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Corner defects in almost planar interface propagation
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Abstract

We study existence and stability of interfaces in reaction–diffusion systems which are asymptotically planar. The problem
of existence of corners is reduced to an ordinary differential equation that can be viewed as the travelling-wave equation to
a viscous conservation law or variants of the Kuramoto–Sivashinsky equation. The corner typically, but not always, points in
the direction opposite to the direction of propagation. For the existence and stability problem, we rely on a spatial dynamics
formulation with an appropriate equivariant parameterization for relative equilibria.

Résumé

Nous étudions l’existence et la stabilité des interfaces asymptotiquement planes dans des systèmes de réaction–diffusion.
Le problème de l’existence des défauts est réduit à l’étude d’une équation différentielle ordinaire qui est, selon le cas, appro-
chée par l’équation stationnaire d’une loi de conservation scalaire ou d’une variante de l’équation de Kuramoto–Sivashinsky.
Typiquement, les défauts pointent dans la direction opposée à la direction de propagation. Pour l’analyse des problèmes d’exis-
tence et de stabilité, nous utilisons une formulation de type dynamique spatiale combinée avec une paramétrisation adéquate
d’équilibres relatifs.
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1. Introduction

Characterizing propagation of interfaces in spatially extended systems is a major challenge in the applied sci-
ences. Flame fronts in solid and gaseous combustion have stimulated a variety of different approaches to interface
formation and propagation [17,44,64]. Experimental observation and theoretical predictions range from rigid plane
front propagation over periodically oscillating speeds and cellular patterns on the interface, to seemingly chaotic
motion of the interface. In a slightly different context, front and pulse propagation turns out to be crucial for the dy-
namics of many self-organizing chemical reactions, such as the carbon-monoxide oxidation on platinum surfaces
[30] or the Belousov–Zhabotinsky reaction [66]. One-dimensional interfaces have been observed in spiral wave
patterns, where interfacial corners naturally arise at the domain boundaries between different spiral cores [66].
More recently, oscillatory front propagation [34] and interfaces between homogeneous and patterned states [22]
have been studied in the Belousov–Zhabotinsky reaction. Propagation and reflective or annihilation collision of
2-dimensional pulse trains has also been observed in the CO-oxidation [25]. In the CIMA reaction, famous for ex-
hibiting stationary Turing patterns, propagation and propagation failure of a one-dimensional interface separating a
region occupied by a hexagonal lattice built with isolated Turing spots, into an unpatterned region governs the later
stage of spot replication; see [9] for an experimental survey and [46] for (mostly one-dimensional) theoretical ap-
proaches. Interfaces between patterned states arise in many other applied areas. We mention semiconductors [58],
viscous shock waves [41], Rayleigh–Bénard convection [48] or certain models for extended lasers [40].

In a singular perturbation approach to interface propagation, spatial variables are scaled such that the interface
becomes a sharp line, for which a geometric evolution equation can be derived from inner and outer expansions at
the interfacial region; see [15,61] for a variety of applications of this method. In many cases, the formal asymptotics
can be justified, either in a general dynamical setup [6], or in specific contexts [29]. The most general results are
available when a comparison principle is at hand [2].

More recently, interface propagation has been addressed from a different perspective. The common feature is
that existence and stability are considered in unbounded domains, corresponding to the inner expansion in the sharp
interface limit. For various reasons, however, a scaling cannot be rigorously justified such that interfaces have to
be studied in the original equations. We mention recent work on propagation of fronts in discrete two-dimensional
lattices with possible pinning of interfaces [7], stability of plane viscous shocks [28,36], and existence and stability
of conically shaped fronts in scalar reaction–diffusion models for combustion [3,20,21].

We refer the reader to the beautiful review [63] as a guide to the tremendous amount of work on (mostly one-
dimensional) front propagation in the physics literature.

In this article, we focus on existence and stability of almost planar interfaces. Almost planar here refers to the
angle of the interface at each point, relative to a fixed planar interface. Most of the interfaces that we construct
will be planar at infinity, with possibly different orientations at +∞ and −∞ in an arclength parameterization. We
refer to all these types of interfaces as corner defects. Different angles at ±∞ result in conically shaped interfaces,
like for example the travelling waves constructed in [20]. In an isotropic sharp interface scaling, conical interfaces
correspond to corners. Equal angles at ±∞ may result in infinitesimal step discontinuities, when the position of
the interface differs at ±∞. We construct corner defects as perturbations of a planar interface. Assumptions are
solely on the existence of a primary planar travelling-wave solution and spectral properties of the linearization
at the planar wave. All interfaces that we construct in the present article are stationary or time-periodic patterns
in an appropriately comoving frame. However, we give stability results which show that “open” classes of ini-
tial conditions actually converge to the corner-shaped interfaces we constructed before. The results are stated for
reaction–diffusion systems but the method is sufficiently general to cover most applications mentioned above. In
particular we do not rely on monotonicity arguments or comparison principles such that we can naturally include
the case of interfaces separating patterned states from spatially homogeneous states.

The method we use is based on the (essentially one-dimensional) dynamical systems approach to the existence
of bounded solutions to elliptic equations in cylinders introduced by Kirchgässner [39]. Later this approach has
been used to construct nontrivial transverse modulations of one-dimensional waves, such as pulses or periodic
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solutions, a phenomenon the authors referred to as dimension breaking [23,24]. The main idea is to consider an
elliptic equation, posed on the (x, y)-plane in a neighborhood of an x-independent wave q∗(y) as a dynamical
system in the x-variable and rely on dynamical systems tools such as center-manifold reduction and bifurcation
theory to construct bounded solutions to the elliptic equation in a neighborhood of the original wave. Nontrivial,
that is nonequilibrium, x-“dynamics” then correspond to nontrivial x-profiles.

In the present work, we extend these ideas, incorporating the shift of the y-profile q∗(y) into the reduced
dynamics. We then respect this affine action of the symmetry group in the construction and parameterization of the
center-manifold such that the reduced equations take a skew-product form. The concept of an equivariant reduction
and skew-product description of bifurcations in the presence of noncompact, nonsmooth group actions has been
introduced in [14,55] in order to describe meandering and drift motion of spiral waves under the presence of the
Euclidean group of rotations and translations in the plane. The construction of the center-manifold is “semi-global”
in the sense that a neighborhood of all translates of the primary solution is described by the reduced equations. For
example, constant drift ξ ′ = η in x-dynamics along the translates q∗(y + ξ), corresponds to the original front
inclined by an angle ϑ = arctanη.

The methods and results are related to recent work in [11,54] on dynamics of defects in oscillatory media. The
common feature between the present work and the study of wave trains is the presence of a neutral eigenvalue
induced by the translation of a primary profile, the Goldstone mode. A major difference lies in the fact that wave
trains possess a noncompact isotropy generated by translations of one period, such that the resulting symmetry
action is isomorphic to the circle group, whereas in our case, the isotropy of the travelling wave is trivial. As a
consequence, we have to study bifurcations from a noncompact group orbit, isomorphic to R, whereas the group
orbit in [11,54] is compact, a circle.

We develop the idea, prove a reduction theorem, and describe the most basic shock-type corner solutions in
Section 2. We prove asymptotic stability of these structures in Section 3. We then consider more complicated
scenarios, where the front undergoes a transverse long-wavelength instability, in Section 4, and when the primary
front is pulsating, in Section 5. We conclude with a discussion, pointing out possible generalizations and open
questions in Section 6.

2. Existence of corners

We introduce the general setup for travelling waves in reaction–diffusion systems and define the typical types
of corners one might expect to find. We then state and prove the first main result on existence and nonexistence of
corner defects for interfaces separating two homogeneous states. We conclude the section with several examples
and possible extensions.

Throughout the paper, we consider the reaction–diffusion system

ut = D�x,yu + c∂yu + f (u), (2.1)

where u ∈ R
N is a vector of N chemical species, D = diag(D1, . . . ,DN) > 0 is a positive, diagonal diffusion

matrix, and (x, y) ∈ R
n × R. The reaction kinetics f are assumed to be smooth. The Laplacian is assumed to be

isotropic �x,y = �x +∂yy . The speed c > 0 is assumed to be positive, such that bounded solutions to the stationary
equation

D�x,yu + c∂yu + f (u) = 0, (2.2)

are (right-)travelling-wave solutions u(x, y − ct) of the reaction–diffusion system in the steady frame

ut = D�x,yu + f (u), (2.3)

with direction of propagation in the positive y-direction. We will assume n = 1 such that (x, y) ∈ R
2, throughout.

We briefly comment on higher space dimensions in Section 6.
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Throughout this section, we will assume existence of a planar travelling wave connecting two homogeneous
equilibria.

Hypothesis 2.1 (Existence). We assume that there exists c∗ > 0 and asymptotic states q± such that there exists an
x-independent planar travelling-wave solution q∗(y) of (2.2)

Dq ′′∗ + c∗q ′∗ + f (q∗) = 0, (2.4)

connecting q− and q+, i.e.

q∗(y) → q+ for y → +∞, q∗(y) → q− for y → −∞. (2.5)

We emphasize that we allow for the possibility of pulses, q+ = q−.
The second assumption in this section is concerned with stability of the above travelling wave solution. There-

fore, consider the linearized operator

L∗ :H 2(
R,R

N
) ⊂ L2(

R,R
N

) → L2(
R,R

N
)
, u �→ −∂yyu − D−1(c∗∂yu + f ′(q∗(·)

)
u
)
. (2.6)

Notice that under suitable decay assumptions, q ′∗ belongs to the kernel of L∗ due to the translation invariance in y.

Hypothesis 2.2 (Zero-stability). We assume that L∗ − λ id is invertible for all λ < 0 and that λ = 0 is an isolated
eigenvalue with algebraic multiplicity one.

Although this might not seem obvious, Hypothesis 2.2 is intimately related to stability properties of the travelling
wave q∗(·). Consider the linearized operator

M∗ :H 2(
R

2,R
N

) ⊂ L2(
R

2,R
N

) → L2(
R

2,R
N

)
, u �→ D�x,yu + c∗∂yu + f ′(q∗(·)

)
u, (2.7)

and its Fourier conjugates

Mk :H 2(
R,R

N
) ⊂ L2(

R,R
N

) → L2(
R,R

N
)
, u �→ D

(
∂yy − k2)u + c∗∂yu + f ′(q∗(·)

)
u. (2.8)

Hypothesis 2.3 (Transverse asymptotic stability). Assume that the travelling wave is asymptotically stable in one
space dimension, that is, the essential spectrum of M0 is strictly contained in the left complex half plane and zero
is the only eigenvalue in the closed right half plane, with algebraic multiplicity one. Furthermore, assume that the
spectra of Mk , for k �= 0 are strictly contained in the left half plane and that the unique eigenvalue λd(k), k ∼ 0
with λd(0) = λ′

d(0) = 0 satisfies λ′′
d(0) < 0; see Fig. 1.

Remark 2.4.

(i) This hypothesis and, in particular, the quadratic tangency of the dispersion relation λ′′
d(0) < 0 implies asymp-

totic stability of the travelling wave with respect to perturbations that are sufficiently localized in the transverse,
x-direction [28,35,36].

Fig. 1. To the left the spectrum of M0 and to the right the critical spectra of the Mk parameterized by k.
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(ii) For equal diffusion constants, D = d1 id, the second part of Hypothesis 2.3 is a consequence of the first part,
on the spectrum of M0. However, this is not always the case when the diffusion constants are not equal; see
also Section 4.

Lemma 2.5. Hypothesis 2.3 implies that Hypothesis 2.2 on stability holds.

Proof. The proof is similar to [57, Lemma 2.11, Remark 2.12]. Since Mk is invertible for all k �= 0, we immedi-
ately conclude, upon multiplying by the inverse of the diffusion matrix D, that L∗ + k2 is invertible for all k �= 0.
Similarly, the kernels of M0 and L∗ coincide. Denote by u(k) the (normalized) unique family of eigenvectors to
the eigenvalue λd(k) of Mk ,

D
(
∂yy − k2)u(k) + c∗∂yu(k) + f ′(q∗(·)

)
u(k) = λd(k)u(k).

Differentiating this equality twice, and evaluating in k = 0 with u(0) = q ′∗, u′(0) = 0, λd(0) = 0, and λ′
d(0) = 0,

we find

D∂yyu
′′(0) + c∗∂yu

′′(0) + f ′(q∗(·)
)
u′′(0) = λ′′

d(0)q ′∗ + 2Dq ′∗, (2.9)

where λ′′
d(0) is the unique Lagrange multiplier such that (2.9) possesses a nontrivial solution. A vector ũ in the

generalized kernel of L∗ solves

∂yyũ + D−1(c∗∂yũ + f ′(q∗(·)
)
ũ
) = q ′∗. (2.10)

Upon comparing (2.10) and (2.9), where λ′′
d(0) �= 0, we conclude that (2.10) does not possess a solution and λ = 0

is algebraically simple as stated in Hypothesis 2.2. �
Remark 2.6.

(i) The converse implication generally fails. For example, after a temporal Hopf bifurcation of a one-dimensional
propagating front, caused by point spectrum crossing the imaginary axis, Hypothesis 2.2 would still hold,
whereas Hypothesis 2.3 would fail. However, Hypothesis 2.2 does imply the quadratic tangency of the disper-
sion relation λ′′

d(0) < 0. This fact will be used later in Theorem 1.

(ii) It is straightforward to verify that in the case of a fourth order tangency λd(k) ∼ −(λ
(4)
d (0)/4!)k4, λ = 0

is algebraically double as an eigenvalue of L∗; see [57, Remark 2.12]. This fact will become relevant in
Section 4.2.

The following classification of corner defects is much inspired by the classification of defects in oscillatory
media; see [54].

Definition 2.7 (Corner defects). A solution u(x, y) of the travelling-wave problem is called an almost planar
travelling-wave solution δ-close to q∗, if u is of the form

u(x, y) = q∗
(
y + ξ(x)

) + w(x,y), (2.11)

with ξ ∈ C2(R) and

sup
x

∣∣ξ ′(x)
∣∣ < δ, sup

x

∣∣w(x, ·)∣∣
H 1(R,RN)

< δ, |c − c∗| < δ. (2.12)

We say that u is trivial if u is a rotated planar interface u = q∗((cosϑ)x + (sinϑ)y), for some ϑ ∈ R.
We say that u is a corner defect if it is of the form (2.11) and ξ ′(x) → η± ∈ R, as x → ±∞. We distinguish

corner defects according to the following list:
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(a) (b) (c) (d)

Fig. 2. Schematic plot of the four different types of corner defects, interior corner (a), hole (b), step (c), and exterior corner (d). The middle
arrows indicate the speed of the defect, whereas the left and right (smaller) arrows indicate the normal speed of propagation of the interface.
The angle ϑ is given by tanϑ = η+ .

• if η+ < η− we say that the corner defect is an interior corner;
• if η+ = η− = 0 we say that the corner defect is a hole;
• if η+ = η− �= 0 we say that the corner defect is a step;
• if η+ > η− we say that the corner defect is an exterior corner;

see Fig. 2.

Remark 2.8. If we think of individual points on the interface evolving with the normal speed c∗, we notice that
interface is consumed on both sides of interior corners and interface is generated at exterior corners. At a step,
interface is consumed on one side and generated on the other side, whereas at a hole, interfacial points neither enter
nor leave the defect at leading order. In addition to the geometric characterization in Definition 2.7 we therefore
suggest the following dynamic characterization, building a closer analogy to [54]:

interior corner ←→ sink
hole ←→ contact defect
step ←→ transmission defect
exterior corner ←→ source

Thinking in terms of interfacial energy, energy is lost at a sink, generated at a source, transmitted at a transmission
defect and preserved at a contact defect.

There is yet another motivation for this terminology. We will later see that all defects possess a natural char-
acterization as heteroclinic and homoclinic orbits. In this terminology, they coincide with the localized defects
in spatially one-dimensional oscillatory media, which have been previously classified in the terminology of sink,
contact, transmission, and source in [54]. To make the analogy clearer, transport of points on the interface has to
be phrased in terms of group velocities. Since the dispersion relation λd(k) at the interface is symmetric in k, the
group velocity λ′

d(0) in the tangential direction vanishes and transport is generated solely by geometry. In oscilla-
tory media, transport is induced by group velocities of wave trains and described at small amplitudes by a viscous
Burgers equation. Defects are then classified in [54] according to the relative slope of characteristics with respect
to the speed of the defect. The correspondence actually goes much further, since spectra of linearized operators at
corner defects and at defects in oscillatory media qualitatively agree.

Remark 2.9. Throughout the paper, we consider propagation in a direction normal to the primary interface. Most
of the defects we find are actually symmetric with respect to x �→ −x. A slightly more general characterization of
almost planar interfaces would allow for a propagation in the x-direction, as well. This would contribute a term
cx∂xu in the equation, with an additional parameter cx . Equivalently, we can rotate the plane by an angle ϕ such
that the speed of propagation points again in the y-direction.

We are now ready to state our main result of this section.
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Fig. 3. One-dimensional pulses and fronts (top) generate two-dimensional corner defects in line- and in invasion patterns, respectively (bottom).

Theorem 1. Assume existence and zero-stability of a planar travelling wave q∗(·), Hypotheses 2.1 and 2.2. Then
there is δ > 0 such that for each c with |c − c∗| < δ, c > c∗, there exists an interior corner defect. The defect is
unique in the class of nontrivial almost planar corner defects up to translation in x. Moreover, it is invariant under
reflection x �→ x0 − x for an appropriate x0 and is to leading order given through

q(x, y; c) = q∗
(
y + ξ(x)

) + O
(|c − c∗|

)
,

ξ ′(x) =
√

2(c − c∗)
c∗

tanh(βx) + O
(|c − c∗| e−2|βx|), β =

√
2c∗(c − c∗)

λ′′
d(0)

< 0. (2.13)

For c � c∗, there are no nontrivial almost planar corner defects.

Note that the theorem does not require Hypothesis 2.3; see Remark 2.6(i).
We give a sketch of these interior corner defects in Fig. 3; see also Fig. 4. Note that the speed of propagation

of the asymptotically planar interface with angle ϑ = arctanη± is given by the simple geometric condition c =
c∗/ cosϑ ; see also [3] and the references therein. The existence and nonexistence part in Theorem 1 coincide with
the results in [3] for scalar reaction–diffusion systems. We emphasize, however, that the results there cover large
angles ϑ , as well.

We outline first the proof of Theorem 1. We rewrite the travelling-wave equation (2.2) as a dynamical system
in the direction x, perpendicular to the direction of propagation. We then parameterize solutions similarly to (2.11)
exploiting the translation invariance y �→ y +ξ of (2.2). The main step then is a dynamic center-manifold reduction
to a two-dimensional center-manifold diffeomorphic to a strip (ξ, η) ∈ R × (−δ, δ) and flow given by

ξ ′ = η + O
(|c − c∗||η| + |η|3), η′ = 2

λ′′
d(0)

(
c − c∗ − c∗

2
η2

)
+ O

(|c − c∗|2 + |η|4). (2.14)

In particular, the right-hand sides of these equations do not depend on ξ . Moreover, they commute with the re-
versibility symmetry x �→ −x, ξ �→ ξ , η �→ −η. Bounded solutions are the well-known Burgers shocks.

Note that the reduced equation reflects steady-state profiles of the viscous Burgers’ equation

ηt = −λ′′
d(0)ηxx − c∗(η2)x. (2.15)

This equation has been derived formally as a modulation equation for planar interfaces, previously, but we are
not aware of any rigorous results in this direction; see however [11] for a justification in a different context. The
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Fig. 4. Interface plotted at time t = 0 and time t = 1. The normal speed of propagation c∗ and the speed of the defect form a rectangular triangle
with angle ϑ .

Rankine–Hugoniot condition for the jump of the shock reduces to the purely geometric condition that the speed
of the corner is determined by the condition that the orthogonal projection of the velocity of the corner on the
(exterior) normal of the interfaces on both sides equals c∗; see Fig. 4.

Proof of Theorem 1. We rewrite the travelling-wave equation (2.2) as a first-order system in x

ux = v,

vx = −∂yyu − D−1(c∂yu + f (u)
)
, (2.16)

on the Hilbert space Y = (H 1 × L2)(R,R
N), or, in short notation,

ux =A(c)u +F(u), (2.17)

where u = (u, v)T ,

A(c) =
(

0 id
−∂yy − D−1c∂y 0

)
, F(u) =

(
0

−D−1f (u)

)
. (2.18)

Note that A(c) is closed on Y with domain of definition Y 1 = (H 2 × H 1)(R,R
N). The nonlinearity F is smooth

as a map from Y to Y .
Eq. (2.16) possesses a continuous translation symmetry, induced by the y-shift ξ :u(·) �→ u(· + ξ). Moreover,

the equation possesses a reversibility symmetry (u, v)T �→ R(u, v)T := (u,−v)T , x �→ −x.
Hypothesis 2.1 on existence of planar interfaces shows that (2.17) possesses a family of equilibria

q
ξ∗ =

(
q

ξ∗ (·)
0

)
=

(
q∗(· + ξ)

0

)
. (2.19)

The linearization of (2.16) about q0∗ is given by the operator

A∗ =
(

0 id
L∗ 0

)

with L∗ the linear operator defined in (2.6). Note that A∗ is also closed in Y with domain of definition Y 1. Due to
the second order structure of (2.16), the spectrum of A∗ coincides with the multi-valued squareroot of the spectrum
of L∗. From Hypothesis 2.2 we therefore conclude that

specA∗ ∩ {|Reλ| � ε
} = {0},

for some ε > 0, and that∣∣(ik −A∗)−1
∣∣
Y→Y

� C(1 + |k|)
2

, for any k ∈ R
∗,
|k|
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for some C > 0. The eigenvalue in the origin is algebraically double with kernel and generalized kernel spanned
by

KerA∗ = span(e0), e0 =
(

q ′∗(·)
0

)
, gkerA∗ = span(e0, e1), e1 =

(
0

q ′∗(·)
)

,

with A∗e1 = e0.
In order to find the spectral projection onto the generalized kernel, we construct the L2 × L2-adjoint

Aad∗ =
(

0 Lad∗
id 0

)
,

where Lad∗ is the L2-adjoint of L∗. The kernel and generalized kernel are given by

KerAad∗ = span
(
ead

0

)
, ead

0 =
(

0
qad∗ (·)

)
, gkerAad∗ = span

(
ead

0 , ead
1

)
, ead

1 =
(

qad∗ (·)
0

)
,

with Aad∗ ead
1 = ead

0 and Lad∗ qad∗ = 0. We assume that the adjoint eigenvectors are normalized such that〈
ead
j , ej

〉
L2×L2 = 0,

〈
ead
j , e1−j

〉
L2×L2 = 1, j = 0,1,

by taking (qad∗ , q ′∗)L2 = 1. The projection on the generalized kernel is then given as a bounded operator on Y

through

P :Y → Y, Pu = 〈
ead

1 ,u
〉
L2×L2e0 + 〈

ead
0 ,u

〉
L2×L2e1. (2.20)

Similarly, to the shifted equilibria q
ξ∗ we introduce the shifted linear operator Aξ∗, the shifted eigenvector e

ξ
0 =

((q ′∗)ξ (·),0)T , and analogously e
ξ
1, e

ad,ξ
j ,P ξ ,Aad,ξ∗ .

Following the general strategy for reduction around a continuous family of equilibria [55], we decompose

u = q
ξ∗ + ηe

ξ
1 + wξ , with P ξwξ = Pw = 0. (2.21)

Here ξ and η are real functions depending upon x. This provides us with coordinates in a neighborhood of the
family of equilibria q

ξ∗. Substituting (2.21) into (2.17), we find

ξxe
ξ
0 + ηxe

ξ
1 + ηξx∂ξe

ξ
1 + (

wξ
)
x

=Aξ∗
(
ηe

ξ
1 + wξ

) + (
A(c) −A(c∗)

)(
q

ξ∗ + wξ
) + Gξ

(
wξ

)
, (2.22)

where

Gξ
(
wξ

) =F
(
q

ξ∗ + wξ
) −F

(
q

ξ∗
) − DuF

(
q

ξ∗
)
wξ ,

such that Gξ is smooth on Y and Gξ (w) = O(|w|2Y ), uniformly in ξ . Notice that Gξ does not depend upon η since
the first component of e1 is zero.

We next take the scalar product of (2.22) with e
ad,ξ
1 and exploit the fact that the second component of e

ad,ξ
1

vanishes to obtain

ξx + 〈
e

ad,ξ
1 ,

(
wξ

)
x

〉 = η.

From 〈ead,ξ
1 ,wξ 〉x = 0 and the invariance of the L2 × L2-scalar product under the y-shift (·)ξ we obtain〈

e
ad,ξ
1 ,

(
wξ

)
x

〉 = −〈
ξx∂ξe

ad,ξ
1 ,wξ

〉 = −〈
ξx∂ξe

ad
1 ,w

〉
.

We therefore find

ξx = (
1 − 〈

∂ξe
ad
1 ,w

〉)−1
η = η + O

(|η||w|Y
)
. (2.23)
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Taking the scalar product of (2.22) with e
ad,ξ
0 yields

ηx + ηξx

〈
ead

0 , ∂ξe1
〉 + 〈

e
ad,ξ
0 ,

(
wξ

)
x

〉 = 〈
ead

0 ,
(
A(c) −A(c∗)

)(
q0∗ + w

)〉 + 〈
ead

0 ,G0(w)
〉
, (2.24)

in which we used the invariance of the L2 × L2-scalar product under the y-shift (·)ξ . We claim that〈
ead

0 , ∂ξe1
〉 = c∗

λ′′
d(0)

. (2.25)

To see this, first note that〈
ead

0 , ∂ξe1
〉 = 〈

qad∗ , q ′′∗
〉 = 1

2

(〈
qad∗ , q ′′∗

〉 − 〈
qad∗

′
, q ′∗

〉)
.

A short, direct calculation shows that

d

dy

(
qad∗ · q ′′∗ − qad∗

′ · q ′∗
) = − d

dy

(
D−1c∗qad∗ · q ′∗

)
.

Integration with respect to y gives〈
qad∗ , q ′′∗

〉 − 〈
qad∗

′
, q ′∗

〉 = −c∗
〈
D−1qad∗ , q ′∗

〉
.

Finally, if we take the scalar product of (2.9) with D−1qad∗ and exploit the fact that the left hand side vanishes, we
obtain〈

D−1qad∗ , q ′∗
〉 = − 2

λ′′
d(0)

, (2.26)

which proves our claim (2.25).
As already observed before, we have 〈ead,ξ

0 , (wξ )x〉 = −ξx〈∂ξe
ad
0 ,w〉, and

〈
ead

0 ,
(
A(c) −A(c∗)

)
q0∗

〉 = −(c − c∗)
〈
qad∗ ,D−1q ′∗

〉 = 2

λ′′
d(0)

(c − c∗),

such the equality (2.24) can be rewritten as

ηx = 2

λ′′
d(0)

(c − c∗) − c∗
λ′′

d(0)
ξxη + ξx

〈
∂ξe

ad
0 ,w

〉 + 〈
ead

0 ,
(
A(c) −A(c∗)

)
w + G0(w)

〉
. (2.27)

Note that this becomes a first order differential equation for η once we substitute the expression for ξx from (2.23).
Having derived equations for ξx and ηx , we now derive an equation for wx , the hyperbolic part. We therefore

project (2.22) with (id−P ξ ) onto the hyperbolic subspace of A∗ and find

wx = −ξx∂ξw − ξx(∂ξP )w +A∗w + (id−P)
(−ηξx∂ξe1 + (

A(c) −A(c∗)
)(

q0∗ + w
) + G0(w)

)
.

If we substitute the expressions (2.27) for ηx and (2.23) for ξx , this equality provides us with a first order differential
equation for w.

Summarizing, we have found a first order quasilinear system of differential equations

ηx = 2

λ′′
d(0)

(c − c∗) − c∗
λ′′

d(0)
η2 + O

(|c − c∗||w|Y + |η||w|Y + |w|2Y
)
, (2.28)

wx =A∗w + O
(|c − c∗| + |η|2 + |w|2Y + |η| |w|Y 1

)
, (2.29)

posed on the Hilbert space R × Yh, with Yh = (id−P)Y . A key point in this choice of coordinates is that this
system is independent of ξ , such that we can solve for ξ , separately. Since Pw = 0, the linearized equation is
hyperbolic in the w-component. We may now evoke a center-manifold reduction theorem for quasilinear systems
[45, Theorem 1] to conclude that for c close to c∗, all solutions with η,w sufficiently small are solutions to a
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reduced differential equation for η, obtained by substituting w = h(η; c − c∗) = O(|c − c∗|+ |η|2) into (2.28). The
reduction theorem ensures that all nonlinear functions and their dependences on parameters are of class Ck for an
arbitrary but fixed k < ∞. Moreover, the reduction procedure preserves the action of the reversibility R, such that
the function h commutes with the action of R restricted to center and hyperbolic subspaces. Since Re1 = −e1, we
can conclude that the right-hand side of the reduced equation on the center subspace is an even function of η, with
expansion

ηx = 2

λ′′
d(0)

(
c − c∗ − c∗

2
η2

)
+ O

(|c − c∗|2 + |η|4). (2.30)

We can determine the location of the equilibria in (2.30) a priori and to any order if we exploit the rotational
invariance of the reaction–diffusion system in the steady frame (2.3). Together with the primary plane interface,
there are rotated planar interface, parameterized by the angle ϑ relative to the original planar interface. In our
reduced system (2.30), these rotated interfaces yield equilibria η = tanϑ (here η > 0 corresponds to the rotated
interface being shifted backwards as x increases). The rotated planar interfaces travel with normal speed c⊥ = c∗.
The (nonnormal) speed of propagation c in the y-direction, imposed in (2.2), induces a projected normal speed of
propagation c⊥ = c cosϑ ; see Fig. 4. Therefore the equilibria to (2.30) are explicitly given by

η2± = c2 − c2∗
c2

.

Nontrivial, small bounded solutions for the scalar reduced ODE (2.30) exist precisely when there are at least two
equilibria, that is, when c > c∗. All small solutions are then given by either one of the equilibria, or the heteroclinic
orbit connecting η+ < 0, as x → ∞, with η− > 0, as x → −∞. It is straightforward to verify that, to leading order,
the heteroclinic takes the explicit form (2.13). This concludes the proof of Theorem 1. �

We conclude this section with several examples of reaction–diffusion systems for which such corner defects
exist.

The simplest example is found in the classical Nagumo equation

ut = �u + u(u − a)(1 − u). (2.31)

Existence and stability of propagating fronts, Hypotheses 2.1 and 2.2 are satisfied for a ∈ (0,1), a �= 1/2, since the
front is stable in one space-dimension and the diffusion matrix is trivial.

Another example is provided by the Gray–Scott equation

∂tu1 = d1�u1 − u1u
2
2 + F(1 − u1),

∂tu2 = d2�u2 + u1u
2
2 − (F + k)u1.

For equal diffusion constants and particular parameter values k,F , an explicit expression for a front solution
was given in [18,19]. Numerical evidence strongly suggests that the planar fronts are asymptotically stable with
dispersion relation λ′′

d(0) < 0, although no analytical proof of this fact seems to be available.
Existence and stability of a one-dimensional pulse is known for the FitzHugh–Nagumo equation [1,26,32,60,67]

∂tu1 = �u1 + u1(1 − u1)(u1 − a) − u2,

∂tu2 = δ�u2 + ε(u1 − γ u2),

where δ � 0 and ε are sufficiently small, 0 < a < 1/2, and γ is large.

Lemma 2.10 ([60]). The (fast) planar pulse for the FitzHugh–Nagumo equation with 0 � δ � ε � 1 is stable in
two space-dimensions, that is λ′′(0) < 0. In particular, Hypotheses 2.1 and 2.2 hold for δ > 0, sufficiently small.
d
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Proof. The proof for δ = 0 is a consequence of the discussion in [60], where arbitrary periodic boundary conditions
in the x-direction are imposed. A perturbation argument similar to the one presented in [1] shows that the same
stability properties hold for δ > 0, as well. �

As an immediate consequence, Theorem 1 shows that interior corner defects actually exist as pure travelling-
wave solutions. They are observed typically at collision points of wave-trains emitted by spiral waves; see [66] for
illustration and background on spiral waves in the Belousov–Zhabotinsky reaction.

A minor modification actually allows us to apply Theorem 1 to the case δ = 0, as well. Therefore, note that in
the travelling-wave equation

c∂yu1 = �u1 + u1(1 − u1)(u1 − a) − u2,

c∂yu2 = ε(u1 − γ u2),

we may solve the second equation for u1 as a (nonlocal) function of u2 and end up with a single travelling-wave
equation. The proof of Theorem 1 then goes through for this single equation.

A number of fronts satisfy Hypothesis 2.2 only in function spaces equipped with an exponential weight. In
oversimplified models for combustion, u is scalar and f (u) ≡ 0 for u ∈ [0, δ], f (1) = 0, and f (u) > 0 on (δ,1) [3].
The reaction front connecting u = 1 at −∞ to u = 0 then satisfies Hypothesis 2.2 on stability in a space Xη ⊂ L2

loc
of functions with exponential weight

|u|2Xη
:=

∫
R

∣∣u(y)
(
1 + eηy

)∣∣2 dy, (2.32)

for some positive rate η > 0.
A simple example is provided by a variant of the Nagumo equation (2.31) when a < 0. For c∗ = √

2( 1
2 − a),

there exists an explicit front solution, which satisfies Hypothesis 2.2 in Xη for η ∈ (1/
√

2,−2a/
√

2) if 1 < −2a

and η ∈ (−2a/
√

2,1/
√

2) if 1 > −2a; see [62]. Actually, fronts exist for all c � 2
√−a. However, all fronts with

c < c∗ are unstable in any exponentially weighted function space, whereas the front with c = c∗ is the unique front
which possesses a single eigenvalue λ = 0 in an exponentially weighted spaces. More information on the selection
mechanisms for fronts can be found in [62]. In the terminology employed there, we construct interior corners for
pushed fronts. We do not know if interior corners exist for pulled fronts; see also [63, §5.2]

Another example is provided by the cubic-quintic Ginzburg–Landau equation for complex valued function A

and parameters µ,γ ∈ R,

At = �A + µA + γA|A|2 − A|A|4. (2.33)

Of interest are fronts between patterned states A(y) = |A| ei(kxx+kyy) and the trivial solution in this equation. Here,
we specialize to real solutions satisfying

ut = �u + µu + γ u3 − u5, (2.34)

and briefly discuss the case k �= 0 in Section 6. For µ < 0 and γ > 0, there exist fronts of the same type as in the
Nagumo equation connecting the (stable) trivial solution u = 0 to the zero u+ of µu + γ u3 − u5 with maximal
modulus. If µ > 0, the origin is unstable, but there may still be interfaces between u+ spreading into u = 0. Phase-
plane analysis and Sturm–Liouville theory show that for γ > 2/

√
3, a front solution of the type described for the

Nagumo equation exists and satisfies Hypothesis 2.2.

Remark 2.11 (Periodic wave-trains). Theorem 1 can also be applied to y-periodic, x-independent wave-trains. For
this, we impose periodic boundary conditions in the y-direction and follow the proof. Examples of wave-trains
for which the stability hypothesis can be verified arise in the FitzHugh–Nagumo equation [13,53]. The transverse
stability assumption in the regime of large period in y can be concluded from the transverse stability of the pulse
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using the results in [53]. The spatial patterns that are described by the heteroclinics on the center manifold are
periodic juxtapositions in the direction of propagation of the picture for a single interior corner, Fig. 2(a). We note
that these types of patterns can be observed in spiral wave interaction, where wave trains, emitted from two spiral
cores, collide.

3. Stability of corners

The goal of this section is to show stability of interior corner defects as found in Theorem 1. We assume
that Hypotheses 2.1 and 2.3 hold. Here, the strengthened stability Hypothesis 2.3 is needed as compared to the
weaker zero stability Hypothesis 2.2. The results below show that interior corner defects are asymptotically stable
under perturbations which are exponentially localized in the direction of the primary interface. Roughly speaking,
localization refers to the position of the interface in Theorem 2 and to the angle in the change of the orientation
of the interface in Theorem 3. The perturbations are fully localized in Theorem 2, and localized in each spatial
direction except for those parallel to the asymptotic straight lines of the interface in Theorem 3.

In order to state the results we first introduce the space of exponentially localized functions Xη ⊂ L2
loc(R

2,R
N)

and X 2
η ⊂ H 2

loc(R
2,R

N), with norms

|u|2Xη
:=

∫
x,y

∣∣u(x, y) cosh(ηx)
∣∣2 dy dx < ∞, (3.1)

|u|2X 2
η

:= |u|2Xη
+ |�u|2Xη

. (3.2)

Note that perturbations contained in Xη change the local shape of the corner but do not alter the position of the
asymptotic straight lines of the interface

Theorem 2. Assume existence and stability of a planar travelling wave, Hypotheses 2.1 and 2.3. Then there exist
positive constants ε0 and η0 such that the (unique) interior corner defects q(·, ·; c), described in Theorem 1 for
c − c∗ ∈ (0, ε0) are asymptotically stable under perturbations u0 ∈ X 2

η , as defined in (3.1)–(3.2), for all 0 < η <

η0(c − c∗)1/2. More precisely, there exist positive constants δ = δ(η, c), d = d(η, c), and C = C(η, c) such that for
any initial condition q(·, ·; c) + u0 with |u0|X 2

η
< δ, the solution u to (2.1) satisfies∣∣u(t, ·, ·) − q(·, ·; c)∣∣X 2

η
� Cδ e−dt , (3.3)

for any t > 0.

The stability properties are best understood in the context of the stability properties of the viscous shock profile
q(x) = tanh(x/2) in Burgers equation [56],

ut = uxx + uux. (3.4)

In our context, the velocity u corresponds to the inclination η of the interface (see (2.15)), such that the actual
difference between two solutions u and q is measured by the integral Φ = ∫

x
u, which corresponds to the position

ξ of the interface. The variable Φ solves a viscous eikonal equation

Φt = Φxx + 1

2
Φ2

x . (3.5)

If we linearize (3.5) about Φ = ∫
x
q , we find

�t = �xx + tanh

(
x

)
�x. (3.6)
2
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This linear equation generates a contraction semi-group on the function space Xη−,η+ with −1 < η− < 0 < η+ < 1.
Since nonlinearities are differentiable on interpolation spaces defined relative to the exponentially weighted spaces
Xη−,η+ , standard results on nonlinear semigroup theory [27] give an asymptotic stability result in the spirit of
Theorem 2. Note however that the function Φ itself is not bounded and nonlinearities are well-defined since they
do only depend on the derivative Φ . An alternative proof could therefore operate on Burgers equation (3.4), on the
same space of exponentially weighted functions. Localization of the perturbation in the Φ-variables corresponds
to zero mass perturbations in Burgers equation

∫
u = 0. If we allow for nonzero mass, the linearization about the

shock in Burgers equation possesses a neutral eigenvalue. Stability with respect to these perturbations now holds if
we shift the profile q(· + x0) by an appropriate constant x0 to compensate for the additional mass. The next natural
question now arises whether a similar result holds for the stability of corners.

We therefore introduce the function space X̃η =Xη ⊕Xstep ⊂ L2
loc(R

2,R
N) with

Xstep = {
ustep(x, y) = u−(y)

(
1 − θ(x)

) + u+(y)θ(x); u± ∈ L2(
R,R

N
)}

.

Here, θ(·) denotes the Heavyside step function. We equip X̃η with the Euclidean product norm

|u + ustep|2X̃η
:= |u|2Xη

+ |u−|2
L2 + |u+|2

L2 .

We also consider X̃ 2
η =X 2

η ⊕X 2
step ⊂ H 2

loc(R
2,RN) with

X 2
step = (id−�)−1Xstep ⊂ H 2

loc

(
R

2,R
N

)
.

Note that any function vstep ∈ X 2
step is obtained through

vstep(x, y) = (id−�)−1(u−(y)
(
1 − θ(x)

) + u+(y)θ(x)
)
, u± ∈ L2(

R,R
N

)
,

and can be computed explicitly in terms of u− and u+ with the help of the Green’s function for (id−�)−1. In
particular, any vstep ∈X 2

step belongs to C1(R2,R
N) and has the asymptotic behavior

vstep(x, y) = (id−∂yy)
−1u−(y) + O

(
ex

(|u−|L2 + |u+|L2

))
,

as x → −∞, and

vstep(x, y) = (id−∂yy)
−1u+(y) + O

(
e−x

(|u−|L2 + |u+|L2

))
,

as x → ∞. We equip X̃ 2
η with the product norm

|v + vstep|2X̃ 2
η

:= |v|2X 2
η

+ |v−|2
H 2 + |v+|2

H 2,

where

v±(·) = lim
x→±∞vstep(x, ·) ∈ H 2(

R,R
N

)
.

For η ∈ (0,1) the operator � − id is sectorial on X̃η with domain of definition X̃ 2
η and its spectrum is upper

semi-continuous with respect to the parameter η.
The interior corner q(·, ·; c) found in Theorem 1 is of the form

q(x, y; c) = q∗
(
y + ξ(x)

) + O
(|c − c∗|

) =: q̃(
x, y + ξ(x); c), (3.7)

where ξ(x) is the y-dependent position of the interface. Then q̃ ∈ X̃ 2
η , and the same is true for the family of

translates q(x + x0, y + y0; c), which generates a two-dimensional surface of equilibria to (2.1) in the function
space X̃ 2

η (this is not the case for the function space X 2
η , since the differences q(x + x0, y; c) − q(x, y; c) and

q(x, y+y0; c)−q(x, y; c) are not contained in X 2
η ). In Theorem 3 we consider perturbations of the form u0(x, y) =

ũ0(x, y + ξ(x)) with ũ0(·, ·) ∈ X̃ 2
η , and ξ(x) given by the fixed reference interface. Then u0 is asymptotically
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constant along the curves y + ξ(x) ≡ const parallel to the interface, and localized elsewhere. Such perturbations
allow for changing the position of the corner, but not its angle. Note that if ũ ∈ Xη then u belongs to Xη as well,
but this is not true for functions u with ũ in the extended space X̃η.

Remark 3.1. Initial conditions u0(x, y) = ũ0(x, y + ξ(x)) with ũ0 ∈ X̃ 2
η as before could be also described using

the ξ -dependent space Xη ⊕ X̃step,

X̃step = {
ũstep(x, y) = u−(y + η∗x)

(
1 − θ(x)

) + u+(y − η∗x)θ(x); u± ∈ L2(
R,R

N
)}

,

in which η∗ = lim|x|→∞ |ξ ′(x)|.

Theorem 3. Assume existence and stability of a planar travelling wave, Hypotheses 2.1 and 2.3. Then there exist
positive constants ε0 and η0 such that the family of (unique) interior corner defects q(· + x0, · + y0; c), described
in Theorem 1 is asymptotically stable with asymptotic phase, under perturbations u0 with ũ0 ∈ X̃ 2

η , for all 0 < η <

η0(c − c∗)1/2 when c − c∗ ∈ (0, ε0). More precisely, there exist positive constants δ = δ(η, c), d = d(η, c), and
C = C(η, c) such that for any initial condition q(x, y; c) + ũ0(x, y + ξ(x)) with |ũ0|X̃ 2

η
< δ, there exist x0 and y0

such that the solution u to (2.1) satisfies∣∣u(t, ·, ·) − q(· + x0, · + y0; c)
∣∣
X̃ 2

η
� Cδ e−dt , (3.8)

for all t > 0.

The remainder of this section is occupied by the proofs for Theorems 2 and 3. The main part of the analysis is
concerned with the study of the spectrum of the linearization about the interior corner,

Lu = D�u + c∂yu + f ′(q(·, ·; c))u, (3.9)

where the function q(·, ·; c) is given by Theorem 1 on existence of interior corners for wave speeds c > c∗. In the
case of fully localized perturbations, Theorem 2, we consider L on Xη with domain of definition X 2

η (Proposition
3.2). For Theorem 3 we have to consider a slightly modified operator. Recall that in this case the perturbations are
of the form

u(x, y) = ũ
(
x, y + ξ(x)

) =: ũξ (x, y),

with ũ ∈ X̃ 2
η . On the linear level, the stability analysis reduces to the eigenvalue problem

(L− λ id)ũξ = h̃ξ

for ũ ∈ X̃ 2
η and h̃ ∈ X̃η. We may then transform the independent variables to obtain

(L̃− λ id)ũ = h̃,

where

L̃ũ = D
(
(∂x + ξx∂y)

2 + ∂yy

)
ũ + c∂yũ + f ′(q̃(·, ·; c))ũ,

and q̃(x, y + ξ(x); c) = q(x, y; c) (on Xη the two eigenvalues problems are equivalent). Note that L̃ is a small,
relatively bounded perturbation of the linearization M∗ about q∗ given in (2.7); see (3.7). Again, we decompose the
proof into a statement on the linearized equation (Proposition 3.4) and a short separate argument for the nonlinear
part.

Proposition 3.2. Under the assumptions of Theorem 2, there exist positive constants ε0, η0 and δ0 such that for
any c − c∗ ∈ (0, ε0), and any weight η = η̃(c − c∗)1/2 with η̃ ∈ (0, η0), the spectrum of L in Xη satisfies

specL⊂ {
λ ∈ C; Reλ � −δ0η̃(η0 − η̃)(c − c∗) < 0

}
.
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Proof of Theorem 2. The perturbation u0 evolves in time as the solution to

ut = Lu + G(u), u∣∣t=0 = u0, (3.10)

with L given by (3.9) and

G(u) = f (q + u) − f (q) − f ′(q)u. (3.11)

Note that G :X 2
η → X 2

η is smooth since f is smooth and X 2
η embeds continuously into the bounded continuous

functions of the plane. Moreover, G(u) = O(|u|2) in X 2
η . Given the spectral result in Proposition 3.2, the conver-

gence estimate (3.8) is a simple consequence of the variation of constant formula for the solution u to (3.10) and
the contraction mapping principle. �
Proof of Proposition 3.2. It is straightforward to check that L is sectorial, so it is sufficient to consider spectral
values λ in a bounded subset of the complex plane.

We write ε2 = c − c∗ > 0. Note that we can express the solution q(x, y; c) alternatively as a smooth function
of ε, which we denote by q(x, y; ε), slightly abusing notation.

We have to solve

D(∂xxu + ∂yyu) + f ′(q(x, y; c))u + c∂yu − λu = h(x, y), (3.12)

with bound

|u|Xη
� C(λ)|h|Xη

, (3.13)

for all λ with Reλ � 0, and sufficiently small weights η �= 0. We therefore rewrite (3.12) as a first order system in
the “evolution” variable x

ux = v,

vx = −∂yyu − D−1(f ′(q(x, y; c))u + c∂yu − λu
) + D−1h(x, y). (3.14)

Set

q̃ξ (x, y; ε) = q̃
(
x, y + ξ(x); ε) := q(x, y; ε), h̃ξ (x, y) := D−1h(x, y). (3.15)

We have

|h̃|Xη
� C|h|Xη

,

such that it is sufficient to bound the solution u to (3.14) in terms of h̃. The eigenvalue problem we have to consider
has been transformed to

ux = v,

vx = −∂yyu − D−1(f ′(q̃ξ (x, y; ε))u + c∂yu − λu
) + h̃ξ (x, y). (3.16)

Note that

q̃ξ (x, y; ε) = q
ξ∗ (y) + O(ε2), (3.17)

uniformly in x, y; see Theorem 1. Then the linearization can be written as

ux = v,

vx = −∂yyu − D−1(f ′(qξ∗ (y)
)
u + c∂yu − λu

) + rξ (x, y)u + h̃ξ (x, y), (3.18)

with rξ = O(ε2). We write (3.18) in the abstract form

ux =Aξ
(x)u + rξ (x)u + h̃

ξ
(x), (3.19)
λ,ε
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on the Hilbert space Y defined in the proof of Theorem 1.
Let us first consider the case |λ| � δ > 0, Reλ � 0. Upon substituting u = vξ into (3.19), we arrive at

vx + ξx∂yv =A0
λ,εv + r0(x)v + h̃(x), (3.20)

where we shifted back the equation by the x-dependent y-shift ξ(·). This equation is a small relatively bounded
perturbation of the equation

vx =A0
λ,0v + h̃(x),

where

A0
λ,0 =

(
0 id

−∂yy − D−1(f ′(q∗(·)) + c∗∂y − λ) 0

)
.

This equation can readily be solved by using the Fourier transform with respect to x, for any h̃ ∈ L2(R, Y ), and
any |λ| � δ > 0, Reλ � 0. We obtain the uniform bounds on the solution

|v|H 1(R,Y ) + |v|L2(R,Y 1) � C|h̃|L2(R,Y ). (3.21)

Note that it is here that we need the strengthened stability Hypothesis 2.3 instead of the weaker zero stabil-
ity Hypothesis 2.2, which was sufficient for the existence theorem. In particular, this hypothesis guarantees that
A0

λ,0 − ik is invertible for all k ∈ R and any λ �= 0, Reλ � 0, since the problem (A0
λ,0 − ik)(v1, v2)

T = (h1, h2)
T

has a unique solution

v1 = −(Mk − λ)−1D(ikh1 + h2) ∈ H 2(
R,R

N
)
,

v2 = ikv1 − h1 ∈ H 1(
R,R

N
)

for (h1, h2) ∈ Y . Standard perturbation theory then shows that the same bounds (3.21) hold for small relatively
bounded perturbations and for the weighted spaces L2

η(R, Y ), H 1
η (R, Y ), and L2

η(R, Y 1), with η �= 0 small, where

L2
η is defined similarly to (2.32) with norm |w|L2

η
:= |w/ cosh(η·)|L2 . Therefore the estimates hold for the solutions

v to (3.20), as well. Going back the change of variables to the u-coordinates, we note that the norms in Xη are
invariant under the x-dependent y-shift such that we have found a uniform bound on u in Xη in terms of the norm
of h in Xη. This proves the proposition in the parameter regime |λ| � δ, for any fixed δ sufficiently small.

Consider |λ| � 1 in (3.19), next. We decompose

u = σe
ξ
0 + τe

ξ
1 + wξ , with P ξwξ = 0. (3.22)

Here, σ and τ are real functions depending upon x, and the eigenvectors e
ξ
j and the projection P ξ have been

defined in the proof of Theorem 1. Upon substituting this decomposition into (3.18), we find

σxe
ξ
0 + σξx

(
∂ξe

ξ
0

) + τxe
ξ
1 + τξx

(
∂ξe

ξ
1

) + (
wξ

)
x

= τe
ξ
0 +Aξ

0,0w
ξ + (

Aξ
λ,ε(x) −Aξ

0,0 + rξ (x)
)(

σe
ξ
0 + wξ

) + h̃
ξ
(x), (3.23)

where we have used the fact that the first component of e
ξ
1 vanishes.

We take the scalar product of (3.23) with e
ad,ξ
1 and e

ad,ξ
0 , and project onto the hyperbolic part with (id −P ξ ).

We find the equivalent system

σx = τ − c∗
λ′′

d(0)
ξ ′σ + O

(|ε||w|Y
)
, (3.24)

τx = − c∗
λ′′

d(0)
ξ ′τ − 2

λ′′
d(0)

λσ + O
(|ε|2|σ | + (|ε| + |λ|)|w|Y

) + hτ , (3.25)

wx =A0
0,0w + O

((|ε| + |λ|)|σ | + |ε||τ | + (|ε| + |λ|)|w|Y 1

) + hw (3.26)
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in which we shifted back the equation for wξ by the x-dependent y-shift ξ(·), and used the invariance of the norm
in Y under this shift. The error terms stand for bounded linear operators acting on σ , τ , and w with bounds as
indicated, and the functions hτ and hw belong to L2

η(R) and L2
η(R, Y ), respectively, with L2

η-norms bounded by
C|h|Xη

.
We set w0 = (σ, τ ), µ = (ε, λ), and rewrite this system in the abstract form

w0x = L0w0 + µL00(x)w0 + µL01(x)w + h0(x), (3.27)

wx =A0
0,0w + µL10(x)w0 + µL11(x)w + h1(x), (3.28)

where

L0 =
(

0 1
0 0

)
,

Lij are O(1)-bounded linear operators, and h0 = (0, hτ )
T , h1 = hw .

For h0 ≡ 0 and h1 ≡ 0 we have a nonautonomous, linear, homogeneous system. A center manifold reduction
then shows that for small µ bounded solutions (w0(x),w(x)) to (3.27), (3.28) with h0 ≡ 0 and h1 ≡ 0 are of the
form (

w0(x),w(x) = φ(x;µ)w0(x)
)
,

with φ(x;µ) : R2 → (id−P)Y 1 bounded linear operators with norms |φ(x;µ)|L(R2,Y 1) � C|µ|, for any x ∈ R and
µ small; the dependence on x and µ is Ck for any finite k. Note that the hyperbolic part w of the solutions depends
linearly upon w0, since the system is linear, and that the operators φ satisfy

φx(x;µ) =A0
0,0φ(x;µ) − φ(x;µ)L0 + µL10(x) + µL11(x)φ(x;µ)

− µφ(x;µ)L00(x) − µφ(x;µ)L01(x)φ(x;µ), (3.29)

for any x and µ.
We now use the operators φ(x;µ) to construct bounded solutions to the inhomogeneous system (3.27), (3.28).

We set

w(x) = φ(x;µ)w0(x) + H(x). (3.30)

Substituting (3.30) into (3.27), (3.28) and using (3.29) we find that the function H solves the linear equation

H ′(x) =A0
0,0H(x) + µL11(x)H(x) − µφ(x;µ)L01(x)H(x) − φ(x;µ)h0(x) + h1(x), (3.31)

and that the central part w0 satisfies the reduced system

w0x = L0w0 + µL00(x)w0 + µL01(x)φ(x;µ)w0 + µL01H(x) + h0(x).

Since (id −P)A0
0,0 − ik is invertible on KerP for all k ∈ R, a standard perturbation argument shows that (3.31)

has a unique solution H(x) = H [h0,h1](x) ∈ KerP with bounds

|H |H 1
η (R,Y ) + |H |L2

η(R,Y 1) � C
(|h0|L2

η(R,R2) + |h1|L2
η(R,Y )

)
� C|h|Xη

.

Going back to the system (3.24)–(3.26) we find

w(x) = φ(x; ε,λ)
(
σ(x), τ (x)

) + H(x), (3.32)

with H as above, and∣∣φ(x; ε,λ)
(
σ(x), τ (x)

)∣∣
Y 1 � C

(|ε| + |λ|)(∣∣σ(x)
∣∣ + ∣∣τ(x)

∣∣).
Substitution of (3.32) into (3.24), (3.25) gives
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σx + c∗
λ′′

d(0)
ξ ′σ = τ + O

((|ε|2 + |ελ|)(|σ | + |τ |)) + h̃σ (x), (3.33)

τx + c∗
λ′′

d(0)
ξ ′τ = αεε

2σ − 2

λ′′
d(0)

λσ + O
((|ελ| + |λ|2)|σ | + (|ε| + |λ|)2|τ |) + h̃τ (x). (3.34)

Here, αε ∈ R, and h̃σ ∈ H 1
η (R) and h̃τ ∈ L2

η(R) with norm bounded by C|h|Xη
.

Note that for λ = 0, and h ≡ 0 the y-derivative of the corner is a solution of (3.12). The corresponding solution
to (3.33), (3.34) is

σ = 1 + O(ε2), τ = O(ε),

and therefore σ ≡ 1 necessarily solves the truncated equation

σx + c∗
λ′′

d(0)
ξ ′σ = τ, (3.35)

τx + c∗
λ′′

d(0)
ξ ′τ = αεε

2σ. (3.36)

This gives

c∗
λ′′

d(0)
ξ ′′ +

(
c∗ξ ′

λ′′
d(0)

)2

− αεε
2 ≡ 0,

from which we compute the constant αε by the help of (2.30), and find

αε = 2c∗
(λ′′

d(0))2
.

In order to prove the proposition, it is now sufficient to show that the homogeneous equation corresponding to
(3.33), (3.34) possesses an exponential dichotomy relative to the exponential weight η for all λ and ε sufficiently
small.

The natural scaling of (3.35), (3.36) predicts λ = λ̃ε2 and λ̃ bounded. Let us justify this scaling. Suppose
therefore that ε2 = δ2|λ| with δ small. Substituting the scaling into the homogeneous part of (3.33), (3.34), and
scaling ζ = |λ|1/2x, τ = |λ|1/2τ̃ we find

σζ = τ̃ + O
(|δ|),

τ̃ζ = − 2

λ′′
d(0)

ei arg(λ)σ + O
(|δ| + |λ|)

so that

σζζ + 2

λ′′
d(0)

ei arg(λ)σ = O
(|δ| + |λ|).

Since in |λ| = 0 and δ = 0, this equation possesses an exponential dichotomy, a robustness result gives invertibility
of the linearization outside the “natural” scaling. We therefore scale λ = λ̃ε2 with λ̃ bounded, ζ = εx, τ = ετ̃ , and
we compute

σζ + c∗
λ′′

d(0)

ξ ′

ε
σ = τ̃ + O

(|ε|),
τ̃ζ + c∗

λ′′
d(0)

ξ ′

ε
τ̃ = αε − 2

λ′′
d(0)

λ̃σ + O
(|ε|),

so that

σζζ + 2
c∗

λ′′(0)

ξ ′

ε
σζ + 2

λ′′(0)
λ̃σ = O(ε). (3.37)
d d
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In the limit ε = 0, we find the linearization about the Burgers shock in the integrated form

σζζ + 2

√
2c∗

λ′′
d(0)

tanh

(√
2c∗

λ′′
d(0)

ζ

)
σζ + 2

λ′′
d(0)

λ̃σ = 0; (3.38)

see (3.5), (3.6). Since the spectrum of this equation is contained in the region

Re λ̃ �
λ′′

d(0)

2
η̃

(
−2

√
2c∗

λ′′
d(0)

− η̃

)
< 0,

for any positive weight η̃ ∈ (0,−2
√

2c∗/λ′′
d(0)), a standard perturbation argument concludes the proof of the propo-

sition. �
Remark 3.3. The proof of Proposition 3.2 actually gives much more insight into spectral properties of the lin-
earization. To leading order, we found that the extended point spectrum is trivial and the dispersion relation to the
essential spectrum possesses a quadratic expansion; see [16,37,50] for background on extensions of point spectra
and Evans function into the essential spectrum. We expect that stability results in spaces with algebraic weights,
similar to the ones in [33,35], hold for the weak interior corners, constructed in the present paper; see also [12].

Proposition 3.4. Under the assumptions of Theorem 2, there exist positive constants ε0, η0 and δ0 such that for
any c − c∗ ∈ (0, ε0), and any weight η = η̃(c − c∗)1/2 with η̃ ∈ (0, η0), the spectrum of L̃ in X̃η satisfies

spec L̃∩ {
λ ∈ C; Reλ > −δ0η̃(η0 − η̃)(c − c∗)

} = {0},
with λ = 0 being an isolated eigenvalue of geometric and algebraic multiplicity two.

Proof of Theorem 3. The proof is similar to the proof of Theorem 2. Note that the nonlinearity G as defined in
(3.11) smoothly maps X̃ 2

η into itself. Also note that the family of translates q(x + x0, y + y0; c) generates a plane

of equilibria to (3.10) in the function space X̃ 2
η . The statement of the theorem is therefore a simple consequence of

the stable manifold theorem [27]. �
Proof of Proposition 3.4. The operator L is sectorial on X̃η with domain of definition X̃ 2

η , so it is sufficient to
consider spectral values λ in a bounded subset of the complex plane. We have to solve

D
(
(∂xx + ξx∂yy)

2ũ + ∂yyũ
) + c∂yũ + f ′(q̃(·, ·; c))ũ − λũ = h̃(x, y),

with bound

|ũ|X̃η
� C(λ)|h̃|X̃η

,

for all λ with Reλ � 0, and sufficiently small weights η �= 0. Set ε2 = c − c∗ > 0, so that q̃(·, ·; c) = q∗(·)+ O(ε2).
Since on Xη this eigenvalue problem is equivalent to the one for L it is enough to take h̃ ∈ Xstep. As in the proof of
Proposition 3.2 we write the eigenvalue problem as a first order system in the “evolution” variable x

ũx + ξxũy = ṽ,

ṽx + ξxṽy = −∂yyũ − D−1(f ′(q∗(·)
)
ũ + c∂yũ − λũ

) + r0(x, y)ũ + h̃,

with r0 = O(ε2), or in the abstract form

vx + ξx∂yv =A0
λ,ε(x)v + r0(x)v + h̃(x); (3.39)

see also (3.20). We introduce the function space

Lstep(R, Y ) = {
v(x, y) = v−(y)

(
1 − θ(x)

) + v+(y)θ(x); v± ∈ Y
}
,
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and similarly Lstep(R, Y 1). Then it is enough to find a solution v ∈ L2
η(R, Y 1) ∩ Lstep(R, Y 1) to (3.39), for h̃ ∈

Lstep(R, Y ).
For |λ| � δ > 0, Reλ � 0 we solve (3.39) as in Proposition 3.4 by using standard perturbation theory after

solving the problem at ε = 0,

vx =A0
λ,0v + h̃(x), (3.40)

for h̃ ∈ Lstep(R, Y ), and weight η = 0. In order to solve this equation we write

h̃(x, y) = h̃c(y) + h̃s(y)
(
2θ(x) − 1

)
,

and solve (3.40) for h̃c and h̃s(2θ − 1) separately. For the x-independent part h̃c the solution is given by

vc = (
A0

λ,0

)−1
h̃c ∈ Y 1

since A0
λ,0 is invertible. For the second term we use the Fourier transform in x and obtain a solution vs = (v1, v2)

given by

v1(x) = −
√

2

π
F−1

[
(Mk − λ)−1D

(
hs1 + 1

ik
hs2

)]
,

v2(x) = −
√

2

π
F−1[(Mk − λ)−1D(ikhs1 + hs2)

] − hs1

where h̃s = (hs1, hs2), and F−1 denotes the inverse Fourier transform. We write

v1(x) = −(M0 − λ)−1(Dhs2)(2θ(x) − 1)

−
√

2

π
F−1

[
(Mk − λ)−1Dhs1 + 1

ik

(
(Mk − λ)−1 − (M0 − λ)−1)Dhs2

]
.

Then the first term in the right-hand side of this equality belongs to Lstep(R,H 2(R,R
N)), and it is straightforward

to check that the second term belongs to L2(R,H 2(R,R
N)). Similarly we find that v2 ∈ Lstep(R,H 1(R,R

N)) ⊕
L2(R,H 1(R,R

N)), so that v ∈ Lstep(R, Y 1)⊕L2(R, Y 1). This proofs the result in the Proposition for |λ| � δ > 0.
For |λ| � 1 the proof follows verbatim the proof of Proposition 3.2. After justifying the scaling, we find to

leading order the eigenvalue problem for the eikonal equation in the space of exponentially decreasing functions,
augmented by arbitrary step functions. Recall that the reduced linearized operator is Fredholm with index zero
and actually invertible when restricted to the subspace of exponentially decreasing functions. In the full space,
augmented with the step functions θ(x) and (1 − θ(x)), the reduced operator possesses block-diagonal structure
and therefore is Fredholm of index zero when augmented by a finite-dimensional operator. As a consequence, the
spectrum of the linearization can be determined by finding the values of λ such that the reduced problem possesses
a kernel, i.e. we have to determine the bounded solutions to (3.37). For the truncated equation (3.38), given as
the linearization about the shock solution in the eikonal equation, the only bounded solutions in Re λ � −δ, δ > 0
occur for λ = 0 and are given by

σ1(ζ ) = 1, σ2(ζ ) = tanh

(√
2c∗

λ′′
d(0)

ζ

)
.

Therefore, zero is an algebraically and geometrically double eigenvalue which persists under the perturbation,
as the unique eigenvalue in Reλ � −δ, with eigenfunctions given by the translational derivatives of the corner,
∂yq(x, y; c) and ∂xq(x, y; c), respectively. This concludes the proof of Proposition 3.4. �
Remark 3.5. It seems natural to extend the function space further to include rotations of the corner defect, with
linear growth of the difference in x. This would correspond to perturbations in Burgers’ equation with infinite
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L2-norm, allowing to change the asymptotic states of the shock. To our knowledge, stability of Burgers’ shock
with respect to these perturbation is not known. In our set-up, perturbations would select a different angle at
x = +∞ or x = −∞, such that propagation would not occur in the y-direction any more.

4. Defects generated by transverse instabilities

In this section we replace the Hypotheses 2.2 and 2.3 on transverse stability of the planar travelling waves by
an instability assumption, λ′′

d(0) > 0. Then the travelling waves can be stable in one space-dimension but they are
unstable with respect to a band of wave numbers in the transverse direction. We discuss two scenarios, here. In
the first case, a fully developed instability, λ′′

d(0) > 0, we show that exterior corners in (unstable) flat interfaces
do exist to any order in an asymptotic expansion of the reduced system, but typically do not persist for the full
system. For the full system, the interface of the corner defect looses its flatness at infinity, where small periodic
modulations appear on either one or both sides of the corner. We then address the onset of instability λ′′

d(0) = 0,
driving the instability with a parameter µ, such that ∂µλ′′

d(0) > 0. To leading order, we recover the Kuramoto–
Sivashinsky equation, which has formally been derived in [59]; see also [65] for examples. Known results on
existence of heteroclinic and homoclinic orbits for this equation permit to conclude existence of both interior and
exterior corners, and of steps, for µ > 0 where the planar front is unstable.

4.1. Fully developed instabilities

We keep Hypothesis 2.1 on existence of planar travelling waves and replace Hypothesis 2.2 on zero-stability by
the following assumption.

Hypothesis 4.1 (Instability). We assume that the spectrum of L∗ on the negative real axis consists of exactly two
isolated eigenvalues λ = 0 and λ = −k2∗ with algebraic multiplicity one.

This hypothesis is a consequence of the following assumption on transverse instability of the planar travelling
waves.

Hypothesis 4.2 (Transverse instability). Assume that the travelling wave is asymptotically stable in one space
dimension, that is, the essential spectrum of M0, as defined in (2.8), is strictly contained in the left half plane and
zero is the only eigenvalue in the closed right half plane, with algebraic multiplicity one. Furthermore, assume that
there is a k∗ > 0 such that the spectra of Mk are strictly contained in the left half plane for |k| > k∗, and that for
|k| � k∗ there is exactly one spectral value of Mk in the closed right half plane, λd(k), which is a simple eigenvalue
satisfying λd(0) = λ′

d(0) = λd(±k∗) = 0, λ′′
d(0) > 0, λ′

d(±k∗) �= 0 and λd(k) > 0 for 0 < |k| < k∗; see Fig. 5.

Fig. 5. To the left the spectrum of M0 and to the right the critical spectra of the Mk parameterized by k, in case of a fully developed transverse
instability.
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Remark 4.3. The quadratic tangency of the dispersion relation λ′′
d(0) > 0 implies instability of the planar travelling

wave with respect to transverse perturbations of wavelength k, |k| � k∗.

Lemma 4.4. Hypothesis 4.2 implies that Hypothesis 4.1 on instability holds.

The proof of this lemma is similar to the one of Lemma 2.5 and will be omitted.
We start from the formulation of the travelling-wave equation (2.2) as a dynamical system which was given in

the proof of Theorem 1, Eqs. (2.16)–(2.18). From Hypothesis 4.1 we obtain that the spectrum of the linearization
A∗ about the planar travelling wave q0∗ satisfies

specA∗ ∩ {|Reλ| � ε
} = {0,±ik∗},

in which the origin is an eigenvalue with algebraic multiplicity two and ±ik∗ are eigenvalues with algebraic multi-
plicity one.

The kernel and generalized kernel of A∗, and of its adjoint Aad∗ , coincide with the ones found in the proof of
Theorem 1. In addition, we consider the kernel of A∗ ∓ ik∗,

ker(A∗ ∓ ik∗) = span(e±), e± =
(

r∗(·)
±ik∗r∗(·)

)
,

where r∗(·) is the real-valued eigenvector associated to the eigenvalue λd(k∗) = 0 of Mk∗ . In particular, L∗r∗ =
−k2∗r∗ and e− = ē+. For the adjoint Aad∗ ± ik∗ we find

ker
(
Aad∗ ± ik∗

) = span
(
ead±

)
, ead± =

(
k∗rad∗ (·)
±irad∗ (·)

)
,

where rad∗ (·) is the unique real-valued function satisfying Lad∗ rad∗ = −k2∗rad∗ and (rad∗ , r∗)L2 = 1/2k∗, so that we
have 〈

ead± , e±
〉
L2×L2 = 1,

〈
ead± , e∓

〉
L2×L2 = 0.

The spectral projection P :Y → Y associated with the central eigenvalues 0 and ±ik∗ of A∗ is given by

Pu = 〈
ead

1 ,u
〉
L2×L2e0 + 〈

ead
0 ,u

〉
L2×L2e1 + 〈

ead+ ,u
〉
L2×L2e+ + 〈

ead− ,u
〉
L2×L2e−.

Similarly, to the shifted equilibria q
ξ∗ we introduce the shifted eigenvectors e

ξ
± = (r

ξ∗ ,±ik∗rξ∗ )T , and analogously

e
ad,ξ
± and P ξ .

Following the reduction strategy in Section 2, we write

u = q
ξ∗ + ηe

ξ
1 + Ae

ξ
+ + Ae

ξ
− + wξ , with P ξwξ = Pw = 0. (4.1)

Here ξ , η are real functions and A is complex-valued function depending upon x. Substituting (4.1) into (2.17), and
then taking successively the scalar product with e

ad,ξ
1 , e

ad,ξ
0 , e

ad,ξ
± , and projecting with id−P ξ we find the equation

for ξ ,

ξx = η + O
(|η|(|A| + |w|Y

))
, (4.2)

and the quasilinear system

ηx = 2

λ′′
d(0)

(c − c∗) − c∗
λ′′

d(0)
η2 + O

(|c − c∗|
(|A| + |w|Y

) + |η|(|A| + |w|Y
) + (|A| + |w|Y

)2)
, (4.3)

Ax = ik∗A + O
(|c − c∗| +

(|η| + |A|)2 + |w|2Y + |η||w|Y 1

)
, (4.4)

wx =A∗w + O
(|c − c∗| +

(|η| + |A|)2 + |w|2Y + |η||w|Y 1

)
, (4.5)
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in which ξx has been replaced by the expression in (4.2). The system (4.3)–(4.5) is posed on the Hilbert space R ×
C × Yh, in which Yh = (id−P)Y . Using again a center-manifold reduction for quasilinear systems [45, Theorem
1] we conclude that, for c close to c∗, all solutions with η,A,w sufficiently small are solutions to a reduced system
for η and A, obtained by substituting w = h(η,A; c−c∗) = O(|c−c∗|+ (|η|+|A|)2) into (4.3)–(4.4). If we further
exploit that the reversibility acts on this reduced system as η �→ −η and A �→ Ā, we conclude that it has the form

ηx = 2

λ′′
d(0)

(c − c∗) − c∗
λ′′

d(0)
η2 + O

(|c − c∗|
(|c − c∗| + |η|2 + |A|) + |η|4 + |η||A| + |A|2), (4.6)

Ax = iα∗(c − c∗) + ik∗A + O
((|c − c∗| + |η| + |A|)2)

, (4.7)

where α∗ = (rad∗ ,D−1q ′∗) ∈ R.
The reduced system (4.6)–(4.7) has two equilibria

η± = ∓√
2(c − c∗)/c∗ + O

(|c − c∗|
)
, A± = O

(|c − c∗|
)
,

corresponding to rotations of the planar front, just as in Section 2. Next, normal form theory (cf. e.g. [31,42]) shows
that the reduced system can be transformed into

η̃x = P1
(
η̃2, |Ã|2; c − c∗

) + O
((|η̃| + |Ã|)2k+1)

, (4.8)

Ãx = ik∗Ã + iÃP2
(
η̃, |Ã|2; c − c∗

) + O
((|η̃| + |Ã|)k+2)

, (4.9)

by a polynomial change of variables

η = η̃ + Q1(η̃, Ã; c − c∗), A = Ã + Q2(η̃, Ã; c − c∗),

which preserves reversibility. Here Qj(0,0;0) = DηQj(0,0;0) = DAQj(0,0;0) = 0, and similar equalities hold
for Pj which are polynomials in their first two arguments of degree k. In particular, Ã = 0 is an invariant line to any
order in the normal form. Along this line there is a heteroclinic orbit connecting the two equilibria (η̃±,0), obtained
as the codimension-two intersection between the one-dimensional stable and unstable manifold of the equilibria.
This heteroclinic connection would correspond to an exterior corner in the reaction–diffusion system. Nonnormal
form perturbations typically break this connection; see [42]. However, both equilibria are surrounded by a family of
periodic orbits, which persist due to reversibility by Lyapunov’s center theorem. In particular, the stable manifold
of the family of periodic orbits contains a full neighborhood of (η̃+,0), such that the heteroclinic orbit in the
normal form persists as a heteroclinic to one of the periodic orbits. Phenomenologically, these heteroclinic orbits
correspond to exterior corners with a periodic modulation of the flat interface on either side of the corner. Similarly,
symmetric exterior corners with periodic modulations on both sides of the corner exist. In both cases, we expect
that the minimal amplitude of the periodic structures is exponentially small in the angle of the corner for analytic
kinetics [42].

4.2. The onset of instability

Throughout this section, we consider the parameter-dependent system

ut = D�x,yu + c∂yu + f (u;µ),

in which µ is a real parameter, and the corresponding stationary equation

D�x,yu + c∂yu + f (u;µ) = 0. (4.10)

We assume the existence of a planar travelling wave connecting two homogeneous equilibria for µ = 0, Hypothe-
sis 2.1. We replace Hypothesis 2.2 by the following assumption.
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Hypothesis 4.5 (Zero-stability). We assume that L∗ − λ id is invertible for all λ < 0 and that λ = 0 is an isolated
eigenvalue with geometric multiplicity one and algebraic multiplicity two.

Using Lyapunov–Schmidt reduction on the one-dimensional kernel of the linearization, it is straightforward
to conclude that there exists a smooth family of fronts q∗(y;µ) with speeds c∗(µ) connecting the asymptotic
states q±(µ) for µ ∼ 0. Here, smoothness refers to the dependence on y in Ck

loc. Notice that the µ-dependence
of the asymptotic states q±(µ) can be eliminated by an affine transformation. This will introduce an additional
µ-dependence in the coefficients of the reaction–diffusion system, e.g. the diffusion matrix will depend upon µ.
However, this does not alter our arguments below, and we therefore assume, for simplicity, that the asymptotic
states are independent of µ.

Consider next the parameter-dependent linearized operators defined by

L∗(µ)u = −∂yyu − D−1(c∗(µ)∂yu + f ′(q∗(·;µ);µ)
u
)
, (4.11)

and

Mk(µ)u = D
(
∂yy − k2)u + c∗(µ)∂yu + f ′(q∗(·;µ);µ)

u.

(For functions of several variables, we use ′ to denote the derivative with respect to the first variable.) We replace the
hypothesis on stability by the following hypothesis requiring zero-stability (resp. transverse asymptotic stability)
for µ < 0, and instability (resp. transverse instability) for µ > 0.

Hypothesis 4.6 (Onset of transverse instability). Assume that the travelling waves are transversely asymptotically
stable if µ < 0 and transversely unstable if µ > 0. More precisely, assume that the essential spectrum of M0
is strictly contained in the left half plane and zero is the only eigenvalue in the closed right half plane, with
algebraic multiplicity one, and that the spectra of Mk(0), for k �= 0 are strictly contained in the left half plane. We
assume that the unique eigenvalue λd(k;µ) of Mk(µ), k ∼ 0, with λd(0;µ) = λ′

d(0;µ) = 0 satisfies λ′′
d(0;0) = 0,

∂µλ′′
d(0;0) > 0, and λ

(4)
d (0;0) < 0; see Fig. 6.

Hypothesis 4.6 implies that the operators Mk(µ), defined in (2.8), satisfy Hypothesis 2.3 if µ < 0 and Hypoth-
esis 4.2 if µ > 0.

Theorem 4. Under the above Hypotheses, there exists µ∗ > 0 such that for all µ ∈ (0,µ∗), the system (4.10)
possesses a symmetric exterior corner defect with speed ce(µ) = c∗ + O(µ3) and asymptotic angles ϑ±(µ) =
O(µ3/2).

This theorem will be a consequence of the analysis below. In addition, we will see that the exterior corner is
accompanied by a plethora of other defects, indeed a countable family of exterior corners, interior corners, and
steps. Most of them can be viewed as the spatial (in x) juxtaposition of two “elementary” defects, an exterior and
an interior corner.

(a) (b) (c)

Fig. 6. The critical spectra of Mk(µ) parameterized by k, before (a), at (b), and beyond threshold (c).
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As in the proof of Theorem 1, we rewrite the travelling-wave equation (4.10) as a first-order system in x on the
Hilbert space Y = (H 1 × L2)(R,R

N),

ux =A(c)u +F(u;µ), (4.12)

where u = (u, v)T ,

A(c) =
(

0 id
−∂yy − D−1c∂y 0

)
, F(u;µ) =

(
0

−D−1f (u;µ)

)
. (4.13)

Hypothesis 4.5 on minimal spectrum in the origin shows that (4.12) possesses a smooth family of equilibria

q
ξ∗(µ) =

(
q

ξ∗ (·;µ)

0

)
=

(
q∗(· + ξ ;µ)

0

)
. (4.14)

The linearization of (4.12) about q0∗(µ) is given by the operator

A∗(µ) =
(

0 id
L∗(µ) 0

)
with L∗(µ) the linear operator defined in (4.11). From Hypothesis 4.5 we conclude that

specA∗(0) ∩ {|Reλ| � ε
} = {0},

for some ε > 0, and that zero is an eigenvalue with algebraic multiplicity four and geometric multiplicity one.
The kernel and generalized kernel of A∗(0) are spanned by

kerA∗(0) = span(e0), e0 =
(

q ′∗(·;0)

0

)
, gkerA∗(0) = span(e0, e1, e2, e3),

where

e1 =
(

0
q ′∗(·;0)

)
, e2 =

(
r∗(·)

0

)
, e3 =

(
0

r∗(·)
)

,

are such that A∗(0)ej+1 = ej . Here r∗ is the principal vector to the zero eigenvalue of L∗(0), L∗(0)r∗ = q ′∗(·;0).
The kernel and generalized kernel of the adjoint Aad∗ (0) are given by

kerAad∗ (0) = span
(
ead

0

)
, ead

0 =
(

0
qad∗ (·)

)
, gkerAad∗ (0) = span

(
ead

0 , ead
1 , ead

2 , ead
3

)
where

ead
1 =

(
qad∗ (·)

0

)
, ead

2 =
(

0
rad∗ (·)

)
, ead

3 =
(

rad∗ (·)
0

)
,

are such that Aad∗ (0)ead
j+1 = ead

j and (ead
j , e3−i )L2×L2 = δij . In particular, we have Lad∗ (0)qad∗ = 0 and Lad∗ (0)rad∗ =

qad∗ . The projection P :Y → Y on the generalized kernel is then given through

Pu = 〈
ead

3 ,u
〉
L2×L2e0 + 〈

ead
2 ,u

〉
L2×L2e1 + 〈

ead
1 ,u

〉
L2×L2e2 + 〈

ead
0 ,u

〉
L2×L2e3.

Similarly, to the shifted equilibria q
ξ∗(0) we introduce the shifted linear operator Aξ∗(0), the shifted eigenvector

e
ξ
0 = ((q ′∗)ξ (·;0),0)T , and analogously e

ξ
j , e

ad,ξ
j ,P ξ ,Aad,ξ∗ (0).

We seek solutions of (4.12) of the form

u = q
ξ∗(µ) + η1e

ξ
1 + η2e

ξ
2 + η3e

ξ
3 + wξ , with P ξwξ = Pw = 0. (4.15)

Following the proof of Theorem 1 – substituting (4.15) into (4.12), then taking successively the scalar product
with e

ad,ξ
j , projecting with id−P ξ , and finally applying the center manifold reduction – we find the following

reduced system for η1, η2, and η3,
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η1x = η2 − 〈
rad∗ ,D−1q ′∗(0)

〉
c̃ + O

(|c̃|(|µ| + |η2|
) + |µ||η2| + |η1|

(|η1| + |η3|
) + |η2|2

)
, (4.16)

η2x = η3 − γ01µη1 + O
(|η1||η2| + |µ||η1|

(|c̃| + |µ|) + |η1|2
(|η1| + |η3|

))
, (4.17)

η3x = −〈
qad∗ ,D−1q ′∗(0)

〉
c̃ − 〈

qad∗ , q ′′∗ (0)
〉
η2

1 − γ02µη2 + O
(|c̃|(|µ| + |η2|

) + |η1||η3|
+ |η2|

(|µ|2 + |η2|
) + |η1|2

(|c̃| + |µ| + |η2| + |η1|2
))

(4.18)

in which c̃ = c − c∗(µ), q∗(0) = q∗(·,0), and

γ01 = 〈
qad∗ , ∂µq ′∗(0)

〉
,

γ02 = 〈
qad∗ , c′∗(0)D−1r ′∗ + D−1(Duuf

(
q∗(0);0

)
∂µq∗(0) + Dµuf

(
q∗(0);0

)
r∗

)〉
.

The equation for ξ decouples,

ξx = η1 + O
(|η1|

(|µ| + |η2| + |η1|2 + |η1||η3|
))

. (4.19)

We now introduce the following (Kuramoto–Sivashinsky) scaling

x = |µ|−1/2ζ, η1 = |µ|3/2η̄1, η2 = |µ|2η̄2, η3 = |µ|5/2η̄3, c̃ = |µ|3c̄.
Then the reduced system (4.16)–(4.18) becomes

η̄1,ζ = η̄2 + O
(|µ|), (4.20)

η̄2,ζ = η̄3 − γ01 sign(µ)η̄1 + O
(|µ|), (4.21)

η̄3,ζ = −〈
qad∗ ,D−1q ′∗(0)

〉
c̄ − 〈

qad∗ , q ′′∗ (0)
〉
η̄2

1 − γ02 sign(µ)η̄2 + O
(|µ|). (4.22)

At µ = 0 we find

η̄1,ζ ζ ζ = −〈
qad∗ ,D−1q ′∗(0)

〉
c̄ − (γ01 + γ02) sign(µ)η̄1,ζ − 〈

qad∗ , q ′′∗ (0)
〉
η̄2

1. (4.23)

Taking the derivative with respect to ζ gives the steady-state Kuramoto–Sivashinsky equation.
The coefficients appearing in (4.23) are computed from the eigenvalue problem for Mk(µ),

D
(
∂yy − k2)u(k;µ) + c∗(µ)∂yu(k;µ) + f ′(q∗(·;µ);µ)

u(k;µ) = λd(k;µ)u(k;µ), (4.24)

where u(k;µ) represents the normalized eigenvector to the eigenvalue λd(k;µ). First, by taking the second deriv-
ative of (4.24) with respect to k at k = 0 and µ = 0 we find

D∂yyu
′′(0;0) + c∗(0)∂yu

′′(0;0) + f ′(q∗(·;0);0
)
u′′(0;0) = 2Dq ′∗(·;0),

since λ′′
d(0;0) = 0. Then L∗(0)u′′(0;0) = −2q ′∗(·;0), so that

r∗ = −1

2
u′′(0;0).

Then, by using successively the derivatives ∂4
k and ∂2

k ∂µ of (4.24) at k = 0 and µ = 0 we obtain

〈
qad∗ ,D−1q ′∗(·;0)

〉 = 24

λ
(4)
d (0;0)

< 0, γ01 + γ02 = −12∂µλ′′
d(0;0)

λ
(4)
d (0;0)

> 0.

Finally, we have〈
qad∗ , q ′′∗

〉 = −c∗(0)

2

〈
qad∗ ,D−1q ′∗(·;0)

〉 = − 12c∗(0)

λ
(4)
d (0;0)

> 0,

and (4.23) becomes

η̄1,ζ ζ ζ = − 12

λ
(4)

(0;0)

(
2c̄ − ∂µλ′′

d(0;0) sign(µ)η̄1,ζ − c∗(0)η̄2
1

)
. (4.25)
d
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Solutions of the Kuramoto–Sivashinsky equation (4.25) have been described in [38]. The equation is written as
dynamical system

u1,ζ = u2, (4.26)

u2,ζ = u3, (4.27)

u3,ζ = − 12

λ
(4)
d (0;0)

(
2c̄ − ∂µλ′′

d(0;0) sign(µ)u2 − c∗(0)u2
1

)
, (4.28)

in which u1 = η̄1. This system has two fixed points

P± = (±√
2c̄/c∗(0),0,0

)
,

if c̄ > 0 (recall that c∗(0) > 0), and no fixed points if c̄ < 0. Again these fixed points correspond to a rotated
planar travelling wave solution of (4.10). At c̄ = 0, there is one fixed point at the origin. The eigenvalues of the
linearization about the origin are

ν0 = 0, ν1,2 = ±
√

12∂µλ′′
d(0;0) sign(µ)/λ

(4)
d (0;0),

so that the nontrivial eigenvalues ν1,2 are both real if µ < 0, and purely imaginary if µ > 0.
We assume now that c̄ > 0. Then the eigenvalues ν±

j of the linearization about P± satisfy

(
ν±
j

)3 − 12∂µλ′′
d(0;0)

λ
(4)
d (0;0)

sign(µ)ν±
j ∓ 24

√
2c̄√

c∗(0)λ
(4)
d (0;0)

= 0.

It is straightforward to check that at P− (resp. P+) there is one positive (resp. negative) eigenvalue, and a pair of
eigenvalues with negative (resp. positive) real part. These eigenvalues are real for µ < 0 and bounded values of c̄,
c̄ ∈ (0, c̄∗), for some c̄∗ > 0, and complex conjugated otherwise. Therefore, at P− (resp. P+) we have a 1D-unstable
(resp. 1D-stable) manifold, and a 2D-stable (resp. 2D-unstable) manifold. Heteroclinic and homoclinic connections
of (4.26) are found as intersections of these manifolds.

A summary of results on existence of heteroclinics and homoclinics in the case µ > 0 can be found in [38].
The 2D manifolds of the fixed points intersect transversely along a nontrivial trajectory, at least for large values
of c̄. The trajectory represents a symmetric heteroclinic connection between P+, as ζ → −∞, and P−, as ζ → ∞,
which will persist for the reduced system (4.20)–(4.22). It corresponds to an interior corner to (4.10).

The 1D manifolds of the fixed points may intersect for special values of c̄ and form a 1D–1D heteroclinic
connection between P+, as ζ → ∞, and P−, as ζ → −∞. There is a countable collection of such orbits. The
simplest takes the explicit form

u1(ζ ) = α
(−9 tanh(βζ ) + 11 tanh3(βζ )

)
, (4.29)

for some suitably chosen constants α and β , and speed c̄; see [38] and Appendix A. Such heteroclinic connections
correspond to exterior corners in the reaction–diffusion system. Some of the more complicated exterior corners
can be viewed as a zig–zag type, widely spaced conjunction of copies of this simplest exterior corner and interior
corners. In Appendix A, we provide a Melnikov-type computation, that shows robustness of this exterior corner
with respect to perturbations, induced by the higher order terms in the Taylor expansion on the center-manifold. In
particular, this will prove Theorem 4.

In addition to these heteroclinic connections, the system (4.26) possesses homoclinic connections to both fixed
points P− and P+, found as intersections of the 1D and 2D manifolds. These homoclinic connections correspond
to steps in the reaction–diffusion system. They can be viewed as the widely-spaced superposition of an interior
and an exterior corner of equal height. In fact, for speeds close to the speed of an interior corner, homoclinic orbits
can be found in a heteroclinic loop bifurcation between the equilibria P− and P+ [5]. For a robust unfolding, two
parameters, given by the speed c in the y-direction and the speed cx along the interface are needed; see Remark 2.9,
where the drift term cx∂xu is discussed.
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Remark 4.7 (Stability). Few analytical results seem to be known on stability. However, in our case, since the
flat surface is unstable, the spectrum of the linearization at any of the corner defects contains unstable essential
spectrum in the right half plane. A more precise analysis of the Kuramoto–Sivashinsky equation shows that the
exterior corners are in fact absolutely unstable: the Green’s function of the linearization at the asymptotic states
possesses a branch point in the unstable right half plane such that there do not exist exponential weights that would
push the essential spectrum in the left stable complex half-plane; see [4,50] for background on convective and
absolute instabilities.

5. Corners in oscillatory wave-propagation

In this section we look for corner defects in pulsating front propagation. Throughout this section, the planar
wave is assumed to be a modulated wave solution u(x, y, t) = q∗(y,ωt) of the reaction–diffusion system (2.1)
connecting two homogeneous equilibria q± as y → ±∞, and with q∗ being 2π -periodic in its second argument.
The profile q∗(·, ·) satisfies

D∂yyu + c∂yu + f (u) − ω∂tu = 0, (5.1)

for some speed c = c∗ and frequency ω = ω∗, where ωt is replaced by t . Corner defects are found as bounded
solutions to

D�x,yu + c∂yu + f (u) − ω∂tu = 0, (5.2)

which are 2π -periodic in t .
The main hypotheses and the reduction procedure are described in Section 5.1. At lowest order, the reduced

system is a quadratic differential system in the plane. For c = c∗ and ω = ω∗, the origin is typically an isolated
equilibrium, and, under certain algebraic conditions on the different coefficients, orbits which are homoclinic to the
origin exist; see Section 5.2. These orbits decay algebraically as |x| → ∞ and correspond to holes in the reaction–
diffusion system. For slightly different speeds, c > c∗, interior corners exist, just as in the case of travelling fronts
discussed in Section 2.

5.1. Hypotheses and reduction

We will assume existence of a planar modulated wave connecting two homogeneous equilibria.

Hypothesis 5.1 (Existence). We assume that there exist positive constants c∗, ω∗, and homogeneous states q± such
that there exists an x-independent planar modulated-wave solution q∗(y, t) of (5.2) which is 2π -periodic in t , with
∂tq∗ �≡ 0, and which connects q− and q+, that is,

q∗(y, t) → q+ for y → +∞, q∗(y, t) → q− for y → −∞,

uniformly in t .

The second assumption is again concerned with stability of the above modulated wave. Therefore, consider the
closed unbounded linearized operator defined by

L∗u = −∂yyu − D−1(c∗∂yu + f ′(q∗)u − ω∗∂tu
)
, (5.3)

on the Hilbert space L2(R × S1,RN) of functions which are 2π -periodic in t . Notice that ∂yq∗ and ∂tq∗ always
belong to the kernel of L∗ due to translation invariances in y and t .

Hypothesis 5.2 (Zero-stability). We assume that L∗ − λ id is invertible for all λ < 0 and that λ = 0 is an isolated
eigenvalue with algebraic and geometric multiplicity two.
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As in the case of travelling waves this hypothesis is related to stability properties of the modulated wave.
Consider the linearized operator

M∗u = D�x,yu + c∗∂yu + f ′(q∗)u − ω∗∂tu, (5.4)

and its Fourier conjugates

Mku = D
(
∂yy − k2)u + c∗∂yu + f ′(q∗)u − ω∗∂tu, (5.5)

on the Hilbert spaces L2(R2 × S1,R
N) and L2(R × S1,R

N), respectively. An argument similar to [51, Theo-
rem 2.7] shows that the union of the spectra of Mk gives the Floquet spectrum of the linearized period map at
the modulated wave, that is, λ is the spectrum of Mk for some k if and only if e2πλ/ω∗ is in the spectrum of the
time-2π/ω∗ map of the linearized equation

∂tu = D(∂yyu + ∂xxu) + c∗∂yu + f ′(q∗)u.

Hypothesis 5.2 is a consequence of the following, slightly stronger hypothesis on transverse stability of the modu-
lated front.

Hypothesis 5.3 (Transverse asymptotic stability). Assume that the spectrum of M0 is contained in the closed left
half plane and zero is an isolated eigenvalue with algebraic and geometric multiplicity two, and that the spectra
of Mk , for k �= 0 are strictly contained in the left half plane. Furthermore, assume that the 2 × 2 matrix Λd(k) with
Λd(0) = Λ′

d(0) = 0, representing the smooth continuation for k ∼ 0 of the action of M0 on its kernel, satisfies
Re specΛ′′

d(0) < 0.

In order to see that Hypothesis 5.3 implies Hypothesis 5.2, we first note that a kernel of L∗ −λ id for λ < 0 would
induce a kernel of Mk for λ = −k2. By a similar argument, the geometric multiplicity of λ = 0 as an eigenvalue
of L∗ is two. To conclude, we observe that generalized eigenvectors can be found by solving ∂

j
k |k=0Mku = 0. In

particular, algebraic multiplicity higher than two is equivalent to a kernel of Λ′′
d(0); see also [57, Remark 2.12,

Lemma 2.30].

Theorem 5. There exists an open class of reaction–diffusion systems which satisfy Hypotheses 5.2 and 5.3, that
possess a one-parameter family of holes, close to a stable planar modulated front having the same speed and
frequency.

The theorem will be a consequence of the following discussion of the general reduction procedure and of the
analysis of the reduced equations in Section 5.2.

We now describe the reduction procedure and derive a reduced system which describes all bounded solutions to
(5.2) close to the planar modulated wave q∗.

We set u = (u, v)T and rewrite Eq. (5.2) as a dynamical system

ux =A(c,ω)u +F(u), (5.6)

on the Hilbert space Y = (H 1,1/2 × L2)(R × S1,R
N), where H 1,1/2 denotes the fractional derivative anisotropic

Sobolev space defined via interpolation from the integer anisotropic spaces

Hk,l
(
R × S1,R

N
) = {

u ∈ L2(
R × S1,R

N
); ∂(i)

y ∂
(j)
t u ∈ L2(

R × S1,R
N

)
, 0 � i � k, 0 � j � l

}
,

with k, l ∈ N. The linear and nonlinear part of (5.6) are given by

A(c,ω) =
(

0 id
−∂ − D−1c∂ + D−1ω∂ 0

)
, F(u) =

(
0

−D−1f (u)

)
.

yy y t
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This equation possesses two continuous translation symmetries, induced by the y- and the t -shifts, ξ : u(·, ·) �→
u(· + ξ, ·) and τ : u(·, ·) �→ u(·, · + τ), respectively. It also has a reversibility symmetry (u, v)T �→ R(u, v)T :=
(u,−v)T , x �→ −x.

Hypothesis 5.1 shows that (5.6) has a two-parameter family of equilibria

q
ξ,τ∗ =

(
q

ξ,τ∗ (·, ·)
0

)
=

(
q∗(· + ξ, · + τ)

0

)
. (5.7)

The linearization of (5.6) about q0,0∗ is given by the operator

A∗ =
(

0 id
L∗ 0

)
,

with L∗ the linear operator defined in (5.3). The domain of definition of A∗ is easily seen to be Y 1 := (H 2,1 ×
H 1,1/2)(R × S1,R

N). Hypothesis 5.2 implies that the spectrum of A∗ satisfies

specA∗ ∩ {|Reλ| � ε
} = {0},

in which the origin is an eigenvalue with geometric multiplicity two and algebraic multiplicity four.
The kernel of A∗ is spanned by the partial derivatives of q0,0∗ with respect to y and t ,

kerA∗ = span(e0y, e0t ), e0y =
(

∂yq∗
0

)
, e0t =

(
∂tq∗

0

)
,

and the four-dimensional generalized kernel is spanned by

gkerA∗ = span(e0y, e0t , e1y, e1t ), e1y =
(

0
∂yq∗

)
, e1t =

(
0

∂tq∗

)
.

We construct a dual basis

ead
0y =

(
0

qad∗y

)
, ead

0t =
(

0
qad∗t

)
, ead

1y =
(

qad∗y

0

)
, ead

1t =
(

qad∗t

0

)
,

in which qad∗y and qad∗t span the kernel of the adjoint operator Lad∗ , such that〈
ead
j,y, e1−j,y

〉
L2×L2 = 1,

〈
ead
j,t , e1−j,t

〉
L2×L2 = 1, j = 0,1,

and all other scalar products vanish. The spectral projection P :Y → Y associated with the central eigenvalue 0 is
given by

Pu = 〈
ead

1y,u
〉
L2×L2e0y + 〈

ead
1t ,u

〉
L2×L2e0t + 〈

ead
0y,u

〉
L2×L2e1y + 〈

ead
0t ,u

〉
L2×L2e1t .

Similarly, to the shifted equilibria q
ξ,τ∗ we introduce the shifted eigenvectors e

ξ,τ
j,y , e

ξ,τ
j,t , e

ad,ξ,τ
j,y , e

ad,ξ,τ
j,t , and the

shifted projection P ξ,τ .
We set

u = q
ξ,τ∗ + ηe

ξ,τ
1y + ρe

ξ,τ
1t + wξ,0, with P ξ,τwξ,0 = P 0,τw0,0 = 0, (5.8)

where ξ , τ , η, and ρ are functions depending upon x. For technical reasons, we only shift the hyperbolic component
w in the y- but not in the t -direction. A shift in t would introduce a term τx∂tw in the projected equation for w. This
nonlinear term would not be relatively bounded with respect to the linear part of the system and center-manifold
theorems for this type of equations do not seem to be available.

Substituting (5.8) into (5.3) we find the system



314 M. Haragus, A. Scheel / Ann. I. H. Poincaré – AN 23 (2006) 283–329
ξxe
ξ,τ
0y + τxe

ξ,τ
0t + ηxe

ξ,τ
1y + ρxe

ξ,τ
1t + ηξx∂ye

ξ,τ
1y + ητx∂te

ξ,τ
1y + ρξx∂ye

ξ,τ
1t + ρτx∂te

ξ,τ
1t + ∂x

(
wξ,0)

=A∗
(
ηe

ξ,τ
1y + ρe

ξ,τ
1t + wξ,0) +A1(c − c∗)

(
q

ξ,τ∗ + wξ,0)
+A2(ω − ω∗)

(
q

ξ,τ∗ + wξ,0) + Gξ,τ
(
wξ,0), (5.9)

in which A1 and A2 are obtained from

A(c,ω) =A(c∗,ω∗) +A1(c − c∗) +A2(ω − ω∗),

and

Gξ,τ
(
wξ,0) =F

(
q

ξ,τ∗ + wξ,0) −F
(
q

ξ,τ∗
) − DF

(
q

ξ,τ∗
)
wξ,0.

Taking successively the scalar product of (5.9) with e
ad,ξ,τ
1y , e

ad,ξ,τ
1t , e

ad,ξ,τ
0y , e

ad,ξ,τ
0t , and projecting with id−P ξ,τ

we obtain the decomposed system

ξx

(
1 − 〈

∂ye
ad,0,τ
1y ,w0,0〉) − τx

〈
∂te

ad,0,τ
1y ,w0,0〉 = η + 〈

ead,0,τ
1y ,G0,τ

(
w0,0)〉, (5.10)

τx

(
1 − 〈

∂te
ad,0,τ
1t ,w0,0〉) − ξx

〈
∂xe

ad,0,τ
1t ,w0,0〉 = ρ + 〈

ead,0,τ
1t ,G0,τ

(
w0,0)〉, (5.11)

ηx = −ηξx

〈
ead

0y, ∂ye1y

〉 − ητx

〈
ead

0y, ∂te1y

〉 − ρξx

〈
ead

0y, ∂ye1t

〉 − ρτx

〈
ead

0y, ∂te1t

〉
+ ξx

〈
∂ye

ad,0,τ
0y ,w0,0〉 + τx

〈
∂te

ad,0,τ
0y ,w0,0〉 + (c − c∗)

〈
ead,0,τ

0y ,A1
(
q0,τ∗ + w0,0)〉

+ (ω − ω∗)
〈
ead,0,τ

0y ,A2
(
q0,τ∗ + w0,0)〉 + 〈

ead,0,τ
0y ,G0,τ

(
w0,0)〉, (5.12)

ρx = −ηξx

〈
ead

0t , ∂ye1y

〉 − ητx

〈
ead

0t , ∂te1y

〉 − ρξx

〈
ead

0t , ∂ye1t

〉 − ρτx

〈
ead

0t , ∂te1t

〉
+ ξx

〈
∂ye

ad,0,τ
0t ,w0,0〉 + τx

〈
∂te

ad,0,τ
0t ,w0,0〉 + (c − c∗)

〈
ead,0,τ

0t ,A1
(
q0,τ∗ + w0,0)〉

+ (ω − ω∗)
〈
ead,0,τ

0t ,A2
(
q0,τ∗ + w0,0)〉 + 〈

ead,0,τ
0t ,G0,τ (w0,0)

〉
, (5.13)

w0,0
x =A0,τ∗ w0,0 − ξx∂yw

0,0 − ξx

(
∂yP

0,τ
)
w0,0

+ (
id−P 0,τ

)(−ηξx

(
∂ye

0,τ
1y

) − ητx

(
∂te

0,τ
1y

) − ρξx

(
∂ye

0,τ
1t

) − ρτx

(
∂te

0,τ
1t

))
+ (

id−P 0,τ
)(

(c − c∗)A1
(
q0,τ∗ + w0,0) + (ω − ω∗)A2

(
q0,τ∗ + w0,0) + G0,τ

(
w0,0)), (5.14)

in which we have used the invariance of the scalar products under the y-shift. Notice that we can invert the equations
(5.10), (5.11) when w0,0 is small and obtain ξx and τx in terms of η, ρ and w0,0. Also, the right-hand sides of the
equations (5.10)–(5.13) do not depend upon ξ and they are bounded in τ , with small bounds when η, ρ and w0,0

are small.
In order to apply a center manifold reduction, we first have to modify the nonlinear terms. Let χ1 be an odd,

smooth cut-off function defined on [0,∞) such that χ ′
1 � 0, χ1(r) = r for r � δ, and χ1(r) ≡ 2δ for r � 3δ. We

replace the right sides of the equations for ξx and τx by χ1(·), with argument given by the original vector field. The
resulting vector field coincides with the original vector field in a neighborhood of the modulated wave, is globally
bounded with small bound, and has a small Lipschitz constant, for small δ, η, ρ, and w. In the equations for η, ρ,
and w, we multiply all nonlinear expressions in η, ρ, and w with a smooth cut-off function χ0(|η| + |ρ| + ‖w‖),
where χ0(s) = 1 for 0 � s � δ and χ0(s) = 0 for s � 2δ with bounds 0 � χ ′

0 � −2/δ. Note that the cut-off in
η,ρ,w preserves the action of the translations in space ξ and time τ

ξ �→ ξ + ξ0, τ �→ τ + τ0. (5.15)

As a result, we find a system of equations of the form
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ξx = gξ (τ, η,ρ,w), (5.16)

τx = gτ (τ, η,ρ,w), (5.17)

ηx = gη(τ, η,ρ,w), (5.18)

ρx = gρ(τ, η,ρ,w), (5.19)

wx =A0,τ∗ w + gw(τ, η,ρ,w), (5.20)

where the nonlinearities gj , j = ξ, τ, η,ρ,w are small, bounded, with small Lipschitz constant. Since w(0) be-
longs to the smooth fiber bundle (id−P 0,τ )Y and this space depends upon τ , we cannot apply a center manifold
reduction directly to the system (5.10)–(5.13). Therefore, we artificially augment the equation and allow for val-
ues w(0) ∈ Y . Note that the linearized w-equation possesses a four-dimensional center-eigenspace in the artificial
directions (stemming from the generalized kernel of A∗), such that we expect to find an eight-dimensional center-
manifold.

The proof for the existence of an invariant manifold is now very similar to the construction of a slow manifold in
singular perturbation problems and we omit the lengthy details; see [49] for a very detailed proof. Main ingredient
is the existence of uniform exponential dichotomies for the linearized equation

wx =A0,τ∗ w

for functions τ(x) with sup |τx | < δ, small; see [54, Theorem 7].
A fixed point argument provides us with an eight-dimensional center manifold for the artificially augmented

system (5.16)–(5.20) with w ∈ Y . Since the cut-off preserved the symmetry action (5.15), the resulting center-
manifold is invariant under this action. Since the action of the group on the tangent vectors is smooth, it is smooth
on the smooth center-manifold. Note that the tangent space of the center-manifold contains at each individual point
q

ξ,τ∗ the complementary artificial subspace of the w-equation, given by the generalized kernel of A0,τ∗ . In particular,
the smooth center-manifold and the smooth (invariant) fiber-bundle given by P 0,τw = 0 intersect transversely as
smooth manifolds, such that their intersection is again a smooth manifold, invariant by the group action (5.15). We
claim that the intersection is actually invariant under the flow on the reduced, “true” manifold. To see this, note
that (5.10)–(5.13) defines a smooth vector field on the center-manifold which is, by definition of a center manifold
tangent to the center eigenspace, and, by construction, tangent to the fiber bundle P 0,τw = 0. It is therefore tangent
to the “true” center manifold and the flow on the artificially augmented center manifold must leave the true center
manifold invariant. The “true” center manifold is tangent to the subspace parameterized by ξ , τ , η, and ρ. The
invariance under translations in space ξ and time τ implies that the reduced vector field on the center-manifold is
independent of ξ and τ . Moreover, the reversibility of the equation is preserved and acts via η �→ −η and ρ �→ −ρ.

We compute the coefficients of the lowest order terms in this reduced system and find

ηx = −〈
qad∗y, ∂yyq∗

〉
η2 − 2

〈
qad∗y, ∂yt q∗

〉
ηρ − 〈

qad∗y, ∂tt q∗
〉
ρ2

− 〈
qad∗y,D

−1∂yq∗
〉
(c − c∗) + 〈

qad∗y,D
−1∂tq∗

〉
(ω − ω∗), (5.21)

ρx = −〈
qad∗t , ∂yyq∗

〉
η2 − 2

〈
qad∗t , ∂yt q∗

〉
ηρ − 〈

qad∗t , ∂tt q∗
〉
ρ2

− 〈
qad∗t ,D

−1∂yq∗
〉
(c − c∗) + 〈

qad∗t ,D
−1∂tq∗

〉
(ω − ω∗). (5.22)

As in the case of travelling waves, Section 2, we have〈
qad∗i , ∂yq∗j

〉 = −c∗
2

〈
qad∗i ,D

−1q∗j

〉
, i, j ∈ {y, t},

and the scalar products in right-hand side are calculated from the two-dimensional, linear dispersion relation in-
volving Λd(k),(

d11 d12
d d

)
=

( 〈qad∗y,D
−1q∗y〉 〈qad∗t ,D

−1q∗y〉
ad −1 ad −1

)
= −2

(
Λ′′

d(0)
)−1

.

21 22 〈q∗y,D q∗t 〉 〈q∗t ,D q∗t 〉
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We rewrite the system as

d

dx

(
η

ρ

)
=

(
d11 d21
d12 d22

)( c∗
2 η2 − c∗α1ρ

2 − (c − c∗)
c∗ηρ − c∗α2ρ

2 + (ω − ω∗)

)
,

in which

α1 = 〈qad∗y, ∂tt q∗〉d22 − 〈qad∗t , ∂tt q∗〉d21

c∗(d11d22 − d12d21)
, α2 = 〈qad∗t , ∂tt q∗〉d11 − 〈qad∗y, ∂tt q∗〉d12

c∗(d11d22 − d12d21)
.

At c = c∗ and ω = ω∗ we find to leading order a quadratic system in which the origin is typically an iso-
lated equilibrium. Quadratic systems in the plane have been classified by Markus [43]. For certain values of the
coefficients such systems possess homoclinic solutions which decay algebraically as |x| → ∞. These homoclin-
ics correspond to holes in the reaction–diffusion system. In Section 5.2 we show that holes exist precisely when
α2

2 < 2α1. In particular, this will prove Theorem 5.
At ω = ω∗ the reduced system possess two nontrivial equilibria for c > c∗, which correspond to rotations of the

modulated front, as in the case discussed in Section 2,

η± = ∓
(

c2 − c2∗
c2

)1/2

, ρ± = 0.

In addition to this pair of equilibria we find another pair of equilibria (η̃±, ρ̃±) given at lowest order by

η̃± = α2ρ̃±, ρ̃± = ±
(

2(c − c∗)
c∗(α2

2 − 2α1)

)1/2

.

Therefore, if α2
2 < 2α1 the reduced system has two equilibria for any c �= c∗, and, if α2

2 > 2α1 it has four equilibria
for c > c∗ and no equilibria for c < c∗. Notice that at c = c∗ holes exist in the first case, and do not exist in the latter
case. In both cases, the equilibrium (η−,0) is a source and (η+,0) a sink. Therefore, we find a one parameter family
of heteroclinic orbits connecting (η−,0) as x → −∞ with (η+,0) as x → ∞. These heteroclinics correspond to
interior corners in the reaction–diffusion system, just as in the case of travelling fronts in Section 2.

The additional equilibria (η̃±, ρ̃±) correspond to rotated modulated fronts with a periodic modulation in x-
direction. In fact, for any “average angle” η and any transverse modulational wavenumber ρ, we can find a speed
c and a frequency ω such that there exists a modulated front with the prescribed values of η and ρ. Fixing η = 0
factors the rotational invariance due to isotropy of diffusion, which gives a family of rotated waves together with a
given modulated wave. As to leading order, the nonlinear dispersion relation of these waves is given by (c,ω)(ρ) =
(c∗,ω∗)+c∗(−α1, α2)ρ

2. We expect these waves to be linearly unstable in case α2
2 < 2α1, where the characteristics

of an associated transport equation are complex; see Appendix B. For our problem, these two additional equilibria
allow for constructing further corner defects. However, we do not investigate this possibility in the present paper.

5.2. Existence of holes

We show that holes exist under certain algebraic conditions on the coefficients of the reduced system (5.21),
(5.22).

We set c = c∗, ω = ω∗, and the reduced system becomes

d

dx

(
η

ρ

)
= c∗

(
d11 d21
d12 d22

)( 1
2 η2 − α1ρ

2

ηρ − α2ρ
2

)
+ O

((|η| + |ρ|)3)
. (5.23)

The stability Hypothesis 5.3 implies that the matrix (dij ) is positive definite in the sense that the spectrum consists
of eigenvalues with strictly positive real part. For α2

2 = 2α1 the leading-order, quadratic part possesses a line of
equilibria and no other bounded solutions. In order to detect small bounded solutions, cubic terms have to be taken
into account. We therefore assume from now on that α2 �= 2α1.
2
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We are interested in homoclinic orbits to the origin. At lowest order, we have a homogeneous, quadratic dif-
ferential equation in the plane. Markus [43] classified all planar quadratic differential equations. He associated a
commutative, two-dimensional, real linear algebra with the vector field such that vector fields are affine equivalent
if, and only if, the associated algebras are isomorphic. Since we have to take higher-order terms into account, as
well, we pursue a slightly different strategy. We introduce polar coordinates which automatically factor the leading-
order scaling symmetry. As a result, we recover Markus’ phase portraits for the quadratic system and show at the
same time that the homoclinic orbits persist in the full reduced system (5.23).

Proposition 5.4. Assume that the matrix (dij ) is positive definite and that the coefficients α1 and α2 of the reduced
system (5.23) satisfy α2

2 < 2α1. There is ε0 > 0 such that (5.23) possess two families of homoclinic orbits,(
η±

ε (x), ρ±
ε (x)

) = (±εηo(±εx),±ερo(±εx)
) + O(ε2), (5.24)

for ε ∈ (0, ε0), in which (ηo, ρo) decay like O(1/|x|) as |x| → ∞. For α2
2 > 2α1 there are no nontrivial, small,

bounded solutions to (5.23).

The homoclinic orbits found in this proposition correspond to holes in the reaction–diffusion system (2.1). The
algebraic decay of η and ρ generates a logarithmic divergence of the position ξ and the temporal phase τ of the
front. Both speed and frequency are given by the primary planar modulated front.

We will show in Appendix B that the dynamics of modulated fronts with temporal phase and y-position slowly
varying in the transverse direction x and time t , can be formally described by a system of viscous conservation laws
for η and ρ. The dynamical behavior of such a system on large spatial scales depends crucially on the eigenvalues
of the flux function: real, distinct eigenvalues correspond to the strictly hyperbolic case, where global existence in
time can be expected. Complex eigenvalues yield an ill-posed Cauchy-problem in the zero-viscosity limit, with an
immediate Hadamard instability causing blow-up. Interestingly, the algebraic condition on the coefficients of the
reduced system in Proposition 5.4 which ensures the existence of homoclinic orbits turns out to be the condition for
complex characteristics in the zero-viscosity regime. More precisely, we show in the appendix that the remaining
system of conservation laws has real characteristics if α2

2 > 2α1 and complex characteristics for the opposite in-
equality. A similar phenomenon has been observed in [8], where wave propagation in the focusing NLS-equation is
studied. In the semiclassical limit, phase and amplitude evolution is governed by transport equations with complex
characteristic.

Proof of Proposition 5.4. Without loss of generality we set c∗ = 1 and assume that d12 � 0 (otherwise, we can
rescale x to have c∗ = 1, and change ρ → −ρ to find the same system with coefficients −d12, −d21, −α2).

Recall that α2
2 �= 2α1, so that the origin is an isolated fixed point. Then the quadratic system possess at least one

ray solution,

η(x) = −η∗
x

, ρ(x) = −ρ∗
x

,

with constants η∗ and ρ∗ satisfying(
η∗
ρ∗

)
=

(
d11 d21
d12 d22

)( 1
2 η2∗ − α1ρ

2∗
η∗ρ∗ − α2ρ

2∗

)
.

Homoclinic orbits of the quadratic system approach the origin along ray solutions; see Fig. 7. In particular, they
decay algebraically, (η,ρ)(x) = O(1/|x|) as |x| → ∞.

First notice that a necessary condition for the existence of homoclinic orbits is that both quadratic functions in
the right-hand side of (5.23),

d11

(
1
η2 − α1ρ

2
)

+ d21
(
ηρ − α2ρ

2)

2
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Fig. 7. Typical homoclinic orbits of the quadratic system in the case of one ray solution (left) and three ray solutions (right).

and

d12

(
1

2
η2 − α1ρ

2
)

+ d22
(
ηρ − α2ρ

2),
change sign. Indeed, if, for example, the first function has constant sign, then the derivative of η has constant sign
such that the η-component of solutions is monotone excluding homoclinic orbits in this case. Similarly, the sign
of the second function encodes monotonicity of the ρ-component. A straightforward calculation shows that the
necessary and sufficient conditions for these two functions to change sign are

(d2j + α2d1j )
2 + d2

1j (2α1 − α2
2) > 0, j = 1,2. (5.25)

Notice that both inequalities hold if α2
2 < 2α1.

We therefore assume from now on that the coefficients of the reduced system satisfy (5.25). Moreover, we
assume that d12 > 0, the case d12 = 0 can be treated in a similar way. We introduce blow-up coordinates and replace
(η,ρ) ∈ R

2 by polar coordinates on R+ × S1, thus blowing up the origin to a circle {0} × S1. We parameterize the
circle by two directional blow-up charts (ηj , ρj ), j = 1,2, which we refer to as the 1-chart and the 2-chart. They
correspond to stereographic projections of the angular coordinate, and are explicitly given by scaling invariants and
equivariants

(η1, ρ1) =
(

η

ρ
,ρ

)
, (η2, ρ2) =

(
η,

ρ

η

)
;

see Fig. 8, for an illustration of the various charts in an example. It is a simple exercise to see that these charts
smoothly parameterize R+ × S1.

For η1 �= 0 and ρ2 �= 0, the coordinate change η1 = 1/ρ2, ρ1 = η2ρ2, defines a diffeomorphic change of co-
ordinates between the two charts. Note that strictly speaking, the above set of coordinates defines four charts in
R+ × S1, depending on whether ρ1 � 0 or ρ1 � 0 in the 1-chart and whether η2 � 0 or η2 � 0 in the 2-chart. Since
the two variants of the 1- and 2-charts give algebraically equivalent vector fields, we do not formally distinguish
between them. In these new blow-up coordinates the system becomes

η′
1 = ρ1

(
(d11 − d12η1)

(
1

2
η2

1 − α1

)
+ (d21 − d22η1)(η1 − α2)

)
+ O

(|ρ1|2
)
,

ρ′
1 = ρ2

1

(
d12

(
1

2
η2

1 − α1

)
+ d22(η1 − α2)

)
+ O

(|ρ1|3
)
,

and

η′
2 = η2

2

(
d11

(
1

2
− α1ρ

2
2

)
+ d21(1 − α2ρ2)ρ2

)
+ O

(|η2|3
)
,

ρ′
2 = η2

(
(d12 − d11ρ2)

(
1 − α1ρ

2
2

)
+ (d22 − d21ρ2)(1 − α2ρ2)ρ2

)
+ O

(|η2|2
)
,

2
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Fig. 8. Picture of the blow-up phase portrait with the positive and negative 1- and 2-charts. The coordinate axes are η,ηj horizontal and ρ,ρj

vertical. The inner circle represents the equilibrium {0} × S1. The specific dynamics exemplify the existence of a hole solution in the case
where f1, defined in (5.26) possesses only one real root.

respectively, in which ′ = d/dx. Both systems have an Euler multiplier given by ρ1 and η2, respectively. We
therefore reparameterize spatial time x by introducing the new independent variables zj implicitly through dz1 =
ρ1dx in the first chart, and by dz2 = η2dx in the second chart. At lowest order we obtain the systems

η̇1 = f1(η1), ρ̇1 = ρ1g1(η1), (5.26)

and

η̇2 = η2g2(ρ2), ρ̇2 = f2(ρ2), (5.27)

where

f1(η1) = (d11 − d12η1)

(
1

2
η2

1 − α1

)
+ (d21 − d22η1)(η1 − α2),

g1(η1) = d12

(
1

2
η2

1 − α1

)
+ d22(η1 − α2),

and

f2(ρ2) = (d12 − d11ρ2)

(
1

2
− α1ρ

2
2

)
+ (d22 − d21ρ2)(1 − α2ρ2)ρ2,

g2(ρ2) = d11

(
1

2
− α1ρ

2
2

)
+ d21(1 − α2ρ2)ρ2.

Here, the dots stand for d/dz1 in the first system and for d/dz2 in the second system. Note that when time x

increases the scaled time z1 (resp. z2) increases if ρ1 > 0 (resp. η2 > 0) and decreases if ρ1 < 0 (resp. η2 < 0). The
lines ρ1 = 0 and η2 = 0, respectively, correspond to the singular circle {0} × S1 and are therefore invariant under
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the flows of (5.26) and (5.27), respectively. If (η∗1,0) is a fixed point of (5.26), then the line η1 = η∗1 is invariant
for the flow to this leading-order part of the reduced equation. A similar statement holds for the 2-chart (5.27).

In our directional blow-up coordinates, the ray solutions (−η∗/x,−ρ∗/x) of the quadratic system (5.23) are
perpendicular to the η1- and the ρ2-axis, respectively. Ray solutions therefore correspond to invariant lines η1 =
η∗/ρ∗ or ρ2 = ρ∗/η∗, or, equivalently, the equilibria (η∗/ρ∗,0) in the 1-chart and the equilibria (0, ρ∗/η∗) in the
2-chart. Homoclinic orbits of (5.23) are in one-to-one correspondence with heteroclinic connections between the
singular equilibria of (5.26) and (5.27) on the singular circle {0}×S1. The number of equilibria of (5.26) and (5.27)
is given by the number of zeros of f1 and f2, and they are in one-to-one correspondence with the ray solutions of
the quadratic system.

The dynamics of the systems (5.26) and (5.27) are qualitatively determined by the equilibria on the circle, that
is, by the roots of f1 and f2, and the signs of g1 and g2 at these roots, which in turn can be inferred from the
position of the roots of gj relative to the roots of fj . Since we assumed d12 > 0 and concluded (5.25), g1 possesses
two real roots η01 < η02, where

f1(η0j ) = d11d22 − d12d21

d12
(α2 − η0j ).

Since g1(α2) = d12(α
2
2 − 2α1)/2, we have η01 < α2 < η02 if α2

2 < 2α1, and α2 < η01 < η02 or η01 < η02 < α2 if
α2

2 > 2α1. We conclude that f1(η01) > 0 and f1(η02) < 0 if α2
2 < 2α1, and that f1(η01) and f1(η02) have the same

sign if α2
2 > 2α1.

We now distinguish several cases depending upon the number of real roots of f1, that is, the number of equilibria
of (5.26). Note that, since d12 > 0, the number of equilibria on the singular circle is precisely twice the number
of roots of f1 (counting each root for the negative and positive 1-chart). The shape of the polynomial f1 and the
relative position of its roots and of η01 and η02 are plotted in the case of three real roots in Fig. 9, if α2

2 < 2α1, and
Fig. 11, if α2

2 > 2α1, and in the case of one real root in Fig. 13. The corresponding phase portraits of (5.26) are
shown in Figs. 10, 12 and 14, respectively. These phase portraits indicate that heteroclinic connections exist only
in the case α2

2 < 2α1.
In order to conclude the robust existence or nonexistence of hole solutions, first note that all solutions asymptotic

to the singular circle in forward or backward spatial time converge to precisely one equilibrium on the circle. Next
note that the singular equilibria are connected by singular heteroclinic orbits in the singular circle {0} × S1. If

Fig. 9. The nullclines of f1 with the zeroes η01 and η02 of g1 in the case of three real roots of f1 and α2
2 < 2α1.

Fig. 10. Phase portraits in the (η1, ρ1)-plane in case α2
2 < 2α1 and three real roots of f1. The dashed lines indicate the zeroes η01 and η02 of

g1. The bold orbits are heteroclinic orbits in the blow-up coordinates and therefore yield homoclinic, hole solutions.
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Fig. 11. The nullclines of f1 with the zeroes η01 and η02 of g1 in the case of three real roots of f1 and α2
2 > 2α1. Like in Fig. 9, the dashed

lines indicate the location of the zeroes of g1.

Fig. 12. Phase portraits in the (η1, ρ1)-plane in case α2
2 > 2α1 and three real roots of f1. The dashed lines indicate the zeroes η01 and η02

of g1. There do not exist nontrivial bounded solutions.

Fig. 13. The nullclines of f1 with the zeroes η01 and η02 of g1 in the case of one real root of f1. In the left picture, we have α2
2 < 2α1, in the

middle and in the right picture, we have α2
2 > 2α1. Like in Fig. 9, the dashed lines indicate the location of the zeroes of g1.
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Fig. 14. Phase portraits in the (η1, ρ1)-plane in case of one real root of f1. Again, α2
2 < 2α1 in the left picture and α2

2 > 2α1 in the middle and
right picture. The dashed lines indicate the zeroes η01 and η02 of g1. The bold orbits in the left picture are heteroclinic orbits in the blow-up
coordinates and therefore yield homoclinic, hole solutions. There are no nontrivial bounded solutions in the middle and in the right picture.

one of the equilibria is of saddle-type, the singular heteroclinic orbit is the locally unique trajectory approaching
this equilibrium, and there are no solutions outside the singular circle approaching this given equilibrium nearby.
In particular, small bounded solutions can only exist as heteroclinic orbits between singular equilibria which are
sources or sinks, respectively. Since the set of heteroclinic orbits between a source and a sink in the plane forms
an open subset of the plane, we can infer the existence of a family of small heteroclinic orbits close to the singular
heteroclinic, which shows existence of holes precisely in the case when two neighboring equilibria on the circle
of source or sink type, respectively. Note, however, that we have to be careful when passing from the positive
1-chart to the negative 1-chart since time is reversed by the negative Euler multiplier ρ1 in the negative 1-chart, and
similarly for the 2-chart.

As an example, consider the case of one equilibrium (η∗1,0) in the positive one-chart, illustrated in Fig. 8.
In the positive 1-chart, the equilibrium is a source precisely when α2

2 < 2α1, and a saddle, otherwise. The second
equilibrium on the singular circle is located on the opposite side, with reversed stability properties due to the
negative Euler multiplier. The singular heteroclinic, given by the arc of the singular circle joining the two equilibria,
is accompanied by a family of heteroclinics which form the (necessarily transverse) intersection of stable and
unstable manifolds of the two singular equilibria.

To conclude the proof of the proposition, we remark that the representation of holes (5.24) is due to the invari-
ance of the quadratic part of (5.23) under the scaling

x = x̃

a
, η = aη̃, ρ = aρ̃,

for a ∈ R, and due to reversibility acting through

x �→ −x, η �→ −η, ρ �→ −ρ. �
Remark 5.5. We emphasize that hole solutions are not symmetric in x (that is, invariant under the reversibility
operation (η,ρ) �→ −(η,ρ)). In particular, there typically exists a robust family of hole solutions, parameterized
by their amplitude, which are not symmetric in x, but their velocity is still perpendicular to the x-axis. Note that
the direction of propagation is chosen in a natural way to be the y-axis which is normal to the asymptotic tangent
space of the interface. Indeed, since η → 0 for |x| → ∞, the tangent space to the interface at ±∞ is the x-axis.
In particular, the 1-parameter family of holes that we found cannot be viewed as a 1-parameter family of rotated
interfaces.

Remark 5.6 (Nonexistence of holes for weakly pulsating fronts). If we assume that the modulated front q∗(y, t)

is a small perturbation of a planar travelling front (weakly pulsating front), holes generally do not exist. More
precisely, assume that the reaction–diffusion system (2.1) possesses a planar travelling front q∗0(y), as in Section 2.
Suppose that close to this travelling front there is a family of modulated fronts q∗(y,ω∗(µ)t;µ) with speeds
c∗(µ) = c∗ + O(µ) and frequencies ω∗(µ) = ω∗ + O(µ) in t , such that

q∗
(
y,ω∗(µ)t;µ) = q∗0(y) + µq1

(
y,ω∗(µ)t;µ)

, (5.28)
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for small µ. Weakly pulsating fronts of this type are found, for example, near a planar travelling front q∗0 which
undergoes a Hopf bifurcation; see [44] for an example. For such a modulated front, the coefficients of the reduced
system satisfy〈

qad∗y, ∂yyq∗
〉 = O(1),

〈
qad∗y, ∂yt q∗

〉 = O(µ),
〈
qad∗y, ∂tt q∗

〉 = O(µ),

and 〈
qad∗t , ∂yyq∗

〉 = O(1/µ),
〈
qad∗t , ∂yt q∗

〉 = O(1),
〈
qad∗t , ∂tt q∗

〉 = O(1).

Therefore, the inequality α2
2 < 2α1 is not verified for small µ, and we can conclude that holes do not exist for

weakly pulsating fronts.

6. Discussion

We have presented a framework for the study of weak localized corners in almost planar interface propagation.
The results are formulated for general reaction–diffusion systems. Assumptions are only on existence of primary
planar fronts, and on spectral stability or instability properties of these fronts. In the most simple case of the rigid
propagation of a stable planar interface, we have found asymptotically stable interior corners, where two pla-
nar fronts collide at an angle ϕ < π ; Sections 2 and 3. Long wavelength instabilities generate more complicated
structures such as exterior corners and steps; Section 4. In oscillatory wave propagation, we showed that weakly
localized holes can be embedded in a planar interface, such that the angles of the hole interface relative to the
planar interface tend to zero on both sides of the hole; Section 5. Most of our results can be formally obtained by
first deriving a transport equation and then looking for travelling-wave solutions of this transport equation. Our ap-
proach avoids the subtle questions involved with the validity of the approximation. On the other hand, the existence
of certain corner defects, such as holes, seems to be intrinsically related to well-posedness properties of transport
equations in the inviscid limit; Section 5.2. We conclude this paper mentioning a number of straightforward exten-
sions to our approach, and pointing out some open problems.

We first comment on planar interfaces between not necessarily spatially homogeneous patterns. In [52], mod-
ulated fronts are constructed that invade a spectrally stable spatially periodic pattern, leaving a stable homo-
geneous state behind. More precisely, there exists a spatio-temporally periodic solution q+(ω+t − k+y), with
q+(φ) = q+(φ + 2π), a spatially homogeneous state q−, and a modulated front q∗(y,ω+t) = q∗(y,ω+t + 2π)

connecting these two states, that is,

q∗(y, τ ) → q+(k+y − ω+τ) for y → +∞, q∗(y, τ ) → q− for y → −∞,

uniformly in τ . If the group velocity cg of the periodic pattern is negative, directed towards the interface, then
the linearized operator M0 appearing in (5.5), typically possesses a one-dimensional kernel, only, in spaces with
exponential weights with rates η > 0, small, as defined in (2.32); see [54] for the notion of group velocities and
spectra of interfaces between spatially periodic patterns. Going through the reduction steps, we therefore expect
the existence of a two-dimensional center-manifold containing stable interior corners.

A similar situation arises for fronts invading symmetric, x-periodic patterns q+(k+x) = q+(k+x + 2π) =
q+(−k+x),

q∗(y, x) → q+(k+x) for y → +∞, q∗(y, x) → q− for y → −∞,

where q∗(y, x) = q∗(y, x + 2π/k+). Again, the spectrum of the linearization contains only a simple eigenvalue
λ = 0, when considered in spaces of exponentially localized functions as described above. We can therefore reduce
to a two-dimensional center-manifold. Since the patterns depend explicitly on the spatial time-variable x in a
periodic fashion, the resulting flow on the center-manifold will be periodically forced. Still, the unfolding of the
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saddle-node bifurcation for the period map should yield the very same interior corners that we have found in the
case of rigid front propagation.

For intermediate situations, where the propagation of the front takes an angle ϑ /∈ {0,π/2} relative to the orienta-
tion of the stripe pattern ahead of the front, the reduced equations would not be reversible anymore. In particular, the
periodic patterns typically possess a nonzero group velocity in the direction tangential to the interface such that the
generalized kernel in our spatial dynamics formulation would only be one-dimensional, with the planar front as the
unique bounded solution in the one-dimensional center-manifold. Suppose for example that the angle between the
contour lines of a roll pattern and the interface is ϑ , such that the roll pattern is given by q+((cosϑ)x − (sinϑ)y),
q+(φ) = q+(−φ). The shear transformation ξ = (cosϑ)x − (sinϑ)y allows us to look for rigidly propagating front
solutions q∗(y, ξ) = q∗(y, ξ + 2π/k+) invading the y-independent roll solution q+(ξ). However, although the roll
pattern q+ is symmetric, the travelling front will typically not be symmetric since the defining equation for the
interface

D
[
cos2 ϑ∂ξξ + (∂y − sinϑ∂ξ )

2]u + c∗(∂y − sinϑ∂ξ )u + f (u) = 0,

posed on functions with period 2π/k+ in ξ , is not symmetric in ξ . We can actually compute a transverse dispersion
relation λ(ν), substituting the Ansatz eνξ v(y, ξ), v(y, ξ) = v(y, ξ + 2π/k+), into the linearization about the front

D
[
cos2 ϑ(∂ξ + ν)2 + (

∂y − sinϑ(∂ξ + ν)
)2]

v + c∗
(
∂y − sinϑ(∂ξ + ν)

)
v + f ′(q∗)v = λv.

Near λ = ν = 0, we typically find a tangential group velocity along the interface c
‖
g = dλ

dν
�= 0 in ν = 0. If we

denote by ∂yq∗ and qad∗ the normalized eigenvectors in the kernel of the linearization and its adjoint, as constructed
in Section 2, we find

dλ

dν
(0) = 〈(

2D(∂ξ − β∂y) − c∗β
)
∂yq∗, qad∗

〉
,

where we set β = sinϑ and scalar products are in L2(R × [0,2π ]). The second term gives a contribution c∗ sinϑ

which is the purely geometrically transport induced from the normal speed of propagation under the shear trans-
formation. The first term reflects the tangential dispersion relation; see also (2.25).

In order to find weak interior corners, we can now change to a ξ -comoving frame, introducing ζ = ξ − c
‖
gt as

a new variable. In the new variables, the front is a time-periodic, modulated wave, but, as a straightforward but
tedious calculation shows, the dispersion relation in the tangential direction vanishes to first order such that we find
the typical Jordan block and interior corners.

In passing, we note that this tangential group velocity is the main information needed in order to determine
the speed of interior corners in anisotropic systems: the tip of the corner propagates with the speed given by the
geometric Rankine–Hugoniot condition c = c∗/ cosϑ in the normal direction of the primary flat interface, but drifts
with approximately the tangential group velocity in the direction tangential to the flat interface; see Fig. 4.

Invasion of hexagons by a trivial homogeneous state, as described in [10], generates interior corners which are
symmetric to an axis of symmetry of the hexagons in a similar fashion. Again, we expect corners in interfaces
which are not axes of symmetry to drift in the tangential direction.

A more interesting and challenging problem arises when the group velocity of the periodic pattern is directed
away from the interface. The linearization is Fredholm near the origin in exponentially weighted spaces with
η < 0, such that exponential growth of perturbations is allowed at y → +∞. The kernel of the linearization is
two-dimensional, with space- and time- (or x-) derivative of the interface contributing to the kernel. We would
therefore expect a four-dimensional center manifold with possibly rich dynamics as presented in Section 5. How-
ever, a rigorous reduction to a center-manifold along the lines of Section 5 fails, since nonlinearities are badly
behaved in spaces of exponentially growing functions. Of course, periodic dependence of the asymptotic pattern
on x introduces an additional complication since the dynamics of the quadratic equations that we investigated in
Section 5.2 might depend sensitively on a periodic forcing.
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The problem of corner formation in interfaces leaving a spatially periodic pattern behind is closely related to
problems in crystal growth. The speed of propagation depends on the angle relative to the periodic pattern left
behind. Unfortunately, a rigorous description of corners in this context seems to be out of reach for the methods
we employed here.

Yet another possible direction of generalization would be the existence of defects in higher space dimension.
For example, we expect to find radially symmetric interior corners in stable, planar interface propagation, adapting
the methods from [57] to the present context.

Of substantial interest, in view of the mentioned applications, would be a description of corners with not nec-
essarily small angle. The linear stability analysis of Section 3 can be generalized to large angle interior corners,
when existence and spectral properties are granted. Following small amplitude interior corners, it would also be of
interest to investigate possible bifurcations while following the corner to larger angles.
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Appendix A

We show that the explicit solution u1 to the steady-state Kuramoto–Sivashinsky equation is robust with respect
to perturbations of the 3-dimensional differential equation (4.25). After a suitable scaling for ζ , η̄1, and c̄, Eq. (4.25)
reads

u′′′ = c − u′ − 1

2
u2, (A.1)

where c > 0. The heteroclinic connection u1 in (4.29) is found for

c = 2α2, α = 15
√

11/193, β = 1

2

√
11/19.

The linearization of (A.1) about u1 is

L1v = v′′′ + v′ + u1v.

We claim that L1 considered as a closed operator on BC0(R) is Fredholm of index −1. The Fredholm index is
readily calculated from the Morse indices of the asymptotic equilibria in the associated first-order differential equa-
tion [47,51]. Note that the unstable manifold of the equilibrium at −∞ and the stable manifold of the equilibrium at
+∞ are both one-dimensional such that the Morse indices are 1 and 2 at −∞ and +∞, respectively; the Fredholm
index is given by the difference of these two Morse indices, i = −1, as claimed above.

Next, note that the kernel of L1 is at most one-dimensional since elements provide solutions in the intersection
of the tangent spaces of one-dimensional stable and unstable manifolds. The kernel is therefore spanned by u′

1,
which is an even function. We next consider the (formal) adjoint

Lad
1 v = −v′′′ − v′ + u1v.

The kernel of the adjoint is two-dimensional and can be decomposed into odd and even eigenfunctions. If we
define the reversibility operator R through R(v, v′, v′′) = (−v, v′,−v′′), we see that odd eigenfunctions v have
(v, v′, v′′)(0) ∈ FixR and even eigenfunctions have (v, v′, v′′)(0) ∈ Fix(−R). We may restrict the eigenvalue prob-
lems for even and odd eigenfunctions to R+, say, imposing the above conditions as boundary conditions in x = 0.
The same counting arguments as above show that the restriction of L1 to the space of even functions is Fredholm
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of index 0, and its restriction to the space of odd functions is Fredholm of index −1. Since the kernel of L1 is
one-dimensional and spanned by an even function, we conclude that the two-dimensional kernel of the adjoint is
spanned by an even and an odd function.

We are now ready to show persistence of the exterior corners. First note that the reduced system (4.20)–(4.22)
leads to an equation of the form

u′′′ − c + u′ + 1

2
u2 + εg(u) = 0, (A.2)

with an even function g, due to reversibility, and some small parameter ε. We can solve (A.2) near ε = 0, u = u1 by
means of Lyapunov–Schmidt reduction on the set of odd functions, and find u and c as functions of ε as follows.

We consider the nonlinear equation as a map from the set of odd functions in BC3(R) ⊂ BC0(R) into the set
of even functions in BC0(R). The arguments above show that the linearization about u1 is a Fredholm operator
with trivial kernel and one-dimensional cokernel spanned by the even function in the kernel of Lad

1 . However, the
derivative of the left-hand side of (A.2) with respect to c is given by the constant u ≡ 1, which is not perpendicular
to cokernel with respect to our fixed L2-scalar product. We may therefore solve the one-dimensional Lyapunov–
Schmidt reduced equation with respect to c, and then find odd solutions u = u(ε) of (A.2) with c = c(ε) for ε

small.

Appendix B

We derive a model system describing transverse perturbations of the modulated planar front in the long-wave
regime and determine the conditions under which the corresponding system of conservation laws (in which vis-
cosity is neglected) has real characteristics. Recall that the modulated planar front q∗(y,ω∗t) is a solution to the
reaction–diffusion system (2.1) which is 2π -periodic in the second argument. We look for perturbations of q∗ of
the form

u(x, y, t) = q∗
(
y + ξ

(
εx, ε2t

)
,ω∗t + τ

(
εx, ε2t

)) + ε2v
(
εx, y,ω∗t, ε2t

)
. (B.1)

Substituting (B.1) into (2.1), we find at order 0 in ε Eq. (5.1) for the profile of the modulated front q∗, and at order
ε2 the equation

ξt ∂yq∗ + τt ∂tq∗ = ξxxD∂yq∗ + τxxD∂tq∗ + ξ2
x D∂yyq∗ + 2ξxτxD∂ytq∗ + τ 2

x D∂tt q∗ − DL∗v, (B.2)

in which L∗ is the linear operator defined by (5.3). In order to solve this equation for v in terms of ξ and τ the
following solvability conditions must hold〈

qad∗y,D
−1∂yq∗

〉
ξt + 〈

qad∗y,D
−1∂tq∗

〉
τt = ξxx + 〈

qad∗y, ∂yyq∗
〉
ξ2
x + 〈

qad∗y, ∂tt q∗
〉
τ 2
x + 2

〈
qad∗y, ∂ytq∗

〉
ξxτx, (B.3)〈

qad∗t ,D
−1∂yq∗

〉
ξt + 〈

qad∗t ,D
−1∂tq∗

〉
τt = τxx + 〈

qad∗t , ∂yyq∗
〉
ξ2
x + 〈

qad∗t , ∂tt q∗
〉
τ 2
x + 2

〈
qad∗t , ∂yt q∗

〉
ξxτx. (B.4)

Notice that the steady model system obtained in this way coincides with the reduced system (5.21)–(5.22) at c = c∗
and ω = ω∗ for η = ξx and ρ = τx .

Neglecting the viscosity in (B.3)–(B.4) we find

ξt = −c∗
(

1

2
ξ2
x − α1τ

2
x

)
, (B.5)

τt = −c∗
(
ξxτx − α2τ

2
x

)
(B.6)

in which αj are defined as in Section 5.2,

α1 = 〈qad∗y, ∂tt q∗〉d22 − 〈qad∗t , ∂tt q∗〉d21
, α2 = 〈qad∗t , ∂tt q∗〉d11 − 〈qad∗y, ∂tt q∗〉d12

,

c∗(d11d22 − d12d21) c∗(d11d22 − d12d21)
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with (
d11 d12
d21 d22

)
=

( 〈qad∗y,D
−1q∗y〉 〈qad∗t ,D

−1q∗y〉
〈qad∗y,D

−1q∗t 〉 〈qad∗t ,D
−1q∗t 〉

)
.

From (B.5)–(B.6) we obtain a system of conservation laws for η = ξx and ρ = τx ,

ηt = −c∗(ηηx − 2α1ρρx),

ρt = −c∗(ρηx + ηρx − 2α2ρρx).

A direct calculation shows that this system has real characteristics when α2
2 −2α1 > 0, and complex characteristics

when α2
2 − 2α1 < 0.
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