, y′) = y + y′ and for a multiplicative kernel a(y, y′) = yy′ (cf. [1] and references therein). For
the additive kernel, these solutions were obtained from some hydrodynamic limit of a stochastic model by J. Bertoin
in [3]. They were also rederived by G. Menon and R. Pego, and new families of self similar solutions, with no finite
mass, for the kernel a(y, y′) = 1 were obtained by these authors in [31,32]. Moreover for the constant and additive
coagulation rate, the asymptotic behaviour of generic solutions, for a large class of initial data, is actually given by
the corresponding self-similar solution, see [31,32,3,19] for more details.

Recently the problem of existence of self similar solutions for the coagulation equation has been solved in [14,16]
for coagulation rates satisfying (1.4) with β,λ ∈ [0,1): for any given mass ρ > 0 there exists at least one self-similar
profile G which is solution to (1.9), (1.10), (1.11). Our purpose is to prove some regularity and size properties of the
self similar profiles.

The behaviour of the self similar solutions of the coagulation equation (assuming their existence) near the origin
have been described using formal asymptotics by van Dongen and Ernst in [8,10] and numerically by Lee in [25].
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• If α > 0, assuming that the behaviour of the self-similar profile near the origin is “regular” (i.e. the limit
limx→0 G(ax)/G(x) exists for all a > 0, see [27]), van Dongen and Ernst obtained in [8,10] that

G(y) ∼ Ay−(1+λ), as y → 0, (1.14)

for some explicit, positive constant A depending only on a.
• If α = 0, under the same hypothesis, the same authors obtain for a normalised self similar profile G, that is

M1(G) = 1, the following asymptotic behaviour

G(y) ∼ y−τ , as y → 0;

τ = 2 − (1 − λ)

∞∫
0

yλG(y)dy < 1 + λ.
(1.15)

• If α < 0 the hypothesis of regular behaviour at the origin does not seem to hold. In that case, the same authors
obtain in [8,10]:

G(y) ∼ Ay−2 exp
(−By−|α|) as y → 0, B = 1

(1 − λ)|α|
∞∫

0

yλ−αG(y)dy. (1.16)

The behaviour of the self similar profiles as y → +∞ has been treated by van Dongen and Ernst in [9] when β = 1
and in [10] when β ∈ [0,1). They establish

G(y) ∼ Ay−λ e−δy as y → ∞ (1.17)

where A and δ are two positive constants related with the coagulation rate a.
The results obtained in [14] and [16] gave in particular rigorous estimates on some of the moments of the self

similar profiles. These estimates give a less precise information on the behaviour of these profiles than those obtained
by asymptotic expansions. Although they also indicate that the behaviour, near the origin, is more regular in the case
α < 0 than for α � 0. In the present work, we improve the previous rigorous estimates on the profiles in two ways:
we obtain lower and upper bounds of the profiles as y → 0 and y → +∞, and we obtain regularity results for these
profiles. Nevertheless our results are still far from (1.14)–(1.17).

Let conclude this introduction by some fundamental and well known remarks. A self similar profile G is stationary
solution of the equation

∂g

∂t
= Dg + (1 − λ)Q(g) in R+ × R+, (1.18)

that we call the coagulation equation in self-similar variables. Now, on the other hand, it is straightforward (using the
scaling (1.7)) to check that, if g is a solution to (1.18) then the function f defined by

f (t, y) := (1 + t)−
2

1−λ g

(
ln(1 + t)

1 − λ
,y(1 + t)−

1
1−λ

)
(1.19)

is a solution to the coagulation equation (1.1) with same initial datum and s ≡ 0. A immediate and useful consequence
is the following relation between the power moments of f and g:

Mk

(
f (t, ·))= (1 + t)

k−1
1−λ Mk

(
g

(
ln(1 + t)

1 − λ
, ·
))

, (1.20)

where for any measurable function h : R+ → R+ and any real k ∈ R we have defined the moment of h of order k by

Mk(h) =
∞∫

0

h(y)yk dy.

Reciprocally, if f satisfies the coagulation equation (1.1), we obtain a solution g to (1.18) defining

g(t, y) = e2t f
(
e(1−λ)t − 1, y et

)
. (1.21)
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We have therefore an equivalence between (1.18) and (1.1) with s ≡ 0 thanks to the simple change of variables
(1.21) and (1.19). As we will see, in order to establish properties on the solution of the coagulation equation (1.1),
it is often more convenient to work on the coagulation in self-similar variables (1.18) than to work directly on the
coagulation equation (1.1) itself.

The paper is organised as follows. In Section 2 we state the precise definitions of solution we will deal with and we
state our main results on the Cauchy problem and on the profile problem. In Section 3 we establish some (somewhat
new) moment estimates. In Section 4 we prove regularity and uniform by above estimates while in Section 5 the
uniform by below estimates are proved. Finally, in Section 6 we gather a priori estimates on the solution of Eq. (1.1)
and give a sketch of the proof of the existence of solutions to the Cauchy problem.

2. Main results

We first recall some well known elementary but fundamental formal computations in order to give a weak sense
to the coagulation operator (1.3). We mean by weak sense a formulation of Q(f ) in which the terms Q±(f ) are not
necessarily well defined separately but the coagulation term makes sense due to cancellations. This will motivate the
definitions of weak solutions introduced in Definition 2.3 and Definition 2.10 below.

On the one hand, for any functions f and φ, the following key identities formally hold

∞∫
0

Q(f )φ dy = 1

2

∞∫
0

y∫
0

a(y − y′, y′)f (y − y′)f (y′)φ(y)dy′ dy −
∞∫

0

∞∫
0

a(y, y′)f (y)f (y′)φ(y)dy′ dy

= 1

2

∞∫
0

∞∫
0

aff ′[φ′′ − φ − φ′]dy′ dy (2.1)

=
∞∫

0

∞∫
0

yα(y′)βff ′[φ′′ − φ − φ′]dy′ dy =: 〈Q(f ),φ
〉
, (2.2)

where we have first performed the change of variables (y, y′) → (z = y − y′, y′) in the first term of Q(f ) and the
symmetry of aff ′ in the second term, and we have next used the symmetry of ff ′[φ′′ − φ − φ′]. Here and below we
use the notations ϕ = ϕ(y), ϕ′ = ϕ(y′), ϕ′′ = ϕ(y′′), y′′ = y + y′ for any y, y′ ∈ R+ and any function ϕ.

On the other hand, for any functions f and ψ the following identities formally hold, starting from (2.1) with
φ = yψ ,

∞∫
0

Q(f )yψ dy = 1

2

∞∫
0

∞∫
0

aff ′(yψ ′′ + y′ψ ′′ − yψ − y′ψ ′)dy dy′

=
∞∫

0

∞∫
0

aff ′y{ψ ′′ − ψ}dy dy′ (2.3)

=
∞∫

0

∞∫
0

ayff ′
{ y+y′∫

y

∂zψ(z)dz

}
dy dy′ =

∞∫
0

∂zψ(z)

{ ∞∫
0

∞∫
0

1y�z�y+y′ayff ′ dy dy′
}

dz

= −
∞∫

0

∂z

(
C(f )

)
(z)ψ(z)dz, (2.4)

with

C(f )(z) :=
z∫
fy

{ ∞∫
af ′ dy′

}
dy (2.5)
0 z−y
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= (
yα+1f

)
�z Lβ(f ) + (

yβ+1f
)
�z Lα(f ). (2.6)

Here we have defined for any functions g and h the modified convolution operation by

z 
→ h �z g :=
z∫

0

h(y)g(z − y)dy,

and we have set

Lν(f )(u) :=
∞∫

u

vνf (v)dv. (2.7)

In order to give a rigorous meaning to these different formulations of the coagulation operator we need some
notations. We denote by L1

loc the space of measurable functions f : (0,∞) → R, such that f ∈ L1(R−1,R) for
any R > 1 and by M1

loc the space of measures with the corresponding property. For any given continuous function
ϕ : (0,∞) → (0,∞), we define

M1
ϕ := {

f ∈ M1
loc,Mϕ

(|f |)< ∞}
, L1

ϕ := M1
ϕ ∩ L1

loc,

where the generalised moment Mϕ is defined by

Mϕ(f ) :=
∞∫

0

ϕ(y)df (y). (2.8)

All these are Banach spaces. In particular, we may define the usual weak convergence in L1
ϕ (resp. M1

ϕ) and
then the space C(I ;L1

ϕ-weak) (resp. C(I ;M1
ϕ-weak)) for a given interval of time I . For instance we say that

f ∈ C(I ;M1
ϕ-weak) if f (t) ∈ M1

ϕ for any t ∈ I and for any χ ∈ Cb([0,∞), the space of continuous and bounded

functions, the function t 
→ M1(f ϕχ) is continuous. Similarly, we write f ∈ C(I ;L1
loc-weak) in order to express

that f (t) ∈ L1
loc for any t ∈ I and for any χ ∈ L∞ with compact support in ]0,∞[ the function t 
→ M1(f χ) is

continuous. In order to shorten notations we also (abusively) denote Mk = Myk , L̇1
k = L1

yk , Ṁ1
k = M1

yk , L1
k = L1

1+yk

and M1
k = M1

1+yk , for any k ∈ R.

Lemma 2.1.

(i) For any f ∈ X ′
a with X ′

a := Ṁ1
α+1 + Ṁ1

β if β � 1 + α and X ′
a := Ṁ1

α+1 ∩ Ṁ1
β if β � 1 + α the operator Q(f ) is

well defined in D′(0,∞). More precisely, for any compact set K ⊂ (0,∞), there exists a constant CK such that
for any f ∈Xa := Ṁ1

1 ∩ Ṁ1
min(1,α+1) ⊂X ′

a and any φ ∈ D(0,∞) with suppφ ⊂ K there holds∣∣〈Q(f ),φ
〉∣∣� CK‖f ‖Ṁ1

1
‖f ‖Xa

‖φ‖C1(K). (2.9)

(ii) For any f ∈ Ṁ1
k with k � ν there holds Lν(f )yk−ν ∈ L∞. As a consequence, for any f ∈ Ṁ1

1 if α > 0 and for
any f ∈ Ṁ1

k ∩ Ṁ1
1 with k < 1 + α if α � 0, the operator C(f ) is well defined in M1

loc and yQ(f ) = −∂y(C(f ))

in D′(0,∞).
(iii) For any f ∈ L̇1

α+min(0,k) ∩ L̇1
β+max(0,k) (resp. f ∈ Ṁ1

α+min(0,k) ∩ Ṁ1
β+max(0,k)) with k ∈ R, there holds Q±(f ) ∈

L1
k (resp. Q±(f ) ∈ M1

k ), and then Q(f ) = Q(f ) = y−1∂y(C(f )) in D′(0,∞) for any f ∈ Ṁ1
α ∩ Ṁ1

β+k with
k � 1 − β .

Proof of Lemma 2.1. Step 1. Proof of (i). Take φ ∈ C1
c (0,∞) and introduce y0, y1 ∈ (0,∞) such that suppφ ⊂

K := [2y0, y1] and ∆φ := φ′′ − φ − φ′. From the definition (2.2) of 〈Q(f ),φ〉 it will be enough to prove that A :=
yα(y′)βff ′|∆φ | ∈ M1(Ω), Ω := (0,∞) × (0,∞), in order to conclude that Q(f ) is well defined. We decompose
Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 with

Ω1 := (]0, y0[× ]0, y0[
)∪ (]0, y0[× ]y1,∞[)∪ (]y1,∞[×]0, y0[

)
,

Ω2 = [y0,∞[×[y0,∞[, Ω3 =]0, y0[× ]y0, y1[, Ω4 =]y0, y1[× ]0, y0[,
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and we deal with each subset Ωi separately.

– On Ω1, there holds ∆φ ≡ 0, and then A = 0.
– On Ω2, there holds A � 2‖φ‖L∞yαf (y′)βf ′.
– On Ω3, we have

∆φ = φ(y + y′) − φ(y′) = yφ′(y + θy′)

with θ ∈ (0,1), and we deduce A � ‖φ′‖L∞(y′)βf ′yα+1f .
– On Ω4, the same argument as on Ω3 gives A � ‖φ′‖L∞yαf (y′)β+1f ′.

Gathering the above estimates, we get

A � CK‖φ‖W 1,∞ψαf ψ ′
βf ′, ψγ (y) := yγ+11y�1 + yγ 1y�1, (2.10)

for some constant CK depending of the support K of φ.
For f ∈ X ′

a , we observe that ψα � ψα,β , ψβ � ψα,β , where we have defined ψγ,δ(y) := yγ+11y�1 + yδ1y�1, and
we deduce from (2.10) that∣∣〈Q(f ),φ

〉∣∣� CK‖f ‖2
X ′

a
‖φ‖C1(K)

since that ‖f ‖X ′
a
= ‖f ψα,β‖M1 .

For f ∈Xa , we observe that ψα � ψα,1, ψβ � y, and we deduce (2.9) from (2.10) again.
Step 2. Proof of (ii). We start remarking that for g ∈ Ṁ1

k , k � ν, we have

∀z ∈ R+ Lν(g)(z) =
∞∫
z

yν−kykg dy � zν−kMk(g). (2.11)

Therefore, by the hypothesis on f , we have that Lα(f ),Lβ(f ) ∈ L1
loc, yα+1f , yβ+1f are two measures locally

bounded on (0,+∞) and the operator C(f ) is well defined as a function of L1
loc (see Lemma 4.4 for details). We

easily conclude thanks to the formal computation leading to (2.4) from (2.2), which can be made rigorous thanks to
the above assumptions.

Step 3. Proof of (iii). This is a straightforward verification. Notice that when f is a measure, the coagulation
operator Q(f ) = Q+(f ) − Q−(f ) is defined by duality on test functions ϕ ∈ Cb([0,∞)) as follows:

〈
Q+(f ),ϕ

〉=
∞∫

0

∞∫
0

aϕ′′ df (y)df (y′),
〈
Q−(f ),ϕ

〉=
∞∫

0

∞∫
0

aϕ df (y)df (y′), (2.12)

and then

〈
Q±(f ),ϕ

〉
� ‖ϕ‖L∞

( ∞∫
0

(
yα + yβ

)
df (y)

)2

. �

Remark 2.2. When α,β ∈ (0,1), Q(y−1−λ) is well defined since y−1−λ ∈ L̇1
α+1 + L̇1

β ⊂X ′
a .

Definition 2.3. We say that a function f : R
2+ → R+ is a (global) weak solution to the coagulation equation (1.1) with

s ≡ 0 if

f ∈ C
(]0,∞[;L1

loc-weak
)∩ L∞

loc

(]0,∞[;Xa

)
, (2.13)

and

∀ϕ ∈ C1
c

(
R

2+
) ∞∫ ∞∫

f (t, y)∂tϕ dy dt +
∞∫ 〈
Q
(
f (t, ·)), ϕ(t, ·)〉dt = 0. (2.14)
0 0 0
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We say that a function f : R2+ → R+ is a weak solution to the Cauchy problem (1.1), (1.2) with s ≡ 0 and initial datum
0 � fin ∈ L̇1

1 if f is a weak solution to the coagulation equation (1.1), f ∈ C([0,∞[;L1
loc-weak) and f (0, ·) = fin

a.e.

We finally introduce the space Vin of admissible initial data, defined by

Vin :=
⋃
m<1

(
L̇1

1 ∩ L̇1
m

)
if β = 1, α < 0

and

Vin := L̇1
1 if β < 1 or if β = 1, α > 0.

Concerning the Cauchy problem we have the following result:

Theorem 2.4. Assume (1.4) and s ≡ 0. For any 0 � fin ∈ Vin there exists at least one weak solution f to the Cauchy
problem (1.1), (1.2). This solution can be built in such a way that

t 
→Mϕ(t), t 
→
∞∫

0

Λ
(
f (t, ·))yk dy

are decreasing functions for any subadditive function ϕ, for any smooth convex and increasing function Λ with
Λ(0) = 0 and for k = 0,1, and furthermore

f (t, ·) → 0 a.e. when t → ∞.

Moreover, the following additional properties hold:
Case 1. If λ ∈ [0,1], one can build the solution in such a way that it is mass preserving and it satisfies that the

function t 
→ Mk(t) is increasing for k > 1.
Case 2. If λ,β ∈ [0,1), one can build a solution which satisfies f ∈ C(]0,∞[; L̇1

k) for any k ∈ Ia , where Ia = (λ,1)

if α > 0, Ia = [λ,1) if α = 0 and Ia = (−∞,1) if α < 0, and more precisely, assuming fin ∈ L̇1
1 ∩ L̇1

M for some M > 1,
there holds

∀k ∈ Ia ∪ [1,M] C1,kt
k−1
1−λ � Mk

(
f (t, ·))� C2,kt

k−1
1−λ ∀t � 2, (2.15)

and

∀k ∈ Ia ∩ [λ,1] Mk

(
f (t, ·))� C3,kt

−1 ∀t ∈ (0,2], (2.16)

for some positive constants Ci,k depending of fin. We refer to Corollary 3.10 for a more precise statement.
Case 3. If λ > 1, gelation occurs in finite time, i.e. there exists Tg ∈ [0,∞) such that

M1(t) ≡ M1(0) ∀t ∈ [0, Tg), M1(t) < M1(0) ∀t ∈ (Tg,∞).

Remark 2.5.

(i) It has already been proved in [43,38,23,14] that for any fin ∈ L1
2α ∩ L1

1+β there exists a unique mild solution (in

the sense of [14, Definition 2.4]) in C([0,∞); L̇1
2α ∩ L1

1+β).
(ii) The existence of solutions is the object of many previous references. In the case α � 0 we refer, for instance

to [42]. In the case α < 0, we refer to [37,33]. In any case, we refer to the recent survey [23] and the references
quoted therein.

(iii) Gelation has been proved to occur when λ > 1 in [13] for any solution associated to an initial datum fin ∈ L1
1,

see also [26,18].
(iv) When β < 1 we may extend the above existence result to an initial datum fin ∈ L̇1

1 + L̇1
β . In that case, we have

to replace the bound on the mass used in the proof of the existence in Theorem 2.4 by the following uniform
estimate ‖f (t, ·)ψ0,β‖M1 � ‖finψ0,β‖M1 < ∞.
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Remark 2.6. The main new results in Theorem 2.4 is the moment estimates (2.15) and (2.16). These ones are based
on a trick first introduced in [13]. Estimate (2.15) establishes an instantaneous regularisation effect of the coagulation
equation near the origin while (2.16) gives a large time asymptotic behaviour of the generic solutions and shows that
these ones have the same behaviour as the self-similar solutions; that is therefore a first validation of (1.13) in the very
rough sense of moment estimates.

We extend the previous existence result to the Cauchy problem (1.1), (1.2), with source term s and initial data fin
in a suitable set of measures.

Definition 2.7. We say that a measure f on [0,∞) × [0,∞) is a (global) weak solution to the Cauchy problem (1.1),
(1.2) of the coagulation equation with source term 0 � s ∈ L∞(0,∞; Ṁ1

1 ) and initial datum 0 � fin ∈ Ṁ1
1 , if

f ∈ C
([0,∞[; Ṁ1

1 -weak
)∩ L1

loc

([0,∞[;Xa

)
, (2.17)

and for any ϕ ∈ C1
c (R2+)

∞∫
0

ϕ(0, y)fin(dy) −
∞∫

0

∞∫
0

∂tϕf (t,dy)dt =
∞∫

0

〈
Q
(
f (t, ·)), ϕ(t, ·)〉dt +

∞∫
0

∞∫
0

ϕs(t,dy)dt. (2.18)

Theorem 2.8. Assume α,β ∈ [−1,1], λ ∈ [0,1) and α > β − 1. For any 0 � fin ∈ Ṁ1
1 and 0 � s ∈ L∞(0,∞; Ṁ1

1 ∩
Ṁ1

ξ ), with ξ continuous, ξ(y) � y on (0,∞) and ξ(y)/y → ∞ when y → ∞, there exists at least one weak measure
valued solution to the Cauchy problem (1.1), (1.2) such that f conserves the mass

M1(t) = M1(0) +
t∫

0

S(τ)dτ ∀t � 0, S(t) :=
∞∫

0

ys(t,dy). (2.19)

Moreover, all the mass of f (t, ·) is contained in the particles phase (not in the dust phase), more precisely, for any
(small) time t0 > 0

t 
→ M(1+λ)/2(t) ∈ L∞([t0,∞)
). (2.20)

Remark 2.9. Since (1+λ)/2 ∈ [0,1), the estimate (2.20) shows that the density function yf (t,dy) does not charge the
origin for any t > 0, which precisely means that no mass is contained in the dust phase. It is again a manifestation of
the regularisation property of the coagulation equation as mentioned in Remark 2.5. Estimate (2.20) holds in particular
in the case of a pure dust source, that is s such that ys(t,dy) = σ(t)δy=0 with σ ∈ L∞(0,+∞), and it means that all
the dust is instantaneously transformed in particles.

We consider now the self similar solutions.

Definition 2.10. Assume λ < 1 and define Ja = Ia ∪ [1,∞). We say that a function G : R+ → R+ is a self-similar
profile of mass ρ if

G ∈ Ya :=
⋂
k∈Ja

L̇1
k, M1(G) = ρ, (2.21)

and G is a solution of (1.18) in the following weak sense

∀ϕ ∈ C1
c (R+)

∞∫
0

GD∗ϕ dy + (1 − λ)
〈
Q(G),ϕ

〉= 0, (2.22)

where

D∗ϕ(y) = 2ϕ(y) − ∂y(yϕ) = −y2∂y

(
ϕ

y

)
. (2.23)
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For α � 0, we will need another representation of the profile equation (1.9) which is given by the following.

Lemma 2.11. Assume β ∈ [0,1) and α ∈ [−β,β] ∩ [−β,1 − β). A function G ∈ Ya is a self-similar profile in the
weak sense of Definition 2.10 if, and only if, G satisfies

z2G(z) = (1 − λ)C(G)(z) a.e. on (0,∞). (2.24)

Proof of Lemma 2.11. On the one hand, for a given G ∈ Ya and for any ϕ ∈ C1
c (0,∞), we define ϕ(y) = yψ(y) ∈

C1
c (0,∞) and we compute thanks to Definition 2.10 and Lemma 2.1〈

∂y

(
Gy2),ψ 〉= −〈G,y2∂yψ

〉= 〈G,D∗ϕ〉 = (λ − 1)
〈
Q(G),ϕ

〉= (λ − 1)
〈
yQ(G),ψ

〉
= (1 − λ)

〈
∂yC(G),ψ

〉
.

In other words, that means

∂y

(
Gy2)= (1 − λ)∂yC(G) in D′(0,∞). (2.25)

On the other hand, we infer from Lemma 2.1 and the assumption G ∈ Ya that Lν(G)yk ∈ L∞ for any k > β and
ν = α,β , which in turn implies Lα(G),Lβ(G) ∈ L1, by choosing for instance k = 2 and k = (1 + β)/2. Since we
have also yα+1G,yβ+1G ∈ L1, Lemma 4.4 implies C(G) ∈ L1. We conclude the proof, integrating Eq. (2.24) and
using that y2G,C(G) ∈ L1. �

Our last result is a pointwise estimate from above and below near the origin and at infinity of the self similar
profiles which improves the estimates established in [14,16], but are still a weak version of the expected asymptotic
behaviour (1.14)–(1.17).

Theorem 2.12. Assume β ∈ [0,1) and α ∈ [−β,β] ∩ [−β,1 − β).

(1) Assume α < 0. For any ρ > 0 there exists at least one self-similar profile of mass ρ such that G ∈ C∞((0,∞))

and

e−ayα

1y�1 + e−by1y�1 � G(y) � e−Ayα

1y�1 + e−By1y�1 ∀y ∈ (0,∞)

for some constants a, b,A,B > 0.
(2) Assume α � 0. For any ρ > 0 there exists at least one self-similar profile of mass ρ such that G ∈ C((0,∞)) and

∀ε > 0, ∀y ∈ (ε,∞) e−bεy � G(y) � e−Bεy for some constants bε,Bε > 0,

Gyk ∈ L∞(0,1) ∀k > 1 + λ,

and moreover if α > 0 there holds Gyk /∈ L∞(0,1) ∀k < 1 + λ.

We refer to [16,14] and the surveys [23,27] for a general discussion about self-similar solutions and for references.
Coming back to (1.8) and (1.12) the above theorem shows that we are able to build in the case of a pure Dirac mass
initial datum yfin = ρδy=0 a (self-similar) solution F to the coagulation equation which has much more regularity
and for which we know very much more accurate asymptotic behaviour than for the one built thanks to Theorem 2.8.
The proof of Theorem 2.12 is based on the one hand on the power moment estimates (2.15), (2.16) and on exponential
moment estimates in the spirit of [4,5,44] and on the other hand on a new bootstrap regularity argument taking
advantage of the formulation (2.24).

3. Moment estimates for the coagulation equation in self-similar variables

In this section we establish some new a priori moment estimates on the solutions g to the coagulation equation in
self-similar variables (1.18). We show the production of moments of order lower than one and the propagation in time
of moments larger than one and exponential powers. As a consequence we will deduce a regularising effect of this
equation near the origin.
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Such estimates hold for the coagulation profiles G and provide regularity results for the self similar solutions
of (1.1). All these estimates will be established formally for a given solution g to the coagulation equation in self-
similar variables (1.18) associated to an initial datum gin ∈ L̇1

1 with mass ρ > 0. More precisely, we will use without
justification that for any φ

d

dt

∞∫
0

gφ dy = 1

2

∞∫
0

∞∫
0

a∆φgg′ dy dy′ +
∞∫

0

gD∗φ dy (3.1)

with

∆φ(y, y′) = φ′′ − φ − φ′ and D∗φ = −y2∂y

(
φ

y

)
.

Notice that for the sake of simplicity we have removed (thanks to a trivial change of unknown) the term (1 − λ) in
front of the first term in the right-hand side term of (3.1). This identity can either be proved rigorously on a (strong)
solution associated to the same equation with truncated coagulation rate and passing to the limit, or the associated
inequality (with � sign) can be proved a posteriori on a given weak solution for any subadditive moment functions φ.
We postpone this question to Section 6.

Unless it is explicitly specified, we assume in all this section that 0 � β < 1 and α ∈ [−β,β]∩ [−β,1−β), in such
a way that λ ∈ [0,1), and gin ∈ L̇1

1. We then consider a given solution g to (3.1) for which we obtain several estimates,
where the constants only depend on gin ∈ L̇1

1.
As a first consequence of (3.1), taking φ(y) = y, we obtain that g conserves the mass

M1(t) ≡ M1(0) =: ρ ∀t � 0. (3.2)

Lemma 3.1. For any k ∈ (λ,1), there exists wk = wk(λ) ∈ (0,∞) such that

∀t � 0 Nk(t) � min

(
wk

t ∧ 1
,Nk(0) ∨ wk

)
, with Nk(t) :=

∞∫
0

g(t, y)(y ∧ 1)k dy. (3.3)

Moreover, there exists η : (0,∞) → (0,∞) (which only depends on gin) such that η(ε) → 0 when ε → 0 and

∀t � 0

ε∫
0

yg(t, y)dy � η(ε). (3.4)

Here and below we define a ∧ b = min(a, b), a ∨ b = max(a, b), for a, b ∈ R. The lemma is based on a trick
introduced in [13] in order to investigate the gelation phenomenon (when λ > 1) which is similar to an idea introduced
in [6] in order to deal with elliptic equations with right-hand side Dirac mass. Then, this trick has been used in [24,34]
in order to prove similar (but weaker) estimates that those established in Lemma 3.1 on the long time asymptotic of
solutions f to the coagulation equation when λ � 1 (see [23, Proposition 2] for a precise statement). More recently
in [16] , these estimates has been taken up again in order to obtain bounds on self-similar profile to the coagulation
equation when λ � 1 and α > 0.

Proof of Lemma 3.1. Step 1. Proof of (3.3). First, we define φA(y) = (y ∧ A)m for m ∈ (0,1] and A > 0, and we
compute

−∆φA
(y, y′) =




ym + y′m − (y + y′)m on {y, y′; y + y′ � A},
ym + y′m − Am on {y, y′; y � A,y′ � A,y + y′ � A},
ym on {y, y′; y � A,y′ � A},
y′m on {y, y′; y � A,y′ � A},
Am on {y, y′; y � A,y′ � A},

and

D∗φA(y) = (1 − m)ym1y�A + Am1y�A,
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from which we get

−∆φA
� Am1y,y′�A and D∗φA � φA. (3.5)

We then deduce from (3.1), (3.5) and the lower estimate a(y, y′) � (yy′)λ/2

d

dt

∞∫
0

gφA dy + Am

2

( ∞∫
A

gyλ/2 dy

)2

�
∞∫

0

gφA dy ∀A > 0. (3.6)

Next, for a given function Φ : [0,∞) → [0,∞) such that Φ(0) = 0 and a given � ∈ R, we have, using Fubini’s
theorem, Cauchy–Schwarz inequality and (3.6),( ∞∫

0

g(y)yλ/2Φ(y)dy

)2

=
( ∞∫

0

Φ ′(A)

∞∫
A

g(y)yλ/2 dy dA

)2

� K0

∞∫
0

Φ ′(A)A�

( ∞∫
A

g(y)yλ/2 dy

)2

dA

� 2K0

∞∫
0

Φ ′(A)A�−m

( ∞∫
0

gφA dy − d

dt

∞∫
0

gφA dy

)
dA

� 2K0

( ∞∫
0

gΨ dy − d

dt

∞∫
0

gΨ dy

)
,

where we have set

K0 :=
∞∫

0

Φ ′(A)A−� dA and Ψ (y) :=
∞∫

0

Φ ′(A)A�−mφA(y)dA. (3.7)

In other words, we have obtained the following differential inequality

d

dt

∞∫
0

gΨ dy + 1

2K0

( ∞∫
0

g(y)yλ/2Φ(y)dy

)2

�
∞∫

0

gΨ dy. (3.8)

Finally, we make the choices

Φ(y) := min
(
yλ/2+δ,1

)
, � := λ/2, m := λ + 2δ, (3.9)

with δ ∈ (0, (1 − λ)/2] and we easily compute

K0 =
(

λ

2
+ δ

) 1∫
0

Aδ−1 dA < ∞, Ψ (y) =
(

λ

2
+ δ

)(
(y ∧ 1)λ+δ

λ + δ
+ yλ+2δ

δ

(
y−δ − 1

)
1y�1

)
.

As a consequence, setting k = λ + δ ∈ (λ,1), there holds for some constant C ∈ (0,∞)

1

C
(y ∧ 1)k � Ψ (y) � C(y ∧ 1)k and Φ(y)yλ/2 � (y ∧ 1)k. (3.10)

Gathering (3.8) and (3.10) we obtain, for some constant K1 ∈ (0,∞), the differential inequality

d

dt

∞∫
0

gΨ dy + K1

( ∞∫
0

gΨ dy

)2

�
∞∫

0

gΨ dy.

Performing a time integration of this last one, we deduce that
∞∫

gΨ dy �
(

e−t∫∞
0 ginΨ dy

+ K1
(
1 − e−t

))−1

(3.11)
0
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and (3.3) follows from (3.10) and (3.11).
Step 2. We prove (3.4). On the one hand, defining the subadditive function φε(y) = y1y�ε +ε1y�ε , so that ∆φε � 0

and D∗φε � φε , we deduce from (3.1)

d

dt

∞∫
0

gφε dy �
∞∫

0

gφε dy,

and then

sup
t∈[0,1]

∞∫
0

gφε dy � e

∞∫
0

ginφε dy =: η1(ε) → 0 (3.12)

when ε → 0 by Lebesgue dominated convergence theorem. On the other hand, for t � 1 we use (3.3) for a given fixed
k ∈ (λ,1) and we get

ε∫
0

gy dy � ε1−k

ε∫
0

gyk dy � ε1−kwk =: η1(ε) → 0 (3.13)

when ε → 0. We obtain (3.4) gathering (3.12) and (3.13). �
Corollary 3.2. For any k � 1 there exists Bk = B(k,ρ,η) > 0 such that

∀t � 0 Mk(t) � Bk. (3.14)

Proof of Corollary 3.2. We write

Mk(t) �
∞∫

ε

gyk dy � εk−1

∞∫
ε

gy dy � εk−1

(
ρ −

ε∫
0

gy dy

)
� εk−1(ρ − η(ε)

)
� εk−1 ρ

2

for ε small enough, thanks to (3.4). �
When α � 0, the moment estimates of Lemma 3.1 may be strengthened in the following way (see also [14,16] for

very similar results). When α < 0, it will be still strengthened as stated in Lemma 3.6 taking advantage of the moment
estimates established in Lemma 3.4.

Lemma 3.3. Assume α � 0. There exists A = A(ρ) > 0 such that (3.3) holds with k = λ.

Proof of Lemma 3.3. We remark (see the proof of [14, Lemma 4.2]) that

a(y, y′)
(
(y + y′)λ − yλ − (y′)λ

)
� −Cλ(yy′)λ

from which we deduce

d

dt
Mλ � Cλ,1Mλ − Cλ,2M

2
λ, (3.15)

for some constants Cλ,i > 0 and then (3.3) with k = λ follows by time integration. �
Lemma 3.4. For any k > 1, there exists a constant Ak such that

sup
[0,∞)

Mk(t) � max
(
Ak,Mk(0)

)
. (3.16)

Proof of Lemma 3.4. For a given k > 1, let us define

Λk(y, y′) := (
yα(y′)β + yβ(y′)α

)(
(y + y′)k − yk − (y′)k

)
� 0. (3.17)
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For y > y′, denoting z = y′/y ∈ (0,1], we have for any µ � 1

Λk(y, y′) = yλ+k
(
zα + zβ

)(
(1 + z)k − zk − 1

)
� yλ+k

(
2zα

)
(Ckz) � 2Cky

λ+kzµ+α

� 2Ck

[
yβ−µ+k(y′)µ+α + (y′)β−µ+kyµ+α

]=: Λ̄k(y, y′).

for a constant Ck > 0. Therefore, since Λk and Λ̄k are symmetric functions, the inequality Λk(y, y′) � Λ̄k(y, y′)
holds for any y, y′ � 0. We then deduce from (3.1) with φ = yk , the following differential inequality

d

dt
Mk � CkMk+β−µMα+µ − (k − 1)Mk for any µ � 1.

Making the choice µ := β + min( k−1
2 , 1−λ

2 ,1 − β) ∈ (0,1], we obtain

d

dt
Mk � CkMk1Mk2 − (k − 1)Mk,

with k1 := k +β −µ = k − min( k−1
2 , 1−λ

2 ,1 −β) ∈ (1, k), k2 := α +µ = λ+ min( k−1
2 , 1−λ

2 ,1 −β) ∈ (λ,1]. Finally,

using the Hölder inequality Mk1 � M1−θ
1 Mθ

k , with θ ∈ (0,1), we deduce

d

dt
Mk � C1M

θ
k Mk2 − C2Mk. (3.18)

By Lemma 3.1 we have Mk2 ∈ L1 + L∞. Actually, if k2 = 1, Mk2 = ρ. If on the other hand, k2 ∈ (λ,1), there is k3

such that λ < k3 < k2 < 1. Then, Mk2 � Mδ
1M1−δ

k3
for some δ > 0 and using the estimate (3.3) for Mk3 we deduce

Mk2 ∈ L1 + L∞. A straightforward integration gives

Mk(t)
1−θ � Mk(0)1−θ + C1(1 − θ)

{ ‖h∞‖∞
C2(1 − θ)(1 − e−C2(1−θ)t ) + ∫ t

0 h1(s)ds

}

where we have introduced the decomposition Mk2 = h1 + h∞, h1 ∈ L1, h∞ ∈ L∞. �
Corollary 3.5. Assume gin ∈ L̇1

m for some m > 1. For any k � 1 there exists Bk = B(k,ρ,Mm(0)) > 0 such that

∀t � 0 Mk(t) � Bk. (3.19)

Proof of Corollary 3.5. First, thanks to Lemma 3.4, we have

sup
t�0

Mm(t) � C,

for some constant C ∈ (0,∞). Next, using the decomposition

ρ ≡ M1(t) � R1−k

R∫
0

ykg dy + R1−m

∞∫
R

gym dy � R1−kMk(t) + R1−mC

with R large enough in such a way that R1−mC � ρ/2, we get (3.19) with Bk = ρ/2Rk−1. �
Lemma 3.6. Assume α < 0 and gin ∈ L̇1

1 ∩ L̇1
m for some m > 1.

(1) For any k � 0 there exists wk = wk(ρ,Mm(0)) ∈ (0,∞) such that

∀t � 0 Mk(t) � max
(
wk,Mk(0)

)
. (3.20)

(2) More precisely, there exists A = A(ρ,Mm(0), a) ∈ (0,∞) and Bin = Bin(gin) such that

∀t � 0

∞∫
0

g(t, y)e(1∧t)yα/A dy � min

(
A

1 ∧ t
,Bin

)
(3.21)

with Bin < ∞ if (and only if ) gineriny
α ∈ L1 for some rin > 0.
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Proof of Lemma 3.6. Step 1. Proof of (3.20). First, for k � 0, we have

a(y, y ′)
(
(y + y′)k − yk − (y′)k

)
� −yα+k(y′)β − (y′)α+kyβ (3.22)

and we deduce from (3.1) written for φ = yk

d

dt
Mk � (1 − k)Mk − Mα+kMβ � (1 − k)Mk − c∗M

1− α
1−k

k , (3.23)

with c∗ = c∗(ρ,β,α,Mm(0)) := inft Mβ(t)ρ
α

1−k > 0, where we have used the Hölder inequality Mk � M1−θ
1 Mθ

α+k ,
θ = (1−k)/(1−k−α) and the fact that Mβ is bounded by below thanks to Corollary 3.5. A straightforward integration
gives,

Mk(t) �
(

Mk(0)
α

1−k eαt + (
1 − eαt

) c∗
1 − k

) 1−k
α

and (3.20) follows with wk := (c∗/(1 − k))
1−k
α .

Step 2. Proof of (3.21). Let now fix τ > 0. On the one hand, if for a given k, there exists t ∈ [0, τ ] such that
(1 − k)Mk(t) � c∗

2 M
1−α/(1−k)
k (t), then

Mk(t) �
(

2(1 − k)

c∗

) 1−k
−α =: Ck,

with Ck = 2
1−k
−α wk > wk , and from Step 1, we deduce that

Mk(τ) � Ck �
(

2(1 − k)

c∗(−α)

) 1−k
−α

. (3.24)

On the other hand, if for a given k and for any t ∈ [0, τ ] we have (1 − k)Mk(t) � c∗
2 M

1− α
1−k

k (t), then the differential
inequality (3.23) reduces to

d

dt
Mk � −c∗

2
M

1− α
1−k

k on (0, τ ),

which in turns implies (by integration)

1

M
−α
1−k

k (t)

� c∗
2

t
−α

1 − k
+ 1

M
−α
1−k

k (0)

� c∗
2

t
−α

1 − k
on (0, τ ).

We thus obtain, in particular,

Mk(τ) �
(

2(1 − k)

c∗(−α)τ

) 1−k
−α

. (3.25)

Gathering (3.24) and (3.25), we deduce

∀t � 0 Mk(t) �
(

z

t ∧ 1
(1 − k)

) 1−k
−α

,

with z := 2/(−c∗α) independent of k � 0. We deduce from Stirling formula that for any j ∈ N and any t � 0, there
holds

Mjα(t) �
(

z

t ∧ 1
(1 − jα)

) 1−jα
−α

�
(

Z

t ∧ 1

)j+1

j ! (3.26)

for some constant Z ∈ (0,∞). As a consequence, we get for any r > 0
∞∫

geryα =
∞∑

j=0

rj

j ! Mjα � Z

t ∧ 1

∞∑
j=0

(
rZ

t ∧ 1

)j

,

0
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and we obtain the first estimate in (3.21) making the choice A := 2Z, r := (t ∧ 1)/A. For the second estimate in
(3.21), we just remark that we may replace in (3.26) the term Z/(t ∧ 1) by Zin ∈ (0,∞) if gineriny

α ∈ L1. �
In the next lemma we obtain an upper exponential bound of the solutions of the coagulation equation in self similar

variables (1.18).

Lemma 3.7. For any β ∈ (−α,1 − λ) there exists two constants A = A(ρ) ∈ (0,∞), x0 = x0(ρ) � 1 such that the set

Cx := {
g;Mk(g) � A�(k + b) ∀k ∈ [min(1,1 + α),2

]
, Mk(g) � A�(k + b)xk−1 ∀k � 2

}
is a invariant domain under the flow of Eq. (1.18) for any x � x0. As a consequence, if giner0y ∈ L̇1

1 for some r0 ∈
(0,∞) there exists r1 ∈ (0,∞) such that

sup
t�0

∞∫
0

g(t, y)y er1y dy < ∞.

Proof of Lemma 3.7. Let us consider

gin ∈Za :=
⋂

k�min(1,1+α)

L̇1
k.

By the previous estimates proved above we have g(t) ∈ Za for any t � 0. On the one hand, choosing φ(y) = yp in
(3.1) we get

d

dt
Mp + (p − 1)Mp = 1

2

∞∫
0

∞∫
0

a
(
(y′′)p − yp − (y′)p

)
gg′ dy dy′. (3.27)

In order to estimate the right-hand side of (3.27) we use the following lemma, proved by Bobylev, Gamba and Panferov
in [5, Lemma 2].

Lemma 3.8. Assume that p > 1, and let kp denote the integer part of p+1
2 . For any y, y′ > 0 the following inequalities

hold
kp−1∑
k=1

(
p

k

)(
yk(y′)p−k + yp−k(y′)k

)
�
(
(y′′)p − yp − (y′)p

)
�

kp∑
k=1

(
p

k

)(
yk(y′)p−k + yp−k(y′)k

)
,

where
(p
k

)
stands for the generalised binomial coefficient.

We deduce from (3.27) and Lemma 3.8

d

dt
Mp + (p − 1)Mp � Sp (3.28)

with

Sp :=
kp∑

k=1

(
p

k

)
(Mk+αMp−k+β + Mk+βMp−k+α).

Let define zk and Zp by

Mk = �(k + b)zk, Zp := max
k=1,...,kp

(zk+αzp−k+β, zk+βzp−k+α).

In order to estimate Sp , we use the following lemma proved in [5, Lemma 4].

Lemma 3.9. There exists a constant C0 such that

Sp � C0�(p + 2b + λ)Zp ∀p > 1.
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Gathering (3.28) and Lemma 3.9 we obtain the following differential inequality on zp

d

dt
zp + (p − 1)zp � C0

�(p + b + (λ + b))

�(p + b)
Zp,

from which we deduce by classical properties of the Gamma function

d

dt
zp + (p − 1)zp � C1p

λ+bZp ∀p > 1. (3.29)

Thanks to Lemmas 3.3 and 3.4 we know that there exists A ∈ (0,∞) such that

sup
t�0

zk(t) � A ∀k ∈ [min(1,1 + α),2
]
. (3.30)

Let fix p0 � 2 such that p − 1 � C1Apλ+b for any p � p0. Thanks to Lemma 3.4 again we may find x0 � 1 such

sup
t�0

zk(t) � Axk−1
0 ∀k ∈ [2,p0]. (3.31)

We aim to prove that for any x � x0 and any k � p0

zk(0) � Axk−1 implies sup
t�0

zk(t) � Axk−1. (3.32)

We argue by induction establishing (3.32) successively on any interval [min(1,1 + α),p0 + j (1 − β)] when
j ∈ N

∗. Assume then that (3.32) holds on [min(1,1 + α),p0 + j (1 − β)] for some j ∈ N and let consider
p ∈ (p0 + j (1 − β),p0 + (j + 1)(1 − β)]. Remarking that p − k � p − kp � 1 because p � 2 we easily ver-
ify that k + α, p − k + β, k + β,p − k + α ∈ [min(1,1 + α),p0 + jβ] for any k ∈ {1, . . . , kp}. Therefore we may
use (3.31) and the recurrence assumption (3.32) for any term z� involved in the expression of Zp and we get
Zp � A2xp+λ−2 � A(Axp−1). Inserting this estimate in (3.29) and using the definition of p0 we get

d

dt
zp + (p − 1)zp � (p − 1)Axp−1. (3.33)

Remarking that z̄p = Axp−1 is a supersolution for this last equation we deduce that (3.32) holds for p ∈ (p0 + j (1 −
β),p0 + (j + 1)(1 − β)] and then (3.32) holds for any p � p0 by an induction argument. Coming back to the Mp

functions, we have precisely proved that Cx is an invariant set.
Assume now giner0y ∈ L̇1

1 and compute

∞∫
0

ginyer0y dy =
∞∑

k=0

∞∫
0

g
rk

0

k! y
k+1 dy � C0,

from where we deduce that for any k ∈ N: Mk+1(0) � (C0r0)(k + 1)!/rk+1
0 . Since we may assume without loss of

generality that r ∈ (0,1], the function y 
→ �(y+b)
ry is increasing, and we deduce by the Hölder inequality that for any

p � 1

Mp(0) � (C0r0)
�p!
r�p

� (C0r0)
�(p + 2)

rp+2
with �p := [p] + 1.

From the definition of zp we deduce

zp(0) � (C0r0)
p(p + 1)

rp+2
� Ax

p−1
1 (3.34)

for any p � 1 and for some constant x1 ∈ (1,∞). Choosing x := max(x0, x1) we get from (3.33) and (3.34) that for
any p � 1

zp(t) � Axp; ∀t � 0.

Therefore,

Mk(t) � �(k + b)Axk−1 ∀k ∈ N
∗, ∀t � 0.
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For r1 < x−1, we then have

∀t � 0

∞∫
0

g(t, y)y er1y dy =
∞∑

k=0

rk
1

k! Mk+1(t) � A

∞∑
k=0

(xr1)
k �(k + 1 + b)

k! < ∞. �

Putting together the estimates on the solution g to the coagulation equation in self-similar variables obtained in
Lemmas 3.1, 3.3, 3.4, 3.6, Corollaries 3.5, 3.2, and using the change of variables (1.19), or more precisely the moment
identity (1.20), we obtain the following a priori estimates on the solution f to the coagulation equation in the original
variables.

Corollary 3.10. Under the hypothesis λ,β ∈ [0,1), a solution f to Eqs. (1.1), (1.2) satisfies

(1) For any k ∈ Ia ∩ [λ,1]:
Mk

(
f (t, ·))� Ckt

k−1
1−λ , ∀t � 2,

for some positive constant Ck only depending on fin by the mean of its mass ρ > 0.
(2) Assume fin ∈ L̇1

1 ∩ L̇1
M with M > 1. For any k ∈ [1,M]

Mk

(
f (t, ·))� Ckt

k−1
1−λ , ∀t � 2,

for some positive constant Ck depending on Mk(0).
(3) Assume α � 0 and fin ∈ L̇1

1 ∩ L̇1
M with M > 1. For any k � 0

Mk

(
f (t, ·))� Ckt

k−1
1−λ , ∀t � 2,

for some positive constant Ck only depending on MM(0).
(4) Assume fin ∈ L̇1

1 ∩ L̇1
M with M > 1. For any k � 1

Mk

(
f (t, ·))� Bkt

k−1
1−λ , ∀t � 2,

for some positive constant Bk only depending on MM(0).
(5) For any k � 1

Mk

(
f (t, ·))� Bkt

k−1
1−λ , ∀t � 2,

for some positive constant Bk .

4. Uniform and regularity estimates for self-similar profiles

In this section we still assume β ∈ [0,1) and α ∈ [−β,β] ∩ [−β,1 − β) and thus λ ∈ [0,1). Gathering the results
of the preceding section, in particular Lemmas 3.1, 3.3, 3.6, 3.7 and its proof, we see that the set

LCa := {
g ∈ L̇1

1, M1(g) = ρ, Mk(g) � wk ∀k ∈ Ja

}⊂ Ya,

where (wk) is the family of constants defined in these lemmas, is an invariant set under the flow generated by the
coagulation equation in self-similar variables (1.18). Moreover, thanks to the proofs of Lemmas 3.6 and 3.7 there
exist some constants rα, r1,w∞ ∈ (0,∞) such that for any g ∈LCa we have

∞∫
1

g(y) er1y dy +
1∫

0

g(y)yerαyα

dy � w∞. (4.1)

We now define

MC+
a := {

g ∈D′(0,∞), g � 0, M1(g) = ρ, Mk(g) � wk ∀k ∈ Ia

}
.
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This is also an invariant set under the flow generated by Eq. (1.18), which furthermore is compact in the weak sense
of Radon measures. Let emphasise that the coagulation operator Q is well defined on MC+

a , thanks to Lemma 2.1,
and therefore in the sense of Definition 2.10 (that we may extend straightforwardly to a measure framework).

Thanks to the invariant and compactness properties of MC+
a the following existence result of self similar profiles

can be proved, see [14,16].

Theorem 4.1. There exists at least one weak self-similar profile G ∈ MC+
a , in the sense of Definition 2.10 (extended

to a measure framework), for any given mass ρ > 0.

The proof of Theorem 4.1 can be performed in two steps. In a first step, for any ε > 0, we consider a regularised
version (Eε) of the coagulation equation in self-similar variables (1.18) for which similar estimates than for (1.18)
can be obtained and which furthermore generate a (weakly) continuous semi-group in L1. Applying the Brouwer (or
Tykonov) fixed point theorem one gets the existence of a stationary solution 0 � Gε ∈ LCa . In a second step, we
remove the regularisation term in (Eε) in the limit ε → 0 in such a way to recover Eq. (1.18) keeping the uniform
estimate Gε ∈ MC+

a . We conclude using a stability principle in the spirit of the one used in the proof of Theorem 2.4.
The aim of this section is to prove some further properties of the self-similar profiles G given by Theorem 4.1.

In all the remainder of this section, we then fix a self-similar profile G given by Theorem 4.1 (in particular G is just
assumed to be a measure), which therefore satisfies the bound conditions (4.1).

Theorem 4.2. Assume α < 0. Then,

∀k ∈ N, ∃rk > 0 such that erk(y
α+y)∂k

yG ∈ L∞. (4.2)

In particular G ∈ S(0,∞) the Schwartz space on (0,∞).

Proof of Theorem 4.2. Due the bounds on the moments of G and Lemma 2.1 point (iii), we may write the strong
formulation (or mild formulation, see [14, Definition 2.4 and Remark 2.5]) of the self-similar equation (2.22)

∂y

(
y2G

)= yQ(G) in D′(0,∞), (4.3)

from which we deduce for γ = α,1 and r � 0

∂y

(
y2eryγ

G
)= (

γ ry1+γ G + yQ(G)
)
eryγ

, (4.4)

when this equation makes sense.
We remind that the coagulation operator Q(G) = Q+(G)−Q−(G) is defined thanks to the duality formula (2.12).

We remark, using (y′′)γ � yγ + (y′)γ for γ = α and γ = 1, that we have for any ϕ ∈ Cb([0,∞))

〈
Q±(G), eryγ

ϕ
〉
� ‖ϕ‖L∞

( ∞∫
0

(
yα + yβ

)
eryγ

dG(y)

)2

,

and Q(G)eryγ ∈ M1 for r > 0 small enough thanks to (4.1). Therefore, all the terms involved in (4.4) are bounded
measures for r > 0 small enough, and (4.4) make sense. We deduce that y2eryγ

G ∈ BV([0,∞)), so that G is in fact a
measurable function and satisfies (4.2) for k = 0.

Next, gathering (4.1) with estimate (4.2) for k = 0, we easily deduce from the first definition of the coagulation
operator (1.3) that eryγ

Q(G) ∈ L∞, and then from (4.4) that

y2eryγ

∂yG = ∂y

(
y2eryγ

G
)− G∂y

(
y2eryγ ) ∈ L∞

for r > 0 small enough. Therefore, G satisfies (4.2) for k = 1.
Finally, we differentiate the coagulation kernel and, using that Ger0y

α ∈ L∞, we get

∂y

(
Q(G)

)= 1

2

y∫
0

(∂ya)(y − y′, y′)G(y − y′)G(y′)dy′ −
∞∫

0

(∂ya)(y, y′)GGdy

+ 1

2

y∫
a(y − y′, y′)∂yG(y − y′)G(y′)dy′ −

∞∫
a(y, y′)∂yG(y)G(y′)dy′.
0 0
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Then, eryγ
∂y(Q(G)) ∈ L∞ for r > 0 small enough. From elementary differential calculus and Eq. (4.3), we also have

∂2
yG = y−2∂2

y

(
y2G

)− 3y−3∂y

(
y2G

)+ 6y−2G = y−1∂y

(
Q(G)

)− 3y−2Q(G) + 6y−2G,

from which we conclude that (4.2) holds for k = 2. We end the proof using an induction argument. �
We give now the estimates that we obtain for the self similar profiles when α � 0. The main difference with the case

α < 0 is that G has no so good moment estimates as in that previous case and thus the self-similar profile equation
(1.9) has to be understand in the weak sense.

Theorem 4.3. Assume α � 0. There exists B > 0 such that

ykGeBy ∈ L∞ for any k > λ + 1. (4.5)

Moreover,

y2G ∈ C0,θ for any θ ∈ [0,1 − λ). (4.6)

Proof of Theorem 4.3. The idea is to work with the representations (2.25) and (2.24) thanks to Lemma 2.11 and to
use the following result, that we state without proof since it follows from the classical Young inequality.

Lemma 4.4. Let p � 1, q ∈ (1,∞) and define θ := 1
p

+ 1
q

− 1 ∈ (−1,1). Consider g ∈ (L1 ∩ Lq)(0,∞) and f ∈
Lp(0,∞) if p > 1, f ∈ M1(0,∞) if p = 1.

(1) If θ > 0, we have f �z g ∈ Lr(0,∞) with r = θ−1 ∈ [q,∞).
(2) If θ = 0, we have f �z g ∈ Cb(0,∞).
(3) If θ < 0, we have f �z g ∈ C0,−θ (0,∞).

We assume first that α = 0 and we split the proof in five steps.
Step 1. We follow the proof of Lemma 2.11. From ykG ∈ M1 for any k � λ and Lemma 2.1 we infer (zβ +

z2)Lα(G)(z) ∈ L∞, (zα + z2)Lβ(G)(z) ∈ L∞, and thus

Lα(G) ∈ Lq1 , Lβ(G) ∈ Lq2 for any q1 ∈ [1,1/β), q2 ∈ [1,1/α). (4.7)

Thanks to Lemma 4.4, we deduce from yα+1G,yβ+1G ∈ M1 and (4.7) that C(G) ∈ Lr for any r ∈ [1,1/β). Integrat-
ing Eq. (2.25) we thus obtain

Gy2 = (1 − λ)C(G) in D′(0,∞),

from which we deduce that G is in fact a measurable function and that (2.24) holds.
Step 2. We use now the self-similar profile equation (2.24), (2.6) in order to increase the regularity estimates on

the profile G by a bootstrap argument. Let first assume z2G ∈ Lr with r � 1 and recall that zλG ∈ L1. We look for
θ ∈ (0,1) and p ∈ [1, r] such that(

zα+1G
)p = (

z2G
)rθ (

zλG
)1−θ

. (4.8)

Solving this system of equations

(α + 1)p = 2rθ + λ(1 − θ) and p = rθ + 1 − θ,

we see that

p =
(

1 − α

1 − β
r + 1

)−1(
1 + 1 − α

1 − β

)
r, θ = 1 − β

1 − β + r(1 − α)

satisfy (4.8). By Hölder inequality in (4.8) we get that yα+1G ∈ Lp for this value of p ∈ [1, r]. Using next Lemma 4.4
as long as

1 =
(

1 − α
r + 1

)(
1 + 1 − α

)−1

r−1 + α − 1 = 1 − α + α − 1 + 1 − β 1 � 0,

φ1(r) 1 − β 1 − β 2 − λ 2 − λ r
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we deduce that (yα+1G) �z Lβ(G) ∈ Lφ1(r). We note φ2 the function defined by the above formula interchanging the
role of α and β . Using the same argument for the term (yβ+1G) �z Lα(G) and using (2.24), (2.6) we thus obtain that

z2G ∈ Lr implies z2G ∈ Lφ(r), (4.9)

with φ(r) := min(φ1(r),φ2(r)) as long as φ(r)−1 � 0. We remark that

1

φ(r)
� −η + δ

r
with η := 1 − β − 1 − β

2 − λ
> 0, δ := 1 − α

2 − λ
∈ (0,1). (4.10)

Therefore, starting from z2G ∈ Lr0 with r0 = 1, we deduce iterating (4.9) that z2G ∈ Lrn+1 for any n ∈ N with
rn+1 = φ(rn) as long as φ(rn)

−1 � 0. Thanks to (4.10), we have

1

φ(rn)
� δn − 1 − δn

1 − δ
η,

and the right-hand side term becomes negative for any n larger than a given integer N = N(δ,η). We then have
z2G ∈ L∞ in less than N iteration steps.

Step 3. We next assume zkG ∈ L∞ with λ + 1 � k � 2. From zkG ∈ L∞ and
∞∫

0

(
zθG

)p dy �
∥∥z(pθ−λ)/(p−1)G

∥∥p−1
L∞

∥∥zλG
∥∥

L1,

we deduce that zθG ∈ Lp with p = (k − λ)/(k − θ) for any θ ∈ (1 + λ,2). Therefore zθG ∈ L(1/α)′ for θ such that

k − θ

k − λ
= 1 − α or equivalently θ = kα + λ(1 − α).

Since θ � 1 + α, we infer from Lemma 4.4 that

z−2(yα+1G
)
�z Lβ(G) � zα−1−θ

(
yθG

)
�z Lβ(G) � z−φ1(k)Ck

with Ck a constant and

φ1(k) := kα + (1 + λ)(1 − α).

We define φ2 replacing α by β in the above expression. Making the same job for the term (yβ+1G) �z Lα(G) and
using (2.24), (2.6) we thus obtain that

zkG ∈ L∞ implies zφ(k)G ∈ L∞, (4.11)

with φ(k) := max(φ1(k),φ2(k)). We easily verify that φ(k) ∈ [1 + λ,2] for any k ∈ [1 + λ,2], that φ(1 + λ) = 1 + λ,
that k 
→ φ(k)− k is strictly decreasing in [1 +λ,2], so that φ(k) < k for any k ∈ (1 +λ,2]. Starting from k0 = 2 and
defining the sequence (kn) by kn+1 = φ(kn), we deduce from the properties of φ that kn → 1 + λ when n → ∞ and
therefore (4.5) holds in bounded domains.

Step 4. Interpolating, as in the beginning of step 3, the facts that zkG ∈ L∞ for any k > 1 + λ and zλG ∈ L1, we
find zα+1G ∈ Lp2 for any p2 ∈ [1,1/β) and zβ+1G ∈ Lp1 for any p1 ∈ [1,1/α). Gathering this information with (4.7)
we get that C(G) ∈ C0,θ for any θ ∈ (0,1 − λ) thanks to (2.6) and Lemma 4.4, from which (4.6) follows.

Step 5. In order to prove (4.5) with B > 0, we define G(z) := eByG(z) with B small enough in such a way that
G ∈ LCa . Eqs. (2.24), (2.6) on G implies that G satisfies

z2G(z) = (
yα+1G

)
�z Lβ(G) + (

yβ+1G
)
�z Lα(G) a.e. on (0,∞),

with

Lν(G)(y) := (1 − λ)eBy

∞∫
y

(y′)νG′ dy′.

We conclude the proof for the case α = 0 proceeding along the lines of steps 1 and 2. When α > 0 we follow the same
steps as for α = 0. The only difference comes from the fact that, in step 1, we have G ∈ L̇1

k for any k ∈ (λ,∞) instead
of G ∈ L̇1

k for any k ∈ [λ,∞). �
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Remark 4.5. If we compare (4.6) with Theorem 5.1 we see that (4.6) is near to be the optimal regularity at least for
small values of y when α > 0, because (4.6) implies that ykG ∈ L∞(0,1) for any k > 1 + λ.

5. Uniform lower bound for self-similar profiles

In this section we prove the pointwise lower estimate of the self-similar profiles as stated in Theorem 2.12. It will
be a consequence of Theorems 5.1 and 5.4. We start with a profile G ∈ Ya whose existence is given by Theorem 4.1
and which is continuous by Theorems 4.2 and 4.3.

Theorem 5.1.

(1) For any ε > 0, there exists δ > 0, r < ε, R > r , such that G � δ1[r,R].
(2) Assume α < 0. There exists a,R > 0 such that G(y) � e−ayα

on (0,R).

(3) Assume α > 0. Then Gyk /∈ L∞(0,1) for any k < 1 + λ.

Proof of Theorem 5.1. Step 1. The general case α ∈ R. It has already been proved in [16]. We nevertheless present
the proof because we will modify it in step 3 below in order to improve the lower estimate when α > 0. Since G is
continuous we just need to prove that G �≡ 0 on [0, ε] for arbitrary small ε > 0. Assume thus by contradiction that
G ≡ 0 on [0, ε] for some ε ∈ (0,1). That implies G ∈ L̇1

k for any k ∈ R and thus Lα(G),Lβ(G) ∈ L∞. We infer from
(2.24)–(2.6) that

z2G(z) � (1 − λ)
(
zα+1

∥∥Lβ(G)
∥∥∞ + zβ+1

∥∥Lα(G)
∥∥∞

) z∫
0

G(y)dy on (0,∞)

from where we deduce

R′(z) � CR(z) on (ε,∞), R(z) :=
z∫

0

G(y)dy

for some positive constant C. Since R ∈ C1(0,∞) and R(ε) = 0 we obtain G ≡ 0 on (ε,∞) by the Gronwall lemma.
But this is in contradiction with the fact that the mass of G is ρ > 0.

Step 2. The case α < 0. On the one hand, G is a strong nonnegative solution of the evolution coagulation equation
in self-similar variables (1.18), which means that we can split the Q+ and the Q− terms of the coagulation operator.
This equation may then be written as follows:

∂tG − DG + G

∞∫
0

aG′ dy′ = 1

2

y∫
0

a(y − y′, y′)G(y − y′)G(y′)dy′.

We have then

∂tG − DG + G�0 � 0, (5.1)

where

�0(y) := M
(
yα + yβ

)
�

∞∫
0

aG′ dy′, M := max
(
Mα(G),Mβ(G)

)
.

On the other hand, any solution f to the equation

∂tf = Df − �0f, f (0) = fin

is given by the following expression (see [14, Lemma 2.2])

f (t, y) = fin
(
et y

)
exp

(
2t −

t∫
�0
(
ye−(s−t)

)
ds

)
� fin

(
et y

)
exp

(
−

t∫
�0
(
ye−s

)
ds

)
. (5.2)
0 0
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Since G is a time independent function, we then deduce from (5.1) and (5.2) that

G(y) � δ1yet∈[r,R] exp

{
−

t∫
0

M
[(

ye−s
)α + (

ye−s
)β]ds

}
� δ1{e−t r�y�e−t R} exp

{
− M

|α|y
α − M

β

(
ye−t

)β}

� δ1{e−t r�y�e−t R} exp

{
− M

|α|y
α − M

β
Rβ

}

for any t � 0, and we easily conclude.
Step 3. The case α > 0. Assume, by contradiction, that Gyk ∈ L∞ for some k ∈ (1 + β,1 + λ). Then, we compute

z2G(z) =
z∫

0

{ ∞∫
z−y

(y′)α−k
[
G′(y′)k

]
dy′

}
yβ+1−k

[
Gyk

]
dy +

z∫
0

{ ∞∫
z−y

(y′)β−k
[
G′(y′)k

]
dy′

}
yα+1−k

[
Gyk

]
dy

�
‖Gyk‖2

L∞
k − 1 − β

z∫
0

{
yβ+1−k(z − y)α+1−k + yα+1−k(z − y)β+1−k

}
dy � Ckz

2−(2k−1−λ),

or in other words Gyφ(k) ∈ L∞ with φ(k) := 2k − 1 − λ. We easily deduce by a finite induction argument that
Gyk ∈ L∞ at least for some k ∈ (1 + α,1 + β). Remarking that this implies Gyβ ∈ L1, we write now

z2G(z) =
z∫

0

{ ∞∫
z−y

(y′)α−k
[
G′(y′)k

]
dy′

}
yβ+1−k

[
Gyk

]
dy +

z∫
0

{ ∞∫
z−y

(y′)βG′ dy′
}

yα+1−k
[
Gyk

]
dy

� ‖Gyk‖L∞

k − 1 − α

(∥∥Gyk
∥∥

L∞ + Mβ(G)
) z∫

0

{
yβ+1−k(z − y)α+1−k + yα+1−k

}
dy

� Ckz
2−(k−α) for any z ∈ (0,1),

or in other words, Gyφ(k) ∈ L∞ with φ(k) := k − α. We deduce again by an induction argument that Gyk ∈ L∞ for
some k ∈ (1,1 + α). That implies yαG ∈ L1 and we have then

z1+αG(z) � 1

z1−α

z∫
0

[
Mβ(G)yα+1 + Mα(G)yβ+1]Gdy �

[
Mβ(G)

z1−α
+ Mβ(G)

z1−β

] z∫
0

z1+αGdy.

Defining R(z) := ∫ z

0 y1+αGdy, we have R ∈ C1(0,∞), R(0) = 0 and R′(z) � Czβ−1R(z) on (0,∞) with zβ−1 ∈
L1

loc([0,∞)). By the Gronwall lemma, we get R ≡ 0 which is in contradiction with the fact that G �≡ 0. �
We start with two technical lemmas.

Lemma 5.2. For any R > r > 0, there exists cr,R > 0 such that

C(1[r,R]) � cr,R1[r,R+r]. (5.3)

For any R > 4 and γ ∈ (0,1/2), there holds

C(1[1,R]) � γ 2 min
(
Rα,1

)
R21[1,2R(1−γ )]. (5.4)

Proof of Lemma 5.2. Distinguishing according to the cases α � 0, α < 0, r � 1, r > 1, R � 1 and R > 1, there holds

C(δ1[r,R])(z) � δ2νr,R

z∫
1r�y�R

{ ∞∫
1r�y′�R dy′

}
dy
0 z−y
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with

νr,R := min
(
rα+1, rβ+1)min

(
Rα,Rβ, rα, rβ

)
.

A careful but straightforward computation of the integral term gives

C(δ1[r,R])(z) � δ2νr,R

{[
(R − r) +

(
z(r + R) − z2

2

)]
1[r,R+r] + 1

2
(2R − z)21[R+r,2R]

}
,

from which we deduce (5.3) and (5.4). �
Lemma 5.3.

(1) Assume that G � δ1[r,R] for some δ, r,R > 0, R > r . Then, there exists Cr,R such that

G � δ2Cr,R1[r,R+r]. (5.5)

(2) Assume that G � δ1[1,R] for some δ > 0 and R > 4. Then, for any γ ∈ (0,1/2) there holds

G � Cδ2γ 2R−|α|1[1,2R(1−γ )] (5.6)

for some numerical constant C > 0.

Proof of Lemma 5.3. We prove (5.6). Using Lemma 5.2 we have on [1,2R]
(2R)2G(z) � z2G(z) = C(G)(z) � δ2γ 2 min

(
Rα,1

)
R21[1,2R(1−γ )].

The proof of (5.5) is similar. �
Theorem 5.4. For any r > 0 there exists br > 0 such that

G(y) � e−bry on (r,∞).

Proof of Theorem 5.4. By Theorem 5.1, for r ∈ (0,1) arbitrary small there exists δ′ > 0, R′ > r such that G �
δ′1[r,R′]. Iterating the lower estimate (5.5) we obtain in a finite number of iterative steps that

G � δ1[r,R] with δ > 0, R > 1, r < 1. (5.7)

We next iterate the lower estimate (5.6) making the choice γi := γ i with γ ∈ (0,1/2) to be specified. A straightforward
induction argument gives

G(y) �
n∏

i=0

(
Cδ2γ 2

i R
−|α|
i

)2n−i

1[1,Rn](y), (5.8)

with

Rn :=
[

n∏
i=0

2(1 − γi)

]
R.

We then estimate separately each term involved in inequality (5.8) in the three following steps.
Step 1. Using the elementary inequalities ln(1 − x) � −2x and ln(1 + x) � x for x ∈ (0,1/2), we get

2nR � Rn = 2n

[
n∏

j=1

(
1 − γ j+1)]R � 2n e−2γ

∑∞
j=0 γ j

R � 2n e−4γ R � 2n−1R,

for γ small enough.
Step 2. We compute the elementary following equivalences

n∑
2n−i ∼

n→∞ 2n+1,

n∑
i2n−i ∼

n→∞ 2n+1,
i=0 i=0
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from which we deduce
n∏

i=0

(
Cδ2γ 2

i R
−|α|
i

)2n−i

�
(
Cδ2R−|α|)∑n

i=0 2n−i
n∏

i=0

(
γ 22−|α|)i2n−i

� κ2n

0 ,

with κ0 := (Cδ2γ 2R−|α|)4 (which can be chosen smaller than 1, taking γ small enough).
Step 3. Gathering the estimates established in step 1 and step 2, we get

G(y) � κ2n

0 1[1,2n−1R](y) � κ
4y/R

0 1[2n−2R,2n−1R](y) ∀n � 2, (5.9)

which in turn implies G(y) � e−b1y with b1 = 4| lnκ0|/R. We conclude gathering this estimate with (5.7). �
Proof of Theorem 2.12. It is just enough to gather Theorems 4.1–4.3, 5.1 and 5.4. �
6. Estimates for the coagulation equation in the original variables: proofs of Theorems 2.4 and 2.8

The main purpose of this section is to prove Theorem 2.4. Therefore we assume in all the following that the hypoth-
esis of Theorem 2.4 are satisfied, namely β ∈ [0,1], α ∈ [−1, β] and λ ∈ [0,2]. We start considering a nonnegative
initial datum fin ∈ L̇1

1 with M1(fin) = ρ > 0 and we gather some a priori bounds for solutions of the Cauchy problem
(1.1), (1.2). Use will be made, without justification, of the following identity for any solution f to the coagulation
equation (1.1) and any test function φ:

d

dt

∞∫
0

f φ dy = 1

2

∞∫
0

∞∫
0

a∆φff ′ dy dy′ +
∞∫

0

sφ dy, (6.1)

where ∆φ is defined just after (3.1).
We first present an estimate implying the equi-integrability of solutions using a trick introduced in [21] and devel-

oped in [33,24].

Lemma 6.1. There exists a real positive function Λ such that Λ(0) = 0, Λ(t)/t → ∞ when t → ∞, and a constant
C0 such that

∞∫
0

Λ
(
f (t, y)

)
y dy � C0 ∀t � 0. (6.2)

Proof of Lemma 6.1. On the one hand, from the De La Vallée Poussin lemma, see for instance [22,21], there exists
smooth, convex and positive real function Λ such that Λ(0) = 0, Λ(t)/t → ∞ when t → ∞, and a constant C0 such
that

∞∫
0

Λ
(
fin(y)

)
y dy � C0.

On the other hand, we just compute as in the beginning of the proof of (2.4)

d

dt

∞∫
0

Λ(f )y dy =
∞∫

0

Q(f )Λ′(f )y dy =
∞∫

0

∞∫
0

ayff ′(Λ′(f ′′) − Λ′(f )
)

dy dy′.

Using the Young inequality ab � Λ(a) + Λ∗(b) (where Λ∗ stands for the convex conjugate of Λ) and the identity
cΛ′(c) = Λ(c) + Λ∗(Λ′(c)) for any a, b, c � 0, we have

f Λ′(f ′′) − f Λ′(f ) � Λ(f ) + Λ∗(Λ′(f ′′)
)− f Λ′(f ) = Σ(f ′′) − Σ(f )

with Σ(a) := aΛ′(a) − Λ(a) � 0. We conclude
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d

dt

∞∫
0

Λ(f )y dy �
∞∫

0

∞∫
0

ayf ′(Σ(f ′′) − Σ(f )
)

dy dy′

�
∞∫

0

∞∫
0

[
a(y − y′, y′)(y − y′)1y>y′ − a(y, y′)y

]
f ′Σ(f )dy dy′ � 0,

first making the change of variables (y, y′) → (y′′, y) in the first integral and next noticing that for any y′ > 0 the map
z 
→ za(z, y′) is increasing. �

We now give some estimates on the moments of the solution to the coagulation equation (1.1). Most of them are
straightforward consequences of the corresponding estimates (3.3), (3.4) and (3.16) for the solution to the coagulation
equation in self-similar variables (1.18) using the change of variables (1.19).

Lemma 6.2. Assume (1.4) and let fix fin ∈ Vin. The following properties hold at least formally for any solution f to
the coagulation equation (1.1), (1.2).

(1) The mass is decreasing in time:

M1(t) � ρ ∀t � 0. (6.3)

(2) There exists a positive real function η such that η(ε) → 0 when ε → 0 and
ε∫

0

f (t, y)y dy � η(ε) ∀t � 0. (6.4)

(3) Assume λ ∈ [0,1). For any k ∈ Ia ∩ [λ,1] there exists a constant Ck > 0 such that

Mk(t) � min

{
Ck

(t ∧ 1)
,Mk(0)

}
∀t � 0. (6.5)

(4) Assume β = 1 and α < 0. There exists Cα > 0 such that

Mα(t) �
(

M
α

1−α
α (0) + |α|t

1 + |α|
) 1−α

α ∀t � 0. (6.6)

(5) Assume α < 0. There exist ω ∈ (0,1) and C ∈ (0,∞) such that

M1+α(t) � C(1 + t)−ω ∀t � 0. (6.7)

Proof of Lemma 6.2. Points (1) and (2) are straightforward consequences of (6.1) using the subadditive test function
φ(y) = y and φ(y) = y10�y�ε . In order to prove point (3), we gather the estimate on Nk obtained following the
proof of Lemma 3.1 or Lemma 3.3 with the straightforward estimate Mk(t) � Mk(0) obtained from (6.1) using the
subadditive test function φ(y) = yk, k ∈ Ia .

Proof of (4). Consider k � 0. Using the elementary inequality

a(y, y′)
(
(y + y′)k − yk − (y′)k

)
� −(yα+k(y′)β + (y′)α+kyβ

)
we deduce (thanks to the Hölder inequality Mk � Mθ

k+αM1−θ
1 with θ := (k − 1)/(k − 1 + α))

d

dt
Mk � −Mα+kMβ � −cM

1− α
1−k

k Mβ.

Assuming now k = α < 0 and β = 1, we obtain

d

dt
Mα � −cM

1− α
1−α

α ,

from where we deduce (6.6).
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Proof of (5). When β ∈ [0,1) we interpolate (using Hölder inequality) the estimates (6.3) and (6.5) for k = λ, and
we obtain (6.7) with ω = −α/(1 − λ) ∈ (0,1). When β = 1 and therefore by hypothesis fin ∈ L̇1

m for some m < 1,
we interpolate (6.6) and (6.5) written for Mk′ with k′ ∈ (max(m,λ),1) and we obtain (6.7) with ω = α−1

α
1+α−k′
α−k′ ∈

(0,1). �
We establish now an estimate for superlinear generalised moment.

Lemma 6.3. Assume (1.4) with λ ∈ [0,1] and fin ∈ Vin. Then, there exists a function φ such that φ(y)/y → ∞ when
y → ∞ and for all T > 0 there exists a positive constant C ≡ C(T ,M1(0),Mm(0)) satisfying

sup
0�t�T

Mφ(t) � C(T ). (6.8)

In the proof of Lemma 6.3 we will need the following technical result.

Lemma 6.4. Assume λ � 1. For any φ such that φ(y) = yψ(y), ψ ∈ C1([0,∞)) positive, increasing, ψ(0) = 1,
concave and such that yψ ′(y) � A(y ∧ 1), φ(2y) � Aφ(y) for some constant A ∈ (0,∞), there exists a constant
B ∈ (0,∞) such that

a∆φ � B
(
K(y)φ(y′) + φ(y)K(y ′)

)
, (6.9)

with K(y) := yα+11y�1 + y.

Proof of Lemma 6.4. Using the decomposition

∆φ = y(ψ ′′ − ψ) + y′(ψ ′′ − ψ ′)

we see that (6.9) reduces to prove

T (y, y′) := yµ+1(y′)ν
[
ψ(y + y′) − ψ(y)

]
� B

2

(
K(y)φ(y′) + φ(y)K(y ′)

)
, (6.10)

for the two couples (µ, ν) = (α,β) and (µ, ν) = (β,α), or in other words for any couple (µ, ν) such that µ,ν ∈
(−1,1] and µ + ν = λ. We estimate T according to different cases.

• When y′ � 1 or when ν � 0, there holds

T � ψ ′(y)yµ+1(y′)ν+1 � Ayµ(y ∧ 1)(y′)ν+1 � Ay
[
(y′)ν+11y′�1 + y′]+ A

[
yµ+11y�1 + y

]
y′,

according to the case ν � 0 (and then µ � 0) and to the case y′ � 1 and ν � 0.
• When 1 � y′ � y and ν � 0, there holds

T � Ayµ(y ∧ 1)(y′)ν+1 � Ayλ(y ∧ 1)y′ � Ayy′.

• When 1 � y′, y � y′ and ν,µ � 0, there holds

T � yµ+1(y′)νψ(2y′) � y1y�1(y
′)νψ(2y′) + yλ1y�1y

′ψ(2y′) � A

2
yφ(y′).

• When 1 � y′, ν � 0 and µ � 0, there holds

T � yµ+1(y′)νψ(2y′) � 1

2
yµ+1φ(2y′) � A

2

[
yα+11y�1 + y

]
φ(y′). �

Proof of Lemma 6.3. From the refined version of De la Vallée Poussin lemma (see for instance [20,35]) there exists
φ satisfying the assumptions of Lemma 6.4 and such that Mφ(fin) < ∞. Using Lemma 6.4 and (3.1) there holds

d Mφ � BMφMk � B(Mk + M1)Mφ (6.11)

dt
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with k = α + 1 ∈ (λ,1) if α < 0 and k = 1 if α � 0. Since Mk ∈ L1
loc by (6.7) or (6.3) we conclude,

Mφ(t) � Mφ(0) exp

( t∫
0

(
Mk(s) + M1(s)

)
ds

)
, ∀t > 0,

from where (6.8) follows. �
Lemma 6.5. Assume λ > 1. There exists a positive constant C such that

∞∫
0

( ∞∫
1

yλ/2+1/2(lny)4f dy

)2

dt � Cρ.

Proof of Lemma 6.5. We apply [13, Theorem 2.2] with Φ(A) := (A1/2(lnA)4) ∧ 1. �
Proof of the existence part in Theorem 2.4. It is now classical that in order to prove the existence of solutions to
the coagulation equation it is enough to show a “stability result” under “physical estimates” (see for instance [21]).
To this end we consider a sequence of functions (fn) which are weak mass preserving solutions (in the sense of
Definition 2.3) to the Cauchy problem (1.1), (1.2) with initial datum (fin,n) such that fin,n ⇀ fin weakly in L̇1

1 and
which satisfies, uniformly in n, the a priori bounds established in Lemmas 6.1–6.3 and Lemma 6.5, namely:

M1
(
fn(t)

)
� ρ ∀t � 0; (6.12)

ε∫
0

fn(t, y)y dy � η(ε) ∀t � 0; (6.13)

∞∫
0

Λ
(
fn(t, y)

)
y dy � C ∀t � 0; (6.14)

and for some superlinear function φ and for some p ∈ (1,min(ω−1,2)) (with ω ∈ (0,1) defined in Lemma 6.2.5 when
α < 0 and for instance ω = 1/2 when α � 0)

T∫
0

( ∞∫
0

fn(t, y)
(
y1+α1y�1 + φ(y)1y�1

)
dy

)p

dt � CT ∀T � 0. (6.15)

We aim to prove (and that will establish the announced stability result) that there exist a weak solution f to
the Smoluchowski equation (1.1) in the sense of Definition 2.3 and a subsequence (fn′) such that fn′ → f in
C([0,∞);L1

loc-weak). We split now the proof in several steps.
Step 1. Convergence of (fn). First, from (6.12) and (6.14), there exists f ∈ L∞(0,∞; L̇1

1) such that (up to the
extraction of a sub-sequence)

fn ⇀ f weakly in L1
loc

([0, T ] × R+
) ∀T > 0.

From Eq. (6.1) and the estimates (2.9), (6.12) and (6.15) we have that, for any φ ∈ C1
c (R+), the quantity

d

dt

∞∫
0

fn(t, y)φ dy = 〈
Q(fn),φ

〉

is bounded in L
p

loc([0,∞)) and thus

fn → f in C
([0,∞);L1

loc(R+)-weak
)
. (6.16)

Step 2. Initial condition. By step 1 we have in particular fn(0, ·) ⇀ f (0, ·) in D′. Since by hypothesis fin,n ⇀ fin,
we deduce that f (0, ·) = fin.
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Step 3. Passing to the limit in Eq. (2.17). We deduce that for any sequence (φn) such that φn = φn(t, y, y′) → φ =
φ(t, y, y′) a.e. and ‖φn‖L∞ � C, there holds:

∞∫
0

fnφnχ
′ dy →

∞∫
0

f φχ ′ dy a.e. on R
2+

with χ(y) = y + ymin(1,1+α). Writing then

T∫
0

〈
Q(fn),φ

〉
dt =

T∫
0

∞∫
0

∞∫
0

An dy dy′ dt

we may pass to the limit n → ∞ in each subset Ωi introduced in the proof of Lemma 2.1. We therefore obtain that f

is a weak solution in the sense of Definition 2.3. �
Proof of the qualitative properties of the solution when λ ∈ [0,1]. From Lemma 6.3, Mφ(t) is bounded on every
compact sets of [0,+∞). We may then pass to the limit in the conservation of mass and then f is also mass conserving.
The estimates on the moments of the solution f follow from Corollary 3.10 and Lemma 6.2. �
Proof of the gelation property in Theorem 2.4. Assuming λ ∈ (1,2] we show that any weak solution f ∈
L∞([0,∞); L̇1

1) does not conserve the mass. Indeed, on the one hand, from [13, Corollary 2.3] the following a
posteriori estimate holds

∞∫
0

( ∞∫
ε

f (t, y)y dy

)2

dt � Cλε
1−λM1(0),

for some constant Cλ. Let fix ε > 0 such that
ε∫

0

f (t, y)y dy �
ε∫

0

finy dy � 1

2
M1(0).

Assume by contradiction that M1(t) ≡ M1(0). Using the decomposition

∞∫
0

f (t, y)y dy =
ε∫

0

f (t, y)y dy +
∞∫
ε

f (t, y)y dy � 1

2
M1(0) +

∞∫
ε

f (t, y)y dy

we get

1

2
M1(0) �

∞∫
ε

f (t, y)y dy ∈ L2(0,∞)

and a contradiction. �
Proof of Theorem 2.8. It is very similar to that of Theorem 2.4, where the spaces L̇1− have to be changed to Ṁ1− .

Notice nevertheless the following. By the hypothesis on the source term s, we are not allowed to use any test function
φ(y) whose behaviour near the origin is φ(y) ∼ ym as y → 0 with m < 1. This makes that the regularising effect
of the coagulation equation with the source term s is weaker than it was before, without that term, since we only
obtain local moments near the origin for k ∈ [(1 + λ)/2,1) instead of k ∈ (λ,1). The estimate (3.3) of Lemma 3.1 is
then modified to estimate (6.17) below. This has only one major consequence in the proof of the theorem. Since we
need M1+α ∈ L1(0, T ) in order to define the term Q(f ) in the formulation of weak solution, it is necessary to have
1 + α > (1 + λ)/2 or equivalently: α > β − 1. The rest of the arguments being essentially the same we only prove in
detail the following lemma from which we easily deduce (2.20). �
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Lemma 6.6. Assume s ∈ L∞(0, T ; Ṁ1
1 ) and λ ∈ [0,1). There exists two positive constants K1 and K2, independent

of f and fin, such that, for all t � 0,

N(1+λ)/2(t) �
(

N(1+λ)/2(0)−1 e−K2t‖S‖∞ + K1

K2‖S‖∞
(
e−K2t‖S‖∞ − 1

))−1

. (6.17)

Proof of Lemma 6.6. We follow the proof of Lemma 3.1. Choosing φ = φA(y) = (y ∧ A) in (6.1) we obtain in the
same way that in the proof of (3.6)

d

dt

∞∫
0

f φA dy + A

2

( ∞∫
A

fyλ/2 dy

)2

�
∞∫

0

sφA dy � S(t) ∀A > 0. (6.18)

Next, proceeding along the line of the proof of (3.8) we deduce from (6.18) that for a given function Φ : [0,∞) →
[0,∞) such that Φ(0) = 0 and a given � ∈ R there holds

d

dt

∞∫
0

f Ψ dy + 1

2K0

( ∞∫
0

f (y)yλ/2Φ(y)dy

)2

� K ′
0S, (6.19)

where we have defined K0 and Ψ thanks to (3.7) with m = 1 and

K ′
0 :=

∞∫
0

Φ ′(A)A�−1 dA.

Finally, we make again the choice (3.9) with now m = 1 which therefore implies δ = (1 − λ)/2, λ + δ = (1 + λ)/2
and K ′

0 < ∞. Thanks to (3.10) we deduce from (6.19) that for some constants Ki ∈ (0,∞), independent of f and fin,
the following differential inequality holds

d

dt
N(1+λ)/2 + K1N

2
(1+λ)/2 � K2S.

Integrating this differential inequality we obtain (6.17). �
Acknowledgements

The authors gratefully acknowledge the partial support of the European Research Training Network HYKE HPRN-
CT-2002-00282 during this work. The first author was partially supported by the CICYT under grant BFM2002-
03345. He is grateful to the University of Paris XI Dauphine and CEREMADE for their kind hospitality. We were
partially supported by CNRS and UPV through a PIC between the Universidad del Pais Vasco and the Ecole Normale
Supérieure. The authors wish to thank the Referee for his very carefully reading of the manuscript. His corrections
and remarks have greatly improved the original version of this work.

References

[1] D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists,
Bernoulli 5 (1999) 3–48.

[2] J. Bertoin, The asymptotic behaviour of fragmentation processes, J. Eur. Math. Soc. (JEMS) 5 (4) (2003) 395–416.
[3] J. Bertoin, Eternal solutions to Smoluchowski’s coagulation equation with additive kernel and their probabilistic interpretations, Ann. Appl.

Probab. 12 (2) (2002) 547–564.
[4] A.V. Bobylev, Moment inequalities for the Boltzmann equation and applications to the spatially homogeneous problems, J. Statist. Phys. 88

(1997) 1183–1214.
[5] A.V. Bobylev, I. Gamba, V. Panferov, Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions,

J. Statist. Phys. 116 (5–6) (2004) 1651–1682.
[6] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (3–4) (1992)

641–655.
[7] S. Cueille, C. Sire, Droplets nucleation and Smoluchovski’s equation with growth and injection of particles, Phys. Rev. E 57 (1998) 881–900.
[8] P.G.J. van Dongen, M.H. Ernst, Cluster size distribution in irreversible aggregation at large times, J. Phys. A 18 (1985) 2779–2793.



362 M. Escobedo, S. Mischler / Ann. I. H. Poincaré – AN 23 (2006) 331–362
[9] P.G.J. van Dongen, M.H. Ernst, Solutions of Smoluchowski coagulation equation at large cluster sizes, Physica A 145 (1987) 15.
[10] P.G.J. van Dongen, M.H. Ernst, Scaling solutions of Smoluchowski’s coagulation equation, J. Statist. Phys. 50 (1988) 295–329.
[11] R.L. Drake, A general mathematical survey of the coagulation equation, in: Topics in Current Aerosol Research (Part 2), International Reviews

in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 203–376.
[12] G. Duffa, N.T.-H. Nguyen-Bui, Un modèle de suies, Personal communication, 2002.
[13] M. Escobedo, S. Mischler, B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys. 231 (2002) 157–188.
[14] M. Escobedo, S. Mischler, M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann.

Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 99–125.
[15] N. Fournier, J.-S. Giet, On small particles in coagulation-fragmentation equations, J. Statist. Phys. 111 (5–6) (2003) 1299–1329.
[16] N. Fournier, P. Laurençot, Existence of self-similar solutions to Smoluckovski’s coagulation equation, Preprint, 2004.
[17] S.K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley, New York, 1979.
[18] I. Jeon, Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys. 194 (1998) 541–567.
[19] M. Kreer, O. Penrose, Proof of dynamical scaling in Smoluchowski’s coagulation equation with constant kernel, J. Statist. Phys. 75 (1994)

389–407.
[20] Ph. Laurençot, S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh

Sect. A 132 (5) (2002) 1219–1248.
[21] Ph. Laurençot, S. Mischler, The continuous coagulation-fragmentation equations with diffusion, Arch. Rational Mech. Anal. 162 (2002)

45–99.
[22] Lê Châu-Hoàn, Etude de la classe des opérateurs m-accrétifs de L1(Ω) et accrétifs dans L∞(Ω), Thèse de 3ème cycle, Université de Paris

VI, 1977.
[23] P. Laurençot, S. Mischler, On coalescence equations and related models, in: P. Degond, L. Pareschi, G. Russo (Eds.), Modelling and Compu-

tational Methods for Kinetic Equations, in: Modeling and Simulation in Science, Engineering and Technology (MSSET), Birkhäuser, 2004,
pp. 321–356.

[24] P. Laurençot, S. Mischler, Coagulation and fragmentation equations, in preparation.
[25] M.H. Lee, A survey on numerical solutions to the coagulation equation, J. Phys. A 34 (2001) 10219.
[26] F. Leyvraz, Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A 16 (1983) 2861–2873.
[27] F. Leyvraz, Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep. 383 (2–3) (2003) 95–212.
[28] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19 (1961) 35–50.
[29] A.A. Lushnikov, M. Kulmala, Nucleation burst in coagulating system, Phys. Rev. E 62 (2000) 4932–4939.
[30] E.D. McGrady, R.M. Ziff, “Shattering” Transition in Fragmentation, Phys. Rev. Lett. 58 (1987) 892.
[31] G. Menon, R.L. Pego, Approach to self-similarity in Smoluchowski’s coagulation equation, Comm. Pure Appl. Math. 57 (9) (2004) 1197–

1232.
[32] G. Menon, R.L. Pego, Dynamical scaling in Smoluchowski’s coagulation equation: uniform convergence, Preprint, 2003.
[33] S. Mischler, M. Rodriguez Ricard, Existence globale pour l’équation de Smoluchowski continue non homogène et comportement asymptotique

des solutions, C. R. Acad. Sci. Paris, Ser. I Math. 336 (2003) 407–412.
[34] S. Mischler, Une introduction aux modèles de coagulation et fragmentation, Notes de cours de DEA, http://www.ceremade.dauphine.

fr/~mischler/.
[35] S. Mischler, B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (4) (1999)

467–501.
[36] N. Morgan, C. Wells, M. Kraft, W. Wagner, Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth,

Preprint No. 19, Cambridge Center for Computational Chemical Engineering, 2003.
[37] J.R. Norris, Cluster coagulation, Comm. Math. Phys. 209 (2000) 407–435.
[38] J.R. Norris, Smoluchowski’s coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent, Ann.

Appl. Probab. 9 (1999) 78–109.
[39] J.H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, New York, 1986.
[40] M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Z. 17 (1916)

557–599.
[41] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physik. Chemie 92 (1917) 129–

168.
[42] I.W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl.

Sci. 11 (1989) 627–648.
[43] I.W. Stewart, A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Cambridge Philos. Soc. 107 (1990) 573–578.
[44] A. Pulvirenti, B. Wennberg, A Maxwellian lower bound for solutions to the Boltzmann equation, Comm. Math. Phys. 183 (1997) 145–160.


