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Abstract

We are concerned with existence and multiplicity of nontrivial solutions for the Dirichlet problem �u + |u|p−2u = 0 in Ω ,
u = 0 on ∂Ω , where Ω is a bounded domain of R

n, n � 3, and p > 2n
n−2 . We show that suitable perturbations of the domain, which

modify its topological properties, give rise to a number of solutions which tends to infinity as the size of the perturbation tends to
zero (some examples show that the perturbed domains may be even contractible). More precisely, we prove that for all k ∈ N, if the
size of the perturbation is small enough (depending on k), there exist at least k pairs of nontrivial solutions, which concentrate near
the perturbation as the size of the perturbation tends to zero. The method we use, which is completely variational, gives also further
informations on the qualitative properties of the solutions; in particular, these solutions (which may change sign) do not have more
than k nodal regions and at least two solutions (which minimize the corresponding energy functional) have constant sign.

Résumé

Nous étudions l’existence et la multiplicité de solutions pour le problème de Dirichlet �u + |u|p−2u = 0, u �≡ 0 en Ω , u = 0
sur ∂Ω , où Ω est un ouvert borné de R

n, n � 3, et p > 2n
n−2 . Nous démontrons que l’existence et le nombre de solutions sont

liés à certaines perturbations du domaine, qui modifient ses propriétés topologiques. Chaque perturbation dépend d’un paramètre ε

(l’épaisseur de la perturbation) ; quand ε → 0, le nombre de solutions tend à l’infini et les solutions se concentrent près de la
perturbation (des examples montrent que les domaines perturbés peuvent même être contractiles). Plus précisément, nous prouvons
que pour tout k ∈ N il existe εk > 0 tel que, pour tout ε ∈ ]0, εk[, le problème a au moins k paires de solutions. La méthode que
nous suivons, qui est complètement variationnelle, donne aussi des informations sur les propriétés qualitatives des solutions. En
particulier, ces solutions (qui peuvent changer de signe) ne peuvent pas avoir plus que k régions nodales ; de plus, au moins deux
solutions (qui minimisent la fonctionnelle de l’énergie) ont signe constant.
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1. Introduction

Let us consider the problem

P(Ω)

{
�u + |u|p−2u = 0, u �≡ 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain of R
n, n � 3, and p > 2n

n−2 is a fixed exponent ( 2n
n−2 is the critical Sobolev exponent).

In this paper we show that suitable perturbations of a given domain give rise to solutions of the problem in the
perturbed domains; when the size of the perturbation tends to zero, the number of the solutions tends to infinity while
the solutions concentrate as Dirac masses near the perturbation; this perturbation is realized by removing a thin subset
of the domain in such a way to modify its topological properties (see Theorem 2.1 and Remark 2.2).

It is well known that, when 2 < p < 2n
n−2 , P(Ω) has solutions in any domain Ω . On the contrary, when p � 2n

n−2 ,
the problem has no solution if Ω is starshaped (see [21]) while it has infinitely many solutions if Ω is, for example,
an annulus (see [8]).

For p = 2n
n−2 , a sufficient condition for the existence of a positive solution is that Ω has nontrivial topology, in a

suitable sense (see [1]); this condition is only sufficient but not necessary, as shown by some examples of contractible
domains where the problem has positive solutions for p = 2n

n−2 (see [5,7,16,18]). For p > 2n
n−2 , this nontriviality

condition of the domain is neither a sufficient nor a necessary condition; in fact, nonexistence results hold for some
p > 2n

n−2 in some nontrivial domains (see [17,19]) while an arbitrarily large number of solutions can be obtained in

some contractible domains for all p > 2n
n−2 (see [20]).

It is also worth pointing out that existence of solutions in the supercritical case has been proved even in some
“nearly starshaped” domains (see the definition introduced in [11]) for p sufficiently close to 2n

n−2 (see [10,12,13]) or
for p large enough (see [14]); on the other hand, a different definition of “nearly starshaped” domain is used in [6] in
order to extend Pohožaev’s nonexistence result to nonstarshaped domains when p is large enough.

Let us observe that in [20] several perturbations have been used in order to obtain several solutions in contractible
domains. On the contrary, the result proved in the present paper shows that a unique perturbation can produce an
arbitrarily large number of solutions.

In order to overcome the difficulties related to the presence of the supercritical exponent, we proceed as follows: we
modify the nonlinear term |u|p−2u in such a way that the modified nonlinearity g(x,u) has subcritical growth outside
a neighbourhood of the perturbation; then (exploiting also the symmetry of the domain with respect to an axis) we
use topological methods of Calculus of Variations to find multiple solutions of the modified problem in the perturbed
domain; we also show that, as the size of the perturbation tends to zero, these solutions concentrate as Dirac masses
near the perturbation (where the nonlinear term has not been modified); finally, we prove that these solutions solve
also the unmodified problem when the size of the perturbation is small enough.

2. Notations and statement of the main result

Let Ω be a bounded domain of R
n, having radial symmetry with respect to the xn-axis, that is

x = (x1, . . . , xn) ∈ Ω ⇐⇒
((

n−1∑
i=1

x2
i

)1/2

,0, . . . ,0, xn

)
∈ Ω. (2.1)

Let x1 = (0, . . . ,0, x1
n), x2 = (0, . . . ,0, x2

n), x3 = (0, . . . ,0, x3
n) be three points of the xn-axis which satisfy

x1
n < x2

n < x3
n, x1 /∈ �Ω, x2 ∈ Ω, x3 /∈ �Ω. (2.2)
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For all ε > 0, set

χε =
{

x ∈ R
n:

n−1∑
i=1

x2
i < ε2, x1

n < xn < x3
n

}
(2.3)

and

Ωε = Ω \ χ̄ε. (2.4)

Since the domain Ωε has radial symmetry with respect to the xn-axis for all ε > 0, it is natural to look for solutions
of problem P(Ωε) among the functions which have the same symmetry. Thus, we consider the subsets of H

1,2
0 (Ωε),

H
1,2
0 (Ω) which consist of the functions radially symmetric with respect to the xn-axis and denote by HS(Ωε), HS(Ω)

these subspaces. Moreover, we intend that every function of H
1,2
0 (Ωε) is extended in all of Ω by the value zero

outside Ωε . In these spaces we shall use the norms

‖Du‖2 =
(∫

Ω

|Du|2 dx

)1/2

and

‖u‖q =
(∫

Ω

|u|q dx

)1/q

∀u ∈ Lq(Ω), q � 1.

Theorem 2.1. Let p > 2n
n−2 , Ω be a bounded domain radially symmetric with respect to the xn-axis, x1, x2, x3 be

three points of the xn-axis satisfying condition (2.2) and, for all ε > 0, χε and Ωε be the domains defined in (2.3) and
(2.4). Then, for all positive integer k, there exists ε̄k > 0 such that, for all ε ∈ ]0, ε̄k[, problem P(Ωε) has at least k

pairs of solutions ±u1,ε, . . . ,±uk,ε in HS(Ωε) ∩ Lp(Ωε), which, for all i = 1, . . . , k, satisfy:

(a) limε→0
∫
Ωε

|Dui,ε|2 dx = 0,
(b) limε→0

∫
Ωε

|ui,ε|p dx = 0,
(c) limε→0 sup{|ui,ε(x)|: x ∈ Ωε \ χρ} = 0 ∀ρ > 0,
(d) limε→0 sup{|ui,ε(x)|: x ∈ Ωε ∩ χρ} = +∞ ∀ρ > 0,
(e) limε→0

∫
Ωε∩χρ

|ui,ε|q dx = +∞ ∀q > n
2 (p − 1), ∀ρ > 0.

The proof is reported in Section 3, where also other properties of the solutions are specified (see Propositions 3.8
and 3.9).

Remark 2.2. A result analogous to Theorem 2.1 holds in some more general perturbed domains. In fact, let Ω ,
x1, x2, x3 be as in Theorem 2.1; consider a sequence of subdomains Ωj of Ω , satisfying the radial symmetry condition
(2.1) for all j ∈ N; now, set

cap(Ω \ Ωj) = inf

{∫
Rn

|Du|2 dx: u ∈ C∞
0 (Rn), u(x) � 1 ∀x ∈ Ω \ Ωj

}
(2.5)

and assume that

(a) limj→∞ cap(Ω \ Ωj) = 0,
(b) for all j ∈ N there exists ρj > 0 such that χρj

∩ Ωj = ∅.

Then, arguing as in the proof of Theorem 2.1, one can prove that, for all p > 2n
n−2 , problem P(Ωj ), for j large

enough, has at least k pairs of solutions ±u1,j , . . . ,±uk,j in HS(Ωj ) ∩ Lp(Ωj ), which, as j → ∞, present the same
asymptotic behaviour that the solutions given by Theorem 2.1 present as ε → 0 (see (a)–(e) in Theorem 2.1 as well as
the properties described in Propositions 3.8 and 3.9).
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Finally, let us remark that the methods we use in this paper can be easily adapted to deal with more general
nonlinear terms having supercritical growth.

Examples 2.3. Theorem 2.1 allows us to obtain an arbitrarily large number of solutions even in some contractible
domains. Consider, for example, the domain A \ χ̄ε (a pierced annulus) where A is the annulus

A = {
x ∈ R

n: 0 < r1 < |x| < r2
}

and χε is the cylinder defined as in (2.3) with x1
n = 0 and x3

n > r2. It is clear that, because of this choice of x1

and x3, A \ χ̄ε is a contractible domain for all ε > 0; moreover, Theorem 2.1 applies when ε > 0 is small enough
and guarantees the existence of an arbitrarily large number of solutions. As ε → 0, the number of solutions tends to
infinity and the solutions concentrate near points of the xn-axis. Notice that these solutions do not converge as ε → 0
to solutions of the problem in the limit domain (i.e. the annulus A where, on the other hand, it is easy to find infinitely
many radial solutions).

Let us remark that, in order to have an arbitrarily large number of solutions in contractible domains, in [20] some
domains Ωh

ε of the following form have been considered: Ωh
ε = Ωh \ ⋃h

j=1 χ̄
j
ε where χ

j
ε , for j = 1, . . . , h, is the

cylinder of the form (2.3) with x1
n = j and x3

n = j + 1 and Ωh = T h \ ⋃h
j=1 B(cj , rj ), where

T h =
{

x = (x1, . . . , xn) ∈ R
n:

n−1∑
i=1

x2
i < 1, 0 < xn < h + 1

}
(2.6)

and B(cj , rj ) is the ball of radius rj ∈ ]0,1/2[ and centre cj = (0, . . . ,0, j) ∈ R
n. In [20] it is proved that for

all j = 1, . . . , h there exists a solution of P(Ωh
ε ) whose positive or negative part concentrates as ε → 0 near the

cylinder χ
j
ε . Now, it is clear that Theorem 2.1 can be applied in the domain Ωh with h separate terns of points

x1, x2, x3 satisfying condition (2.2); so, for each j = 1, . . . , h, for ε small enough, we obtain many solutions localized
near χ

j
ε , whose number tends to infinity as ε → 0.

Notice that, taking into account Remark 2.2, similar multiplicity results can be obtained also in contractible do-
mains Ωs

r of the form

Ωs
r =

{
x = (x1, . . . , xn) ∈ R

n: 1 < |x| < r,

(
n−1∑
i=1

x2
i

)1/2

> sxn

}
(2.7)

for all r > 1, when s > 0 is small enough.
Domains of this type have been also considered in [10,12–14]. When p > 2n

n−2 is a fixed exponent, the concentration
phenomena, which allow us to obtain the multiplicity result proved in the present paper, occur as s → 0; on the
contrary, other different concentration phenomena, which arise as p → 2n

n−2 (see [10,12,13]) or p → +∞ (see [14]),

have been used to find solutions for all r > 1 and s > 0, not necessarily small, when p is close to 2n
n−2 or it is large

enough.

In the case p � 2n
n−2 , the solutions of P(Ω) are obtained as critical points of the functional

f̃ (u) = 1

2

∫
Ω

|Du|2 dx − 1

p

∫
Ω

|u|p dx.

In the case p > 2n
n−2 , there are some difficulties in dealing with this functional. Therefore, we introduce the following

modified functional fε :HS(Ωε) → R, defined by

fε(u) = 1

2

∫
Ωε

|Du|2 dx −
∫
Ωε

G(x,u)dx, (2.8)

where G(x,u) = ∫ u

0 g(x, t)dt with g(x, t) defined as follows. For all x ∈ Ω ∩ χ̄1 we set g(x, t) = |t |p−2t . If
Ω \ χ̄1 �= ∅, in order to define g(x, t) for x ∈ Ω \ χ̄1, we first remark that

inf

{ ∫
|Du|2 dx: u ∈ H

1,2
0 (Ω),

∫
u2 dx = 1

}
> 0; (2.9)
Ω\χ̄1 Ω\χ̄1
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then we choose t0 > 0 small enough such that

(p − 1)t
p−2
0 < inf

{ ∫
Ω\χ̄1

|Du|2 dx: u ∈ H
1,2
0 (Ω),

∫
Ω\χ̄1

u2 dx = 1

}
; (2.10)

hence, for all x ∈ Ω \ χ̄1, we set

g(x, t) =


|t |p−2t if |t | � t0,

t
p−1
0 + (p − 1)t

p−2
0 (t − t0) if t � t0,

−t
p−1
0 + (p − 1)t

p−2
0 (t + t0) if t � −t0.

(2.11)

Let us remark that this choice of t0 implies the existence of a constant c̃ > 0 such that∫
Ω\χ̄1

[|Du|2 − g(x,u)u
]

dx � c̃

∫
Ω\χ̄1

|Du|2 dx ∀u ∈ H
1,2
0 (Ω), (2.12)

as one can easily verify.
Notice that all nontrivial critical points of fε belong to the set

Mε = {
u ∈ HS(Ωε): u �≡ 0, f ′

ε(u)[u] = 0
}
. (2.13)

The solutions of problem P(Ωε) will be obtained, for ε > 0 small enough, as critical points for fε constrained on Mε .

3. Proof of Theorem 2.1 and behaviour of the solutions

Lemma 3.1. For all ε > 0, the functional fε (see (2.8)) is well defined and belongs to the class C2. Moreover, the
following properties hold.

(a) Let u ∈ HS(Ωε), u �≡ 0; then either f ′
ε(tu)[u] > 0 ∀t > 0 (what happens, for example, if u ≡ 0 in χ1) or there

exists a unique t̄ > 0 such that t̄u ∈ Mε; in the second case, f ′
ε(tu)[u] > 0 ∀t ∈ ]0, t̄[ and f ′

ε(tu)[u] < 0 ∀t > t̄

(the second case occurs, for example, if u ≡ 0 in Ωε \ χ1).
(b) For all ε > 0 such that Mε �= ∅, we have infMε fε > 0.
(c) There exists ε̄ > 0 such that Mε �= ∅ ∀ε ∈ ]0, ε̄[.
(d) limε→0 infMε fε = 0.

(e) If Mε �= ∅, then Mε is a C1-manifold of codimension 1.
(f) Every critical point for fε constrained on Mε is a critical point for fε .

Proof. First, let us remark that the functionals

u −→
∫

Ωε\χ̄1

G(x,u)dx and u −→
∫

Ωε∩χ1

G(x,u)dx, (3.1)

defined respectively in L2(Ωε \ χ̄1) and in Lp(Ωε ∩ χ1), are C2-functionals. Moreover, notice that∫
Ωε\χ̄1

u2 dx � c̄

∫
Ωε

|Du|2 dx ∀u ∈ H
1,2
0 (Ωε) (3.2)

for a suitable constant c̄ > 0 and, for all ε > 0, there exists c̄ε > 0 such that( ∫
Ωε∩χ1

|u|p dx

)2/p

� c̄ε

∫
Ωε

|Du|2 dx ∀u ∈ HS(Ωε). (3.3)

Hence, by standard arguments, it is easy to verify that fε is a well defined C2-functional in HS(Ωε).
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(a) Notice that, for all t > 0,

f ′
ε(tu)[u] = t

[∫
Ωε

|Du|2 dx −
∫
Ωε

g(x, tu)

t
udx

]
,

where (by the definition of g) the function t �→ ∫
Ωε

g(x,tu)
t

udx is strictly increasing in ]0,+∞[ for all u �≡ 0. Then

the assertion (a) follows, taking also into account that g(x, tu)u = tp−1|u|p if u ≡ 0 in Ωε \ χ1 while g(x, tu)u �
(p − 1)t

p−2
0 tu2 if u ≡ 0 in χ1.

(b) From property (a) we infer that, for all u ∈ Mε ,

fε(u) � fε(tu) ∀t � 0. (3.4)

On the other hand, we have f ′
ε(0) = 0 and f ′′

ε (0)[u,u] = ∫
Ωε

|Du|2 dx. Therefore there exists r > 0 and α > 0
such that

inf

{
fε(u): u ∈ HS(Ωε),

∫
Ωε

|Du|2 dx = r2
}

� α.

It follows that

inf
Mε

fε � α > 0.

(c) Since x2 ∈ Ω , there exists ρ2 > 0 such that B(x2, ρ2) ⊂ Ω . Choose ϕ̄ ∈ HS(B(x2, ρ2) \ χ̄ρ2/2) and, for all
ε > 0, set

ϕ̄ε(x) = ϕ̄

(
x2 + ρ2

2ε

(
x − x2)) (3.5)

(we intend that ϕ̄ is extended by zero outside B(x2, ρ2) \ χ̄ρ2/2). Then, it is easy to verify that ϕ̄ε ∈ HS(Ωε) for
ε ∈ ]0, ρ2/2[ and ϕ̄ε ≡ 0 in Ωε \ χ1 for ε ∈ ]0,1/2[; thus, for 0 < ε < min{1/2, ρ2/2}, there exists t̄ε > 0 such that
t̄εϕ̄ε ∈ Mε .

(d) For the proof of (d), it suffices to observe that, since p > 2n
n−2 ,

lim
ε→0

fε(t̄εϕ̄ε) = 0 (3.6)

as one can easily verify by a direct computation.
(e) Let us set

Fε(u) = f ′
ε(u)[u] (3.7)

(notice that Fε is a C1-functional in HS(Ωε)). We shall prove that F ′
ε(u) �= 0 for all u ∈ Mε , so the assertion will

follow by the implicit function theorem. In fact, if u ∈ Mε , then u �≡ 0 and Fε(u) = 0, that is∫
Ωε

|Du|2 dx −
∫
Ωε

g(x,u)udx = 0.

Therefore, we have

F ′
ε(u)[u] = 2

∫
Ωε

|Du|2 dx −
∫
Ωε

g′(x,u)u2 dx −
∫
Ωε

g(x,u)udx

=
∫
Ωε

[
g(x,u)u − g′(x,u)u2]dx

(here g′(x, t) denotes the derivative of g(x, t) with respect to t ).
Since g(x, t)t − g′(x, t)t2 < 0 ∀t �= 0 and since u �≡ 0, we infer that F ′

ε(u)[u] < 0 and so F ′
ε(u) �= 0.

(f) If u ∈ Mε is a critical point for fε constrained on Mε , there exists a Lagrange multiplier µ such that

f ′
ε(u) + µF ′

ε(u) = 0. (3.8)
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In particular, we have

f ′
ε(u)[u] + µF ′

ε(u)[u] = 0, (3.9)

which implies µ = 0 since f ′
ε(u)[u] = 0 (because u ∈ Mε) and F ′

ε(u)[u] �= 0. Therefore, f ′
ε(u) = 0. �

Thus, finding nontrivial critical points for fε is equivalent to finding critical points for fε constrained on Mε . The
compactness property proved in the following lemma plays an important role to find critical points for fε constrained
on Mε .

Lemma 3.2. Let ε > 0 be such that Mε �= ∅ and (ui)i be a sequence in Mε . The following properties hold.

(a) If supi∈N fε(ui) < +∞, then the sequence (ui)i is bounded in H
1,2
0 (Ωε).

(b) Let us set Fε(u) = f ′
ε(u)[u]; if ui ⇀ u weakly in H

1,2
0 (Ωε) and there exists a sequence (µi)i in R such that

f ′
ε(ui) + µiF

′
ε(ui) −→ 0 in H−1(Ωε), (3.10)

then limi→∞ µi = 0, u ∈ Mε and ui → u in H
1,2
0 (Ωε).

(c) The functional fε constrained on Mε satisfies the Palais–Smale condition at any level c ∈ R, i.e. every sequence
(ui)i in Mε , such that

lim
i→∞fε(ui) = c and gradMε

fε(ui) → 0 in H−1(Ωε), (3.11)

is relatively compact in H
1,2
0 (Ωε).

Proof. (a) Since ui ∈ Mε , taking into account the definition of G(x, t), we have

fε(ui) = 1

2

∫
Ωε

|Dui |2 dx −
∫
Ωε

G(x,ui)dx

� 1

2

∫
Ωε

|Dui |2 dx − 1

2

∫
Ωε\χ̄1

g(x,ui)ui dx − 1

p

∫
Ωε∩χ1

|ui |p dx

=
(

1

2
− 1

p

)∫
Ωε

|Dui |2 dx −
(

1

2
− 1

p

) ∫
Ωε\χ̄1

g(x,ui)ui dx.

It follows that

sup
i∈N

{∫
Ωε

|Dui |2 dx −
∫

Ωε\χ̄1

g(x,ui)ui dx

}
< +∞. (3.12)

Hence (3.12) and (2.12) imply supi∈N

∫
Ωε

|Dui |2 dx < +∞.
(b) First, let us prove that u �≡ 0. Notice that

lim
i→∞

∫
Ωε\χ̄1

|ui − u|2 dx = 0; (3.13)

moreover, since ε > 0 and ui ∈ HS(Ωε),

lim
i→∞

∫
Ωε∩χ1

|ui − u|p dx = 0. (3.14)

Notice that ui ∈ Mε implies∫ [|Dui |2 − g(x,ui)ui

]
dx +

∫ [|Dui |2 − |ui |p
]

dx = 0. (3.15)
Ωε\χ̄1 Ωε∩χ1
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Let us observe that we must have∫
Ωε∩χ1

|ui |p dx > 0 ∀i ∈ N, (3.16)

otherwise, since ui �≡ 0 in Ωε , we should have∫
Ωε\χ̄1

[|Dui |2 − g(x,ui)ui

]
dx > 0,

because of the choice of t0 (see (2.10)), which contradicts (3.15).
Since∫

Ωε\χ̄1

[|Du|2 − g(x,u)u
]

dx � 0 ∀u ∈ H
1,2
0 (Ωε), (3.17)

we infer from (3.15)∫
Ωε∩χ1

|ui |p dx �
∫

Ωε∩χ1

|Dui |2 dx.

On the other hand, as ε > 0 and ui ∈ HS(Ωε), there exists a constant c̄ > 0 such that∫
Ωε∩χ1

|Du|2 dx � c̄

( ∫
Ωε∩χ1

|u|p dx

)2/p

∀u ∈ HS(Ωε). (3.18)

Hence we get∫
Ωε∩χ1

|ui |p dx �
∫

Ωε∩χ1

|Dui |2 dx � c̄

( ∫
Ωε∩χ1

|ui |p dx

)2/p

∀i ∈ N,

which, because of (3.16), implies

inf
i∈N

∫
Ωε∩χ1

|ui |p dx > 0.

Taking into account (3.14), it follows that∫
Ωε∩χ1

|u|p dx > 0. (3.19)

Notice that, as ui ∈ Mε , (3.10) implies

lim
i→∞µiF

′
ε(ui)[ui] = 0. (3.20)

Moreover, ui ∈ Mε implies

F ′
ε(ui)[ui] = 2

∫
Ωε

|Dui |2 dx −
∫
Ωε

g′(x,ui)u
2
i dx −

∫
Ωε

g(x,ui)ui dx =
∫
Ωε

[
g(x,ui)ui − g′(x,ui)u

2
i

]
dx. (3.21)

Hence, from (3.13) and (3.14) we infer that

lim
i→∞F ′

ε(ui)[ui] =
∫
Ωε

[
g(x,u)u − g′(x,u)u2]dx. (3.22)

Notice that∫ [
g(x,u)u − g′(x,u)u2]dx < 0
Ωε
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because g(x, t)t − g′(x, t)t2 < 0 ∀t �= 0 and u �≡ 0 in Ωε (as (3.19) holds). Taking into account (3.20), it follows that

lim
i→∞µi = 0. (3.23)

Using again (3.10), we obtain

lim
i→∞

{
f ′

ε(ui)[u − ui] + µiF
′
ε(ui)[u − ui]

} = 0, (3.24)

which, taking into account (3.13), (3.14), (3.20), (3.23) and the weak convergence of ui , implies

lim
i→∞

∫
Ωε

|Dui |2 dx =
∫
Ωε

|Du|2 dx.

Thus, ui → u strongly in H
1,2
0 (Ωε) and u ∈ Mε .

(c) Property (a) implies that every Palais–Smale sequence (ui)i is bounded in H
1,2
0 (Ωε); hence, up to a subse-

quence, it converges weakly in H
1,2
0 (Ωε); then, property (b) guarantees the strong convergence in H

1,2
0 (Ωε) to a

function u ∈ Mε . �
Lemma 3.3. Let (εi)i be a sequence of positive numbers and (ui)i a sequence of functions in HS(Ωεi

) such that
f ′

εi
(ui) = 0 and ui �≡ 0 in Ωεi

for all i ∈ N.
If limi→∞ fεi

(ui) = 0, then

(a) limi→∞
∫
Ωεi

|Dui |2 dx = 0,

(b) limi→∞ εi = 0,
(c) limi→∞ sup{|ui(x)|: x ∈ Ωεi

\ χρ} = 0 ∀ρ > 0.

Proof. (a) Clearly, it suffices to prove that there exists a constant c̄ > 0 for which

fε(u) � c̄

∫
Ωε

|Du|2 dx (3.25)

for all ε > 0 and for all u ∈ HS(Ωε) such that f ′
ε(u) = 0.

If f ′
ε(u) = 0, arguing as in the proof of Lemma 3.2, we have

fε(u) � 1

2

∫
Ωε

|Du|2 dx − 1

2

∫
Ωε\χ̄1

g(x,u)udx − 1

p

∫
Ωε∩χ1

|u|p dx

=
(

1

2
− 1

p

){ ∫
Ωε\χ̄1

[|Du|2 − g(x,u)u
]

dx +
∫

Ωε∩χ1

|Du|2 dx

}
. (3.26)

Hence, the existence of a constant c̄ > 0, such that (3.25) holds, follows easily from (2.12).
(b) Arguing by contradiction, assume that, up to a subsequence, infi∈N εi > 0 and choose ε̄ ∈ ]0, infi∈N εi[. Thus,

ui ∈ HS(Ωε̄) for all i ∈ N. Since ε̄ > 0, there exists a constant c̄ε̄ > 0 such that∫
Ωε̄∩χ1

|Du|2 dx � c̄ε̄

( ∫
Ωε̄∩χ1

|u|p dx

)2/p

∀u ∈ HS(Ωε̄). (3.27)

Hence, property (a) implies

lim
i→∞

∫
Ωε̄∩χ1

|ui |p dx = 0. (3.28)

On the other hand, we have f ′̄
ε(ui)[ui] = 0, that is∫ [|Dui |2 − |ui |p

]
dx +

∫ [|Dui |2 − g(x,ui)ui

]
dx = 0. (3.29)
Ωε̄∩χ1 Ωε̄\χ̄1
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First, let us remark that (3.29) implies∫
Ωε̄∩χ1

|ui |p dx > 0 ∀i ∈ N (3.30)

otherwise, as ui �≡ 0 in Ωε̄ , we should have (because of (2.12))∫
Ωε̄\χ̄1

[|Dui |2 − g(x,ui)ui

]
dx > 0

and so (3.29) cannot hold.
Moreover, from (3.29) and (2.12) we infer that∫

Ωε̄∩χ1

|ui |p dx �
∫

Ωε̄∩χ1

|Dui |2 dx ∀i ∈ N. (3.31)

Therefore, taking into account (3.27), (3.30) and (3.31), we get

inf
i∈N

∫
Ωε̄∩χ1

|ui |p dx > 0, (3.32)

which contradicts (3.28).
(c) For all ρ > 0, let us consider the cylinder

Cρ =
{

x = (x1, . . . , xn) ∈ R
n:

n−1∑
i=1

x2
i � ρ2

}
.

Since the subspace of the radial functions in H 1(Ω \ Cρ) is embedded in Lq(Ω \ Cρ) for all ρ > 0 and q � 1,
property (a) implies

lim
i→∞

∫
Ωεi

\Cρ

|ui |q dx = 0 ∀q � 1, ∀ρ > 0. (3.33)

Now, let us introduce the function wi defined by

wi(x) = 1

n(n − 2)ωn

∫
Ωεi

|g(y,ui(y))|
|x − y|n−2

dy,

where ωn is the measure of the unit sphere of R
n. It is well known that wi solves the equation

�wi(x) + ∣∣g(
x,ui(x)

)∣∣ = 0;
moreover, we have wi � 0 on ∂Ωεi

, which implies

wi(x) �
∣∣ui(x)

∣∣ ∀x ∈ Ωεi
. (3.34)

Now, let us prove that

lim
i→∞ sup

{
wi(x): x ∈ Ω \ Cρ

} = 0 ∀ρ > 0. (3.35)

For all x ∈ Ω \ Cρ , we write wi as

wi(x) = 1

n(n − 2)ωn

[ ∫
Ωεi

\B(x,ρ/2)

|g(y,ui(y))|
|x − y|n−2

dy +
∫

Ωεi
∩B(x,ρ/2)

|g(y,ui(y))|
|x − y|n−2

dy

]
. (3.36)

The first integral in (3.36) can be estimated as follows:∫
Ω \B(x,ρ/2)

|g(y,ui(y))|
|x − y|n−2

dy �
(

2

ρ

)n−2 ∫
Ω

|g(y,ui(y))|dy. (3.37)
εi εi
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As f ′
εi
(ui) = 0, property (a) implies

lim
i→∞

∫
Ωεi

g(x,ui)ui dx = 0. (3.38)

Since ∣∣g(x, t)
∣∣ � g(x, t)t + g(x,1) ∀x ∈ Ω, ∀t ∈ R, (3.39)

taking into account the definition of g(x, t), we easily infer that

lim
i→∞

∫
Ωεi

∣∣g(
y,ui(y)

)∣∣dy = 0,

which, by (3.37), implies

lim
i→∞

∫
Ωεi

\B(x,ρ/2)

|g(y,ui(y))|
|x − y|n−2

dy = 0 (3.40)

uniformly with respect to x ∈ Ω \ Cρ .
In order to deal with the second integral in (3.36), let us remark that, since x ∈ Ω \ Cρ ,

lim
i→∞

∫
Ωεi

∩B(x,ρ/2)

∣∣g(
y,ui(y)

)∣∣q dy = 0 ∀q � 1, ∀ρ > 0

because of (3.33). Since Ωεi
∩ B(x,ρ/2) ⊂ Ω \ Cρ/2 for all x ∈ Ω \ Cρ , for q > n

2 we obtain∫
Ωεi

∩B(x,ρ/2)

|g(y,ui(y))|
|x − y|n−2

dy � c(p, q)

( ∫
Ωεi

\Cρ/2

∣∣g(
y,ui(y)

)∣∣q dy

)1/q

∀x ∈ Ω \ Cρ,

where c(p, q) is a suitable constant depending only on p and q . Taking into account (3.33), it follows that

lim
i→∞

∫
Ωεi

∩B(x,ρ/2)

|g(y,ui(y))|
|x − y|n−2

dy = 0 (3.41)

uniformly with respect to x ∈ Ω \ Cρ . Hence, (3.35) follows from (3.36), (3.40) and (3.41). Notice that, since x1

and x2 do not belong to �Ω , (3.34) and (3.35) imply, in particular, that ui → 0 uniformly on the boundary of Ω \ χ̄1.
Therefore, taking into account the definition of g(x, t) for x ∈ Ω \ χ̄1, it follows that ui → 0 uniformly in Ω \ χ̄1.
Thus, property (c) is completely proved. �
Corollary 3.4. There exists a positive constant c̄(Ω,p) (depending only on Ω and p) such that, if u ∈ HS(Ωε) is a
critical point for fε and fε(u) � c̄(Ω,p), then

(a) |u(x)| � t0 ∀x ∈ Ωε \ χ̄1,
(b) u solves problem P(Ωε) (provided u �≡ 0 in Ωε).

The proof follows easily from property (c) of Lemma 3.3.

Proposition 3.5. For all ε > 0, the minimum of the functional fε constrained on Mε is achieved. Moreover,

(a) the minimizing functions have constant sign;
(b) there exists ε1 > 0 such that, for all ε ∈ ]0, ε1[, the minimizing functions solve problem P(Ωε).
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Proof. The existence of the minimum of fε on Mε follows from Lemma 3.2 and (b) of Lemma 3.1. Property (a) is
a consequence of Lemma 3.1. In fact, if u ∈ Mε is a minimizing function for fε on Mε and assume, for example,
that u+ �≡ 0, then we must have u− ≡ 0; otherwise, u+ and u− belong to Mε and, by (b) of Lemma 3.1, fε(u

±) >

infMε fε > 0; it follows that

fε(u) = fε(u
+) + fε(u

−) > fε(u
+),

which is a contradiction, since fε(u) = infMε fε .
Property (b) follows easily from Corollary 3.4, taking into account (d) of Lemma 3.1. �

Remark 3.6. When 2 < p < 2n
n−2 , since H

1,2
0 (Ωε) is compactly embedded in Lp(Ωε), a positive solution of problem

P(Ωε) can be easily obtained for all ε � 0 by minimizing the functional

f̃ (u) = 1

2

∫
Ω

|Du|2 dx − 1

p

∫
Ω

|u|p dx

constrained on the manifold

M̃ε =
{
u ∈ HS(Ωε): u �≡ 0,

∫
Ωε

|Du|2 dx =
∫
Ωε

|u|p dx

}
.

On the contrary, when p � 2n
n−2 , the existence of the minimum of f̃ on M̃ε is not guaranteed. Indeed, if Ωε meets the

xn-axis, it is easy to verify that, for all ε � 0,

(a) if p > 2n
n−2 , then

inf
M̃ε

f̃ = 0, (3.42)

which, of course, implies that the minimum does not exist;
(b) if p = 2n

n−2 , then

inf
M̃ε

f̃ = S > 0, (3.43)

where S denotes the best Sobolev constant; as it is well known (see [4,21], etc.), the infimum S cannot be achieved
for any bounded domain Ωε .

Hence, for p � 2n
n−2 the problem cannot be solved by minimization. For p = 2n

n−2 and ε > 0, positive solutions of

P(Ωε) are obtained in [16] as local minimum points for f̃ constrained on M̃ε . On the contrary, this approach does not
work any more for p > 2n

n−2 , since in this case, if Ωε meets the xn-axis, f̃ constrained on M̃ε cannot have any local

minimum point. In fact, for all u ∈ M̃ε , we can find a sequence (ui)i in M̃ε , which converges to u in H
1,2
0 (Ωε) and in

Lp(Ωε) and satisfies

f̃ (ui) < f̃ (u) ∀i ∈ N.

Such a sequence (ui)i can be obtained as follows. Let x̃2 = (0, . . . ,0, x̃2
n), with x̃2

n /∈ [x1
n, x3

n], be a point of the xn-axis,
which belongs to Ω ; let z ∈ C∞

0 (B(0,1)), z �≡ 0, be a fixed function having radial symmetry with respect to the origin;
for all ρ > 0, let us set

zρ(x) = z

(
x − x̃2

ρ

)
.

Notice that

ũρ =
(‖Dzρ‖2

2
p

)1/(p−2)

zρ ∈ M̃ε ∀ε � 0
‖zρ‖p



R. Molle, D. Passaseo / Ann. I. H. Poincaré – AN 23 (2006) 389–405 401
for ρ > 0 small enough; moreover, limρ→0 f̃ (ũρ) = 0 for all p > 2n
n−2 (which, in particular, implies (3.42)). Now, for

all i ∈ N, set

ui,ρ =
(

1 − 1

i

)1/p

u +
(

1

i

)1/p ‖u‖p

‖zρ‖p

zρ.

One can verify that

lim
ρ→0

‖ui,ρ‖p = ‖u‖p ∀i ∈ N

and

lim
ρ→0

‖Dui,ρ‖2
2 =

(
1 − 1

i

)2/p

‖Du‖2
2 < ‖Du‖2

2 ∀i ∈ N,

where the strict inequality holds because u �≡ 0 in Ωε . It follows that there exists a sequence of positive numbers
ρi → 0 such that, if we set

ui =
(‖Dui,ρi

‖2
2

‖ui,ρi
‖p
p

)1/(p−2)

ui,ρi
∀i ∈ N,

then the sequence (ui)i satisfies the desired properties.

Proposition 3.7. Let p > 2n
n−2 and Ω be a bounded domain satisfying the same assumptions as in Theorem 2.1. Then,

for all positive integer k, there exists εk > 0 such that, for all ε ∈ ]0, εk[, the functional fε has at least 2k nontrivial
critical points ±u1,ε, . . . ,±uk,ε . Moreover, we have

lim
ε→0

fε(ui,ε) = 0 ∀i = 1, . . . , k. (3.44)

Proof. Since x2 ∈ Ω , there exist k distinct points x̄1, . . . , x̄k on the xn-axis, which belong to Ω and satisfy

x̄i = (
0, . . . ,0, x̄i

n

)
with x1

n < x̄i
n < x3

n ∀i = 1, . . . , k.

Set

C1 =
{

x = (x1, . . . , xn) ∈ R
n:

n−1∑
i=1

x2
i � 1

}

and choose a function ϕ ∈ H
1,2
0 (B(0,2) \ C1), ϕ �≡ 0, having radial symmetry with respect to the xn-axis.

For all i = 1, . . . , k and ε > 0, let ϕi,ε be the function defined by

ϕi,ε(x) = ϕ

(
x − x̄i

ε

)
(here we intend that ϕ is extended by zero outside B(0,2) \ C1).

Since x̄1, . . . , x̄k are distinct points in Ω , there exists εk > 0 such that, for all ε ∈ ]0, εk[, the functions ϕ1,ε, . . . , ϕk,ε

belong to HS(Ωε) and have disjoint supports. Notice that, for all σ = (σ1, . . . , σk) ∈ R
k , such that

∑k
i=1 σ 2

i = 1, there
exists a unique positive number τε(σ ) such that

τε(σ )

k∑
i=1

σiϕi,ε ∈ Mε;

moreover, τε(σ ) depends continuously on σ . In fact, we have
∑k

i=1 σiϕi,ε �≡ 0 because ϕ �≡ 0, ϕ1,ε, . . . , ϕk,ε have
disjoint supports and

∑k
i=1 σ 2

i = 1; a direct computation shows that

τε(σ ) =
(‖∑k

i=1 σiDϕi,ε‖2
2∑k p

)1/(p−2)

, (3.45)
‖ i=1 σiϕi,ε‖p



402 R. Molle, D. Passaseo / Ann. I. H. Poincaré – AN 23 (2006) 389–405
which satisfies all the properties above described.
Now, let us introduce the following subset of Mε

Sε
k =

{
τε(σ )

k∑
i=1

σiϕi,ε: σ = (σ1, . . . , σk) ∈ R
k,

k∑
i=1

σ 2
i = 1

}
. (3.46)

Notice that Sε
k is radially diffeomorphic to the unit sphere of R

k , as follows easily from (3.45). Hence, since fε

constrained on Mε satisfies the Palais–Smale condition (see Lemma 3.2), well known multiplicity results of the critical
points theory for even functionals (see, for example, [9]) guarantee that there exist at least k pairs ±u1,ε, . . . ,±uk,ε

of critical points for fε constrained on Mε , which satisfy

fε(ui,ε) � sup
Sε

k

fε ∀i = 1, . . . , k. (3.47)

Notice that the functions ±u1,ε, . . . ,±uk,ε are nontrivial critical points for fε because of Lemma 3.1. Finally, let us
remark that

lim
ε→0

sup
Sε

k

fε = 0, (3.48)

as one can easily verify taking into account that

lim
ε→0

‖Dϕi,ε‖2

‖ϕi,ε‖p

= 0 ∀i = 1, . . . , k (3.49)

(indeed, ‖Dϕi,ε‖2 and ‖ϕi,ε‖p do not depend on i = 1, . . . , k).
Thus, (3.44) follows from (3.47) and (3.48). �
The following proposition states a general property of the solutions of problem P(Ω), that we shall use to describe

the behaviour of the solutions of P(Ωε) as ε → 0.

Proposition 3.8. Let Ω be a bounded domain of R
n and u be a solution of problem P(Ω) with p > 2. Let λ1 be the

first eigenvalue of the Laplace operator −� in H
1,2
0 (Ω). Then,

u+ �≡ 0 implies sup
Ω

u+ � λ
1/(p−2)

1 (3.50)

and

u− �≡ 0 implies sup
Ω

u− � λ
1/(p−2)

1 . (3.51)

Proof. Since u solves problem P(Ω), we have in particular∫
Ω

|Du+|2 dx =
∫
Ω

(u+)p dx. (3.52)

On the other hand, since u+ ∈ H
1,2
0 (Ω),∫

Ω

|Du+|2 dx � λ1

∫
Ω

(u+)2 dx. (3.53)

Therefore,∫
Ω

[
(u+)p − λ1(u

+)2]dx � 0 (3.54)

which is impossible if u+ �≡ 0 and supΩ u+ < λ
1/(p−2)

1 because (u+(x))p − λ1(u
+(x))2 < 0 for all x ∈ Ω such that

0 < u(x) < λ
1/(p−2)

1 .
A similar argument holds for u−. �
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Proposition 3.9. Let (εi)i be a sequence of positive numbers and (ui)i a sequence of functions in HS(Ωεi
) such that

f ′
εi
(ui) = 0 ∀i ∈ N and limi→∞ fεi

(ui) = 0.
Then, if u+

i �≡ 0 ∀i ∈ N,

(a) limi→∞
∫
Ωεi

∩χρ
(u+

i )q dx = +∞ ∀q > n
2 (p − 1), ∀ρ > 0,

(b) limi→∞ sup{u+
i (x): x ∈ Ωεi

∩ χρ} = +∞ ∀ρ > 0.

Similar properties hold if u−
i �≡ 0 ∀i ∈ N.

Proof. Arguing by contradiction, assume that there exists q̄ > n
2 (p − 1) and ρ̄ > 0 such that, up to a subsequence,

lim
i→∞

∫
Ωεi

∩χρ̄

(u+
i )q̄ dx < +∞. (3.55)

Let us prove that, as a consequence,

lim
i→∞

∫
Ωεi

(u+
i )q dx = 0 ∀q < q̄. (3.56)

In fact, for all ρ > 0, we have∫
Ωεi

(u+
i )q dx �

( ∫
Ωεi

∩χρ

(u+
i )q̄ dx

)q/q̄

(measχρ)1−q/q̄ +
∫

Ωεi
\χρ

(u+
i )q dx; (3.57)

taking into account (c) of Lemma 3.3, it follows that

lim sup
i→∞

∫
Ωεi

(u+
i )q dx �

(
lim

i→∞

∫
Ωεi

∩χρ̄

(u+
i )q̄ dx

)q/q̄

(measχρ)1−q/q̄ ∀ρ ∈ ]0, ρ̄]. (3.58)

So, letting ρ → 0 and taking into account (3.55), we get (3.56).
Now observe that, arguing as in the proof of property (c) of Lemma 3.3, one can prove that

ui(x) � 1

n(n − 2)ωn

∫
Ωεi

[u+
i (y)]p−1

|x − y|n−2
dy ∀x ∈ Ωεi

.

Then, for q ∈ ]n
2 (p − 1), q̄[, we obtain

ui(x) � c(p, q)

( ∫
Ωεi

(
u+

i (y)
)q dy

)(p−1)/q

∀x ∈ Ωεi

for a suitable constant c(p, q) (depending only on p and q). Taking into account (3.56), it follows that
limi→∞ supΩεi

u+
i = 0, which contradicts Proposition 3.8 because we assumed u+

i �≡ 0 ∀i ∈ N. So, property (a)
is proved.

Property (b) follows easily from (a), taking into account (c) of Lemma 3.3. In fact, if (b) does not hold, (c) of
Lemma 3.3 (by the dominated convergence theorem) implies that, up to a subsequence,

lim
i→∞

∫
Ωε

(u+
i )q dx = 0 ∀q >

n

2
(p − 1),

which contradicts (a).
Analogous arguments hold if we assume u− �≡ 0 ∀i ∈ N. �
i
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Proof of Theorem 2.1. For ε > 0 small enough, let ±u1,ε, . . . ,±uk,ε be the critical points for fε given by Proposi-
tion 3.7. Taking into account Corollary 3.4, these functions solve problem P(Ωε) for ε > 0 small enough. Moreover,
(a) follows from (a) of Lemma 3.3; (b) is equivalent to (a) because these functions belong to Mε; (c) follows from (c)
of Lemma 3.3; (d) and (e) are proved in Proposition 3.9. �
Remark 3.10. The methods of critical points theory used in the proof of Proposition 3.7 give also information about
the Morse index of the critical points ±u1,ε, . . . ,±uk,ε obtained for the functional fε (which is not greater than k).
Moreover, it is possible to estimate, in terms of the Morse index, the number of nodal regions of these functions (see,
for example, [2,3]). Thus, in particular, we obtain that the solutions given by Theorem 2.1 do not have more than k

nodal regions.

Remark 3.11. The main step in the proof of Theorem 2.1 has been the fact that the critical points for the functional fε

(obtained in Proposition 3.7) correspond to critical values which tend to zero as ε → 0. It is clear that this fact occurs
because p > 2n

n−2 , but it cannot hold for p = 2n
n−2 . Therefore, these arguments cannot work in the critical case; indeed,

for p = 2n
n−2 , a solution having k nodal regions corresponds to a critical value at least equal to k

n
Sn/2 (where S is the

best Sobolev constant).
However, using a different approach, also in the critical case it is possible to state similar multiplicity results and

find solutions having analogous qualitative properties; in particular, one can find solutions which concentrate near the
xn-axis as ε → 0, even if the corresponding critical values do not tend to zero (see [15]).
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