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Abstract

In the 80’s, Crandall and Lions introduced the concept of viscosity solution, in order to get existence and/or uniqueness results
for Hamilton–Jacobi equations. In this work, we first investigate the Dirichlet and Cauchy–Dirichlet problems for such equations,
where the Hamiltonian is associated to a problem of calculus of variations, and prove that, if the data are analytic, then the
viscosity solution is moreover subanalytic. We then extend this result to Hamilton–Jacobi equations stemming from optimal control
problems, in particular from sub-Riemannian geometry, which are generalized eikonal equations.

As a consequence, the set of singularities of the viscosity solutions of such Hamilton–Jacobi equations is a subanalytic stratified
manifold of codimension greater than or equal to one.
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1. Introduction

1.1. Viscosity solutions

In the 80’s, Crandall and Lions [20] introduced the concept of viscosity solution in order to ensure uniqueness of
solutions of Hamilton–Jacobi equations. Existence of viscosity solutions was also established under similar assump-
tions. A general definition of a viscosity solution of a first-order Hamilton–Jacobi equation is the following.

Let Ω be an open set in R
n, H be a continuous function on Ω ×R×R

n, called Hamiltonian, and g be a continuous
function on ∂Ω . Consider the first-order Hamilton–Jacobi equation on Ω

H
(
x, v(x),∇v(x)

) = 0. (1)

We first recall the notion of sub- and super-differential.

Definition 1.1. Let v be a scalar function on Ω . The super-differential at a point x ∈ Ω is defined as

D+v(x) =
{
p ∈ R

n
∣∣∣ lim sup

y→x

v(y) − v(x) − 〈p,y − x〉
‖y − x‖ � 0

}
.
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Similarly, the sub-differential at x is

D−v(x) =
{
p ∈ R

n
∣∣∣ lim inf

y→x

v(y) − v(x) − 〈p,y − x〉
‖y − x‖ � 0

}
.

We can now define the concept of viscosity solution introduced in [20].

Definition 1.2. Let v be a continuous function on Ω . The function v is a viscosity super-solution of (1) if

∀x ∈ Ω ∀p ∈ D−v(x) H
(
x, v(x),p

)
� 0.

Similarly, v is a viscosity sub-solution of (1) if

∀x ∈ Ω ∀p ∈ D+v(x) H
(
x, v(x),p

)
� 0.

Finally, v is a viscosity solution of (1) if it is both a sub-solution and a super-solution.

This concept is adapted to get existence and uniqueness results, in particular for Dirichlet problems of the type

H
(
x, v(x),∇v(x)

) = 0 in Ω,

v|∂Ω = g,

so as for many other problems (Cauchy problems, second-order equations, . . .), see for instance [20,27,9,10,21]. Lit-
erature on this subject is immense.

Viscosity solutions, when they exist, may be just continuous. Hence, the study of the regularity of such solutions is
of great interest. Usually, regularity results are sought for in special classes of nonsmooth functions, such as Lipschitz
or semiconcave functions (see for instance [14,15,31], and more generally, see the books [9,10,16,27] and references
therein). In the case of analytic Hamilton–Jacobi equations, one could however expect these solutions to be more
regular. Of course, because of possible shocks, one cannot expect to get global analytic solutions. For example, in the
case of the eikonal equation∥∥∇v(x)

∥∥2 = 1 in Ω,

v|∂Ω = 0,

on a bounded analytic open set Ω ⊂ R
n, one can easily see that the unique viscosity solution is

v(x) = d(x, ∂Ω).

Of course, this function u is not analytic on Ω , due to intersection of characteristic curves (concerning the method of
characteristics we refer the reader to the previously cited references). Anyway, the function v is, in a sense, “analytic
by parts”. The right concept in order to describe such objects happens to be the concept of subanalyticity. In the next
paragraph we recall a definition and several basic properties.

1.2. Subanalytic functions

We first recall a definition of subanalytic sets (see [23,24]).

Definition 1.3. Let M be a real analytic finite dimensional manifold. A subset A of M is said to be semi-analytic if
and only if, for every x ∈ M , there exists a neighborhood U of x in M and 2pq analytic functions gij , hij (1 � i � p

and 1 � j � q), such that

A ∩ U =
p⋃

i=1

{
y ∈ U | gij (y) = 0 and hij (y) > 0, j = 1, . . . , q

}
.

Let SEM(M) denote the set of semi-analytic subsets of M .

The image of a semi-analytic subset by a proper analytic mapping is not in general semi-analytic, and thus this
class has to be enlarged.
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Definition 1.4. A subset A of M is said to be subanalytic if and only if, for every x ∈ M , there exist a neighborhood
U of x in M and 2p couples (Φδ

i ,A
δ
i ) (1 � i � p and δ = 1,2), where Aδ

i ∈ SEM(Mδ
i ), and where the mappings

Φδ
i :Mδ

i → M are proper analytic, for real analytic manifolds Mδ
i , such that

A ∩ U =
p⋃

i=1

(
Φ1

i

(
A1

i

) \ Φ2
i

(
A2

i

))
.

Let SUB(M) denote the set of subanalytic subsets of M .

The subanalytic class is closed by union, intersection, complementary, inverse image by an analytic mapping,
image by a proper analytic mapping. In brief, the subanalytic class is o-minimal (see [36]). Moreover subanalytic sets
are stratifiable in the following sense.

Definition 1.5. Let M be a differentiable manifold. A stratum in M is a locally closed sub-manifold of M . A locally
finite partition S of M is a stratification of M if any S ∈ S is a stratum such that

∀T ∈ S T ∩ FrS 
= ∅ ⇒ T ⊂ FrS and dimT < dimS.

Finally, a mapping f :M → N between two analytic manifolds is said to be subanalytic if its graph is a subanalytic
subset of M × N .

Let M be an analytic manifold, and f be a subanalytic function on M . The analytic singular support of f , denoted
S(f ), is defined as the complement of the set of points x in M such that the restriction of f to some neighborhood of
x is analytic. The following property is of great interest (see [32]).

Proposition 1.1. Let f be a subanalytic function on an analytic manifold M . Then, its analytic singular support
S(f ) is subanalytic (and thus, in particular, is stratifiable). If f is moreover locally bounded on M , then S(f ) is of
codimension greater than or equal to one.

A basic property of subanalytic functions, which makes them very useful in calculus of variations, and more
generally in optimal control theory, is the following (see [32]).

Proposition 1.2. Let M and N be real analytic finite dimensional manifolds, A be a subset of N , and Φ :N → M and
f :N → R be subanalytic mappings. Define, for every x ∈ M ,

ψ(x) = inf
{
f (y) | y ∈ Φ−1(x) ∩ A

}
.

If Φ|Ā is proper then ψ is subanalytic.

This crucial tool in order to establish subanalyticity, based on an infimum property of the solution, suggests to
investigate Hamilton–Jacobi equations stemming from optimization problems.

1.3. Consequences on the singularities of viscosity solutions of Hamilton–Jacobi equations

The paper will be organized as follows.
First, in the framework of the classical calculus of variations, where the Hamiltonian function is associated to an

analytic Lagrangian function, we state existence, and in some cases, uniqueness of a subanalytic viscosity solution.
These results specialize those of Lions [27] in the analytic case.

We then extend these statements to cases where the Hamiltonian function is stemming from sub-Riemannian geom-
etry, and more generally from an optimal control problem, and show how the subanalyticity status of solutions is
related to the existence of singular minimizing trajectories of the underlying control problem.

The results of this paper give conditions under which the viscosity solution of some Hamilton–Jacobi equations
is subanalytic. Then, using Proposition 1.1, these results imply that the cut-locus, which coincides with the analytic
singular set of the viscosity solution, is a subanalytic stratified manifold of codimension greater than or equal to one.
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Note that this singular set is also the set where characteristic curves intersect. The structural properties of this
set have been much studied, and a usual way of investigating is to use nonsmooth analysis, and in particular semi-
concave functions (see [5,6,8,14,16,17,30,31]). Here, we prove that, for some classes of Hamilton–Jacobi equations,
under suitable assumptions, the viscosity solution is subanalytic and hence enjoys nice properties. In particular its
singularities lie on a subanalytic stratified manifold of codimension greater than or equal to one.

This property is very useful in numerical analysis and has already been used (see [7]). The interest is to get a
general framework in which the set where characteristic curves intersect is, in a sense, “small”. Usual methods to
derive such a fact rely on a careful analysis of the characteristic curves, that may be very involved. In the work [7],
the stratification property of the singular set of the viscosity solution is essential in order to integrate energy functions
on the set of characteristic curves.

The results of this paper, together with Proposition 1.1, provide systematic sufficient conditions under which this
singular set shares these nice properties resulting from subanalyticity.

Some of the results of this article were announced in [35].

2. Hamilton–Jacobi equations and calculus of variations

In this section we specialize results of [27] in an analytic framework.

2.1. A brief insight into calculus of variations

We first recall the classical framework of calculus of variations. Let H(x,p) be a C2 function on R
n × R

n, called
Hamiltonian, satisfying the following assumptions:

• H is uniformly superlinear, i.e.

∀A > 0 ∃C(A) ∈ R | ∀(x,p) ∈ R
n × R

n H(x,p) � A‖p‖ − C(A), (2)

• H is strictly convex in p, i.e. for all (x,p) ∈ R
n × R

n the second derivative

∂2H

∂p2
(x,p) (3)

is positive definite.

For all (x,u) ∈ R
n × R

n, set

L(x,u) = sup
p∈Rn

(〈p,u〉 − H(x,p)
)
. (4)

It is well known that under the previous assumptions on H , this function, called the Lagrangian, is well defined on
R

n × R
n, and moreover satisfies also assumptions (2), (3), see for instance [22]. Moreover the so-called Legendre

transformation

T (x,u) =
(

x,
∂L

∂u
(x,u)

)
(5)

is a global C1 diffeomorphism on R
n × R

n.

Definition 2.1. Let AC denote the set of absolutely continuous curves in R
n.

• Let x(·) ∈AC be defined on [0, T ]. The action of x(·) on [0, T ] is defined by

AT

(
x(·)) =

T∫
0

L
(
x(t), ẋ(t)

)
dt. (6)

• For all x, y ∈ R
n define the value function at (x, y) by

S(x, y) = inf
{
AT

(
x(·)) | T > 0, x(·) ∈AC, x(0) = y, x(T ) = x

}
. (7)
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Assumption (3) actually implies that, for all x, y ∈ R
n, there exists an absolutely continuous curve joining y to

x and minimizing the action. This result is known as Tonelli Theorem (see [22]). In particular the infimum (7) is a
minimum.

On the other part, minimizing curves are solutions of Euler–Lagrange equations

d

dt

∂L

∂u

(
x(t), ẋ(t)

) = ∂L

∂x

(
x(t), ẋ(t)

)
,

which are equivalent, using the Legendre mapping, to the Hamilton equations

ẋ(t) = ∂H

∂p

(
x(t),p(t)

)
, ṗ(t) = −∂H

∂x

(
x(t),p(t)

)
, (8)

where p(t), called adjoint vector, is defined by(
x(t),p(t)

) = T
(
x(t), ẋ(t)

)
.

Moreover, since the final time is not fixed, the identity

H
(
x(t),p(t)

) = 0 (9)

holds along the trajectory.
A curve x(·) ∈ AC for which there exists p(·) ∈AC such that Eqs. (8) and (9) hold is called an extremal.

Remark 2.1. If in the definition (11) of S(x, y) the final time T is fixed, then (9) does not hold.

2.2. The Dirichlet problem

The following theorem is an analytic version of [27, Theorem 5.3, p. 132].

Theorem 2.1. Let Ω denote a bounded subanalytic open subset of R
n, c be a real number, and let H(x,p) be an

analytic Hamiltonian function on R
n × R

n satisfying assumptions (2), (3), and such that moreover

∃α < c | ∀x ∈ R
n H(x,0) � α. (10)

Let AC denote the set of absolutely continuous curves in R
n. For all x, y ∈ �Ω , set

S(x, y) = inf

{ T∫
0

(
L

(
x(t), ẋ(t)

) + c
)

dt

∣∣∣∣ T > 0, x(·) ∈ AC, x(0) = y, x(T ) = x

}
, (11)

where L is the Lagrangian associated to the Hamiltonian H . Then, for every y0 ∈ �Ω , the function x �→ S(x, y0) (resp.,
for every x0 ∈ �Ω , the function y �→ S(x0, y)) is a viscosity solution of

H
(
x,∇v(x)

) − c = 0 in Ω \ {y0}, v(y0) = 0, (12)

(resp., H(x,−∇v(x)) − c = 0 in Ω \ {x0}, v(x0) = 0), which is subanalytic on �Ω .
Let g denote a subanalytic function on Σ = ∂Ω , satisfying the so-called compatibility condition

∀x, y ∈ Σ g(x) − g(y) � S(x, y). (13)

Finally, define, for every x ∈ �Ω ,

S(x) = inf
y∈Σ

(
g(y) + S(x, y)

)
. (14)

Then, S is the unique viscosity solution of the Dirichlet problem

H
(
x,∇v(x)

) − c = 0 in Ω,

v|Σ = g, (15)

and moreover is continuous and subanalytic on �Ω .
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Remark 2.2. If the Hamiltonian H is defined on Ω × R
n and moreover assumptions (2), (3) and (10) hold only for

every x ∈ Ω , then the conclusion on S(x) still holds. However, the definition of S(x, y) has to be modified: the path
joining y to x should be included in �Ω , as done in [27] (see in particular [27, Remark 5.4, p. 118]. Moreover, in this
case, we cannot prove the subanalyticity of the mappings x �→ S(x, y0) (resp., y �→ S(x0, y)).

Remark 2.3. As noticed in [27, Remark 5.8, p. 128], this result also holds on an unbounded open set Ω , except for
uniqueness.

Example 2.1. Let Ω be a subanalytic bounded open set in R
n, Σ = ∂Ω , let m(·) : Rn → R

n be an analytic mapping,
and f (·) be an analytic function on R

n. Assume that there exists a positive real number ε such that∥∥m(x)
∥∥2 � f (x)2 − ε

for every x ∈ R
n. Then, there exists an unique viscosity solution S of the Dirichlet problem∥∥∇v(x) − m(x)

∥∥ − ∣∣f (x)
∣∣ = 0 in Ω,

v|Σ = 0, (16)

which is continuous and subanalytic on �Ω .
This is indeed an easy consequence of Theorem 2.1, with the Lagrangian function

L(x,u) = 1

2
‖u‖2 + 〈

m(x),u
〉 + 1

2
f (x)2,

for all x,u ∈ R
n.

Proof of Theorem 2.1. For all x ∈ R
n and u ∈ R

n, the assumption (10) implies the inequality L(x,u) + c > 0, and
thus S(x, y) is well defined, for all x, y ∈ �Ω .

Let y0 ∈ �Ω be fixed. It is proved in [27] that the function x �→ S(x, y0) is a viscosity solution of (12). We next
prove that it is moreover subanalytic. To this aim, we express S(x, y0) using extremal curves. Absolutely continuous
curves on [0, T ] such that x(0) = y0, that are minimizing the action, are extremals, namely are solutions of (8). Hence,
they are parametrized by T and p(0), where p(·) is an adjoint vector associated to x(·). This suggests to introduce the
mapping

Φ : R+ × �Ω × R
n −→ R

n,

(T , y,ψ) �−→ x(T )

where (x(·),p(·)) is the solution of Eqs. (8) such that x(0) = y and p(0) = ψ . The system (8) is analytic and hence
Φ is an analytic mapping. We also set, with the same notations, for all T ∈ R

+, y ∈ �Ω,ψ ∈ R
n,

σ(T , y,ψ) =
T∫

0

(
L

(
x(t), ẋ(t)

) + c
)

dt =
T∫

0

(
L

(
T −1(x(t),p(t)

)) + c
)

dt.

The Legendre mapping T is analytic, and thus σ is also analytic. With these notations, we have

S(x, y0) = inf
{
σ(T , y0,ψ) | ∃T � 0, ∃ψ ∈ R

n, Φ(T , y0,ψ) = x
}
.

In order to apply Proposition 1.2, we have to prove that the couples (T ,ψ) in the last formula can be chosen in a
compact subset of R

n × R
n as x ∈ �Ω . By definition of the minimal action (11), the condition (9) leads to

H(y0,ψ) = c.

Using the assumption (2), we infer that ψ belongs to a compact set of R
n as x ∈ �Ω . Moreover, the assumption (10)

yields

σ(T , y0,ψ) � (c − α)T ,
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and since α < c, we also get that T is bounded. Finally, there exists a compact subset K ⊂ R
+ × R

n such that

S(x, y0) = inf
{
σ(T , y0,ψ) | ∃ (T ,ψ) ∈ K, Φ(T ,y0,ψ) = x

}
.

Proposition 1.2 now asserts that the function x �→ S(x, y0) is subanalytic on �Ω .
Finally, let S, the value function, be defined as in (14). It is continuous on �Ω because S(x, y) is continuous.

From [27], S is a viscosity solution of (15). Uniqueness comes from assumption (10) and [10, Theorem 2.7, p. 37].
Subanalyticity of S on �Ω is a consequence of Proposition 1.2. �
2.3. The Cauchy problem

The following theorem is an analytic version of [27, Theorem 11.1, p. 217].

Theorem 2.2. Let T > 0 be fixed, let Ω denote a bounded subanalytic open subset of R
n, and H(x,p) be an analytic

Hamiltonian function on R
n ×R

n satisfying assumptions (2), (3). For all s, t ∈ [0, T ] such that s < t , and all x, y ∈ �Ω ,
set

S(t, x, s, y) = inf

{ t∫
s

L
(
x(t), ẋ(t)

)
dt

∣∣∣∣ x(·) ∈AC, x(s) = y, x(t) = x

}
. (17)

Then, for all s0 ∈ [0, T [ and y0 ∈ �Ω , the function S(·, ·, s0, y0) is a viscosity solution of

∂v

∂t
+ H

(
x,

∂v

∂x

)
= 0 in ]s0, T ] × Ω \ {y0},

lim
t→s0

v(t, y0) = 0, (18)

which is subanalytic on ]s0, T ] × �Ω . Let g be a subanalytic function on ({0} × �Ω) ∪ ([0, T ] × ∂Ω) satisfying the
compatibility condition

∀(s, y) ∈ ({0} × �Ω ) ∪ ([0, T [ × ∂Ω
) ∀(t, x) ∈ ]s, T ] × ∂Ω g(t, x) − g(s, y) � S(t, x, s, y). (19)

For all t ∈ ]0, T ] and x ∈ �Ω , set

S(t, x) = inf
{
S(t, x, s, y) + g(s, y) | (s, y) ∈ ({0} × �Ω ) ∪ ([0, t[ × ∂Ω

)}
. (20)

Then, S is continuous on ]0, T ] × �Ω , is the unique viscosity solution of the Cauchy–Dirichlet problem

∂v

∂t
+ H

(
x,

∂v

∂x

)
= 0 in ]0, T [ × Ω,

v = g on ]0, T ] × ∂Ω,

lim
t→0

v(t, x) = g(0, x), (21)

and moreover S is subanalytic on ]0, T ] × �Ω .

Proof. The proof is similar to the proof of Theorem 2.1, except for the compactness argument needed to apply
Proposition 1.2. We have with similar notations

S(t, x, s0, y0) = inf
{
σ(t, s0, y0,ψ) | Φ(t, s0, y0,ψ) = x

}
,

where σ and Φ are analytic mappings. Let us prove that S(·, ·, s0, y0) is subanalytic on any compact subset I × K of
]s0, T ] × �Ω . First of all, notice that extremals are C1 functions of t , for the Legendre mapping is C1. In particular the
function t �→ L(x(t), ẋ(t)) is C1 along an extremal curve.

The following argument can for instance be found in [22]. By a continuity argument we can assert that the set{ t∫
L

(
x(t), ẋ(t)

)
dt

∣∣∣∣ (
t, x(t)

) ∈ I × K, x(·) extremal, x(s0) = y0

}

s0
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is bounded. On the other part, for all extremal curve x(·), there exists from the Mean Value Theorem a real number
t0 ∈ [0, T ] such that

t∫
s0

L
(
x(t), ẋ(t)

)
dt = (t − s0)L

(
x(t0), ẋ(t0)

)
.

By continuity of the extremal flow, we infer easily that the set{
ẋ(0) | x(·) extremal, x(s0) = y0, x(t) = x, (t, x) ∈ I × K

}
is bounded in R

n (see [22, Chapter 4] for all details). Therefore, the same holds for the corresponding initial adjoint
vectors p(0). The conclusion is then similar to the proof of Theorem 2.1. �
3. Hamilton–Jacobi equations and optimal control

3.1. A brief insight into optimal control theory

Consider a general control system in R
n

ẋu(t) = f
(
xu(t), u(t)

)
, (22)

where f : Rn × R
m → R

n is smooth, and the controls u belong to an open subset of L∞
loc(R,R

m). For every T > 0,
denote by UT the set of admissible controls on [0, T ], i.e. the set of controls such that the associated trajectory xu(·) is
well defined on [0, T ]. It is an open subset of L∞([0, T ],R

m). For every x0 ∈ R
n, define on UT the end-point mapping

Ex0,T :u �→ xu(T ), where xu(·) denotes the solution of (22) associated to the control u ∈ UT and starting from x0 at
time t = 0. It is a smooth mapping. A trajectory xu(·) is said to be singular on [0, T ] if u is a singular point of the
end-point mapping Ex0,T .

Let M1 be a submanifold of R
n. Consider the optimal control problem of determining, among all trajectories

solutions of system (22) joining x0 to M1, a trajectory minimizing the cost function

C(t, u) =
t∫

0

f 0(xu(s), u(s)
)

ds + g
(
xu(t)

)
, (23)

where f 0 : Rn × R
m → R and g : Rn → R are smooth functions, and xu(t) ∈ M1. Set moreover

C0(t, u) =
t∫

0

f 0(xu(s), u(s)
)

ds.

If a control u, associated to a trajectory xu(·), is optimal on [0, T ], then there exists a nontrivial Lagrange multiplier
(ψ,ψ0) ∈ R

n × R such that

ψ · dEx0,T (u) = −ψ0 ∂C0

∂u
(T ,u).

Moreover, ψ − ψ0∇g(xu(T )) ⊥ Txu(T )M1. This is a first-order necessary condition for optimality. The well known
Pontryagin Maximum Principle (see [28]) parametrizes this condition, and asserts that the trajectory xu(·) correspond-
ing to this control is the projection of an extremal, that is a solution of the Hamiltonian system

ẋu = ∂H

∂p

(
xu,pu,p

0
u,u

)
, ṗu = −∂H

∂x

(
xu,pu,p

0
u,u

)
,

∂H

∂u

(
xu,pu,p

0
u,u

) = 0,

where H(x,p,p0, u) = 〈p,f (x,u)〉 + p0f 0(x,u) is the Hamiltonian of the system, pu(·) : [0, T ] → R
n is an ab-

solutely continuous mapping called adjoint vector, and p0
u is a real nonpositive number. Moreover there holds at the

final time, up to a multiplying scalar(
pu(T ),p0

u

) = (
ψ,ψ0).

If p0
u 
= 0, the extremal is said to be normal, and in this case it is normalized to p0

u = −1/2. If p0
u = 0, the extremal is

said to be abnormal.
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Remark 3.1. Since we did not set any constraint on the control, any singular trajectory is the projection of an abnormal
extremal, and conversely.

Remark 3.2. As a consequence of the Maximum Principle, if a control u is singular on [0, T ] then it is singular on
[0, t], for every t ∈ ]0, T ].

3.2. Affine Dirichlet problem

3.2.1. The main results
It is known that the existence of singular minimizing trajectories is closely related to the subanalyticity of the value

function associated to an optimal control problem (see [1,3,33,34]). In these conditions, the following result is not
surprising.

Theorem 3.1. Let Ω be a bounded subanalytic open subset of R
n, c > 0 be fixed, and f0, . . . , fm be analytic vector

fields on �Ω . For all x ∈ Ω and p ∈ R
n, set

H(x,p) = −〈
p,f0(x)

〉 + 1

4

m∑
i=1

〈
p,fi(x)

〉2 − c.

Let Σ = ∂Ω and g be a subanalytic function on Σ . For every x ∈ �Ω , consider the optimal control problem of steering
x to Σ for the affine control system

ẋu(t) = f0
(
xu(t)

) +
m∑

i=1

ui(t)fi

(
xu(t)

)
, (24)

and the cost

C(u) =
t (x,u)∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu

(
t (x,u)

))
, (25)

where t (x,u) is the infimum of times t such that the solution xu(·) of the control system (24) associated to the control
u steers the point x ∈ �Ω to Σ in time t . We make the following assumptions.

• The boundary Σ is accessible from Ω, i.e., for every x ∈ Ω, there exists a time t and a control on

[0, t] such that the solution of the system (24) associated to this control and starting fromx at time 0, (26)

joins Σ in time t.

• There exists no singular minimizing trajectory of the control system (24) for the cost (25),

steering Ω to Σ. (27)

Let S denote the value function associated to the optimal control problem (24), (25). Namely, if S denotes the set
of solutions (u(·), x(·)) of (24) defined on various intervals [0, t1], such that x(0) ∈ �Ω and x(t1) ∈ Σ , one has, for
every x ∈ �Ω ,

S(x) = inf
{
C(u) | (u(·), xu(·)

) ∈ S, xu(0) = x
}
. (28)

For all x, z ∈ Σ , define

L(x, z) = inf

{ t∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds

∣∣∣∣ xu(·) ∈ S, xu(0) = x, xu(t) = z, and xu(s) ∈ �Ω, ∀s ∈ [0, t]
}

, (29)

and assume that g satisfies the compatibility condition

∀x, z ∈ Σ g(x) − g(z) � L(x, z). (30)
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Then S is well defined on �Ω , is continuous and subanalytic on Ω , and is a viscosity solution of the Dirichlet problem

H
(
x,∇S(x)

) = 0 on Ω, S|Σ = g. (31)

Remark 3.3. Denote by Fm the set of (m + 1)-uples of linearly independent vector fields (f0, . . . , fm), endowed
with the C∞ Whitney topology. If 2 � m < n, there exists an open dense subset of Fm such that every affine control
system associated to a (m+ 1)-uple of this subset admits no singular minimizing trajectory. This is indeed an obvious
extension of a result of [19] (see also [18, Corollary 3.4]).

Remark 3.4. If there exist singular minimizing trajectories, then the conclusion on subanalyticity of S may fail (see
Section 3.2.3).

We can state further results concerning uniqueness and regularity of S on the whole �Ω .

Proposition 3.2. Under the assumptions of Theorem 3.1, if moreover

∀x ∈ Σ Lie
(
f1(x), . . . , fm(x)

) = R
n, (32)

then S is continuous on �Ω . As a consequence, S is the unique viscosity solution of the Dirichlet problem (31).

For every x ∈ R
n, set

∆(x) = Span
{
f1(x), . . . , fm(x)

}
,

∆2(x) = ∆(x) + Span
{[fi, fj ](x), 1 � i < j � m

}
.

The m-uple (f1, . . . , fm) is said to be medium-fat at x if, for every vector field X ∈ ∆(x) \ {0}, there holds

R
n = ∆2(x) + Span

{[
X, [fi, fj ]

]
(x), 1 � i, j � m

}
.

Proposition 3.3. Under the assumptions of Theorem 3.1, if the m-uple of vector fields (f1, . . . , fm) is moreover
medium-fat at every point of Σ , and if the compatibility inequality (30) is strict, then S is subanalytic on �Ω .

Remark 3.5. If n � m(m − 1) + 1, then the m-uple of vector fields (f1, . . . , fm) is generically (in C∞ Whitney
topology) medium-fat (see [4]).

The proofs of Theorem 3.1, Propositions 3.2 and 3.3 are provided, resp., in Sections 3.2.4, 3.2.5 and 3.2.6.

Remark 3.6. Assumption (32) actually implies that the affine control system (24) is STCΣ , i.e. small-time control-
lable near Σ (see [9] for a definition). For a proof of this fact, we refer the reader for instance to [12,26]. In [9] where
the controls take their values in a compact subset of R

m, this small-time controllability property is used to prove that S

is upper semi-continuous. Their proof is however not adapted in our framework since our controls are not constrained
(see also Remark 3.19).

On the other part, the compatibility condition of [9] is stronger than (30). Coupled with small-time controllability,
it enables to prove that the value function S is continuous. Here the continuity of S is mainly due to the assumption
(27) of the absence of singular minimizers.

Example 3.1. Let Ω be a subanalytic bounded open subset of R
3 and Σ = ∂Ω . For every c > 0, and every α ∈ R,

there exists a unique viscosity solution S of the Dirichlet problem

−α
∂v

∂x1
+ 1

4

(
∂v

∂x1
+ x2

∂v

∂x3

)2

+ 1

4

(
∂v

∂x2
− x1

∂v

∂x3

)2

− c = 0 in Ω, v|Σ = 0,

which is continuous and subanalytic on �Ω . It is indeed an application of Theorem 3.1, Propositions 3.2 and 3.3, with
the vector fields

f0 = α
∂

∂x1
, f1 = ∂

∂x1
+ x2

∂

∂x3
, f2 = ∂

∂x2
− x1

∂

∂x3
.
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3.2.2. Particular case: f0 = 0
If f0 = 0, then the statement of Theorem 3.1 can be interpreted in the framework of sub-Riemannian geometry.

Theorem 3.4 hereafter is actually more precise than the one of Theorem 3.1. In particular, it is of interest to interpret
the viscosity solution of the corresponding Hamilton–Jacobi equation as a sub-Riemannian distance. Note that, in
sub-Riemannian geometry, many things are known about the regularity of the distance (see [1,3]).

We first recall a general definition of a sub-Riemannian distance, due to [11]. Let M be a smooth n-dimensional
manifold, m an integer such that 1 � m � n, and f1, . . . , fm be smooth vector fields on a manifold M . For all x ∈ M

and v ∈ TxM , set

g(x, v) = inf
{
u2

1 + · · · + u2
m | u1, . . . , um ∈ R, u1f1(x) + · · · + umfm(x) = v

}
.

Then, g(x, ·) is a positive definite quadratic form on the subspace of TxM spanned by f1(x), . . . , fm(x). Outside this
subspace, we set g(x, v) = +∞. The form g is called the sub-Riemannian metric associated to the m-uple of vector
fields (f1, . . . , fm).

Let AC([0,1],M) denote the set of absolutely continuous paths in M , defined on [0,1]. Define the length of
γ ∈ AC([0,1],M) by l(γ ) = ∫ 1

0

√
g(γ (t), γ̇ (t))dt . Finally, the sub-Riemannian distance associated to the m-uple of

vector fields (f1, . . . , fm), between two points x0, x1 in M , is defined by

dSR(x0, x1) = inf
{
l(γ ) | γ ∈AC

([0,1],M)
, γ (0) = x0, γ (1) = x1

}
.

Consider on the other part the differential system on T M

ẋ(t) =
m∑

i=1

ui(t)fi

(
x(t)

)
a.e. on [0,1], (33)

where the function u(·) = (u1(·), . . . , um(·)), called control function, belongs to L2([0,1],R
m). Let x0 ∈ R

n, and let
U denote the (open) subset of L2([0,1],R

m) such that every solution of (33), starting from x0, and associated to
a control u ∈ U , is well defined on [0,1]. The mapping Ex0 :u ∈ U �→ x(1) ∈ R

n, which to a control u associates
the extremity x(1) of the corresponding solution x(·) of (33) such that x(0) = x0, is called end-point mapping at the
point x0. It is a smooth mapping. The trajectory x(·) is said to be singular if the associated control u is a singular point
of the end-point mapping. It is said minimizing if it realizes the sub-Riemannian distance between its extremities.

Remark 3.7. A sub-Riemannian manifold is often defined as a triple (M,∆,g), where M is a n-dimensional manifold,
∆ is a distribution of rank m (with m � n), and g is a Riemannian metric on ∆. Here, as in [11], and for the needs of
applications, the point of view is more general and the assumption of constant rank is relaxed.

Notice that, if the vector fields (f1, . . . , fm) are everywhere linearly independent, then controlled paths solutions
of (33) coincide with absolutely continuous paths tangent to the distribution ∆, where

∆(x) = Span
{
f1(x), . . . , fm(x)

}
,

for every x ∈ M . On the other part the set of absolutely continuous paths which are tangent to ∆ is not in general a
manifold: its singularities correspond exactly to singular trajectories of the control system (33), which are intrinsic to
the distribution ∆.

Theorem 3.4. Let Ω denote a bounded subanalytic open subset of R
n, m � 1, be an integer, and let H(x,p) be an

Hamiltonian function on R
n × R

n defined by

H(x,p) =
m∑

i=1

〈
p,fi(x)

〉2
, (34)

where f1, . . . , fm are analytic vector fields on R
n satisfying the Hörmander condition

∀x ∈ R
n Lie

(
f1(x), . . . , fm(x)

) = R
n, (35)

i.e. the Lie algebra spanned by the vector fields has maximal rank at every point. Let dSR(·, ·) denote the sub-
Riemannian distance associated to the m-uple of vector fields (f1, . . . , fm).
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Then, for every y0 ∈ R
n, the function x �→ dSR(x, y0) is a viscosity solution of

H
(
x,∇v(x)

) − 1 = 0 in R
n \ {y0}, v(y0) = 0. (36)

Moreover, under the additional assumption that the control system (33) has no nontrivial singular minimizer starting
from y0, the function dSR(·, y0) is subanalytic on R

n \ {y0}.
Let g denote a subanalytic function on Σ = ∂Ω , satisfying the compatibility condition

∀x, y ∈ Σ g(x) − g(y) � dSR(x, y), (37)

and for every x ∈ �Ω set

S(x) = inf
y∈Σ

(
g(y) + dSR(x, y)

)
. (38)

Then, S is continuous on �Ω and is the unique viscosity solution of the Dirichlet problem

H
(
x,∇v(x)

) − 1 = 0 in Ω, v|Σ = g. (39)

If moreover the control system (33) has no nontrivial singular minimizer starting from Σ , then S is subanalytic on Ω .

Remark 3.8. The same comments as in Remarks 2.2 and 2.3 hold.

Remark 3.9. If m � n, we are in the Riemannian situation and there exists no singular trajectory.

Remark 3.10. Denote by Fm the set of m-uples of linearly independent vector fields (f1, . . . , fm), endowed with
the C∞ Whitney topology. If m � 3, there exists an open dense subset of Fm such that any sub-Riemannian system
associated to a m-uple of this subset admits no nontrivial singular minimizer, see [18,19] (see also [3] for the existence
of a dense set only). Hence, generically, the mapping S is subanalytic on Ω , without assuming the absence of singular
minimizers.

Remark 3.11. According to Proposition 3.3, under the assumptions of Theorem 3.4, if the m-uple of vector fields
(f1, . . . , fm) is moreover medium-fat at every point of Σ , then S is subanalytic on the whole �Ω .

The proof of Theorem 3.4 can actually be derived from of Theorem 3.1. However, since it is easy to achieve
directly, we next provide a short proof of this result.

Proof of Theorem 3.4. First of all, notice that the sub-Riemannian problem is in fact equivalent to the time-optimal
problem for the control system

ẋ(t) =
m∑

i=1

ui(t)fi

(
x(t)

)
,

m∑
i=1

ui(t)
2 � 1

(see [11]). Moreover, the sub-Riemannian distance dSR(x, y) is equal to the minimal time T (x, y) needed to join x

to y for this system. On the other part, Hörmander’s condition (35) implies that, for each couple (x, y) of points
of R

n, there exists a minimizing curve joining x to y, that is dSR(x, y) < +∞ (it is a consequence of Chow’s theorem,
see [11]).

Let y0 ∈ R
n be fixed. From [9, Proposition 2.3, p. 240] the function x �→ T (x, y0) is a viscosity solution of

H(x,∇u(x)) − 1 = 0 on R
n \ {y0}. If moreover the sub-Riemannian system admits no nontrivial singular minimizer

starting from y0 then this function is subanalytic outside y0 (see [1,3,34]).
Introduce S as in (38), and notice that for all x, y ∈ �Ω ,

S(x) − S(y) = inf
z∈Σ

(
dSR(x, z) + g(z)

) − inf
z∈Σ

(
dSR(y, z) + g(z)

)
� sup

z∈Σ

(
dSR(x, z) − dSR(x, y)

)
� dSR(x, y),
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Fig. 1. Analogy with the Euclidean distance. Fig. 2. The Martinet case.

and thus S is continuous on �Ω . The fact that S is a viscosity solution of (39) is again a consequence of [9]. Under the
compatibility condition (37) uniqueness comes from [10, Theorem 2.7, p. 37]. Finally, if there is no nontrivial singular
minimizer, Proposition 1.2 implies the subanalyticity of S on Ω . �
3.2.3. A counterexample to subanalyticity

The counterexample that we are going to construct is based on the so-called Martinet case in sub-Riemannian
geometry. We briefly recall the context, see [2,13,34]. Consider in R

3 the two vector fields

f1(x1, x2, x3) = ∂

∂x1
+ x2

2
∂

∂x3
, f2(x1, x2, x3) = ∂

∂x2
.

There are only two singular trajectories starting at time t = 0 from the origin, namely t �→ (t,0,0) and t �→ (−t,0,0),
which are moreover minimizing. The associated sub-Riemannian distance to the origin, namely the mapping dSR(0, ·),
can be proved to be not subanalytic along the axis (0x1), and moreover the shape of the sub-Riemannian spheres
SSR(0, r) near a point of this axis is well known (see Fig. 2).

Here, according to Theorem 3.4, we need rather consider a distance to a set. Let us explain the idea by analogy
with the Euclidean distance to a set in the plane: it is quite clear in this case how to construct a corner-shaped bounded
open set Ω such that there exist a point y ∈ ∂Ω (at the corner), a point x ∈ Ω and a neighborhood of x in which the
distance to ∂Ω is equal to the distance to the point y (see Fig. 1).

Analogously, in the Martinet case, we claim that there exists an subanalytic open bounded set Ω ⊂ R
n containing

the origin in its interior, such that the function

S(x) = inf
y∈∂Ω

dSR(x, y)

can be written, in some neighborhood of the origin, as

S(x) = dSR(x,A),

where the point A is defined as A = (r,0,0), r 
= 0 (see Fig. 2).
From Theorem 3.4, S is the unique viscosity solution of the Dirichlet problem(

∂v

∂x1
+ x2

2
∂v

∂x3

)2

+
(

∂v

∂x2

)2

− 1 = 0 in Ω, v|∂Ω = 0.

The corresponding Hamiltonian

H(x,p) = (
p1 + p3x

2
2

)2 + p2
2

is analytic on R
n × R

n. Anyway, S is not subanalytic in a neighborhood of the origin, on the axis (0x1).

Remark 3.12. It is not difficult to construct explicitly the set Ω , since the asymptotics of the sub-Riemannian spheres
with small radius is known precisely (see [13]).
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In this example, all data are analytic and anyway the unique viscosity solution is not subanalytic, due to the
existence of singular minimizing trajectories. This phenomenon is not exceptional and is, in a sense, generic, as
explained in the next remark. In fact, the Martinet case can be imbedded into generic distributions (see [3]).

Remark 3.13. The function S may happen not to be subanalytic on Σ . Indeed, a result from [3] asserts that for

generic m-uples of vector fields (f1, . . . , fm) in R
n, if m � 3 and n � (m−1)(m2

3 + 5m
6 +1), then the sub-Riemannian

distance at 0, namely the function x �→ dSR(0, x), is not subanalytic at 0, whereas sub-Riemannian spheres SSR(0, r)

with small radius r > 0 are subanalytic. For such data, let BSR(0, r) denote the sub-Riemannian ball centered at 0 and
with radius r , and set Ω = BSR(0, r) \ {0}. In these conditions, the boundary Σ = {0} ∪SSR(0, r) of Ω is subanalytic.
For every x ∈ Ω , define

S(x) = inf
(
dSR(0, x), dSR

(
x,SSR(0, r)

))
,

and, for every x ∈ Σ , set g(x) = 0. Then, S is the unique viscosity solution of (39) for the Hamiltonian function
corresponding to (f1, . . . , fm), and S is not subanalytic at 0.

3.2.4. Proof of Theorem 3.1
First of all, the assumption (26) implies that S is well defined on �Ω . Let us prove that the infimum in the definition

(28) of S is actually a minimum. This is a consequence of the following lemma on the existence of optimal controls.

Lemma 3.5. For every x ∈ �Ω , there exists a control u minimizing the cost (25), such that the associated trajectory
xu(·) satisfies xu(0) = x, xu(t (x,u)) ∈ Σ .

Proof of Lemma 3.5. If x ∈ Σ , the conclusion is immediate. If x ∈ Ω , consider a sequence of controls (un)n∈N,
where un ∈ L2([0, tn],R

m), such that C(un) converges towards the infimum S(x). Here we denote tn = t (x,un).
Assumption (26) implies that the sequence of real numbers (C(un))n∈N is bounded. Since g is bounded on the compact
set Σ and c > 0, one easily gets on the one part that the sequence of real numbers (tn)n∈N is bounded, and on the other
part that the sequence (un)n∈N is bounded in L2([0, T ],R

m), where T is a real greater than each tn, and where un(·)
is extended by 0 on ]tn, T ]. Hence, up to a subsequence, we can assert that tn tends to a real number t > 0 and un

tends to a control u ∈ L2([0, t],R
m) in the weak L2-topology. Since the control system (24) is affine, it is not difficult

to prove that the sequence (xun(·))n∈N converges uniformly towards xu(·) on [0, t] (see [33] for details), where xu(·)
is the trajectory associated to the control u. In particular xu(s) ∈ �Ω for all s ∈ [0, t], and since xun(tn) ∈ Σ we infer
that xu(t) ∈ Σ .

On the other part, using the weak convergence of un towards u, one has

t∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu(t)

)
� lim infC(un) = S(x),

and since S(x) is an infimum, this inequality is actually an equality. Thus the control u steers the system from x to
Σ in time t , with a cost S(x). By definition of t (x,u), it is clear that t (x,u) � t , anyway equality does not hold
necessarily. At this stage we need the compatibility assumption (30), which yields the inequality

g
(
xu

(
t (x,u)

)) − g
(
xu(t)

)
� L

(
xu

(
t (x,u)

)
, xu(t)

)
.

Moreover, from the definition of L,

L
(
xu

(
t (x,u)

)
, xu(t)

)
�

t∫
t (x,u)

(
m∑

i=1

ui(s)
2 + c

)
ds,

and hence
t (x,u)∫ (

m∑
i=1

ui(s)
2 + c

)
ds + g

(
xu

(
t (x,u)

))
�

t∫ (
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu(t)

) = S(x),
0 0
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and as previously this inequality is actually an equality, i.e.

S(x) =
t (x,u)∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu

(
t (x,u)

))
,

which proves that the control u is minimizing. �
Lemma 3.6. The function S is continuous on Ω .

Proof of Lemma 3.6. Let (xn)n∈N be a sequence of points of Ω converging towards x ∈ Ω . Let us prove that S(xn)

tends to S(x). We first show that the sequence (S(xn))n∈N is bounded. From Lemma 3.5, there exists an optimal
control u steering the system from x to Σ in time t (x,u), and from assumption (27) this control cannot be singular.
Hence the end-point mapping Ex,t (x,u) is a submersion at the point u, and consequently the equation

Ey,t (x,u)(v) = xu

(
t (x,u)

)
may be solved in v in a L2-neighborhood of u, and for every y ∈ Ω close to x. In particular, if n is large enough, then
there exists a control un close to u in L2-topology such that

Exn,t (x,u)(un) = xu

(
t (x,u)

)
.

From the previous equality, un is a control steering xn to Σ in time t (x,u), and since un is close to u in L2-topology
it is not difficult to infer that the sequence (S(xn))n∈N is bounded.

Let a be a cluster point of this sequence. To end the proof, we show that S(x) = a, i.e. a is the unique cluster point
of (S(xn))n∈N. First, we can assert that up to a subsequence S(xn) tends to a. From Lemma 3.5, for every integer n,
there exists a minimizing control un such that S(xn) = C(un). A reasoning similar to the proof of Lemma 3.5, using
the compatibility condition (30), yields the inequality

S(x) � a.

Conversely, similarly as to prove that the sequence (S(xn))n∈N is bounded, and using again (30), one states

a = lim infS(xn) � C(u) = S(x),

which ends the proof. �
Lemma 3.7. The function S is subanalytic on Ω .

Proof of Lemma 3.7. Let us prove that S is subanalytic on any subanalytic compact subset K of Ω . From Lemma 3.5,
for every x ∈ K , there exists a minimizing control u such that S(x) = C(u), which cannot be singular by assumption.
From the Pontryagin maximum principle, the associated trajectory xu(·) is the projection of a normal extremal, i.e.
there exists an adjoint vector pu(·) on [0, t (x,u)], each pu(t) being identified to a row vector, and a constant p0

u =
−1/2 such that there holds

ẋu(t) = f0
(
xu(t)

) +
m∑

i=1

ui(t)fi

(
xu(t)

)
,

ṗu(t) = −pu(t)
∂f0

∂x

(
xu(t)

) −
m∑

i=1

ui(t)pu(t)
∂fi

∂x

(
xu(t)

)
,

almost everywhere on [0, t (x,u)], with ui(t) = pu(t)fi(xu(t)). Hence, normal extremals are solutions of the differ-
ential system

ẋ(t) = ∂H1 (
x(t),p(t)

)
, ṗ(t) = −∂H1 (

x(t),p(t)
)
,

∂p ∂x
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where

H1(x,p) = 〈
p,f0(x)

〉 + 1

2

m∑
i=1

〈
p,fi(x)

〉2
.

This is an analytic differential system in (x,p) parametrized by the initial condition p(0) = p0. In particular, normal
extremals (x(·),p(·)) such that x(0) = x0 depend analytically on the initial condition p0. Notice moreover that the
mapping

Φ : Rn −→ L2([0, T ],R
m
)
,

p0 �−→ up0, (40)

needed further, where up0 denotes the corresponding normal control, is analytic.
On the other part, one has, at the final time t (x,u), the Lagrange multipliers identity

pu

(
t (x,u)

)
dEx,t (x,u)(u) = 1

2

∂C0

∂u

(
t (x,u),u

)
, (41)

where

C0(t, u) =
t∫

0

(
m∑

i=1

ui(s)
2 + c

)
ds.

It is clear that, for every control u ∈ L2([0, T ],R
m), the differential of C0 with respect to u writes

∀v ∈ L2([0, T ],R
m
) ∂C0

∂u
(T ,u) · v = 2

T∫
0

m∑
i=1

ui(t)vi(t)dt.

Hence, identifying L2 with its dual space, Eq. (41) leads to the equality in L2([0, t (x,u)],R
m)

pu

(
t (x,u)

)
dEx,t (x,u)(u) = u. (42)

We next prove the following fact.

Fact 1. The set {pu(t (x,u)) | x ∈ K and S(x) = C(u)} is compact in R
n.

If not, there exists a sequence (xn)n∈N of points of K converging towards x ∈ K , such that∥∥pun(tn)
∥∥ → +∞,

where un is an optimal (necessarily nonsingular) control steering xn to Σ in time tn = t (xn, un). Since S is continuous
on K , the sequence (S(xn))n∈N is bounded, and thus, up to a subsequence, we can assume that tn tends to a real t and
un tends to u ∈ L2([0, t],R

m) in weak L2-topology. From (42), there holds

pun(tn)dExn,tn(un) = un, (43)

for every integer n. Up to a subsequence we can assume that

pun(tn)

‖pun(tn)‖
→ ψ,

where ψ ∈ R
n \ {0}. Taking the limit in (43), we infer

ψ dEx,t (u) = 0. (44)

Indeed, for an affine control system, the end-point mapping and its differential can be easily proved to be continuous
with respect to the weak L2-topology (see [33] for a proof and for a similar reasoning). On the other part, since xn

tends to x, we get

Ex,t (u) ∈ Σ. (45)
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As a consequence of (44) and (45), u is a singular control on [0, t] steering x to Σ in time t . It is still singular on
[0, t (x,u)]; let us prove that it is optimal on this interval. Indeed, each control un is optimal, i.e. C(un) = S(xn). Since
tn tends to t and un tends to u in weak L2-topology, we get

C0(t, u) + g
(
xu(t)

)
� lim infS(xn) = S(x),

for S is continuous. Moreover, using the compatibility condition (30) leads to

C(u) = C0
(
t (x,u),u

) + g
(
xu

(
t (x,u)

))
� C0(t, u) + g

(
xu(t)

)
� S(x),

thus this inequality is actually an equality, i.e. u is optimal. This contradiction with assumption (27) ends the proof of
Fact 1.

Fact 2. The set P0 = {pu(0) | x ∈ K and S(x) = C(u)} is compact in R
n.

The proof of this fact is a consequence of the continuity of the extremal flow (for more details see [33, Lemma 4.9]).
Let us end the proof of Lemma 3.7. Let A be a subanalytic compact subset of R

n containing the set P0. Using the
mapping Φ defined as (40), for every x ∈ K we can express the final time t (x,u) = inf{t | Ex,t (u) ∈ Σ} restricted to
minimizing controls as a function of p0

τ(x,p0) = t
(
x,Φ(p0)

) = inf
{
t | (Ex,t ◦ Φ)(p0) ∈ Σ

}
,

where p0 ∈ A. From Proposition 1.2, this mapping is subanalytic on K × A. Let us further express in this way the
value function

S(x) = inf
{
C(u) | Ex,t (x,u)(u) ∈ Σ

}
.

To this aim, set

C(x,p0) = C
(
Φ(p0)

)
.

The function C is clearly subanalytic on K × A. We have

S(x) = inf
{
C(x,p0) | p0 ∈ A ∩ (Ex,τ(x,p0) ◦ Φ)−1(Σ)

}
,

and Proposition 1.2 implies that S is subanalytic on K . �
To end the proof of Theorem 3.1, it remains to prove that S is a viscosity solution of the Dirichlet problem (31).

Since S is continuous from Lemma 3.6, this is a consequence of [9, Proposition 3.12, p. 255].

3.2.5. Proof of Proposition 3.2
Let us prove that S is upper and lower semi-continuous on �Ω .

Lemma 3.8. The function S is upper semi-continuous on �Ω .

Proof. Let z ∈ Σ be fixed. We have to prove that

lim sup
x∈Ω,x→z

S(x) � S(z) = g(z).

For every x ∈ Ω , by definition,

S(x) = inf

{ t (x,u)∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu

(
t (x,u)

)) ∣∣∣∣ xu(0) = x

}
.

On the other part, the compatibility condition (30) implies that, for every control u, and every t > t (x,u) such that
xu(t) ∈ Σ and xu(s) ∈ �Ω , s ∈ [0, t], there holds

t (x,u)∫ (
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu

(
t (x,u)

))
�

t∫ (
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu(t)

)
.

0 0



380 E. Trélat / Ann. I. H. Poincaré – AN 23 (2006) 363–387
Hence,

S(x) = inf

{ t∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu(t)

) ∣∣∣∣ t > 0, xu(0) = x, xu(t) ∈ Σ, and xu(s) ∈ �Ω, ∀s ∈ [0, t]
}

.

For all x ∈ �Ω , y ∈ Σ , and t > 0, define

S(t, x, y) = inf

{ t∫
0

m∑
i=1

ui(s)
2 ds

∣∣∣∣ xu(0) = x, xu(t) = y

}

(with the agreement that S(t, x, y) = +∞ if there does not exist any trajectory xu(·) joining x to y), so that

S(x) = inf
{
S(t, x, y) + ct + g(y) | t > 0, y ∈ Σ

}
.

In particular we have for all t > 0

S(x) � S(t, x, z) + ct + g(z). (46)

On the other part, we claim that there exist a neighborhood of z in �Ω and positive real numbers α1, α2, such that if
t > 0 is small enough then

S(t, x, z) � dSR(x, z)2

t
+ α1dSR(x, z) + α2t, (47)

where dSR(·, ·) denotes the sub-Riemannian distance associated to the m-uple of vector fields (f1, . . . , fm). This
inequality is proved apart in the next lemma. From (46) and (47), we infer easily

lim sup
x∈Ω,x→z

S(x) � g(z). �
Lemma 3.9. For every z ∈ Σ , there exist a neighborhood V of z and positive real numbers ε,α1, α2, such that, for
every x ∈ V ∩ �Ω , and every t ∈ ]0, ε[, there holds

S(t, x, z) = dSR(x, z)2

t
+ R(t, x),

with ∣∣R(t, x)
∣∣ � α1dSR(x, z) + α2t.

Proof. Let z ∈ Σ be fixed. First of all, it was already noticed in Remark 3.6 that assumption (32) implies that the
control affine system (24) is small-time locally controllable near Σ , and thus, if x is close enough to z and t > 0
is small enough, then S(t, x, z) < +∞. On the other part, under assumption (32) the sub-Riemannian distance x �→
dSR(x, z) associated to the m-uple of vector fields (f1, . . . , fm) is well defined in a neighborhood of z.

For every solution xu(·) of the affine system (24) defined on [0, t], steering a point x ∈ V to z ∈ Σ , set

∀s ∈ [0,1] x̃(s) = xu(st) and ũi (s) = tui(ts), i = 1, . . . ,m.

Then,

x̃′(s) = tf0
(
x̃(s)

) +
m∑

i=1

ũi (s)fi

(
x̃(s)

)
a.e. on [0,1], (48)

and x̃(0) = x, x̃(1) = z. If the parameter t > 0 is small, the control system (48) can be considered as a perturbation of
the sub-Riemannian system associated to (f1, . . . , fm).

By hypothesis, minimizing trajectories solutions of (48), steering a point x ∈ V ∩ Ω to z ∈ Σ , cannot be singular,
and thus are associated to normal controls. Hence, from the Pontryagin Maximum Principle, we have, for all i ∈
{1, . . . ,m} and s ∈ [0,1],

ũi (s) = 〈
p̃(s), fi

(
x̃(s)

)〉
,
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where p̃(·) : [0,1] → R
n is an absolutely continuous function satisfying

p̃′(s) = −p̃(s)

(
t
∂f0

∂x

(
x̃(s)

) +
m∑

i=1

ũi (s)
∂fi

∂x

(
x̃(s)

))
a.e. on [0,1]. (49)

When t = 0, the system (48), (49) still makes sense, and parametrizes normal extremals steering x to z for the sub-
Riemannian structure associated to the m-uple (f1, . . . , fm). As this system depends analytically on the parameter t

and on the initial condition x, up to reducing V we can write, for every i ∈ {1, . . . ,m},
ũi (s) = ũ0

i (s) + tri(s),

where ri(·) is uniformly bounded as s ∈ [0,1], t ∈ [0, ε] and x ∈ V . Hence,

t

t∫
0

m∑
i=1

ui(τ )2 dτ =
1∫

0

m∑
i=1

ũi (s)
2 ds =

1∫
0

m∑
i=1

ũ0
i (s)

2 ds + 2t

1∫
0

m∑
i=1

ũ0
i (s)ri(s)ds + t2

1∫
0

m∑
i=1

ri(s)
2 ds,

from which it is not difficult to infer that

tS(t, x, z) = dSR(x, z)2 + tR(t, x),

where R(t, x) satisfies the inequality announced in the statement of the lemma. �
Lemma 3.10. The function S is lower semi-continuous on �Ω .

Proof. We have to prove that, for every x ∈ Σ , and every sequence (xn)n∈N of points of Ω converging towards x,
there holds

S(x) � lim infS(xn).

Let us notice again that assumption (32) implies that the affine control system (24) is locally controllable near Σ , hence
clearly the sequence (S(xn))n∈N is bounded. A reasoning similar to proof of Lemma 3.6 permits to conclude. �

Lemmas 3.8 and 3.10 prove the continuity of S on the whole �Ω . Uniqueness is then a consequence of [10, Theo-
rem 2.7, p. 37] or [9, Proposition 3.13, p. 256].

3.2.6. Proof of Proposition 3.3
For every x ∈ Ω , there exists a minimizing control u (not necessarily unique) steering x to Σ in time t (x,u). By

the choice axiom, we construct a function τ(·) on Ω which to x ∈ Ω associates τ(x) = t (x,u) for a choice of such a
control u. The following lemma is a consequence of the strict compatibility inequality which is now assumed.

Lemma 3.11. Under the strict compatibility assumption, the time τ(x) tends to 0 as x ∈ Ω tends to Σ .

Proof. If not, there exist x ∈ Σ and a sequence (xn)n∈N of points of Ω converging to x such that τ(xn) does not tend
to 0. Since S is continuous on �Ω from Proposition 3.2, the sequence (τ (xn))n∈N is clearly bounded, and hence, up to
a subsequence, it converges to a real t > 0. For every integer n, let un be a minimizing control steering xn to Σ in
time t (xn, un) = τ(xn), and let xun(·) denote the associated trajectory. As in the proof of Lemma 3.7, we can assume
that un tends to a control u in weak L2-topology, and this yields the inequality

t∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds + g

(
xu(t)

)
� lim infS(xn) = S(x) = g(x). (50)

Moreover, xun(·) tends uniformly to xu(·), and hence xu(·) is a trajectory contained in �Ω steering x ∈ Σ to xu(t) ∈ Σ .
According to the strict compatibility assumption, there must hold

g(x) − g
(
xu(t)

)
<

t∫
0

(
m∑

i=1

ui(s)
2 + c

)
ds,

and this contradicts inequality (50). �
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For every x ∈ Ω , there exists a minimizing control u steering x to Σ in time τ(x), and the associated trajectory
xu(·) satisfies

ẋu(t) = f0
(
xu(t)

) +
m∑

i=1

ui(t)fi

(
xu(t)

)
a.e. on

[
0, τ (x)

]
.

As in the proof of Lemma 3.9, let us reparametrize this control system on [0,1], by setting, for every s ∈ [0,1],
x̃(s) = xu

(
sτ (x)

)
and ũi (s) = τ(x)ui

(
sτ (x)

)
, i = 1, . . . ,m,

so that every extremal is solution of the system

x̃′(s) = τ(x)f0
(
x̃(s)

) +
m∑

i=1

ũi (s)fi

(
x̃(s)

)
,

p̃′(s) = −p̃(s)

(
τ(x)

∂f0

∂x

(
x̃(s)

) +
m∑

i=1

ũi (s)
∂fi

∂x

(
x̃(s)

))
,

with

ũi (s) = p̃(s)fi

(
x̃(s)

)
, i = 1, . . . ,m.

One has to prove that the set of vectors p̃(0) such that the associated trajectory steers x to Σ , is compact as x varies
in �Ω . Of course a problem arises when the point x ∈ Ω tends to Σ , and in this case τ(x) → 0. At the limit one
recovers a sub-Riemannian structure associated to the m-uple (f1, . . . , fm), which is medium-fat by assumption. In
this case, we know from [3, Proof of Theorem 6] (see also [1, Theorem 5]) that the set of initial adjoint vectors is
compact. Since our system is a perturbation of this sub-Riemannian structure as τ(x) tends to 0, we infer the desired
compactness property.

The end of the proof is then strictly similar to the proof of Lemma 3.7.

3.3. The Cauchy problem

3.3.1. Statement of the results
We first investigate Cauchy problems in the whole R

n.

Theorem 3.12. Let f0, . . . , fm be analytic vector fields on R
n, and let H(x,p) be the Hamiltonian function defined

on R
n × R

n by

H(x,p) = 〈
p,f0(x)

〉 + m∑
i=1

〈
p,fi(x)

〉2
.

Let T > 0 be fixed, and let g be a subanalytic function on R
n. For all x ∈ R

n and t ∈ [0, T ], consider the problem of
determining a solution of the affine control system

x ′
u(s) = f0

(
xu(s)

) +
m∑

i=1

ui(s)fi

(
xu(s)

)
a.e. on [0, t], (51)

such that

xu(t) = x, (52)

minimizing the cost

C(t, u) =
t∫

0

m∑
i=1

ui(s)
2 ds + g

(
xu(0)

)
. (53)

We assume that, for every x ∈ R
n, there exists a control u = (u1, . . . , um) ∈ L2([0, T ],R

m) such that the associated
trajectory xu(·) is well defined on [0, T ], and satisfies xu(T ) = x.
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Let S(t, x) denote the value function associated to the optimal control problem (51)–(53). Namely, if St denotes
the set of couples (xu(·), u(·)) solutions of (51), one has, for all t ∈ [0, T ] and x ∈ R

n,

S(t, x) = inf
{
C(t, u) | (xu(·), u(·)) ∈ St , xu(t) = x

}
. (54)

If g is proper, and if, for all x ∈ R
n and t ∈ ]0, T ], there exists no singular minimizing trajectory of the optimal

control problem (51)–(53), then S is continuous and subanalytic on ]0, T ]×R
n, and is solution of the Cauchy problem

∂S

∂t
+ H

(
x,

∂S

∂x

)
= 0 a.e. in ]0, T ] × R

n,

S(0, ·) = g(·). (55)

Remark 3.14. Since S is subanalytic on ]0, T ]×R
n, it is almost everywhere differentiable, and thus (55) makes sense.

Remark 3.15. There is a priori no guarantee that the function S be a viscosity solution on the one part, and that S be
the unique solution on the other part.

Remark 3.16. The assumption of well defined trajectories is satisfied if for instance the vector field f0 is complete.

Remark 3.17. Remark 3.3 on genericity holds again here.

Proposition 3.13. Under the assumptions of Theorem 3.12, if there holds moreover

Lie
(
f1(x), . . . , fm(x)

) = R
n

for every x ∈ R
n, then S is continuous and subanalytic on [0, T ] × R

n.

We next investigate Cauchy–Dirichlet problems on a subset Ω of R
n.

Theorem 3.14. Let Ω be a bounded analytic open subset of R
n. Consider the Hamiltonian function on Ω ×R

n defined
by

H(x,p) = 〈
p,f0(x)

〉 + m∑
i=1

〈
p,fi(x)

〉2
,

where f0, . . . , fm are analytic vector fields on R
n. Let Σ = ∂Ω , T > 0 be fixed and g be a subanalytic function on

[0, T ] × Σ . Consider the affine control system

x′
u(s) = f0

(
xu(s)

) +
m∑

i=1

ui(s)fi

(
xu(s)

)
(56)

and the cost

C(t, u) =
t∫

0

m∑
i=1

ui(s)
2 ds + g

(
t, xu(t)

)
. (57)

Assume that, for every t ∈ ]0, T ],

(1) The boundary Σ is accessible from Ω in time t , i.e., for every time t ∈ ]0, T ], and every x ∈ Ω , there exists a
control u on [0, t] such that the associated solution xu(·) of (56) satisfies xu(0) = x and xu(t) ∈ Σ .

(2) There exists no singular minimizing trajectory for the optimal control problem (56), (57), steering Ω to Σ in
time t .

For every t ∈ ]0, T ] and every x ∈ �Ω , let S(t, x) be the value function associated to the optimal control problem of
determining a trajectory solution of the control system (56) on [0, t], minimizing the cost (57), and such that xu(0) = x

and xu(t) ∈ Σ . Namely, if S denotes the set of couples (u(·), xu(·)) solutions of the control system (56), one has

S(t, x) = inf
{
C(t, u) | (xu(·), u(·)) ∈ S, xu(0) = x, xu(t) ∈ Σ

}
.
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For all s, t ∈ [0, T ] such that s < t , and all x ∈ Σ , y ∈ �Ω , set

S(t, x, s, y) = inf

{ t∫
s

m∑
i=1

ui(τ )2 dτ

∣∣∣∣ (
xu(·), u(·)) ∈ S, xu(s) = y, xu(t) = x

}
.

Assume that g satisfies the compatibility condition

∀(s, y) ∈ ({0} × �Ω ) ∪ ([0, T [ × ∂Ω
) ∀(t, x) ∈ ]s, T ] × ∂Ω g(t, x) − g(s, y) � S(t, x, s, y). (58)

Then, S is continuous and subanalytic on ]0, T ] × Ω , and is a viscosity solution of the Cauchy–Dirichlet problem

∂S

∂t
+ H

(
x,

∂S

∂x

)
= 0 in ]0, T ] × Ω,

S = g on ]0, T ] × ∂Ω,

lim
t→0

S(t, x) = g(0, x) in Ω. (59)

Remark 3.18. Remark 3.3 on genericity holds again here.

Proposition 3.15. Under the assumptions of Theorem 3.14, if there holds moreover

Lie
(
f1(x), . . . , fm(x)

) = R
n (60)

for every x ∈ �Ω , then S is continuous on [0, T ] × �Ω . As a consequence, S is the unique viscosity solution of the
Cauchy–Dirichlet problem (59).

Proposition 3.16. Under the assumptions of Theorem 3.14, if the m-uple of vector fields (f1, . . . , fm) is moreover
medium-fat on �Ω , then S is subanalytic on [0, T ] × �Ω .

3.3.2. Proof of Theorem 3.12
The proof is similar to the proof of Theorem 3.1 and is only sketched. We proceed in four steps.
Step 1. The infimum of formula (54) is a minimum, i.e. there exist minimizing trajectories for the optimal control

problem (51)–(53).
Indeed, let ((un

i )1�i�n, x
n
0 )n∈N be a sequence converging to the infimum, and, for every n, let xn(·) denote the

corresponding trajectory, with xn(0) = xn
0 . Since g is proper, we infer that the sequence (xn

0 )n∈N is bounded in R
n (and

thus, resp., (un
i )n∈N is bounded in L2([0, t],R), for every i ∈ {1, . . . ,m}), and hence up to a subsequence it converges

to a point x0 ∈ R
n (resp., converges weakly to a control ui ∈ L2([0, t],R), for every i ∈ {1, . . . ,m}). Therefore, the

sequence of curves xn(·) converges uniformly to xu(·) on [0, t], and in particular xu(0) = x0 and xu(t) = x. Moreover,
one has

t∫
0

m∑
i=1

ui(s)
2 ds + g(x0) � lim inf

n→+∞

t∫
0

m∑
i=1

un
i (s)

2 ds + g
(
xn

0

) = S(t, x),

and this inequality is necessarily an equality. Hence, xu(·) is minimizing.
Step 2. We write S(t, x) so that Proposition 1.2 shall be applied. In the same way as in the proof of Theorem 3.1,

an application of the Pontryagin Maximum Principle leads to

S(t, x) = inf
{
ψ(t, x0,p0) | ϕ(t, x0,p0) = x

}
, (61)

where ϕ and ψ are analytic mappings on ]0, T ] × R
n × R

n.
Step 3. The value function S is continuous on ]0, T ] × R

n.
The proof is similar to Lemma 3.6 and is skipped.
Step 4. S is subanalytic on ]0, T ] × R

n.
Indeed, let K be a compact subanalytic subset of ]0, T ] × R

n. To prove that S is subanalytic on K , similarly to
Lemma 3.7, it suffices to show that the set

P0 = {
(x0,p0) ∈ R

n × R
n | ∃(t, x) ∈ K ϕ(t, x0,p0) = x

}
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is compact.
On the one part, since the initial point is not fixed, all extremals of the problem can be chosen so as to be normal,

and moreover

p(0) = −1

2
∇g(x0).

On the other part, S is continuous and thus bounded on K . Since g is proper, the compactness of P0 follows easily.
An application of Proposition 1.2 ends the proof.

Remark 3.19. The assumption of nonexistence of singular minimizing trajectories cannot be skipped in Theorem 3.12.
Indeed it permits to prove that the value function S is continuous (actually that S is upper semi-continuous; it is
indeed always lower semi-continuous), and this fact is essential in Step 4 to assert that S has an upper bound on the
compact K .

3.3.3. Proof of Proposition 3.13
Regarding Remark 3.19, it suffices to show that S is continuous as t tends to 0. Similarly to Lemma 3.9, one can

prove, for t > 0 small enough, that

S(t, x) = inf
y∈Rn

(
dSR(x, y)2

t
+ R(t, x) + g(y)

)
, (62)

where R is uniformly bounded, and dSR(·, ·) is the sub-Riemannian distance associated to the m-uple of vector fields
(f1, . . . , fm). It follows easily from (62) that

lim
t→0

S(t, x) = g(x).

3.3.4. Proof of Theorem 3.14
The proof is similar (and simpler, for the final time is fixed) to the proof of Theorem 3.1, and is skipped.

3.3.5. Proof of Proposition 3.15
The proof of the continuity of S as t tends to 0 is the same as in Proposition 3.13. Outside t = 0 the proof is a little

more intricate. What follows is quite analogous to [27, pp. 219–220]. Let (t0, x0) ∈ ]0, T ] × Σ . We next prove that
S(t, x) → S(t0, x0) = g(t0, x0) as (t, x) → (t0, x0). First of all, notice that

S(t, x) = inf
{
S(t, x, s, y) + g(s, y) | (s, y) ∈ ({0} × �Ω ) ∪ ([0, t[×Σ

)}
. (63)

We proceed in two steps.
First step: S is upper semi-continuous at (t0, x0).
Indeed, since x0 ∈ Σ , one has S(t, x) � g(s, x0) + S(t, x, s, x0), for every s ∈ [0, t0[. Moreover, similarly to

Lemma 3.9,

S(t, x, s, x0) � dSR(x0, x)2

t − s
+ α1dSR(x0, x) + α2(t − s),

for every x ∈ �Ω , if t − s > 0 is small enough, where α1, α2 � 0. We then infer easily that

lim sup
(t,x)→(t0,x0)

S(t, x) � g(t0, x0).

Second step: S is lower semi-continuous at (t0, x0).
Indeed, let (tn, xn)n∈N be a sequence of ]0, T ] × Ω converging to (t0, x0). From (63), there exists a sequence

(sn, yn)n∈N of ({0} × �Ω) ∪ ([0, T ] × Σ) such that sn < tn for every integer n, and

S
(
tn, xn

) − g
(
sn, yn

) − S
(
tn, xn, sn, yn

) −→
n→+∞ 0.

Up to a subsequence, we can suppose that (sn, yn) tends to (s0, y0) ∈ ({0} × �Ω) ∪ ([0, t0] × Σ). Three cases occur:
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1. If s0 < t0, using the assumption of the absence of singular minimizers, it is easy to prove that

S
(
tn, xn, sn, yn

) −→
n→+∞S(t0, x0, s0, y0).

Hence

lim inf
n→+∞S

(
tn, xn

)
� g(s0, y0) + S(t0, x0, s0, y0),

and applying the compatibility condition (58), we infer

lim inf
n→+∞S

(
tn, xn

)
� g(t0, x0).

2. If s0 = t0 and x0 = y0, we have obviously

lim inf
n→+∞S

(
tn, xn

)
� g(t0, x0)

since S(tn, xn, sn, yn) � 0 for every integer n.
3. If s0 = t0 and x0 
= y0, then tn − sn tends to 0, and, similarly to Lemma 3.9, one can prove the existence of

nonnegative real numbers α1, α2, such that

S
(
tn, xn, sn, yn

)
� dSR(xn, yn)2

tn − sn
− α1dSR

(
xn, yn

) − α2
(
tn − sn

)
,

for every integer n. Hence, S(tn, xn, sn, yn) −→
n→+∞+∞ for dSR(x0, y0) 
= 0. In particular, S(tn, xn) −→

n→+∞+∞.

On the other part, notice that, due to the assumption (60), one can easily prove that the value function S is bounded
on each [ε,T ] × �Ω , where ε > 0. This is a contradiction.

3.4. Further comments

It is rather clear how to extend the previous results to more general situations. Indeed, notice the three following
facts.

1. First of all, using notations of Section 3.1, the author provides in [34] some general conditions on the control
system (22) and on the cost (23) ensuring that the associated value function is subanalytic. The main assumption
is the absence of singular minimizing trajectories.

2. On the other part, it is well known that, under some general assumptions, the previous value function is a viscosity
solution of the Hamilton–Jacobi equation

∂v

∂t
+ H1

(
x,

∂v

∂x

)
= 0, (64)

where H1(x,p) = maxu H(x,p,u). Notice that all comments here also hold in the Dirichlet case where the value
function does not depend on t .

3. Finally, in [25,29], the authors prove that, under general assumptions on the Hamiltonian H1, there exists an
optimal control problem such that the associated value function is exactly the viscosity solution of (64) (inverse
optimal control problem). Their proof can be quite readily extended to the subanalytic case.

Gathering these facts leads to a general statement ensuring that the unique viscosity solution of an Hamilton–
Jacobi equation is subanalytic, provided that the associated optimal control problem would not admit any singular
minimizing trajectory.

However, the proof of the third fact, mainly based on Kakutani Fixed Point Theorem, is not constructive. Hence,
in general, it may be difficult to check whether or not an underlying optimal control problem admits some singular
minimizing trajectories.

We conclude with the following question: given an analytic function H1(x,p), convex in p (but not strictly convex),
is it possible to set some conditions ensuring that an associated subanalytic optimal control problem does not admit
any singular minimizing trajectory?
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