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Abstract

We consider a small random perturbation of the energy functional

[u]2
Hs(Λ,Rd )

+
∫
Λ

W
(
u(x)

)
dx

for s ∈ (0,1), where the non-local part [u]2
Hs(Λ,Rd )

denotes the total contribution from Λ ⊂ R
d in the Hs(Rd) Gagliardo semi-

norm of u and W is a double well potential. We show that there exists, as Λ invades Rd , for almost all realizations of the random
term a minimizer under compact perturbations, which is unique when d = 2, s ∈ ( 1

2 ,1) and when d = 1, s ∈ [ 1
4 ,1). This unique-

ness is a consequence of the randomness. When the random term is absent, there are two minimizers which are invariant under
translations in space, u = ±1.
© 2014
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1. Introduction

Non-local functionals, related to fractional Levy partial differential equations, appear frequently in many different
areas of mathematics and find many applications in engineering, finance [15], physics [13], chemistry [3] and biol-
ogy [20]. We consider non-local functionals representing the free energy of a material with two (or several) phases,
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see [5], on a scale, the so-called mesoscopic scale, which is much larger than the atomistic scale so that the adequate
description of the state of the material is by a continuous scalar order parameter m :Λ ⊆R

d →R. The minimizers of
these functionals are functions m∗ representing the states or phases of the materials.

The natural question that we pose is the following: What happens to these minimizers when an external, even very
weak, random potential is added to the deterministic functional? Does the number of minimizers remain the same,
i.e. will the material always have the same number of states (or phases)? Is there some significant difference in the
qualitative properties of the material when the randomness is added? These are standard questions in a calculus of
variations framework.

Partial answers to these type of questions were recently given in two papers by the authors in the context of the
Ginzburg–Landau functional, i.e. in the case where the interaction energy is local and it is modelled by 〈m,(−�)m〉
there 〈·, ·〉 stands for the L2 scalar product and m is taken in a function space which makes the scalar product finite,
see [6] and [7]. Here we consider a functional in which the interaction energy is non-local, i.e. the state of the material
at site x ∈ Λ depends on the state of the material in all Rd . We model this non-local interaction energy using the
fractional Laplacian.

This nonlocality of the interaction needs a very different approach compared to [6] and [7] because of the suitable
interpretation of “boundary condition” in the case of a long-range interaction. In particular, an extensive part of
the analytical work in the present paper is devoted to the so-called minimizers under compact perturbations, see
Definition 2.4.

The interaction energy is given by 〈m,(−�)sm〉 for 0 < s < 1, the scalar product and the function space for m

need to be suitable defined. In the extreme case s = 1 one gets the Ginzburg–Landau interaction energy and when
s = 0 one gets (−�)s = I where I is the identity operator, so m at site x interacts only with itself.

We add to this non-local interaction energy which penalizes spatial changes in m a double-well potential W(m), i.e.
a nonconvex function which has exactly two minimizers, for simplicity +1 and −1, modelling a two-phase material.

Finally, we add a term which couples m to a random field θg(·,ω) with mean zero, variance θ2 and unit correlation
length; i.e. a term which prefers at each point in space one of the two minimizers of W(·) and thus breaks the
translational invariance, but is “neutral” in the mean.

A functional with the aforementioned properties is the following functional

G
m0
1 (m,ω,Λ) = [m]2

Hs(Λ,Rd )
+

∫
Λ

W
(
m(x)

)
dx − θ

∫
Λ

g1(x,ω)m(x)dx, (1)

where

[m]2
Hs(Λ,Rd )

=
∫
Λ

dx

∫
Λ

dy
|m(x) − m(y)|2

|x − y|d+2s
+ 2

∫
Λ

dx

∫
Rd\Λ

dy
|m(x) − m0(y)|2

|x − y|d+2s
(2)

denotes the total contribution from Λ to the Hs(Rd) Gagliardo semi-norm of m, if we set m = m0 in R
d \ Λ in (2).

The Gagliardo semi-norm is given by∫
Rd

dx

∫
Rd

dy
|m(x) − m(y)|2

|x − y|d+2s
= [m]2

Hs(Λ,Rd )
+

∫
Rd\Λ

dx

∫
Rd\Λ

dy
|m0(x) − m0(y)|2

|x − y|d+2s
. (3)

For the minimization problem the term depending only on the value of m0 in the Gagliardo semi-norm is irrelevant,
since this term is kept fixed through the minimization procedure. For dimensional reason the right hand side of (2)
should be multiplied by cd,s , a normalizing constant which degenerates when s → 1 or s → 0. In the following the
constant cd,s does not play any role, so we replace it by 1.

We are interested in determining the macroscopic minimizers of (1), i.e. minimizers of (1) over sequences of
regions Λn so that Λn ↗ R

d as n → ∞. Namely for any given Λ and fixed boundary value m0 the minimizers of (1)
over any reasonable set of functions will depend on the boundary value m0. Physically one is interested in taking Λ

large enough and to characterize the minimizers in a region deep inside Λ and detect if, even so deeply inside, the
boundary condition is felt. In other words Λ needs to be large to invade Rd and we are interested in characterizing the
macroscopic minimizer which we construct by a limit procedure using minimization on a sequence of finite subsets
of Rd .
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When θ = 0, i.e. without random term, the constant functions equal to ±1 are the two macroscopic minimizers:
One can obtain the +1 (−1) minimizer as the limit of the minimizers of (1) when θ = 0 with strictly positive (strictly
negative) boundary values by making use of the fact that the cost of a “boundary layer” near the boundary of large
balls is of smaller order than the volume as the balls invade R

d , a point to which we will come back below, see (4).
Alternatively one can use the energy estimates in [17].

When the random field is added, the constant functions equal to ±1 are not minimizers anymore, due to the presence
of the random fields. The question is to show whether there are still two macroscopic minimizers, each one close in
some topology to the constant minimizers 1 and −1.

We are able to show in d = 2 for s ∈ ( 1
2 ,1) and in d = 1 for s ∈ [ 1

4 ,1) that for almost all the realizations of the
randomness, there exists one macroscopic minimizer which is unique under compact perturbations. In this regime
the boundary condition is not felt by the minimizer. This is an example of uniqueness induced by random terms. The
uniqueness holds only in the limit Λ ↗R

d and is sensitive to the type of randomness added. We will come back to this
point in Section 2.1. For values of d and s different from the ones for which we state the uniqueness result we expect,
for almost all the realizations of the randomness, the existence of at least two macroscopic minimizers, one “close”
to the constant minimizer 1, the other “close” to the constant minimizer −1. But this issue is still open. The strategy
of our proof is based on the following steps. We prove first that for almost all the realizations of the random field
there exist two macroscopic extrema minimizers v±(·,ω) so that any other macroscopic minimizer under compact
perturbations u∗ satisfies v−(·,ω) � u∗(·,ω) � v+(·,ω). This construction requires two limit procedures. First, for
any bounded, sufficiently regular subset of Rd , Λ, and for any K > 0 we determine the minimizers of G1 in Λ with
boundary condition v0 = K . Since the functional is not convex there might be many minimizers. Because the set
of minimizers in a bounded domain Λ is ordered and compact, we can single out one specific minimizer which we
call the maximal K-minimizer. Similarly we single out one specific minimizer G1 in Λ with v0 = −K boundary
condition, which we call the minimal K-minimizer. The maximal K-minimizer and the minimal K-minimizer of G1
in Λ have the property that any other minimizer of G1 in Λ with boundary condition v0, ‖v0‖∞ � K is pointwise
smaller than the maximal K-minimizer and larger than the minimal K-minimizer of G1 in Λ. Then we let Λ to
invade R

d obtaining two infinite volume functions u±,K , and we show that they are infinite volume minimizers under
compact perturbations of G1. At last, we define v±(·,ω) as the pointwise limit as K → ∞ of u±,K , proving again that
v±(·,ω) are extrema infinite volume minimizers under compact perturbations. Then we show that for any s ∈ (0,1)

there exists a positive constant C, so that for any bounded, sufficiently regular Λ ⊂R
d , for almost all the realizations

of the random field,∣∣Gv+
1

(
v+,ω,Λ

) − Gv−
1

(
v−,ω,Λ

)∣∣ � C|Λ| d−1
d 1{s∈( 1

2 ,1)} + C|Λ| d−2s
d 1{s∈(0, 1

2 )} + C1{s= 1
2 }|Λ| d−1

d log |Λ|. (4)

The minimizers v±(·,ω) depend in a highly non-trivial way on the random fields {g(x,ω)}{x∈Zd }. Therefore also the

difference Gv+
1 (v+,ω,Λ)−Gv−

1 (v−,ω,Λ) depends on the random fields in all of Zd . We take a sequence Λn ⊂ Λn+1
and we show that, conditioning on the random fields in Λn (i.e. taking the expectation over only the random fields
outside Λn)

Fn(ω) := E
[{

G1
(
v+(ω),ω,Λn

) − G1
(
v−(ω),ω,Λn

)}|BΛn

]
has significant fluctuations, with variance of the order of the volume. Here BΛn is the σ algebra generated by the
random field in Λn. Namely we show that

E
[
Fn(·)

] = 0,

and for t ∈R

lim inf
n→∞ E

[
e
t

Fn√
Λn

]
� e

t2D2
2 , (5)

where D2 is given in (97). This holds in all dimensions and for all s ∈ (0,1). In d = 1 and for s ∈ [ 1
4 ,1), in d = 2

and for s ∈ ( 1
2 ,1) the bound (5) generates a contradiction with the bound (4), unless D2 = 0. When D2 = 0 we

show that M = E[∫
Q(0)

v+] − E[∫
Q(0)

v−] = 0. Further, we show that pointwise v+ � v−, therefore E[∫
Q(0)

v+] =
E[∫ v−] = 0 and v+(·,ω) = v−(·,ω), for almost all realizations of the random field. The probabilistic argument
Q(0)
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has been already applied by Aizenman and Wehr [1], in the context of Ising spin systems with random external field,
see also the monograph by Bovier [2], for a survey on this subject.

It is instructive to understand what one can say about the functional (1) when θ = 0. Denote Jm0(m,Λ) the
functional (1) when θ = 0. In this case the constants m(x) = τ for x ∈ R

d and τ = ±1 are the only bounded global
macroscopic minimizers under compact perturbations. To pass to a so-called macroscopic scale, which is coarser
than the mesoscopic scale, we rescale space with a small parameter ε. If D = εΛ and u(z) = m(ε−1z) and u0(z) =
m0(ε

−1z) we obtain

J̃ u0
ε (u,D) = ε2s−d [u]2

Hs(D,Rd )
+ ε−d

∫
D

W
(
u(z)

)
dz. (6)

Functionals with a finite energy on this scale must be Lebesgue almost everywhere close to one of the two minimizers.
The second step is to determine the cost of forming an interface between the spatial regions occupied by these two
different minimizers.

As in the case of the corresponding local functional one needs to normalize J̃
u0
ε (u,D) by a power of ε related to

the dimension of the interface, which is not necessarily an integer in this case, see also Lemma 3.2. Computations
similar to the ones done to obtain (4) give for θ = 0 a factor of ε−d+1 when s ∈ ( 1

2 ,1), ε−d+2s when s ∈ (0, 1
2 ), and

by ε−d+1 log 1
ε

when s = 1
2 . Therefore we obtain

Ju0
ε (u,D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε2s−1[u]2

Hs(D,Rd )
+ ε−1

∫
D W(u(z))dz, s ∈ ( 1

2 ,1),

[u]2
Hs(D,Rd )

+ ε−2s
∫
D W(u(z))dz, s ∈ (0, 1

2 ),

ε2s

ε log ε
[u]2

Hs(D,Rd )
+ 1

ε log ε

∫
D W(u(z))dz, s = 1

2 .

(7)

The Γ -convergence for the functional (7) has been studied by Savin and Valdinoci [16]. They show that the func-
tional J

u0
ε (u,D) Γ -converges to the classical minimal surface functional when s ∈ [ 1

2 ,1) while, when s ∈ (0, 1
2 ) the

functional Γ -converges to the non-local minimal surface functional. There are in the literature other results dealing
with Γ -convergence of non-local functionals, see e.g. [8–10] and references therein, but they are different from the
deterministic part of the functional that we are considering, either for the explicit form or because they do not consider
the full interaction of Λ with all of Rd . Physically this implies that the particles in the domain Λ interact with all the
particles in R

d and not only with those ones in Λ, i.e. a sort of non-local Dirichlet boundary condition.

2. Notations and results

We denote by Λ ⊂ R
d a generic open, bounded subset of Rd , by ∂Λ the boundary of Λ and Λc = R

d \ Λ. We
denote by |x| the euclidean norm of x ∈ R

d , by |Λ| the volume of Λ, diam(Λ) = sup{|x − y|, x and y ∈ Λ} and
by d∂Λ(x) the euclidean distance from x to ∂Λ. A � R

d means that the closure of A is compact. We will consider
domain Λ with Lipschitz boundary regularity, i.e. the boundary can be thought of as locally being the graph of a
Lipschitz continuous function, see for example [4]. It is useful to introduce the following definition. We say that a set

with Lipschitz boundary Λ ⊂ R
d is cube-like if Hd−1(∂Λ) � C|Λ| d−1

d and diam(Λ) � C|Λ| 1
d , where Hd−1 is the

d − 1-dimensional Hausdorff measure and C > 0 is a constant depending only on the dimension d .
For t and s in R we denote s ∧ t = min{s, t} and s ∨ t = max{s, t}. For Λ ⊂ R

d , we denote by Ck,α(Λ), k � 0 an
integer, α ∈ (0,1] the set of functions continuous and having continuous derivatives up to order k, such that the k-th
partial derivatives are Hölder continuous with exponent α.

2.1. The disorder

The disorder or random field is constructed with the help of a family of independent, identically distributed random
variables with mean zero and variance equal to 1. We assume that each random variable has distribution absolutely
continuous with respect to the Lebesgue measure and that the Lebesgue density is a symmetric, compactly supported
function on R. The corresponding infinite product measure on R

Z
d

will be denoted by P and by E[·] the mean with
respect to P. We denote this family of random variables by {g(z,ω)}z∈Zd , ω ∈ Ω where we identify Ω with R

Z
d
.

These assumptions imply that there exists A > 0 so that
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E
[
g(z)

] = 0, E
[
g2(z)

] = 1 ∀z ∈ Z
d, and ‖g‖∞ = sup

z

∣∣g(z,ω)
∣∣ = A, P-a.s. (8)

The boundedness assumption is not essential. Different choices of g could be handled by minor modifications provided
g is still a random field with finite correlation length, invariant under (integer) translations and such that g(z, ·) has
a symmetric distribution, absolutely continuous w.r.t. the Lebesgue measure and E[g(z)2+η] < ∞, z ∈ Z

d for η > 0.
The method does not apply when g has atoms, i.e. its distribution is not absolutely continuous with respect to the
Lebesgue measure, see Remark 4.15. It is not clear to us if this requirement is purely technical or if the discrete
distribution of the random field may cause a degeneracy of the ground state like in the Ising spin systems [1].

The symmetry of the measure P is essential for obtaining the result. Namely if P does not have a symmetric
distribution, it would be no longer natural to compare the qualitative properties of the functional (1) for θ �= 0 with
the functional (1) with θ = 0. Therefore in the following we always assume that P is symmetric.

In this paragraph Λ ⊂ R
d is not necessarily bounded. We denote by B the product σ -algebra and by BΛ, Λ ⊂ R

d ,
the σ -algebra generated by {g(z,ω): z ∈ Λ}. In the following we often identify the random field {g(z, ·): z ∈ Z

d}
with the coordinate maps {g(z,ω) = ω(z): z ∈ Z

d}. To use ergodicity properties of the random field it is convenient
to equip the probability space (Ω,B,P) with some extra structure. First, we define the action T of the translation
group Z

d on Ω . We will assume that P is invariant under this action and that the dynamical system (Ω,B,P, T ) is
stationary and ergodic. In our model the action of T is for y ∈ Z

d(
g
(
z1, [Tyω]), . . . , g(

zn, [Tyω])) = (
g(z1 + y,ω), . . . , g(zn + y,ω)

)
. (9)

The disorder or random field in the functional will be obtained setting for x ∈ Λ

g1(x,ω) :=
∑
z∈Zd

g(z,ω)1
(z+[− 1

2 , 1
2 ]d )∩Λ

(x), (10)

where for any Borel-measurable set A

1A(x) :=
{

1, if x ∈ A,

0 if x /∈ A.

2.2. The double well potential

Next we define the “double-well potential” W :

Assumption (H1). W ∈ C2(R), W � 0, W(t) = 0 iff t ∈ {−1,1}, W(t) = W(−t) and W(t) is strictly decreasing in
[0,1]. Moreover there exist δ0 and C0 > 0 so that

W(t) = 1

2C0
(t − 1)2 ∀t ∈ (1 − δ0,∞). (11)

Note that W is slightly different from the standard choice W(u) = (1 − u2)2. Our choice simplifies some proofs
because it makes the Euler–Lagrange equation linear provided solutions stay in one “well.” To obtain our uniqueness
result we could replace the equality in (11) by a lower bound on W(t) of the same form.

2.3. The functional

We start introducing the functional spaces in which we define the non-local interaction term.

Definition 2.1 (Fractional Sobolev spaces). Let D ⊂ R
d be an open domain and s ∈ (0,1). We define the fractional

Sobolev space Hs(D) as the set of functions f ∈ L2(D) so that∫
D×D

(f (x) − f (y))2

|x − y|d+2s
dx dy < ∞.

This space, endowed with the norm
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‖f ‖Hs(D) = ‖f ‖L2(D) +
( ∫

D×D

(f (x) − f (y))2

|x − y|d+2s
dx dy

) 1
2

is a Hilbert space. We will say that f ∈ Hs
loc(R

d), s ∈ (0,1), if f ∈ Hs(BR) for any ball of radius R in R
d .

For v ∈ Hs
loc(R

d), Λ �R
d denote

K1(v,ω,Λ) =
∫
Λ

dx

∫
Λ

dy
|v(x) − v(y)|2
|x − y|d+2s

+
∫
Λ

W
(
v(x)

)
dx − θ

∫
Λ

g1(x,ω)v(x)dx. (12)

Now we introduce some definitions needed to specify “boundary conditions” in a sense appropriate for non-local
functionals.

For any Λ �R
d and Λ1 ⊂R

d , Λ1 ∩ Λ = ∅, for v and u in Hs
loc(R

d) denote

W
(
(v,Λ), (u,Λ1)

) = 2
∫
Λ

dx

∫
Λ1

dy
|v(x) − u(y)|2
|x − y|d+2s

(13)

the interaction between the function v in Λ and the function u in Λ1. Note that if Λ1 is not a bounded set, the term
in (13) might not be finite. We will show in Lemma 3.2 that when v ∈ Hs

loc(R
d) ∩ L∞(Rd) then W((v,Λ), (v,Λ1))

is bounded, the bound depends on |Λ|. When Λ1 = Λc and u = v we simply write

W(v,Λ) = 2
∫
Λ

dx

∫
Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

. (14)

Definition 2.2 (The functional). For any Λ ⊂R
d , v ∈ Hs

loc(R
d) ∩ L∞(Rd) we define

G1(v,ω,Λ) =K1(v,ω,Λ) +W(v,Λ). (15)

Whenever we need to stress the dependence of G1 on the value of v outside Λ, i.e. v(y) = v0(y), y ∈ Λc, we will
write

G
v0
1 (v,ω,Λ) =K1(v,ω,Λ) +W

(
(v,Λ)

(
v0,Λ

c
))

. (16)

We list some useful properties of the functionals G1 and K1 that follow immediately from the definitions.

Lemma 2.3.

• K1 is superadditive, i.e. if A and B are disjoint bounded sets then

K1(v,ω,A ∪ B) �K1(v,ω,A) +K1(v,ω,B),

• G1 is subadditive, i.e. if A and B are disjoint bounded sets then

G1(v,ω,A ∪ B) � G1(v,ω,A) + G1(v,ω,B). (17)

Definition 2.4 (The minimizers).

1. We say that u ∈ Hs
loc(R

d) ∩ L∞(Rd) is a minimizer under compact perturbations for G1 in Λ ⊂ R
d if for any

compact subdomain U ⊂ Λ we have

G1(u,ω,U) < ∞, P a.s.

and

G1(u,ω,U) � G1(v,ω,U) P a.s.

for any v which coincides with u in R
d \ U .
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2. Let v0 ∈ L∞(Rd) be independent of ω ∈ Ω . We say that u ∈ Hs
loc(R

d) ∩ L∞(Rd) is a v0-minimizer for G1 in
Λ ⊂R

d if for any compact subdomain U ⊂ Λ we have

G
v0
1 (u,ω,U) < ∞, P a.s.

and

G
v0
1 (u,ω,U) � G1(v,ω,U) P a.s.

for any v which coincides with v0 in R
d \ U .

3. We say that u is a free minimizer on Λ if it minimizes K1(·,ω,Λ) in Hs(Λ).

Note that v0 will usually be a constant function.

Remark 2.5 (Existence). Existence of v0-minimizers (for sufficiently regular v0) and free minimizers in a bounded
Lipschitz set Λ ⊂ R

d follows from the compact embedding of Hs(Λ) in L2(Λ) and the lower semicontinuity of the
Hs -norm. We prove the existence of a v0-minimizer in Lemma A.1 and Lemma A.2 in Appendix A. The existence of
exactly one minimizer under compact perturbations is a consequence of the main theorem.

Definition 2.6 (Translational covariant states). We say that the function v : Rd × Ω →R is translational covariant if

v(x + y,ω) = v
(
x, [T−yω]) ∀y ∈ Z

d, x ∈R
d . (18)

Our main result is the following.

Theorem 2.7. Take d = 2 and s ∈ ( 1
2 ,1) or d = 1 and s ∈ [ 1

4 ,1), θ strictly positive. Let n ∈ N, Λn = (−n
2 , n

2 )d ,3

v0 ∈ L∞(Rd) and u∗
n be a v0-minimizer of G1 in Λn according to Definition 2.4. Then P a.s. there exists a unique

u∗(·,ω), independent of the choice of v0, defined as

lim
n→∞u∗

n(x,ω) = u∗(x,ω) (uniformly on compacts in x) (19)

so that

• u∗(·,ω) is translation covariant, see (18).
• ‖u∗(·,ω)‖∞ � 1 + C0θ‖g‖∞ where C0 is the constant in (11).
• u∗(·,ω) ∈ C

0,α

loc(Rd ) for any α < 2s when 2s � 1, u∗ ∈ C
1,α
loc (Rd) for any α < 2s − 1, when 2s > 1.

•

E
[
u∗(x, ·)] = 0, ∀x ∈ R

d .

Remark 2.8. Since for any bounded set Λ ⊂ R
d , C0,α(Λ) ⊂ C0,β(Λ) for β < α and the inclusion is compact, the

convergence in (19) holds in C0,β , β < 2s when s ∈ (0, 1
2 ], because we can find α with β < α < 2s. Similarly one

obtains convergence of (19) in C1,β , β < 2s − 1 when s ∈ ( 1
2 ,1).

Remark 2.9. When θ = 0 in (12), i.e. the random field is absent, the minimum value of K1(·, ·,Λ) is zero for any
bounded Λ and there are exactly two translation covariant minimizers under compact perturbations, the constant
functions identically equal to 1 or to −1.

3 One could take any increasing, cube-like, sequences of sets {Λn}n, Λn ⊂ R
d invading R

d . The proof goes in the same way.
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3. Finite volume minimizers

In this section we state properties for minimizers of the functional G1 in any bounded set Λ ⊂R
d . These properties

hold in all dimensions d , for all bounded Λ with Lipschitz boundary and for every ω ∈ Ω . The ω plays the role of
a parameter. We start showing that to determine the minimizers of K1 in Λ it is sufficient to consider functions v

satisfying a uniform L∞-bound.
For any t > 0 denote vt = t ∧ v ∨ (−t).

Lemma 3.1. Let the double well potential W satisfy Assumption (H1).

1. For all ω ∈ Ω , for all v ∈ Hs(Λ) and all t � 1 + C0θ‖g‖∞

K1(v,ω,Λ) −K1
(
vt ,ω,Λ

)
�

∫
Λt

(
C−1

0 (t − 1) − θ‖g‖∞
)(∣∣v(y)

∣∣ − t
)
, (20)

where C0 is the constant in (11) and Λt = {y ∈ Λ: |v(y)| > t}.
2. Take v0 ∈ Hs

loc(R
d) ∩ L∞(Rd) and t � max{‖v0‖∞,1 + C0θ‖g‖∞}. The result stated in (20) holds for

G
v0
1 (v,ω,Λ). This implies in particular that minimizers of G

v0
1 are bounded uniformly by max{‖v0‖∞,1 +

C0θ‖g‖∞}.

Proof. We have that for x and y and any function v and w[
v(x) − w(y)

]2 �
[
vt (x) − wt(y)

]2
.

We immediately obtain

K1(v,ω,Λ) −K1
(
vt ,ω,Λ

)
�

∫
Λt

dy
[
W

(
v(y)

) − W(t)
] − θ

∫
Λt

dyg1(y,ω)
[
v(y) − sign

(
v(y)

)
t
]
,

and from Assumption (H1) and the L∞-bound on g we derive (20). The proof of (2) is a consequence of (1) by
choosing t � max{‖v0‖∞,1 + C0θ‖g‖∞}. �

Next we show that the functional (15) is finite when v ∈ Hs
loc(R

d) ∩ L∞(Rd). To this aim it is sufficient to show
that W(v,Λ), defined in (14), is finite.

Lemma 3.2. Let v ∈ Hs
loc(R

d)∩L∞(Rd), Λ �R
d and C = C(‖v‖∞, d, s) be a generic constant which might change

from one occurrence to the other. Suppose that Λ is cube-like.4 Then we have

W(v,Λ)� C|Λ| d−2s
d , s ∈

(
0,

1

2

)
. (21)

When s ∈ [ 1
2 ,1) denoting B1(∂Λ) = {x ∈R

d : d∂Λ(x) � 1} we have

W(v,Λ)� ‖v‖Hs(B1(∂Λ)) +
{

C|Λ| d−1
d , s ∈ ( 1

2 ,1),

C|Λ| d−1
d log(|Λ|), s = 1

2 .
(22)

When s ∈ [ 1
2 ,1) and v ∈ C0,α(B1(∂Λ)) for α > s − 1

2

W(v,Λ)�
{

C|Λ| d−1
d , s ∈ ( 1

2 ,1),

C|Λ| d−1
d log(|Λ|), s = 1

2 .
(23)

4 Any bounded Lipschitz domain Λ is cube-like, with C depending on the Lipschitz constant and on the dimension.
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Proof. For any s ∈ (0, 1
2 ) we have∫

Λ

dx

∫
Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

� C

∫
Λ

dx

∫
Λc

dy
1

|x − y|d+2s
� C

∫
Λ

dx

∫
{y∈Rd : |x−y|�d∂Λ(x)}

1

|x − y|d+2s
dy

� C

∫
Λ

∣∣d∂Λ(x)
∣∣−2s dx � C

(
diam(Λ)

)1−2sHd−1(∂Λ)� C|Λ| d−2s
d . (24)

For cubes diam(Λ)� C|Λ|1/d , where the constant C depends only on the dimension.
When d � 1 and s ∈ [ 1

2 ,1), d∂Λ(x)−2s is not integrable anymore over Λ. So we split the integral as follows:∫
Λ

dx

∫
Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

=
∫

{x∈Λ: d∂Λ(x)�1}
dx

∫
y∈Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

+
∫

{x∈Λ: d∂Λ(x)>1}
dx

∫
y∈Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

. (25)

For the last integral, since |x − y| � 1, we obtain proceeding as in (24)∫
{x∈Λ: d∂Λ(x)>1}

dx

∫
y∈Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

� C

∫
{x∈Λ: d∂Λ(x)>1}

d∂Λ(x)−2s dx

�
{

C|Λ| d−1
d s ∈ ( 1

2 ,1),

C|Λ| d−1
d log |Λ|, s = 1

2 .
(26)

We split the first integral of (25) as∫
{x∈Λ: d∂Λ(x)�1}

dx

∫
y∈Λc

dy
|v(x) − v(y)|2
|x − y|d+2s

=
∫

{x∈Λ: d∂Λ(x)�1}
dx

∫
{y∈Λc: d∂Λ(y)�1}

dy
|v(x) − v(y)|2
|x − y|d+2s

+
∫

{x∈Λ: d∂Λ(x)�1}
dx

∫
{y∈Λc: d∂Λ(y)>1}

dy
|v(x) − v(y)|2
|x − y|d+2s

. (27)

For the last term of (27), since |x − y| � 1, we get

∫
{x∈Λ: d∂Λ(x)�1}

dx

∫
{y∈Λc: d∂Λ(y)>1}

dy
|v(x) − v(y)|2
|x − y|d+2s

� C

∫
{x∈Λ: d∂Λ(x)�1}

dx

∞∫
1

r−1−2s dr

� C|Λ| d−1
d s ∈

[
1

2
,1

)
.

The first term on the right hand side of (27) is obviously bounded when v ∈ Hs
loc(R

d)∫
{x∈Λ: d∂Λ(x)�1}

dx

∫
{y∈Λc: d∂Λ(y)�1}

|v(x) − v(y)|2
|x − y|d+2s

dy � ‖v‖Hs(B1(∂Λ)).

When v ∈ C0,α(B1(∂Λ)) for α > s − 1
2 then again arguing as in (24)∫

dx

∫
c

dy
|v(x) − v(y)|2
|x − y|d+2s

� C|Λ| d−1
d , s ∈

[
1

2
,1

)
. � (28)
{x∈Λ: d∂Λ(x)�1} {y∈Λ : d∂Λ(y)�1}
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Next we prove an energy decreasing rearrangement which allows to show a strong maximum principle, see
Lemma 3.4: Minimizers of G1(·,ω,Λ) corresponding to ordered boundary conditions on Λc are ordered as well,
i.e. they do not intersect. In particular if there exist more than one minimizer corresponding to the same boundary
condition they do not intersect.

Lemma 3.3. Let u and v be in Hs
loc(R

d) ∩ L∞(Rd). Then for all ω ∈ Ω and Λ ⊂R
d

G1(u ∨ v,ω,Λ) + G1(u ∧ v,ω,Λ)� G1(u,ω,Λ) + G1(v,ω,Λ). (29)

When u = v on Λc, the equality holds in (29) if and only if

u(x) � v(x) or v(x) � u(x), a.s. x ∈ Λ. (30)

When u� v on Λc and u < v for some open set in Λc the equality holds in (29) if and only if

u(x) � v(x) a.s. x ∈ Λ. (31)

Proof. Since u and v are in Hs
loc(R

d) ∩ L∞(Rd), G1 is finite. Let M(x) = max{u(x), v(x)} and m(x) =
min{u(x), v(x)}. It is immediate to verify that the local part of the functional G1 satisfies (29) with the equality.
For the interaction term, for x and y in R

d , we have that[
m(x) − m(y)

]2 + [
M(x) − M(y)

]2 �
[
u(x) − u(y)

]2 + [
v(x) − v(y)

]2
. (32)

Namely if both the minimum values in x and y are reached by the same function either u or v then the equality holds
in (32). If m(x) = u(x) < v(x) and m(y) = v(y) < u(y) then the left hand side of (32) is equal to[

u(x) − u(y)
]2 + [

v(x) − v(y)
]2 + [

u(x) − v(x)
][

u(y) − v(y)
]

with [u(x) − v(x)][u(y) − v(y)] < 0. The same holds when m(x) = v(x) and m(y) = u(y). In this last case we will
have a strict inequality in (32), and therefore in (29).

Next we prove (30). If u(x) � v(x) or u(x) � v(x) for all x ∈ R
d then the equality holds in (29). When u = v on

Λc we have also the reverse implication for x ∈ Λ. Namely it is immediate to verify that in such a case (no matter
which value of u or v corresponds to M or m)

W(M,Λ) +W(m,Λ) =W(u,Λ) +W(v,Λ). (33)

The equality in (29) implies the equality in (32), then (30) holds. Next we prove (31). It is immediate to verify that
if (33) holds we must have M(x) = v(x) and m(x) = u(x) for x ∈ Λ. �
Lemma 3.4. Let u and v in Hs

loc(R
d) ∩ L∞(Rd) be minimizers of G1 in Λ, so that u� v on Λc. Then, for all ω ∈ Ω ,

u = v or |u(x) − v(x)| > 0 for all x ∈ int(Λ). If u < v is an open set in Λc, then u < v everywhere in int(Λ).

Proof. Since the result holds for any realization of the random field and Λ is fixed we avoid to explicitly write in G1
the dependence on ω and Λ. By Lemma 3.3

G1(u ∨ v) + G1(u ∧ v)� G1(u) + G1(v). (34)

The conditions on u and v in Λc yield u ∨ v = v,u ∧ v = u on Λc, and by the minimization properties of u and v

we get G1(u ∨ v)� G1(v), G1(u ∧ v) � G1(u). This implies that G1(u ∨ v) + G1(u ∧ v) = G1(u) + G1(v), actually
that G1(u ∨ v) = G1(v) and G1(u ∧ v) = G1(u). Therefore u ∨ v is a minimizer with condition v on Λc, and u ∧ v is
a minimizer with condition u on Λc. Obviously the function w := u − u ∧ v � 0 in Λ and in particular w = 0 on Λc.
Further since u by assumption is a minimizer and u ∧ v is also a minimizer, they are both solutions of problem (115)
and the regularity results of Proposition A.3 hold. Therefore by construction w ∈ C0,α(Λ), α < 2s, when 2s � 1 and
w ∈ C1,α(Λ), α < 2s − 1, when 2s > 1. On the other hand, w solves

(−�)sw = V (x) in Λ,

w = 0 on Λc (35)
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where

V (x) = 1

2

[
W ′(u(x)

) − W ′(u(x) ∧ v(x)
)]

.

Since W ∈ C2(R), see Assumption (H1), by the regularity of u and u ∧ v we have that V ∈ C0,α(Λ), 0 < α < 2s,
when 2s � 1 and V ∈ C1,α(Λ), 0 < α < 2s − 1, when 2s > 1. By [19, Proposition 2.8] w, being solution of (35), is in
C0,α+2s when α + 2s � 1 and in C1,α+2s−1 when α + 2s > 1. In both cases the following argument holds. Suppose
there exists x0 ∈ Λ with u(x0) = u(x0) ∧ v(x0), i.e. w(x0) = 0. By the regularity of w we have that(

(−�)sw
)
(x0) =

∫
Λ

dy
[w(x0) − w(y)]
|x0 − y|d+2s

= −
∫
Λ

dy
w(y)

|x0 − y|d+2s
< 0,

which is equal to zero only when w(x) = 0 for almost all x ∈ R
d . Notice that the integral is well defined for any

s ∈ (0,1) since w is in C0,α+2s when α+2s � 1 and in C1,α+2s−1 when α+2s > 1. Since V (x0) = 0 by construction,
if (−�)sw(x0) < 0 we have a contradiction with (35). Hence, in the interior of Λ either u = u ∧ v (in which case
u � v) or u > u ∧ v, i.e. v < u. By assumption u � v in Λc and by Lemma 3.3 v < u in the interior of Λ is only
possible if u = v on Λc. Next we show that when u = u ∧ v, then either u = v in Λ (and this is possible only when
u = v on Λc) or u(x) < v(x) for x in the interior of Λ. Denote w = u− v � 0. As before, we have that w is a solution
of

(−�)sw = V (x) in Λ,

w = w0 � 0 on Λc, (36)

where we set w0 = v − u, the difference of the boundary data, which by assumption is positive. Arguing as before,
assume that there exists x0 in the interior of Λ so that w(x0) = 0. By the regularity of w we have that

(−�)sw(x0) =
∫
Λ

dy
[w(x0) − w(y)]
|x0 − y|d+2s

+
∫
Λc

dy
[w(x0) − w0(y)]

|x0 − y|d+2s

= −
∫
Λ

dy
w(y)

|x0 − y|d+2s
−

∫
Λc

dy
w0(y)

|x0 − y|d+2s
< 0. (37)

Since V (x0) = 0 by construction, if (−�)sw(x0) < 0 we have a contradiction with (36). Therefore if w0 = 0 in Λc,
in the interior of Λ either w = 0 (in which case u = v) or v > u. If w0 > 0 in some subset of Λc the only possibility
is v > u in the interior of Λ. �

Note that there may be a priori several minimizers with the same boundary conditions, as our functional is not
convex.

Next, given v0 ∈ Hs
loc(R

d)∩L∞(Rd), we single out two special minimizers of G1 in Λ, one is the largest minimizer
of G1 in Λ with v0 boundary conditions (defined a pointwise supremum), the other is the smallest minimizer of G1
in Λ with −v0 boundary conditions. We call them the v0-maximal and the v0-minimal minimizers of G1 in Λ.

Lemma 3.5 (Existence of maximal/minimal minimizers). Let Λ � R
d be a Lipschitz bounded open set and v0 ∈

Hs
loc(R

d) ∩ L∞(Rd).

1. The set of minimizer of G
v0
1 on Λ is compact, i.e. any sequence of minimizers has a limit in C0,α(Λ), α < 2s for

s ∈ (0,1/2] or C1,α(Λ), α < 2s − 1 for s ∈ (1/2,1), which is still a minimizer.
2. The set of minimizers has a maximal and minimal element with respect to pointwise ordering of functions.

Proof. A sequence of minimizers of G
v0
1 on Λ is a sequence of functions with energies converging to the infimum,

so the same techniques as in the proof of the existence of minimizers apply.
For the second part, let us define a function ū : Λ → R by ū(x) := sup{v(x): v minimizer}. We have to show

that ū is a minimizer, in particular that it has sufficient regularity. Fix a point x0 in the interior of Λ. We can find
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a sequence of minimizers {vn}n∈N (which for the moment may still depend on x0) such that vn(x0) → ū(x0) and
such that the sequence vn(x0) is increasing. By Lemma 3.4, vn(x) � vm(x) for all m � n and all x ∈ Λ. Define
now v̄(x) := limn→∞ vn(x). We know from the first part of the lemma that the sequence of minimizers {vn}n∈N has
a convergent subsequence which converges to a minimizer. So the pointwise limit v̄ must be minimizer, moreover
v̄ � ū.

If there exists x1 ∈ Λ such that v̄(x1) < ū(x1), then there must be a minimizer w such that w(x1) > v̄(x1). But
v̄(x0) = ū(x0) � w(x0), contradicting Lemma 3.4. So v̄ = ū, which is therefore the maximal minimizer and pointwise
maximum over the set of minimizers. The proof of the minimal element is done in the same way. �

This allows us to define the following object:

Definition 3.6. Given v0 ∈ Hs
loc(R

d) ∩ L∞(Rd), we say that u+ (u−) is the v0-maximal (v0-minimal) minimizer of
G1 in Λ if

• u+(x) = v0(x) (u−(x) = −v0(x)) for x ∈ Λc,
• u+ (u−) is a minimizer of G1 in Λ according to (2) of Definition 2.4,
• if ũ is any other minimizer (if more than one) of G1 in Λ so that ũ(x) = v0(x) (ũ(x) = −v0(x)) for x ∈ Λc, then

ũ(x) < u+(x) (ũ(x) > u−(x)) for x ∈ Λ.

4. Infinite volume covariant states

In this section we construct two functions v±(·,ω) on R
d which we denote macroscopic extrema minimizers or

infinite-volume states. They are obtained, as explained in the introduction, through a two limits procedure. We first
show that for any K � 1 + C0θ‖g‖∞, where C0 is the constant in (11), the K-maximal and minimal minimizers of
GK

1 in Λn as n → ∞ converge in a suitable way to u±,K . Then we define the v±(·,ω) as the pointwise limits, when
K → ∞ of u±,K . We show that the v±(·,ω), constructed in such a way, are minimizers under compact perturbations
and they do not depend on the boundary values.

Theorem 4.1 (Infinite-volume states). For almost all ω ∈ Ω , there exist two functions v+(x,ω), v−(x,ω), x ∈ R
d ,

having the following properties.

• If 2s � 1, then v±(·,ω) ∈ Cα
loc(R

d) for all α < 2s. If s ∈ ( 1
2 ,1), then v±(·,ω) ∈ C

1,α
loc (Rd) for all α < 2s − 1.

• v±(·,ω) are translation covariant.

•
v+(x,ω) = −v−(x,−ω) x ∈ R

d . (38)

• v± are minimizers under compact perturbations in the sense of Definition 2.4(1).

• ∥∥v±(ω)
∥∥∞ � 1 + C0θ‖g‖∞, (39)

where C0 is the constant in (11).
• Let Λn = (−n

2 , n
2 )d , n ∈N, then we have

limn−d

∫
Λn

v±(x,ω)dx = m±, (40)

where m± = E[∫[− 1
2 , 1

2 ]d v±(x, ·)dx], and m+ = −m− � 0.

• Given v0 ∈ L∞(Rd), let w̄n(·,ω) be a minimizer of G
v0
1 (v,ω,Λn) according to Definition 2.4, then uniformly

on v0

v−(x,ω) � lim inf
n→∞ w̄n(x,ω)� lim sup

n→∞
w̄n(x,ω) � v+(x,ω), (41)

where the convergence in x is uniformly on compacts.
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These v±(·,ω) infinite volume minimizers will be obtained as limits of the so-called K-maximal/minimal mini-
mizers.

Proposition 4.2. Let K ∈ R, K � 1 +C0θ‖g‖∞ and u
±,K
n ∈ Hs

loc(R
d)∩L∞(Rd) be respectively the K-maximal and

the K-minimal minimizers of G1 in Λn = (−n
2 , n

2 )d . We have that P-a.s.

lim
n→∞u±,K

n (x,ω) = u±,K(x,ω) pointwise and uniformly on compacts in x. (42)

Further

• If 2s � 1, then u±,K(·,ω) ∈ Cα
loc(R

d) for all α < 2s. If s ∈ ( 1
2 ,1), then u±,K(·,ω) ∈ C

1,α
loc (Rd) for all α < 2s − 1.

• u±,K(·,ω) are translation covariant.

• u+,K(·,ω) = −u−,K(·,−ω), P-a.s. (43)

Remark 4.3. As in Remark 2.8 the convergence in (42) holds in C0,β , β < α < 2s when s ∈ (0, 1
2 ] and in C1,β , β < α,

α < 2s − 1 when s ∈ ( 1
2 ,1).

Proof. We start proving the existence of u±,K . For z ∈ Z
d , denote by u

z,+,K
n := u

z,+,K
n (·,ω) the maximal minimizer

of G1 in the domain z + Λn, so that u
z,+,K
n (·,ω) = K in R

d \ (z + Λn) and respectively u
z,−,K
n := u

z,−,K
n (·,ω) the

minimal minimizer of G1 in the domain z +Λn, so that u
z,−,K
n (·,ω) = −K in R

d \ (z +Λn). If z = 0 we write u
±,K
n .

Without loss of generality we assume for the next paragraph z = 0.
By Lemma 3.1(2), ‖u±,K

n ‖∞ � K for any n. Therefore u
+,K
m �K on Λm \ Λn for m > n. Lemma 3.4 implies that

for any x and ω (and n > n0(x)) the sequence {u+,K
n (x,ω)}n is decreasing. Moreover it is bounded from below by

−K . Hence, reasoning in a similar manner for u
−,K
n ,

u±,K(x,ω) := lim
n

u±,K
n (x,ω)

exist and are measurable as function of ω. We start analyzing the case 2s � 1. As the u
±,K
n are bounded and mini-

mizers, they are on each fixed cube Q Hölder continuous of order α < 2s for any 2s � 1, uniformly in n, provided
Q ⊆ Λn, see Proposition A.3. This implies that subsequences converge locally uniformly to a Hölder function of order
α < 2s. As the entire sequence converges pointwise, the limit of any subsequence must coincide with u±,K , which
is therefore a locally Hölder continuous function of order α < 2s. The same argument for general z yields monotone
limits uz,±,K . When s ∈ ( 1

2 ,1) the argument goes in the same way, the only difference is that by Proposition A.3 the

minimizers u
±,K
n are uniformly bounded and uniformly with respect to n in C1,α with α < 2s − 1 on each fixed cube

Q which does not depend on n.
To show that u±,K are translational covariant, notice that, by (9)

u0,+,K
n (0,ω) = uz,+,K

n (z, T−zω).

Take m large enough so that Λn + z ⊆ Λm. We have that u
z,+,K
n (z, T−zω) = u

0,+,K
n (0,ω) � u

0,+,K
m (0,ω), since

m > n. Then letting first n → ∞ and then m → ∞ we get uz,+,K(z, T−zω) � u0,+,K(0,ω). The opposite equality
follows in the same way by taking Λm ⊆ Λn + z. Note that we used in the proof that the boundary condition is
translation invariant. Next we prove (43). It is immediate to verify that

GK
1 (v,ω,Λn) = G−K

1 (−v,−ω,Λn) = G−K
1 (w,−ω,Λn) (44)

(see notation (16)), if we set −v = w. Therefore if u
+,K
n (·,ω) is the maximal minimizer of GK

1 (v,ω,Λn) we have

that wn(·,−ω) = −u
+,K
n (·,ω) is the minimal minimizer of G−K

1 (w,−ω,Λn) in Λn, i.e. wn(·,−ω) = u
−,K
n (·,−ω).

Then letting n → ∞ we get (43). �
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Next we show that the states u±,K are indeed minimizers under compact perturbations. In the proof we will only
use that the boundary condition is bounded by K and has the regularity of a minimizer, but not that it is actually a
constant.

Proposition 4.4. Let K ∈R, K � 1+C0θ‖g‖∞ and u±,K(·,ω) be the functions constructed in Proposition 4.2. Then,
for any Λ �R

d , we have that

Gu+,K

1

(
u+,K,ω,Λ

)
� Gu+,K

1 (u,ω,Λ),

for any measurable function u which coincides with u+,K(·,ω) in Λc. The same holds for u−,K .

Proof. Denote shortly u+,K = u∗. We argue by contradiction. Assume that there exist a bounded set Λ and a measur-
able function u so that Gu∗

1 (u,ω,Λ) < Gu∗
1 (u∗,ω,Λ). Let Λn be so large that Λ ⊂ Λn and let u

+,K
n be the K-maximal

minimizer of G1 in Λn, see Definition 3.6.
For simplicity we drop the dependence on ω and denote

E1 := Gu∗
1

(
u∗,Λ

)
, E2 := Gu∗

1 (u,Λ), En := GK
1

(
u+,K

n ,Λn

)
.

By assumption there exists a δ > 0 such that E2 +δ < E1. The aim is to construct a function ũn such that if E2 +δ < E1
then GK

1 (ũn,Λn) < En for some n large enough, which gives a contradiction.
Step 1: By (15)

E1 =K1
(
u∗,Λ

) +W
((

u∗,Λ
)
,
(
u∗,Λc

))
, (45)

E2 =K1(u,Λ) +W
(
(u,Λ),

(
u∗,Λc

))
, (46)

En =K1
(
u+,K

n ,Λ
) +W

((
u+,K

n ,Λ
)
,
(
u+,K

n ,Λn \ Λ
)) +K1

(
u+,K

n ,Λn \ Λ
)

+W
((

u+,K
n ,Λn \ Λ

)
,
(
K,Λc

n

))
. (47)

Step 2: Next we show that for any ε > 0 there exists nε s.t. for n� nε∣∣K1
(
u+,K

n ,Λ
) −K1

(
u∗,Λ

)∣∣ < ε, (48)

A ≡ ∣∣W((
u∗,Λ

)
,
(
u∗,Λn \ Λ

)) −W
((

u+,K
n ,Λ

)
,
(
u+,K

n ,Λn \ Λ
))∣∣ < ε. (49)

The bound (48) follows immediately from Proposition 5.2 with D = Λ, the regularity properties of the minimizers
and Remark 4.3. To show (49), fix R > 0 so that Λ ⊂ BR/2(0) and require n so large that BR(0) ⊂ Λn. Note that we
can choose such R to be bounded uniformly in n. We upper bound A in (49) as following:

A� |I1| + |I2|,

I1 =
∫
Λ

∫
BR(0)\Λ

|u∗(z) − u∗(z′)|2 − |u+,K
n (z) − u

+,K
n (z′)|2

|z − z′|d+2s
dz dz′,

I2 =
∫
Λ

∫
Λn\BR(0)

|u∗(z) − u∗(z′)|2 − |u+,K
n (z) − u

+,K
n (z′)|2

|z − z′|d+2s
dz dz′.

I1 is estimated (in a very rough way) by Proposition 5.2 with D = BR . For I2, since |u∗| �K , |u+,K
n | � K we have

|I2|�
∫
Λ

∫
Rd\BR(0)

8K

|z − z′|d+2s
dz dz′ � 8KC(d)|Λ|

∞∫
R/2

r−2s−1 � K|Λ|C′(d)R−2s .

Here we used the integrability of the kernel at infinity. In conclusion, by choosing first R sufficiently large, depending
on ε, and then nε large depending on R we obtain (48) and (49) for all n� nε .
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Step 3: In the same way as I2 above we use the integrability of the kernel at infinity to get

∣∣W((
u∗,Λ

)
,
(
u∗,Λn \ Λ

)) −W1
((

u∗,Λ
)
,
(
u∗,Rd \ Λ

))∣∣� 4KC(d)|Λ|
∞∫

R/2

r−2s−1 �K|Λ|C′(d)R−2s < ε

for R and n sufficiently large. So

En > E1 − 3ε +K1
(
u+,K

n ,Λn \ Λ
) +W

((
u+,K

n ,Λn \ Λ
)
,
(
K,Λc

n

))
> E2 +K1

(
u+,K

n ,Λn \ Λ
) +W1

((
u+,K

n ,Λn \ Λ
)
,
(
K,Λc

n

)) + δ − 3ε. (50)

Step 4: Now we construct a function on Λn such that its energy in this cube with K b.c. approximates the first three
terms in the last line of (50), which will lead to a contradiction. Define a function ũn which is equal to u in Λ and
equal to u

+,K
n outside a boundary layer of width 1 of Λ:

ũn(x) :=
⎧⎨⎩

u(x), if x ∈ Λ,

u
+,K
n (x) if x ∈R

d : dist(x,Λ) > 1,

u∗(x) + Ψ (x)(u
+,K
n (x) − u∗(x)) else,

(51)

where Ψ : Rd → [0,1] is a smooth cut-off function nondecreasing in dist(x,Λ) with Ψ (x) = 0 if dist(x,Λ) < 1/2
and Ψ (x) = 1 if dist(x,Λ) > 1. Notice that ũn − u∗ → 0 in C0,α(Λn \ Λ) for α < 2s. By the equality u∗(x) +
Ψ (x)(u

+,K
n (x) − u∗(x)) = u

+,K
n (x) + [1 − Ψ (x)](u∗(x) − u

+,K
n (x)) which we will use in the following we get also

that ũn − u
+,K
n → 0 in C0,α(Λn \ Λ) for α < 2s. Set

I3 = ∣∣W(
(u,Λ),

(
u∗,Λc

)) −W
(
(u,Λ),

(
ũn,Λ

c
))∣∣

=
∣∣∣∣ ∫
Λ

dz

∫
Λc

dz′ |u(z) − u∗(z′)|2 − |u(z) − ũn(z
′)|2

|z − z′|d+2s

∣∣∣∣
=

∣∣∣∣ ∫
Λ

dz

∫
Λc

dz′ 2u(z)[ũn(z
′) − u∗(z′)] + [(ũn(z

′))2 − (u∗(z′))2]
|z − z′|d+2s

∣∣∣∣.
As ũn(x) = u∗(x) for x ∈ Λc and dist(x,Λ) < 1/2, the integrand vanishes unless |z − z′| > 1/2. For R as in Step 2
we estimate I3 by splitting Λc = (Λc ∩ BR(0)) ∪ (Λc \ BR(0))

I3 � C(d)|Λ|Rd
∥∥u∗ − u+,K

n

∥∥
L∞(BR)

+ |Λ|C(d)R−2sK.

Choosing first R large and then n0 depending on R and ε, we obtain that for n� n0, |I3| < ε and hence, see (46),

E2 �K1(u,Λ) +W
(
(u,Λ),

(
ũn,Λ

c
)) − ε. (52)

By the definition of ũn

W
(
(u,Λ),

(
ũn,Λ

c
)) =W

(
(u,Λ), (ũn,Λn \ Λ)

) +W1(u,Λ),
(
K,Λc

n

)
,

we therefore obtain

E2 �K1(u,Λ) +W1
(
(u,Λ), (ũn,Λn \ Λ)

) +W
(
(u,Λ),

(
K,Λc

n

)) − ε. (53)

Step 5: By (51) and (53)

GK
1 (ũn,Λn) =K1(u,Λ) +W

(
(u,Λ), (ũn,Λn \ Λ)

) +W
(
(u,Λ),

(
K,Λc

n

))
+K1(ũn,Λn \ Λ) +W

(
(ũn,Λn \ Λ),

(
K,Λc

n

))
� E2 + ε +K1(ũn,Λn \ Λ) +W

(
(ũn,Λn \ Λ),

(
K,Λc

n

))
.

Therefore

E2 � GK
1 (ũn,Λn) − ε −K1(ũn,Λn \ Λ) −W

(
(ũn,Λn \ Λ),

(
K,Λc

n

))
. (54)



608 N. Dirr, E. Orlandi / Ann. I. H. Poincaré – AN 32 (2015) 593–622
By (50) if we show that∣∣K1(ũn,Λn \ Λ) −K1
(
u+,K

n ,Λn \ Λ
)∣∣ < ε, (55)∣∣W(

(ũn,Λn \ Λ),
(
K,Λc

n

)) −W
((

u+,K
n ,Λn \ Λ

)
,
(
K,Λc

n

))∣∣ < ε, (56)

then

En > −6ε + δ + GK
1 (ũn,Λn)

for n sufficiently large. As ε was arbitrary and En is minimal value with K-boundary conditions, this means δ = 0
and hence u∗ is a minimizer under compact perturbations. Next we prove (55) and (56). Estimate (55) follows by
applying Proposition 5.2 since ũn − u

+,K
n → 0 in C0,α(Λn \ Λ) for α < 2s. Note that the difference is equal to zero

for dist(x,Λ) > 1. Estimate (56) follows by∫
(Λn\Λ)×Λc

n

dz dz′ ||ũn(z) − K|2 − |u+,K
n (z) − K|2|

|z − z′|d+2s

� 4K

∫
{dist(x,Λ)�1}∩(Λn\Λ)×BR(0)c

dz dz′ |ũn(z) − u
+,K
n (z)|

|z − z′|d+2s

� |2Λ|4K
∥∥u+,K

n − u∗∥∥
L∞(2Λ)

C(d)

∞∫
R

r−2s−1 dr � |2Λ|4K
∥∥u+,K

n − u∗∥∥
L∞(2Λ)

C′(d)R−2s

where we used that ũn = u
+,K
n for dist(x,Λ) > 1 and R is chosen as large as possible with BR(0) ⊆ Λn. �

Next we show that ‖u+,K‖∞ is bounded uniformly on K .

Lemma 4.5. Let u±,K(x,ω) be the functions constructed in Proposition 4.2, see (42). Then uniformly in K∥∥u±,K(ω)
∥∥∞ � 1 + C0θ‖g‖∞ P- a.s., (57)

where C0 is the constant in (11).

Proof. Take Λ0 = [− 1
2 , 1

2 ]d and Λn = (−n
2 , n

2 )d , i.e. |Λn| = nd |Λ0|. Define for z ∈ Z
d and for any C+ � 1 +

C0θ‖g‖∞

Λz := Λ0 + z, Bn(ω) = ∣∣{x ∈ Λn:
∣∣u+,K(x,ω)

∣∣ > C+}∣∣ =
∑

z∈Λn∩Zd

∣∣{x ∈ Λz:
∣∣u+,K(x,ω)

∣∣ > C+}∣∣.
Since u+,K is translation covariant∣∣{x ∈ Λz:

∣∣u+,K(x,ω)
∣∣ > C+}∣∣ = ∣∣{x ∈ Λ0:

∣∣u+,K(x,Tzω)
∣∣ > C+}∣∣.

Hence we obtain

Bn(ω) =
∑

z∈Λn∩Zd

∣∣{x ∈ Λ0:
∣∣u+,K(x,Tzω)

∣∣ > C+}∣∣.
If |{x ∈ Λ0: |u+,K(x,ω)| > C+}| = 0, P-almost surely then Bn(ω) = 0, P-a.s. for all n, and we obtain the claim.
Suppose that the claim is false. Assume that for some η > 0

E
(∣∣{x ∈ Λ0:

∣∣u+,K(x,ω)
∣∣ > C+}∣∣) = |Λ0|η.

Therefore by the ergodic theorem Bn(ω)

nd → η almost surely. Fix an ω in the set of full measure where this holds, and

treat it from now on as parameter. There exists n0 (depending on ω), such that for n� n0, Bn(ω) > ndη/2 > 0.
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Now define a function

v(x) :=

⎧⎪⎨⎪⎩
C+ ∧ u+,K ∨ (−C+), if {x: dist(x,Λc

n) > 2},
u+,K if x ∈ R

d : {x: dist(x,Λc
n) � 1} ∪ Λc

n,

Φ(x) else,

(58)

where Φ(x) is a smooth interpolation between u+,K and C+ ∧ u+,K ∨ (−C+). By Lemma 3.1 there exists a constant
c > 0 which depends on K , θ , C0 and ‖g‖∞ such that

K1
(
u+,K,Λn

)
�K1(v,Λn) + c

∣∣Bn
∣∣ >K1(v,Λn) + c

η

2
nd. (59)

Note that u+,K is a minimizer and has therefore higher regularity. The cutting and interpolation procedure retains
Hölder regularity. (For the cutting, note that it is the application of a Lipschitz function. For the interpolation, note
that the cut-off can be chosen smooth, with a uniform bound on the first derivative.) So we have sufficient regularity
to apply Proposition 5.1 for Λn, and we know that for any given ε there exists nε sufficiently large so that for n� nε

W
((

u+,K,Λn

)
,
(
u+,K,Λc

n

)) −W
(
(v,Λn),

(
u+,K,Λc

n

))
� −2ε|Λn|. (60)

From (59) adding and subtracting W((u+,K,Λn), (u
+,K,Λc

n)) we get

Gu+,K

1

(
u+,K,Λn

)
�K1(v,Λn) +W

((
u+,K,Λn

)
,
(
u+,K,Λc

n

)) + cη/2(2n)d .

Taking into account (60) we obtain

Gu+,K

1

(
u+,K,Λn

)
� Gu+,K

1 (v,Λn) − 2ε|Λn| + cη/2(2n)d .

Choosing n sufficiently large we get Gu+,K

1 (v,Λn) < Gu+,K

1 (u+,K,Λn), which contradicts the fact that u+,K is a
minimizer under compact perturbations. Note that the proof works for all C+ � 1+C0θ‖g‖∞, which proves (57). �
Definition 4.6 (Infinite volume states). Let K ∈R, K � 1 + C0θ‖g‖∞ and u±,K(·,ω) be the functions constructed in
Proposition 4.2. We define the infinite volume states v±(·,ω) to be the following pointwise limit:

lim
K→∞u±,K = v±, P-a.s. (61)

The limit is well defined since ‖u±,K(·,ω)‖∞ � 1 + C0θ‖g‖∞ and the sequence {u+,K(·,ω)}K is increasing
({u−,K(·,ω)}K is decreasing) in K .

In the next lemma we show that the v± inherit the regularity of u±,K and that convergence in (61) holds in a
stronger norm.

Lemma 4.7. Let K ∈ R, K � 1 + C0θ‖g‖∞ and u±,K(·,ω) be the functions constructed in Proposition 4.2. Then
v±(·,ω) defined in (61) are in C

0,α
loc (Rd) for any α < 2s for 2s � 1, and C

1,α
loc (Rd) for any α < 2s − 1 for 2s > 1.

Further for any Λ � R
d the convergence in (61) holds in C0,β(Λ), β < α < 2s when s ∈ (0, 1

2 ], and in C1,β(Λ),
β < α < 2s − 1 when s ∈ ( 1

2 ,1).

Proof. By Proposition 4.2 {u±,K(·,ω)}K are bounded and in C
0,α
loc for any α < 2s for 2s � 1, and C

1,α
loc for any

α < 2s −1 for 2s > 1. This implies that subsequences converge locally uniformly to a Hölder function of order α < 2s

when 2s � 1 and when 2s > 1 to a function in C
1,α
loc for α < 2s − 1. As the entire sequence converges pointwise, the

limit of any subsequence must coincide with v±, which is therefore a locally Hölder continuous function of order
α < 2s when 2s � 1 or when 2s > 1 a function in C

1,α
loc with α < 2s − 1. From this and the compact embedding of

Hölder spaces, see Remark 2.8, we deduce that u±,K converge to v± on any compact set Λ in C0,β(Λ), β < α < 2s

when 2s � 1 and on C1,β(Λ), β < α when α < 2s − 1. �
The following lemma states that pointwise limits of minimizers under compact perturbations are minimizers under

compact perturbations. As we could not find an appropriate result in the literature, we prove it here in the form needed
for this paper.
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Lemma 4.8. Let Ψ k : Rd → R be a family of uniformly bounded (in L∞) minimizers under compact perturbations
of G1, see Definition 2.4. Assume that {Ψ k} converges pointwise to a function Ψ :Rd →R. Then Ψ is a minimizer of
G1 under compact perturbations.

Proof. In the following ω is a parameter, so we avoid to write it explicitly. We show the lemma by contradiction.
Assume that Ψ is not a minimizer under compact perturbation. Then there exist a compact set (which we may assume
to be a cube) Λ and a measurable function u so that GΨ

1 (u,ω,Λ) < GΨ
1 (Ψ,ω,Λ). Denote Λ1 = Λ ∪ {x ∈ R

d :
dist(x,Λ)� 2}

E1 := GΨ
1 (Ψ,ω,Λ), E2 := GΨ

1 (u,ω,Λ), Ek := GΨ k

1

(
Ψ k,ω,Λ1

)
.

By assumption there exists a δ > 0 such that E2 + δ < E1. The aim is to construct a function Ψ̃ k , for some k large
enough, such that if E2 + δ < E1 then GΨ k

1 (Ψ̃ k,Λ1) < Ek , which gives a contradiction, since Ψ k is by assumption a
minimizer under compact perturbations. The proof is similar to the one in Proposition 4.4.

Step 1: By (15)

E1 =K1(Ψ,Λ) +W
(
(Ψ,Λ),

(
Ψ,Λc

))
, (62)

E2 =K1(u,Λ) +W
(
(u,Λ),

(
Ψ,Λc

))
, (63)

Ek =K1
(
Ψ k,Λ1

) +W
((

Ψ k,Λ1
)
,
(
Ψ k,Λc

1

))
. (64)

We write Ek as

Ek =K1
(
Ψ k,Λ

) +W
((

Ψ k,Λ
)
,
(
Ψ k,Λc

)) + Bk,

where

Bk =K1
(
Ψ k,Λ1 \ Λ

) +W
((

Ψ k,Λ1 \ Λ
)
,
(
Ψ k,Λc

1

))
.

Step 2: Next we show that for any ε > 0 there exists kε s.t. for k � kε∣∣K1
(
Ψ k,Λ

) −K1(Ψ,Λ)
∣∣ < ε, (65)

A ≡ ∣∣W(
(Ψ,Λ),

(
Ψ,Λc

)) −W
((

Ψ k,Λ
)
,
(
Ψ k,Λc

))∣∣ < ε. (66)

The (65) follows immediately from Proposition 5.2 with D = Λ, the regularity property of the minimizers, see
Lemma 4.7. For (66), fix R > 0 so that Λ ⊂ BR/2(0). We upper bound A in (66) as following:

A� |I1| + |I2|,
I1 =

∫
Λ

∫
BR(0)\Λ

|Ψ (z) − Ψ (z′)|2 − |Ψ k(z) − Ψ k(z′)|2
|z − z′|d+2s

dz dz′,

I2 =
∫
Λ

∫
Λc\BR(0)

|Ψ (z) − Ψ (z′)|2 − |Ψ k(z) − Ψ k(z′)|2
|z − z′|d+2s

dz dz′.

I1 is estimated (in a very rough way) by Proposition 5.2 with D = BR . For I2, since |Ψ | � C+, |Ψ k|� C+ we have

|I2|�
∫
Λ

∫
Rd\BR(0)

8C+

|z − z′|d+2s
dz dz′ � 8C+C(d)|Λ|

∞∫
R/2

r−2s−1 � C+|Λ|C′(d)R−2s .

Here we used the integrability of the kernel at infinity. In conclusion, by choosing first R sufficiently large, depending
on ε, and then kε large depending on R we obtain (65) and (66) for all k � kε .

Step 3: By (65) and (66) for k sufficiently large

Ek > E1 − 2ε + Bk > E2 + δ − 2ε + Bk. (67)
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Step 4: Define a function Ψ̃ k which is equal to u in Λ and equal to Ψ k outside a boundary layer of width 1 of Λ.

Ψ̃ k(x) :=
⎧⎨⎩

u(x), if x ∈ Λ,

Ψ k(x) if x ∈ R
d : dist(x,Λ) > 1,

Ψ (x) + Φ(x)(Ψ k(x) − Ψ (x)) else,

(68)

where Φ : Rd → [0,1] is a smooth cut-off function nondecreasing in dist(x,Λ) with Φ(x) = 0 if dist(x,Λ) < 1/2
and Φ(x) = 1 if dist(x,Λ) > 1. Then

I3 := ∣∣W(
(u,Λ),

(
Ψ,Λc

)) −W
(
(u,Λ),

(
Ψ̃ k,Λc

))∣∣
=

∣∣∣∣ ∫
Λ

dz

∫
Λc

dz′ |u(z) − Ψ (z′)|2 − |u(z) − Ψ̃ k(z′)|2
|z − z′|d+2s

∣∣∣∣
=

∣∣∣∣ ∫
Λ

dz

∫
Λc

dz′ 2u(z)[Ψ̃ k(z′) − Ψ (z′)] + [Ψ̃ k(z′) − Ψ (z′)][Ψ̃ k(z′) + Ψ (z′)]
|z − z′|d+2s

∣∣∣∣
=

∣∣∣∣ ∫
Λ

dz

∫
Λc

dz′1|z−z′|>1/2|2u(z)[Ψ̃ k(z′) − Ψ (z′)] + [Ψ̃ k(z′) − Ψ (z′)][Ψ̃ k(z′) + Ψ (z′)]
|z − z′|d+2s

∣∣∣∣.
The last equality holds since Ψ̃ k(x) = Ψ (x) for x ∈ Λc and dist(x,Λ) < 1/2, therefore the integrand vanishes unless
|z − z′| > 1/2. Take R so large that Λ ⊂ BR

2
(0) and split Λc = (Λc ∩ BR(0)) ∪ (Λc \ BR(0)). We obtain

I3 � C(d)|Λ|Rd
∥∥Ψ − Ψ k

∥∥
L∞(BR)

+ |Λ|C(
d, θ,C0,‖g‖∞

)
R−2s .

For any ε take R0(ε) so that for R � R0(ε), |Λ|C(d, θ,C0,‖g‖∞)R−2s � ε
2 , then take K0 depending on ε, so that for

K � K0, |I3| < ε and hence

E2 =K1(u,Λ) +W
(
(u,Λ),

(
Ψ,Λc

))
�K1(u,Λ) +W

(
(u,Λ),

(
Ψ̃ k,Λc

)) − ε. (69)

By the definition of Ψ̃ k

W
(
(u,Λ),

(
Ψ̃ k,Λc

)) =W
(
(u,Λ),

(
Ψ̃ k,Λ1 \ Λ

)) +W1
(
(u,Λ),

(
Ψ k,Λc

1

))
.

We therefore obtain

E2 �K1(u,Λ) +W
(
(u,Λ),

(
Ψ̃ k,Λ1 \ Λ

)) +W1
(
(u,Λ),

(
Ψ k,Λc

1

)) − ε. (70)

Step 5: By (68) and (70)

GΨ k

1

(
Ψ̃ k,Λ1

) =K1(u,Λ) +W
(
(u,Λ),

(
Ψ̃ k,Λ1 \ Λ

)) +W
(
(u,Λ),

(
Ψ k,Λc

1

))
+K1

(
Ψ̃ k,Λ1 \ Λ

) +W
((

Ψ̃ k,Λ1 \ Λ
)
,
(
Ψ k,Λc

1

))
� E2 + ε +K1

(
Ψ̃ k,Λ1 \ Λ

) +W
((

Ψ̃ k,Λ1 \ Λ
)
,
(
Ψ k,Λc

1

))
. (71)

Next we show that for any ε > 0 there exists kε so that for k � kε∣∣K1
(
Ψ̃ k,Λ1 \ Λ

) −K1
(
Ψ k,Λ1 \ Λ

)∣∣ < ε, (72)∣∣W((
Ψ̃ k,Λ1 \ Λ

)
,
(
Ψ k,Λc

1

)) −W
((

Ψ k,Λ1 \ Λ
)
,
(
Ψ k,Λc

1

))∣∣ < ε. (73)

Assuming that (72) and (73) hold, we obtain from (67) and (71) that

Ek > E2 + δ − 2ε + Bk � −4ε + δ + GΨ k

1

(
Ψ̃ k,Λ1

)
for k sufficiently large. As ε was arbitrary and Ek is minimal value with Ψ k-boundary conditions, δ = 0 and hence Ψ

is a minimizer under compact perturbations.
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To prove (72), we notice that Ψ̃ k(x) = Ψ (x) + Φ(x)(Ψ k(x) − Ψ (x)) = Ψ k(x) + (1 − Φ(x))(Ψ (x) − Ψ k(x))

and Φ(x) = 1 when dist(x,Λ) � 1 and ‖Ψ̃ k − Ψ k‖C0,β (Λ1\Λ) → 0 for β < α < 2s when s ∈ (0, 1
2 ] and ‖Ψ̃ k −

Ψ k‖C1,β (Λ1\Λ) → 0 for β < α when s ∈ ( 1
2 ,1). Therefore by Proposition 5.2 for k large enough∣∣K1

(
Ψ̃ k,Λ1 \ Λ

) −K1
(
Ψ k,Λ1 \ Λ

)∣∣� ε.

Note that the difference is equal to zero for dist(x,Λ) > 1. Next we prove (73). We have∫
(Λ1\Λ)×Λc

1

||Ψ̃ k(z) − Ψ k(z′)|2 − |Ψ k(z) − Ψ k(z′)|2|
|z − z′|d+2s

=
∫

(Λ1\Λ)×Λc
1

1{dist(z,Λ)�1}
||Ψ̃ k(z) − Ψ k(z′)|2 − |Ψ k(z) − Ψ k(z′)|2|

|z − z′|d+2s

� C

∫
(Λ1\Λ)×Λc

1

1{dist(z,Λ)�1}
|Ψ (z) − Ψ k(z)|

|z − z′|d+2s

� C|Λ| d−1
d

∥∥Ψ − Ψ k
∥∥

L∞(Λ1)

∞∫
1

r−2s−1 dr � C|Λ| d−1
d

∥∥Ψ − Ψ k
∥∥

L∞(Λ1)
� ε

if k � kε . �
Now we can prove the main theorem:

Proof of Theorem 4.1. Let v± be the infinite volume states defined in (61). The existence and the first three properties
of v± are established in Proposition 4.2 for u±,K and they are inherited by the limit. Lemma 4.5 establishes the L∞
bound for u±,K which is inherited by the limit as well. The proof that v± are minimizers under compact perturbation
is done in Lemma 4.8. Next we prove (40). We have∫

Λn

v±(x,ω)dx =
∑

z∈Λn∩Zd

∫
{z+[− 1

2 , 1
2 ]d }

v±(x,ω)dx

=
∑

z∈Λn∩Zd

∫
[− 1

2 , 1
2 ]d

v±(Tzx,ω)dx =
∑

z∈Λn∩Zd

∫
[− 1

2 , 1
2 ]d

v±(x, T−zω)dx. (74)

Since |v±(x,ω)| � (1 + C0θ‖g‖∞), by the Birkhoff ergodic theorem, see for example [12], we have P-a.s.

lim
1

nd

∫
Λn

v±(x,ω)dx = lim
1

nd

∑
z∈Λn∩Zd

∫
[− 1

2 , 1
2 ]d

v±(x, T−zω)dx

= E

[ ∫
[− 1

2 , 1
2 ]d

v±(x, ·)dx

]
= m±. (75)

It remains to show (41). Let w̄n be as in the statement of the theorem and fix x ∈ Λn. Denote K = max{‖v̄0‖∞, (1+
C0θ‖g‖∞)}. Let u

±,K
n be the K-maximal and the K-minimal minimizers of G1 in Λn, see Definition 3.6. By

Lemma 3.4 we get that u
−,K
n (x,ω) � w̄n(x,ω) � u

+,K
n (x,ω) for x ∈ R

d . Then, by (42), uniformly for any com-
pact set of Rd containing x we have

v−(x,ω) � u−,K(x,ω) � lim inf
n

w̄n(x,ω) � lim sup
n

w̄n(x,ω) � u+,K(x,ω) � v+(x,ω).

The first and last inequalities hold since {u+,K }K is increasing ({u−,K}K is decreasing) in K . The (41) follows. �
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In the next lemma we bound uniformly in ω the difference between the energy of the two extrema macroscopic
minimizers v±.

Lemma 4.9. Let Λ � R
d , cube-like, v± be the infinite volume states constructed in Theorem 4.1. There exists a

positive constant C depending on θ , d , s, C0 and ‖g‖∞, so that P-a.s.

∣∣G1
(
v+,ω,Λ

) − G1
(
v−,ω,Λ

)∣∣ �
⎧⎪⎪⎨⎪⎪⎩

C|Λ| d−2s
d , s ∈ (0, 1

2 ),

C|Λ| d−1
d , s ∈ ( 1

2 ,1),

C|Λ| d−1
d log |Λ|, s = 1

2 .

(76)

Proof. Let the cut-off function Ψ : Rd → R be a smooth nondecreasing function in dist(x,Λc) with Ψ (x) = 1 if
dist(x,Λc) � 1 and Ψ (x) = 0 if dist(x,Λc) = 0. Set

ũ := Ψ v+ + (1 − Ψ )v−. (77)

The function ũ is equal to v− when x ∈ Λc and equal to v+ when x ∈ Λ, dist(x,Λc) > 1 and interpolates in a smooth
way between these values. Since v− is the minimal minimizer in Λ we have

G1
(
v−,ω,Λ

)
�Gv−

1 (ũ,ω,Λ). (78)

We will show that

Gv−
1 (ũ,ω,Λ)� G1

(
v+,ω,Λ

) + M(s) (79)

where we denote shortly by M(s) the right hand side of (76). Therefore from (78)

G1
(
v−,ω,Λ

) − G1
(
v+,ω,Λ

)
� M(s). (80)

In a similar way we can show that

G1
(
v+,ω,Λ

) − G1
(
v−,ω,Λ

)
� M(s). (81)

Then, from (80) and (81) we get (76). Next we show (79). By definition

Gv−
1 (ũ,ω,Λ) =K1(ũ,ω,Λ) +W

(
(ũ,Λ)

(
v−,Λc

))
. (82)

Denote

∂Λ = {
x ∈ Λ: dist

(
x,Λc

)
� 1

}
.

By the definition of ũ, see (77), we have

K1(ũ,ω,Λ) =K1
(
v+,ω,Λ \ ∂Λ

) +K1(ũ,ω, ∂Λ) +W
((

v+,Λ \ ∂Λ

)
, (ũ, ∂Λ)

)
. (83)

By adding and subtracting K1(v
+,ω, ∂Λ) and the interaction term W((v+,Λ \ ∂Λ), (v+, ∂Λ)) we get

K1(ũ,ω,Λ) =K1
(
v+,ω,Λ

) + [
K1(ũ,ω, ∂Λ) −K1

(
v+,ω, ∂Λ

)]
+ [

W
((

v+,Λ \ ∂Λ

)
, (ũ, ∂Λ)

) −W
((

v+,Λ \ ∂Λ

)
,
(
v+, ∂Λ

))]
. (84)

For the second term of (82) we add and subtract W((v+,Λ), (v+,Λc)) obtaining

W
(
(ũ,Λ)

(
v−,Λc

)) =W
((

v+,Λ
)
,
(
v+,Λc

)) + [
W

(
(ũ,Λ),

(
v−,Λc

)) −W
((

v+,Λ
)
,
(
v+,Λc

))]
. (85)

Taking into account (82), (84), (85) we get that

Gv−
1 (ũ,ω,Λ) = Gv+

1

(
v+,ω,Λ

) +R1 +R2 +R3 (86)

where
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R1 = [
K1(ũ,ω, ∂Λ) −K1

(
v+,ω, ∂Λ

)]
,

R2 = [
W

((
v+,Λ \ ∂Λ

)
, (ũ, ∂Λ)

) −W
((

v+,Λ \ ∂Λ

)
,
(
v+, ∂Λ

))]
,

R3 = [
W

(
(ũ,Λ),

(
v−,Λc

)) −W
((

v+,Λ
)
,
(
v+,Λc

))]
. (87)

Since R2 and R3 are difference of positive terms and ũ, v− and v+ are smooth enough we can apply (23) of
Lemma 3.2 to each single term obtaining

|R2| � M(s), |R3|� M(s).

Next we estimate R1. We have

|R1| �
∫
∂Λ

dx

∫
∂Λ

dy
|(ũ(x) − ũ(y))2 − (v+(x) − v+(y))2|

|x − y|d+2s

+
∫
∂Λ

∣∣W (
ũ(x)

) − W
(
v+(x)

)∣∣dx + θ

∫
∂Λ

∣∣g1(x,ω)
[
ũ(x) − v+(x)

]∣∣dx

�
∫
∂Λ

dx

∫
∂Λ

dy
|(ũ(x) − ũ(y))2 − (v+(x) − v+(y))2|

|x − y|d+2s
+ C

(
C0, θ,‖g‖∞

)|Λ| d−1
d (88)

where C(C0, θ,‖g‖∞) is a constant which depends only on θ , the bound on the random field, see (8) and the interac-
tion W . We need some care to estimate the integral term in (88) since the integral might be singular. We exploit the
regularity of the minimizers. Recall that for s ∈ (0, 1

2 ], v+ ∈ C
0,α
loc (Rd) for α < 2s and for s ∈ ( 1

2 ,1), v+ ∈ C
1,α
loc (Rd)

for α < 2s − 1. The same regularity holds by construction for ũ. Therefore∫
∂Λ

∫
∂Λ

[(ũ(x) − ũ(y))2 − (v+(x) − v+(y))2]
|x − y|d+2s

�

⎧⎨⎩2C
∫
∂Λ

∫
∂Λ

1
|x−y|d+2s−2α s ∈ (0, 1

2 ],
2C

∫
∂Λ

∫
∂Λ

1
|x−y|d+2s−2 s ∈ ( 1

2 ,1).
(89)

We have that when s ∈ (0, 1
2 ], 2s − 2α < 0 and when s ∈ ( 1

2 ,1), 2s − 2 < 0. Therefore both terms on the right hand

side of (89) are integrable and bounded by C|Λ| d−1
d . �

The quantity defined next plays a fundamental role.

Definition 4.10.

1. For a cube Λ ⊆R
n we define BΛ as the σ -algebra generated by the random field in Λ.

2. Let v±(ω) be the infinite volume states constructed before. We define

Fn(ω) := E
[{

G1
(
v+(·), ·,Λn

) − G1
(
v−(·), ·,Λn

)}|BΛn

]
. (90)

Remark 4.11. By definition Fn(·) is BΛn measurable and by the symmetry assumption on the random field
{g(z, ·), z ∈ Z

d}
E

[
Fn(·)

] = 0. (91)

Namely v+(x,ω) = −v−(x,−ω) for x ∈R
d . This implies that

G1
(
v+(ω),ω,Λn

) = G1
(
v−(−ω),−ω,Λn

)
(92)

and by the symmetry of the random field we get (91).

Next we want to quantify how v±(ω) changes when the random field is modified only in one site, for example at
the site i. We introduce the following notation:

ω(i): ω(i)(z) = ω(z) z �= i, ω = (
ω(i),ω(i)

)
i, z ∈ Z

d .
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The v+(·, (ω(0),ω(0))) is then the state v+ when the random field at the origin is ω(0), and v+(·, (ω(0) − h,ω(0)))

is the state v+ when the random field at the origin is ω(0) − h, and the same definition is used for the infinite volume
state v−(·, (·,ω(0))) and for the finite volume minimizers v±

n (·, (·,ω(0))).
Now we are able to state the following lemma:

Lemma 4.12. For Λ �R
d , 0 ∈ Λ, h > 0 we have

θh

∫
Q(0)

v+(
ω(0),ω(0)

)
dx

�G1
(
v+(

ω(0) − h,ω(0)
)
,
(
ω(0) − h,ω(0)

)
,Λ

) − G1
(
v+(

ω(0),ω(0)
)
,
(
ω(0),ω(0)

)
,Λ

)
� θh

∫
Q(0)

v+(
ω(0) − h,ω(0)

)
dx (93)

where Q(0) = [−1/2,1/2]d . The same inequalities hold for v−.

Proof. Let Λn be a cube centered at the origin so that Λ ⊂ Λn, K � (1 + C0θ‖g‖∞). Let v+
n = v+,K be the

K-maximal minimizer of G1 in Λn see Definition 3.6. Remark that v+
n is measurable with respect to the random

field g(z,ω), z ∈ Λn ∩Z
d . We have

G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

)
= G1

(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

)
+ G1

(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

)
. (94)

By explicit computation, see (12), we have that

G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

)
= −hθ

∫
Q(0)

v+
n

(
ω(0),ω(0)

)
dx.

The last line in (94) is nonnegative, because v+
n (ω(0) − h,ω(0)) is a minimizer of G1 in Λn when the random field is

(ω(0) − h,ω(0)). Therefore

G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

)
� hθ

∫
Q(0)

v+
n

(
ω(0),ω(0)

)
dx.

By splitting

G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

)
= G1

(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

)
+ G1

(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

)
we obtain in a similar way

G1
(
v+
n

(
ω(0) − h,ω(0)

)
,
(
ω(0) − h,ω(0)

)
,Λ

) − G1
(
v+
n

(
ω(0),ω(0)

)
,
(
ω(0),ω(0)

)
,Λ

)
� hθ

∫
Q(0)

v+
n

(
ω(0) − h,ω(0)

)
dx.

To pass to the limit note that the cube Q(0) remains fixed. Denote by M the smallest integer such that Λ ⊆ BM(0),
where BM(0) is a ball centered at the origin of radius M .
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By the smoothness of the minimizers, see Proposition A.3, v+
n ∈ C0,α(BM(0)) with α < 2s when 2s < 1 and in

C1,α(BM(0)), α < 1 − 2s when s ∈ [ 1
2 ,1). Further the sequence {v+

n }n uniformly converges to v+,K in BM(0) and
|v+,K | � 1 + C0θ‖g‖∞ uniformly in n and K . By Lebesgue’s Theorem on dominated convergence, we may pass to
the limit under the integral as n → ∞. By Definition 4.6 {v+,K }K pointwise converges to v+ when K → ∞, then
applying again Lebesgue’s Theorem on dominated convergence we pass to the limit as K → ∞ and the claim is
shown. The corresponding statement for v− is proved in the same way. �
Remark 4.13. From Lemma 4.12 we have that

ω(0) �→
∫

Q(0)

v+(
ω(0),ω(0)

)
dx

is nondecreasing.

Corollary 4.14. Let ω(i) be the random field in the site i which has probability distribution absolutely continuous
w.r.t. the Lebesgue measure. We have that G1(v

+(ω),ω,Λ) is P-a.e. differentiable w.r.t. to ω(i) and

∂G1(v
±(ω),ω,Λ)

∂ω(i)
= −θ

∫
Q(i)

v±(x,ω)dx.

Proof. It is sufficient to consider the case i = 0. By applying Lemma 4.12 for ω(0) and ω̃(0) = ω(0) + h we see that
the left and right derivatives exist and are equal if s �→ ∫

Q(0)
v+(s,ω(0))dx is continuous at s = ω(0). By Remark 4.13

this happens for Lebesgue almost all s, hence by the assumptions on the random field P-a.e. �
Remark 4.15. When the distribution of g is not absolutely continuous with respect to Lebesgue measure Corol-
lary 4.14 does not hold. We still can show Lemma 4.12 but we can only estimate from above and below the difference
in the energy which appears when the random field is modified in one site.

Theorem 4.16. Let Fn(·) be defined in (90), we have that5

lim
n→∞

1√|Λn|
[
Fn(·)

] D= Z, (95)

where Z stands for a Gaussian random variable with mean 0 and variance b2, defined in (103) with

4θ2(1 + C0θ‖g‖∞
)2 � b2 �D2 (96)

where

D2 = E
[(
E

[
Fn|B(0)

])2]
, (97)

B(0) is the sigma-algebra generated by g(0,ω) and C0 is given in (11).

The proof of this theorem is done invoking the general result presented in Appendix A and proceeding in the same
way as in [7]. To facilitate the reader we recall below the main steps of the proof.

Proof of Theorem 4.16. We decompose Fn as a martingale difference sequence. We order the points in Λn ∩ Z
d

according to the lexicographic ordering. In the following i � j refers to the lexicographic ordering. Any other ordering
will be fine but it is convenient to fix one. We introduce the family of increasing σ -algebra Bn,i , i ∈ Λn ∩ Z

d where
Bn,i is the σ -algebra generated by the random variables {g(z), z ∈ Λn ∩Z

d, z � i}. We denote

Bn,0 = (∅,Ω), Bn,i ⊂ Bn,j i � j, i ∈ Λn ∩Z
d, j ∈ Λn ∩Z

d .

5 limn→∞ Xn
D= Z denotes convergence in distribution of the random variables Xn to a random variable Z.
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We split

Fn =
∑

i∈Zd∩Λn

(
E[Fn|Bn,i] −E[Fn|Bn,i−1]

) :=
∑

i∈Zd∩Λn

Yn,i . (98)

By construction E[Yn,i] = 0 for i ∈ Z
d ∩ Λn, E[Yn,i |Bn,k] = 0, for all 0 � k � i − 1.

Denote

Vn := 1

|Λn ∩Zd |
∑

i∈Λn∩Zd

E
[
Y 2

n,i |Bn,i−1
]
. (99)

By Lemma 4.17 stated below we have that Vn → b2 in probability and b2 satisfies (96). By Lemma 4.18 stated below
we have that for any a > 0

Un(a) := 1

|Λn ∩Zd |
∑

i∈Λn∩Zd

E
[
Y 2

n,i1{|Yn,i |�a
√|Λn∩Zd |}|Bn,i−1

]
(100)

converges to 0 in probability. We can then invoke Theorem A.4, stated in Appendix A. The correspondence to the
notation used in Appendix A is the following. Identify |Λn ∩ Z

d | with n, Fn√|Λn∩Zd | ↔ Sn, Yn,i√|Λn∩Zd | ↔ Xn,i and

Bn,i ↔ Fn,i . Then (95) is obtained. �
Before stating Lemma 4.17 it is convenient to introduce a new sigma-algebra B�

i generated by the random fields
{g(z,ω), z ∈ Z

d, z � i} where � refers to the lexicographic ordering. Define for i ∈ Λn

Wi[ω] = E
[
G1

(
v+(ω),ω,Λn

) − G1
(
v−(ω),ω,Λn

)|B�
i

]
−E

[
G1

(
v+(ω),ω,Λn

) − G1
(
v−(ω),ω,Λn

)|B�
i−1

]
. (101)

Note that Wi is a random variable depending on random fields on sites smaller than or equal to i under the lexico-
graphic order. In particular it does not depend on the choice of the cube Λn provided i ∈ Λn. The proof of this last
statement uses that the random field has a distribution continuous with respect to Lebesgue measure. In particular the
proof relies on Corollary 4.14 and it is done in [7, Lemma 4.9].

Lemma 4.17. Let Vn be the quantity defined in (99). For all δ > 0

lim
n→∞P

[∣∣Vn − b2
∣∣� δ

] = 0, (102)

where W0 is defined in (101)

b2 = E
[
W 2

0

]
. (103)

Further

4θ2(1 + C0θ‖g‖∞
)2 � b2 � E

[(
E

[
Fn|B(0)

])2]
, (104)

where C0 is given in (11).

Lemma 4.18. Let Un(a) be defined in (100). For any a > 0 for any δ > 0

lim
n→∞P

[
Un(a) � δ

] = 0.

For the proof of Lemma 4.17 and Lemma 4.18 see [7].

Lemma 4.19. For Λ ⊂R
d , 0 ∈ Λ, we have

∂

∂ω(0)
E

[
Fn|B(0)

] = −θE

[ ∫
v+(x,ω)dx|B(0)

]
+ θE

[ ∫
v−(x,ω)dx|B(0)

]

Q(0) Q(0)
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where Q(0) := [−1/2,1/2]d . Further

E

[
∂

∂ω(0)
E

[
Fn|B(0)

]] = −2θm+,

where m+ is defined in (40).

Proof. The proof follows from Corollary 4.14 after taking conditional expectations. Further, by Theorem 4.1, we have

E

[
∂

∂ω(0)
E

[
Fn|B(0)

]] = −θE

[
E

[ ∫
Q(0)

v+(x,ω)dx|B(0)

]]
+ θE

[
E

[ ∫
Q(0)

v−(x,ω)dx|B(0)

]]
= θ

[−m+ + m−] = −2θm+. � (105)

Lemma 4.20. If

E
[(
E

[
Fn|B(0)

])2] = 0 (106)

then m+ = m− = 0, see for the definition (40).

Proof. Denote f (ω(0)) := E[−Fn|B(0)]. Set s = ω(0), (106) can be written as
∫

f 2(s)P(ds) = 0. This implies
that f (s) = 0 for P almost all point of continuity of the distribution g(0). By Lemma 4.19 and by bound (39) in
Theorem 4.1 we have that (1 + C0‖g‖∞θ)θ � f ′(s) � 0 almost everywhere. If f (s) = 0 for P almost all point of
continuity of the distribution g, then f ′(s) = 0 for P almost all point of continuity of the distribution of ω(0). But if
f ′(s) = 0 then from Lemma 4.19 we get m+ = m− = 0. �
Proof of Theorem 2.7. Applying Theorem 4.16 we get the following lower bound on the Laplace transform of Fn(ω)

defined in Definition 4.10:

lim inf
n→∞ E

[
e
t

Fn√
Λn

]
� e

t2D2
2 (107)

where D2 is defined in (97). It is immediate to realize that (107) and the results stated in Lemma 4.9 contradict
each other in d = 2 for all s ∈ ( 1

2 ,1) and in d = 1 for s ∈ [ 1
4 ,1) unless D2 = 0. On the other hand when D2 = 0,

Lemma 4.20 implies

m+ = −m− = E

[ ∫
[− 1

2 , 1
2 ]d

v±(x, ·)dx

]
= 0. (108)

Now (41) implies that P-a.s. v+(x,ω) � v−(x,ω) for all x ∈ Rd . This and (108) imply that v+(x,ω) = v−(x,ω) a.s.
By (41) P-a.s. and uniformly for any compact of Rd containing x we have that

v−(x,ω) � lim inf
n→∞ u∗

n(x,ω) � lim sup
n→∞

u∗
n(x,ω) � v+(x,ω).

Since v− = v+, P-a.s., we obtain that

lim inf
n→∞ u∗

n(x,ω) = lim sup
n→∞

u∗
n(x,ω) = u∗(x,ω) = v±(x,ω)

uniformly on compact of x. The properties of the minimizer stated in Theorem 2.7 therefore follow from the corre-
sponding properties of v±, see Theorem 4.1. Further we have

E
[
v+(x, ·)] =symm −E

[
v−(x, ·)] =unique −E

[
v+(x, ·)], x ∈R

d .

This implies for any x ∈ R
d , E[v±(x, ·)] = E[u∗(x, ·)] = 0. �



N. Dirr, E. Orlandi / Ann. I. H. Poincaré – AN 32 (2015) 593–622 619
5. Technical lemmas

Proposition 5.1. For any ε > 0, for all v ∈ C
0,α
loc ∩ L∞(Rd), α > s − 1

2 , for all cubes � large enough

W(v,�)� ε|�|. (109)

The proof is an application of Lemma 3.2, see (21) and (23).

Proposition 5.2. Take D �R
d and assume that un → u in C0,α(D) for s < α < 2s, then

In :=
∣∣∣∣ ∫
D×D

|u(z) − u(z′)|2 − |un(z) − un(z
′)|2

|z − z′|d+2s
dz dz′

∣∣∣∣� C′(d)K|D|(diam(D)
)d‖u − un‖C0,α ,

which tends to 0.

Proof. Note that∣∣∣∣u(z) − u
(
z′)∣∣2 − ∣∣un(z) − un

(
z′)∣∣2∣∣

= ∣∣[u(z) − u
(
z′) + un(z) − un

(
z′)][u(z) − u

(
z′) − (

un(z) − un

(
z′))]∣∣

�
(∣∣u(z) − u

(
z′)∣∣ + ∣∣un(z) − un

(
z′)∣∣)(∣∣(u(z) − un(z)

) − (
u
(
z′) − un

(
z′))∣∣)

�
(‖u‖C0,α + ‖un‖C0,α

)∣∣z − z′∣∣α · ‖u − un‖C0,α

∣∣z − z′∣∣α.

As a convergent sequence is bounded, there is a K > 0 such that (‖u‖C0,α + ‖un‖C0,α ) < K . So

In �
∫

D×D

||u(z) − u(z′)|2 − |un(z) − un(z
′)|2|

|z − z′|d+2s
dz dz′

� K‖u − un‖C0,α

∫
D×D

∣∣z − z′∣∣2(α−s)−d

� C(d)K|D|‖u − un‖C0,α

2∫
0

rδ−1 dr

� C′(d)K|D|(diam(D)
)d‖u − un‖C0,α → 0

where δ = 2(α − s) > 0. Note that we need only α > s. �
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Appendix A

We collect in this appendix general results about fractional Laplacian scattered in the literature and recall the main
probabilistic result used to prove Theorem 4.16.

A.1. Minimizers of the functional (16) on open bounded Lipschitz sets

We recall here some basic results assuring that the minimization of the functional (16) in an open, bounded Lip-
schitz set has solution. In the following ω plays the role of a parameter. It is kept fixed and the results hold for all
ω ∈ Ω .
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Proposition A.1. Let Λ � R
d be a Lipschitz bounded open set and u0 : Rd → R be a measurable function. Suppose

that there exists a measurable function ũ which coincides with u0 in Λc and such that G1(ũ,ω,Λ) < ∞. Then there
exists a measurable function u∗ such that

G
u0
1

(
u∗,ω,Λ

)
� G

u0
1 (v,ω,Λ)

for any measurable function v which coincides with u0 in Λc.

Proof. Take a minimizing sequence, that is, let uk = u0 in Λc so that

G1(uk,ω,Λ) �G1(ũ,ω,Λ)

and

lim
k→∞G1(uk,ω,Λ) = inf

v
G1(v,ω,Λ)

for any v which coincides with u0 in Λc. Then by the following compactness result, see Proposition A.2, up to
subsequence, uk converges almost everywhere to some u∗. By Fatou’s Lemma we conclude. �
Proposition A.2. Let Λ�R

d be a Lipschitz open set and F be a bounded subset of L2(Λ). Suppose that

sup
f ∈F

∫
Λ

dx

∫
Λ

dy
|f (x) − f (y)|2

|x − y|d+2s
< ∞.

Then F is precompact in L2(Λ).

For the proof of Proposition A.2 see [14, Lemma 6.11]. The proof is based on the classical Riesz–Frechet–
Kolmogorov Theorem. Some modifications are needed due to the non-locality of the fractional norm. If Λ is not
Lipschitz then Proposition A.2 does not hold. One can find counterexample, see for example [4, Example 9.2].

Next we show that minimizers of the functional (16) solve the Euler–Lagrange equation (115) and prove some
regularity results.

In the following, Λ, v0 and ω are kept fixed, therefore we write G
v0
1 (v,ω,Λ) = G1(v). To derive the Euler–

Lagrange equation for the minimizers of G1(v) we compute the Frechet derivative of G1(v). For w ∈ C∞
0 (Λ) we

have that

G1(v + tw) = G1(v) + 2t

∫
Λ

dx

∫
Λ

dy
[v(x) − v(y)] · [w(x) − w(y)]

|x − y|d+2s

+ t

∫
Λ

dx
[
W ′(v) + θg1

]
w + 4t

∫
Λ

dx

∫
Λc

dy
[v(x) − v0(y)] · w(x)

|x − y|d+2s
+ O

(
t2), (110)

where W ′(·) is the derivative of W(·) with respect to its argument. Then the Frechet derivative computed in v is the
following linear operator defined for w ∈ C∞

0 (Λ) as the following

DvG1(w) = 2
∫
Λ

dx

∫
Λ

dy
[v(x) − v(y)] · [w(x) − w(y)]

|x − y|d+2s

+
∫
Λ

dx
[
W ′(v) + θg1

]
w + 4

∫
Λ

dx

∫
Λc

dy
[v(x) − v0(y)]w(x)

|x − y|d+2s
. (111)

At this point one is tempted to split the first integral in (111) into two terms and exchange x with y in one of the terms
to obtain

2
∫

dx w(x)

∫
dy

[v(x) − v(y)]
|x − y|d+2s

. (112)
Λ Λ
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However we cannot always do that. The inner integral in the first integral in (111) might not be absolutely convergent.
So in general it can be defined only as a principal value. In such a case∫

Λ

dx

∫
Λ

dy
[v(x) − v(y)] · [w(x) − w(y)]

|x − y|d+2s
=

∫
Λ

dx w(x) lim
r→0

∫
Λ\Br (x)

dy
[v(x) − v(y)]
|x − y|d+2s

, (113)

where Br(x) is a ball of radius r > 0 centered in x.
From (111) and (113) we deduce that a minimizer of G

v0
1 (v,ω,Λ) is a function v ∈ Hs

loc ∩ L∞ which solves

2
∫
Λ

dx w(x)
(
(−�)sv

)
(x) +

∫
Λ

dx
[
W ′(v) + θg1

]
w + 4

∫
Λ

dx

∫
Λc

dy
[v(x) − v0(y)]w(x)

|x − y|d+2s
= 0. (114)

We identify the problem stated in (114) to the following Dirichlet boundary value problem for the corresponding
Euler–Lagrange equation:

(−�)sv = −1

2

[
W ′(v) + θg1

]
in Λ, ω ∈ Ω,

v = v0 in Λc. (115)

We recall the following regularity result proven in [19, Proposition 2.9].

Proposition A.3. Let w = (−�)su in R
d so that ‖u‖∞ and ‖w‖∞ are finite. If 2s � 1 then u ∈ C0,α for any α < 2s,

and

‖u‖C0,α � C
[‖u‖∞ + ‖w‖∞

]
for a constant C = C(d, s,α).

If 2s > 1 then u ∈ C1,α for any α < 2s − 1, and

‖u‖C1,α � C
[‖u‖∞ + ‖w‖∞

]
,

for a constant C = C(d, s,α).

We remark that the above results are valid for solution in the viscosity sense of (115) in bounded domains. The
minimizers solve the Euler–Lagrange equation in the distributional sense (in H−s ), but both notions of solution are
equivalent by Servadei and Valdinoci [18], leading to a local regularity theory for minimizers.

The main tool to prove Theorem 4.16 is the following general result which we reported from [11], see [11, Theo-
rem 3.2 and Corollary 3.1].

Theorem A.4. Let Sn,i , i = 1, . . . , kn be a double array of zero mean martingales with respect to the filtration Fn,i ,
Fn,i ⊂Fn+1,i i = 1, . . . , kn with Sn,kn = Sn, so that Sn,i = E[Sn|Fn,i]. We assume that kn ↑ ∞ as n ↑ ∞. Denote

Xn,i := Sn,i − Sn,i−1,

Vn =
kn∑

i=1

E
[
X2

n,i |Fn,i−1
]
,

Un,a =
kn∑

i=1

E
[
X2

n,i1{|X2
n,i |>a}|Fn,i−1

]
.

Suppose that

• for some constant b2 and for all δ > 0, limn→∞ P[|Vn − b2|� δ] = 0,
• for any a > 0 and for any δ > 0

lim
n→∞P

[
Un(a) � δ

] = 0 (Lindeberg condition),
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then in distribution

lim
n→∞Sn

D= Z,

where Z is a Gaussian random variable with mean equal to zero and variance equal to b2.
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