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Abstract

This paper is concerned with the generalized principal eigenvalue for Hamilton–Jacobi–Bellman (HJB) equations arising in a
class of stochastic ergodic control. We give a necessary and sufficient condition so that the generalized principal eigenvalue of an
HJB equation coincides with the optimal value of the corresponding ergodic control problem. We also investigate some qualitative
properties of the generalized principal eigenvalue with respect to a perturbation of the potential function.
© 2014

MSC: 35Q93; 60J60; 93E20

Keywords: Principal eigenvalue; Hamilton–Jacobi–Bellman equation; Ergodic control; Recurrence and transience

1. Introduction

This paper is concerned with the following Hamilton–Jacobi–Bellman (HJB) equation of ergodic type:

λ − Aφ + H(x,Dφ) + βV = 0 in R
N, φ(0) = 0, (EP)

where β is a real parameter, Dφ = (∂φ/∂x1, . . . , ∂φ/∂xN), A is a second order elliptic operator of the form

A := 1

2

N∑
i,j=1

(
σσT

)
ij
(x)

∂2

∂xi∂xj

+
N∑

i=1

bi(x)
∂

∂xi

, (1.1)

and σT denotes the transpose matrix of σ . The unknown of (EP) is the pair of a real constant λ and a function φ =
φ(x) on R

N . Finding such a pair is called ergodic problem or nonlinear additive eigenvalue problem. The constraint
φ(0) = 0 in (EP) is always imposed to avoid the ambiguity of additive constants with respect to φ. Throughout the
paper, we assume the following:
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(A1) σij , bi ∈ W 1,∞(RN) for all 1 � i, j � N , and there exists a ν1 > 0 such that ν1|η|2 � |σT (x)η|2 � ν−1
1 |η|2 for

all x,η ∈R
N .

(A2) There exist m > 1, ν2 > 0, and Σ = (Σij (x))1�i,j�N with Σij ∈ W 1,∞(RN) for all 1 � i, j � N such that

H(x,p) = 1

m

∣∣ΣT (x)p
∣∣m, ν2|η|2 � ∣∣ΣT (x)η

∣∣2 � ν−1
2 |η|2, x, η ∈R

N.

(A3) V ∈ W 1,∞(RN), V �≡ 0, and V (x) → 0 as |x| → ∞, i.e., limr→∞ sup|x|�r |V (x)| = 0.

Here and in what follows, we identify the Sobolev space W 1,∞(RN) with the totality of bounded and Lipschitz
continuous functions on R

N . Note that assumption (A2) can be relaxed slightly (see Remark 3.8).
Ergodic problem (EP) is closely related to the following stochastic control problem:

Minimize Jβ(ξ) = lim inf
T →∞

1

T
Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}
dt

]
, (1.2)

subject to dX
ξ
t = −ξt dt + b

(
X

ξ
t

)
dt + σ

(
X

ξ
t

)
dWt, (1.3)

where L(x, ξ) := (1/m∗)|Σ−1(x)ξ |m∗
for m∗ := m/(m − 1) > 1, and Σ−1 denotes the inverse matrix of Σ in (A2).

Recall that (1.3) is interpreted as Ito’s stochastic differential equation, where W = (Wt) is an N -dimensional standard
Brownian motion defined on some probability space, and ξ = (ξt ) stands for an R

N -valued control process belonging
to a suitable admissible class A. Stochastic control of this type is called (stochastic) ergodic control. We refer to [8] for
general information on the stochastic control theory. See also [2,5] for stochastic ergodic control in R

N . We remark
here that L = L(x, ξ) is the Fenchel–Legendre transform of H = H(x,p) with respect to the second variable, namely,

L(x, ξ) := sup
{
ξ · p − H(x,p)

∣∣ p ∈ R
N

}
, x, ξ ∈R

N.

The objective of this paper is to investigate several qualitative properties of the generalized principal eigenvalue
for (EP) defined by

λ∗(β) := sup
{
λ ∈R

∣∣ (EP) has a solution φ ∈ C2(
R

N
)}

. (1.4)

Our main results consist of two parts. In the first half, we explore the relationship between the generalized prin-
cipal eigenvalue λ∗ = λ∗(β) of (EP) and the optimal value Λ = Λ(β) := infξ∈A Jβ(ξ) of the minimizing problem
(1.2)–(1.3). More specifically, we discuss a necessary and sufficient condition so that these two values coincide. Such
identity is valid in various contexts (e.g., [1,9–11,13,19]). The key lies in the ergodicity of the feedback diffusion
X = (Xt ) governed by the stochastic differential equation

dXt = −DpH
(
Xt,Dφ(Xt)

)
dt + b(Xt ) dt + σ(Xt ) dWt , (1.5)

where DpH(x,p) stands for the gradient of H with respect to p, and φ is a solution of (EP) with λ = λ∗(β). Note
that (1.5) is a natural candidate for the optimal controlled process associated with (1.2)–(1.3). In this paper, we give a
characterization of the identity λ∗(β) = Λ(β), as a function of β , by regarding (EP) as a perturbation of the equation

λ − Aφ + H(x,Dφ) = 0 in R
N. (1.6)

In contrast to the earlier results mentioned above, (A1)–(A3) do not deduce the desired identity even if (1.5) enjoys
the ergodicity, in general. It will turn out in the following sections that two functions λ∗ = λ∗(β) and Λ = Λ(β)

coincide if and only if λ∗(0) = 0, where λ∗(0) denotes the generalized principal eigenvalue of (1.6). The optimality
of the controlled diffusion (1.5) can also be characterized in terms of λ∗. See Theorems 2.1 and 2.2 for the precise
statement.

The value λ∗(β) has a close connection with the generalized principal eigenvalue of the linear elliptic operator
A + βV provided m = 2 and Σ ≡ σ in (A2), i.e., H(x,p) = (1/2)|σT (x)p|2. Indeed, by the so-called Cole–Hopf
transform h := e−φ , one can identify the totality of solutions φ of (EP) with that of positive solutions h of the linear
eigenvalue problem

−(A + βV )h = λh in R
N. (1.7)
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In particular, λ∗(β) can be represented as

λ∗(β) = sup
{
λ ∈R

∣∣ (1.7) has a positive solution h ∈ C2(
R

N
)}

,

which agrees with one of the equivalent definitions of the generalized principal eigenvalue of A + βV (cf. [7,20,
23]). In this sense, (1.4) gives an extended notion of the principal eigenvalue which is also meaningful for nonlinear
eigenvalue problem (EP). Note that, if m �= 2 or Σ = Σ(x) is not a constant multiple of the diffusion coefficient
σ = σ(x), then there is no such correspondence between linear and nonlinear problems.

In the second part of this paper, we discuss more specific properties of the function β �→ λ∗(β) under some re-
strictive assumptions on the coefficients. In order to present our results briefly, we temporally assume that σ ≡ I

(the identity matrix) and b ≡ 0 in (A1), and that V has compact support. Then our ergodic control problem can be
described as follows:

Minimize Jβ(ξ) = lim inf
T →∞

1

T
Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}
dt

]
,

subject to dX
ξ
t = −ξt dt + dWt .

(1.8)

Our interest is to investigate a “phase transition” which takes place in (1.8). In our previous work [12], which dealt
with the case where m = 2 and V � 0, we proved that there exists a critical value βc such that the following (a) and
(b) hold:

(a) λ∗(β) = Λ(β) = 0 for any β � βc and λ∗(β) = Λ(β) < 0 for any β > βc.
(b) X governed by (1.5) becomes transient for any β < βc and recurrent for any β � βc .

Hence, qualitative properties of λ∗(β) and X change in a vicinity of βc. From the stochastic control point of view,
this phase transition may be explained as follows. In the minimizing problem (1.8), the controller falls into a trade-off
situation between the cost L(x, ξ) and the “reward” βV (x). If β is small, then the best strategy for the controller is to
choose ξ ≡ 0 and get Jβ(0) = 0 since taking a nonzero control ξ �≡ 0 is costly compared with the obtained reward. On
the other hand, if β is sufficiently large, then his/her optimal strategy is to take a suitable control ξ �≡ 0 which forces
the controlled process Xξ to visit frequently the favorable position (i.e., around the bottom of −βV (x)). The value βc

represents, thus, the threshold at which the controller switches his/her optimal strategy from one to the other. Remark
that, in (1.8), the feedback control ξt := DpH(Xt ,Dφ(Xt )) with X in (1.5) is optimal for any β > βc , whereas ξ ≡ 0
is optimal for β � βc .

As far as the value of βc is concerned, it is known that βc = 0 for N = 1,2 and βc > 0 for N � 3 provided m = 2
and V � 0 (see [12, Theorem 2.5]). In particular, if N � 3, the function β �→ λ∗(β) possesses a “flat region” which
contains the origin in its interior. This result exhibits a striking contrast between deterministic and stochastic ergodic
control. To highlight the difference, let us consider the deterministic counterpart of our ergodic control problem
defined by

Minimize J̃β(ξ) = lim inf
T →∞

1

T

T∫
0

{
L

(
x

ξ
t , ξt

) − βV
(
x

ξ
t

)}
dt,

subject to
d

dt
x

ξ
t = −ξt , x

ξ
0 = x.

(1.9)

Let Ã denote the set of locally bounded functions ξ on [0,∞) with values in R
N , and set Λ̃(β) := inf

ξ∈Ã J̃β(ξ). Then

it is easy to see that Λ̃(β) = −maxRN (βV ) for all β , so that no “flattening” occurs in any open interval containing
the origin.

In this paper, we extend our previous results described above in two directions. Firstly, we allow V to be sign-
changing. Secondly, we deal with arbitrary m > 1. Recall that both V � 0 and m = 2 are assumed in [12]. If V is
sign-changing, then there exist two critical values β � 0 and β � 0 such that λ∗(β) = 0 if and only if β � β � β .

Moreover, suppose that N = 2. Then it may happen that β < 0 < β for m > 2, while β = β = 0 for any 1 < m � 2.
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The last fact shows that the shape of λ∗(β) around the origin relies sensitively on m. In fact, several qualitative prop-
erties of solutions of (EP) change as to whether 1 < m � 2 or m > 2. The novelty of this second part, compared
to [12], is to clarify such dependence with respect to m. For instance, the diffusion X governed by (1.5) turns out
to be transient for every β ∈ (−∞, βc) if 1 < m � 2 and V � 0, whereas this is not true, in general, for m > 2. See
Section 6 for details.

Another remark to be pointed out is that the recurrence/transience of diffusion (1.5) gives an extended notion of the
criticality/subcriticality of linear elliptic operator A+βV +λ∗(β). To explain this, we recall that a linear second order
elliptic operator, say P , is called subcritical if it admits a (minimal) Green function in R

N , and called critical if there is
no Green function in R

N but there exists a positive solution h ∈ C2(RN) of Ph = 0 in R
N . For each positive solution

h of Ph = 0 in R
N , let P h := h−1P(h ·) denote the h-transform of P . Then it is well known (e.g. [23, Section 4.3])

that P is critical (resp. subcritical) if and only if the P h-diffusion is recurrent (resp. transient). Let us now consider
the special case where H(x,p) = (1/2)|σT (x)p|2, and let φ be a solution of (EP) with λ = λ∗(β). Then h := e−φ is a
solution of Ph = 0 in R

N with P := A+βV +λ∗(β), and the h-transform of P is written as P h = A− (σσT )Dφ ·D.
Hence, P is critical (resp. subcritical) if and only if the P h-diffusion

dXt = −(
σσT

)
(Xt )Dφ(Xt ) dt + b(Xt ) dt + σ(Xt ) dWt (1.10)

is recurrent (resp. transient). Since (1.10) is a particular case of (1.5) with H(x,p) = (1/2)|σT (x)p|2, the notion
of criticality/subcriticality of ergodic problem (EP) may be defined in terms of the recurrence/transience of dif-
fusion (1.5). There is an extensive literature on the criticality of linear elliptic operators from both analytical and
probabilistic viewpoint. See [18,20–24] and the references therein. Contrary to the linear case, little is known about
the criticality of (EP), namely, the recurrence and transience of (1.5), except for some special cases discussed in [12].
The second part of this paper aims, as well, at developing a criticality theory for (EP) from our stochastic control point
of view.

Before closing this introductory section, we mention that ergodic problems of type (EP) also appear in other
mathematical problems such as singular perturbations, homogenizations, etc. In those problems, (EP) is called the cell
problem and plays a crucial role to determine the so-called effective Hamiltonian. If the model has periodic structure,
i.e., if (EP) is reduced to the equation in the N -dimensional unit torus T

N := R
N/ZN , then there is only one pair

(λ,φ), up to an additive constant with respect to φ, which solves (EP), so that the situation becomes considerably
simple. In recent years, singular perturbation problems without periodicity have also been a subject of interest in the
context of mathematical finance. In those models, the analysis of ergodic problem (EP) is one of the main issues. We
refer to [3,4] for more details in this direction.

This paper is organized as follows. In the next section we state our main results precisely. Section 3 is devoted to
the preliminaries. Section 4 concerns fundamental properties of solutions to (EP). In Section 5, we discuss a necessary
and sufficient condition so that Λ = λ∗. In Section 6, we investigate qualitative properties of λ∗(β), especially, the
“flattening” of the function λ∗(β) around the origin β = 0.

2. Main results

Let Ck(RN), k ∈ N ∪ {0}, be the set of Ck-functions on R
N equipped with the topology of locally uniform con-

vergence. We say that a family {fn} converges in Ck(RN) to a function f as n → ∞ if fn together with its partial
derivatives of order up to k converge, locally uniformly in R

N as n → ∞, to f and the corresponding partial deriva-
tives, respectively. Given a γ ∈ (0,1), we denote by Ck+γ (RN) the Hölder space consisting of all f ∈ Ck(RN) such
that, for any compact K ⊂R

N ,

‖f ‖k+γ,K :=
∑

|α|�k

sup
x∈K

∣∣Dαf (x)
∣∣ +

∑
|α|=k

sup
x,y∈K,x �=y

|Dαf (x) − Dαf (y)|
|x − y|γ < ∞,

where α denotes the multi-index of differential operator D = (∂/∂x1, . . . , ∂/∂xN). Let C∞
c (RN) be the set of infinitely

differentiable functions on R
N with compact support. For k ∈ N and q ∈ [1,∞], we denote by Wk,q(RN) the Sobolev

space, i.e., the totality of f ∈ Lq(RN) such that ‖f ‖k,q := (
∫
RN

∑
|α|�k |Dαf |q dx)1/q < ∞ for 1 < q < ∞ and

‖f ‖k,∞ := ∑
|α|�k ess-supRN |Dαf | < ∞ for q = ∞. We denote by W

k,q

loc (RN) the collection of Borel measurable

functions f on R
N such that f ζ ∈ Wk,q(RN) for all ζ ∈ C∞

c (RN).
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Let us consider ergodic problem (EP) and define its generalized principal eigenvalue by

λ∗(β) := sup
{
λ ∈ R

∣∣ (EP) has a subsolution φ0 ∈ Φ
}
, (2.1)

where Φ is given by

Φ :=
{
φ ∈

⋂
q>N

W
3,q

loc

(
R

N
) ∣∣∣ ∂φ

∂xi

,Aφ ∈ L∞(
R

N
)
, i = 1, . . . ,N

}
.

Note that Φ ⊂ C2+γ (RN) for any γ ∈ (0,1) in view of the Sobolev embedding theorem. Throughout the paper, the
notion of solution, subsolution, and supersolution will be understood in the classical sense. It will turn out in the next
section that any classical solution of (EP) belongs to Φ , that λ∗(β) is well-defined and finite for any β , and that its
value coincides with the one defined by (1.4).

Now, fix any filtered probability space (Ω,F,P ; (Ft )) on which is defined an N -dimensional standard
(Ft )-Brownian motion W = (Wt ) with W0 = 0, P -a.s. We denote by A the set of (Ft )-progressively measurable
control processes ξ = (ξt ) with values in R

N such that ess-sup[0,T ]×Ω |ξt | < ∞ for all T > 0. It is well known that,

for any x ∈ R
N and ξ ∈A, there exists an (Ft )-progressively measurable process Xξ = (X

ξ
t ) with values in R

N such
that

X
ξ
t = x −

t∫
0

ξs ds +
t∫

0

b
(
Xξ

s

)
ds +

t∫
0

σ
(
Xξ

s

)
dWs, t � 0, P -a.s.

Moreover, Xξ is uniquely determined up to a P -null set.
For each ξ ∈ A, let Jβ(ξ) be the cost functional defined by (1.2). We denote the optimal value of the minimizing

problem (1.2)–(1.3) by

Λ = Λ(β) := inf
ξ∈A

Jβ(ξ).

Our first main result is concerned with the relationship between Λ(β) and the generalized principal eigenvalue λ∗(β)

of (EP) defined by (2.1). To describe the results, set λ := sup{λ∗(β) | β ∈ R}. Since φ ≡ 0 is a solution of (EP) with
β = 0 and λ = 0, we observe that λ∗(0) � 0. In particular, λ� 0.

Theorem 2.1. Assume (A1)–(A3). Then the following (i)–(iii) hold.

(i) β �→ λ∗(β) is a non-constant function which is concave in R. Moreover, it is differentiable on the set {β ∈ R |
λ∗(β) < λ}.

(ii) Suppose that λ∗(0) = 0. Then Λ(β) = λ∗(β) for all β .
(iii) Suppose that λ∗(0) > 0. Then Λ(β) = min{0, λ∗(β)} for all β .

In particular, two functions λ∗ and Λ coincide if and only if λ∗(0) = 0.

We mention that, if H(x,p) = (1/2)|σT (x)p|2, then (EP) can be transformed into the linear equation (1.7) by the
Cole–Hopf transform. In this linear context, a similar result has been observed by [14]. See also Remark 5.14.

We next discuss a characterization of the optimal control for (1.2)–(1.3). To this end, let S(β) denote the set of
solutions φ of (EP) with λ = λ∗(β). For a given φ ∈ S(β), we set Aφ := A − DpH(x,Dφ(x)) · D. Note that Aφ is
the infinitesimal generator of the diffusion X = (Xt ) governed by (1.5). Throughout the paper, X in (1.5) is called
Aφ-diffusion. The following theorem gives an optimality criterion of the feedback control ξ∗

t := DpH(Xt ,Dφ(Xt)).

Theorem 2.2. Assume (A1)–(A3). Let β ∈R be such that λ∗(β) < λ̄. Then there exists a unique solution φ ∈ C2(RN)

of (EP) with λ = λ∗(β). Moreover, let X be the associated Aφ-diffusion and set ξ∗
t := DpH(Xt ,Dφ(Xt )). Then ξ∗

is optimal if and only if λ∗(β) = Λ(β). If λ∗(β) �= Λ(β), then ξt ≡ 0 is optimal.

Now, we investigate the phase transition appearing in (1.2)–(1.3) under the assumption that λ = 0. Note that this
condition always holds when b ≡ 0. We give in Section 6 other sufficient conditions so that λ = 0. In what follows,
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we assume λ = 0 and set J := {β ∈ R | λ∗(β) = 0}. By the concavity of λ∗(β), J is a connected closed subset in R.
The following result concerns the recurrence and transience of Aφ-diffusions which characterizes the phase transition
described in the introduction.

Theorem 2.3. Let (A1)–(A3) hold, and assume that λ = 0. Set J := {β ∈ R | λ∗(β) = 0}. Then the following (i)–(ii)
hold.

(i) For any φ ∈ S(β) with β /∈ J , the Aφ-diffusion is recurrent. Moreover, it is ergodic.
(ii) Assume that 1 < m � 2 in (A2). Then the Aφ-diffusion is transient for any φ ∈ S(β) with β ∈ IntJ , where IntJ

denotes the interior of J .

The definitions of recurrence, transience, and ergodicity of diffusion processes will be reviewed in the next section.
Notice here that the second claim of Theorem 2.3 may fail when m > 2 in (A2). A counterexample will be given in
Section 6. We also remark that, under the hypothesis of Theorem 2.3, ξ(x) ≡ 0 becomes an optimal control policy of
(1.2)–(1.3) for all β ∈ J , while the function ξ(x) := DpH(x,Dφ(x)) is optimal for any β /∈ J .

Let us now discuss more detailed properties of β �→ λ∗(β) around the origin. In order to state our result precisely,
we define Gα = Gα(x) by

Gα(x) := 1

2
tr
((

σσT
)
(x)

) − α
|σT (x)x|2

2|x|2 + b(x) · x, x ∈R
N, (2.2)

where α � 0 is a given constant. The following result gives a criterion which determines whether β = 0 belongs
to IntJ or ∂J , where ∂J stands for the boundary of J . In the former case, the “flattening” of λ∗(β) occurs in a
neighborhood of the origin.

Theorem 2.4. Let (A1)–(A3) hold, and assume that λ = 0. Set J := {β ∈ R | λ∗(β) = 0}. Then the following (i)–(ii)
hold.

(i) If 1 < m � 2 in (A2) and Gα(x) � 0 in R
N \BR for some α � 2 and R > 0, then ∂J = {0}, namely, J = (−∞,0]

or J = [0,∞) or J = {0}.
(ii) If m � 2 in (A2), |x|m∗

V (x) → 0 as |x| → ∞, and lim inf|x|→∞ Gm∗(x) > 0, where m∗ := m/(m − 1), then
0 ∈ IntJ .

As a direct consequence of Theorems 2.3 and 2.4, we are able to obtain a complete characterization of the criticality
of (EP), namely, the recurrence/transience of (1.5) in the special case where σ ≡ I , b ≡ 0, and m = 2. More precisely,
let us consider the following ergodic problem:

λ − 1

2
�φ + H(x,Dφ) + βV = 0 in R

N, φ(0) = 0. (2.3)

Let λ∗(β) be the generalized principal eigenvalue of (2.3), and set λ := sup{λ∗(β) | β ∈ R}. Then one has the following
result which can be regarded as an extension of [12].

Theorem 2.5. Let (A2) and (A3) hold. Suppose that m = 2 in (A2) and |x|2V (x) → 0 as |x| → ∞. Then the following
(i)–(iii) hold.

(i) λ = 0.
(ii) Set J := {β ∈ R | λ∗(β) = 0}. Let φ be a solution of (2.3) with λ = λ∗(β). Then the Aφ-diffusion is transient for

β ∈ IntJ and recurrent for β /∈ IntJ . Moreover, it is ergodic for β /∈ J .
(iii) ∂J = {0} for N = 1,2, and 0 ∈ IntJ for N � 3.

Remark 2.6. Under the hypothesis of Theorem 2.5, it is known that the Aφ-diffusion with β ∈ ∂J is null recurrent for
N � 4 and positive recurrent for N � 5 provided Σ ≡ I in (A2) (see [12, Theorem 6.8]). We do not know if the same
result holds under the assumption of Theorem 2.3.
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3. Preliminaries

In the rest of this paper, unless otherwise specified, we always assume (A1)–(A3). In this section, we collect several
auxiliary results, most of which are fundamental and well known.

Let A be a second order elliptic operator of form (1.1), and let X = (Xt )t�0 be the diffusion process associated
with A. Note that such process can be constructed by solving the stochastic differential equation

dXt = b(Xt ) dt + σ(Xt ) dWt , X0 = x ∈ R
N. (3.1)

Recall also that the solution of (3.1) is unique (in any sense), does not explode in finite time, and has the strong
Markov property (see, for instance, [23, Chapter 1]). Hereafter, we simply call the solution X of (3.1) A-diffusion.
As is mentioned in the previous section, we use the wording “Aφ-diffusion” if b(x) in (3.1) is replaced by b(x) −
DpH(x,Dφ(x)) for some φ ∈ C2(RN).

For y ∈ R
N and r > 0, we set Br(y) := {z ∈ R

N | |z − y| < r} and τr,y := inf{t > 0 | Xt ∈ Br(y)}, where we
use the convention inf∅ = ∞. Set Br := Br(0). An A-diffusion X is called recurrent if Px(τε,y < ∞) = 1 for every
x, y ∈R

N and ε > 0, and called transient otherwise. Note that X is transient if and only if Px(limt→∞ |Xt | = ∞) = 1
for all x ∈ R

N . For any recurrent A-diffusion, there exists a σ -finite measure μ = μ(dx) on R
N , called the invariant

measure, such that
∫
RN (Aϕ)(x)μ(dx) = 0 for all ϕ ∈ C∞

c (RN). It is well known under our assumptions that such μ is
unique up to a positive multiplicative constant. Furthermore, μ is absolutely continuous with respect to the Lebesgue
measure, and the density μ = μ(x) > 0 belongs to W

1,q

loc (RN) for any q > 1 (see [6]). The function μ = μ(x) is
called the invariant density for the A-diffusion. A recurrent A-diffusion is called ergodic (or positive recurrent) if
μ(RN) < ∞, and called null-recurrent otherwise. In the former case, we always choose μ so that μ(RN) = 1 and call
it the invariant probability measure. We refer to [23, Chapter 4] for more details of these facts. In this paper, we abuse
the notation of μ to denote both the invariant measure and its density.

The following theorem is a version of the famous criterion, known as Lyapunov’s method, which gives sufficient
conditions for the recurrence and transience of diffusion processes.

Theorem 3.1. Let X be the A-diffusion. Then the following (i)–(iii) hold.

(i) X is transient if there exist R > 0 and u ∈ C2(RN \ BR) such that

inf
∂BR

u > inf
RN\BR

u > −∞, sup
RN\BR

Au� 0.

(ii) X is recurrent if there exist R > 0 and u ∈ C2(RN \ BR) such that

lim|x|→∞u(x) = ∞, sup
RN\BR

Au� 0.

(iii) X is ergodic if there exist R > 0, u ∈ C2(RN \ BR), and ε > 0 such that

inf
RN\BR

u(x) > −∞, sup
RN\BR

Au� −ε.

Proof. See, for instance, [23, Section 6.1] or [12, Theorem 4.1] for a complete proof. �
By using Theorem 3.1, we rediscover the fundamental result that the Brownian motions are null recurrent for

N = 1,2 and transient for N � 3.

Example 3.2. Fix any function ψ ∈ C3(RN) such that ψ(x) = log |x| in R
N \ B1. For a given α ∈ R, let X = (Xt )

denote the diffusion process governed by

dXt = −αDψ(Xt) dt + dWt .

Then X is transient if and only if α < (N/2) − 1, null recurrent if and only if (N/2) − 1 � α � N/2, and ergodic
if and only if α > N/2. In particular, by choosing α = 0, we observe that Brownian motions are null recurrent for
N = 1,2 and transient for N � 3.
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To justify this claim, suppose first that α < (N/2)− 1 and fix any δ > 0 such that δ �N − 2 − 2α. Let u ∈ C2(RN)

be any function satisfying u(x) = |x|−δ in R
N \ B1. Then we see that

Au = 1

2
�u − αDψ(x) · Du(x) = −δ(N − 2 − δ − 2α)

2|x|2+δ
� 0 in R

N \ B1.

Hence, X is transient in view of Theorem 3.1(i).
We next assume that α � (N/2) − 1 and choose u = ψ . Then

Au = 1

2
�ψ − α

∣∣Dψ(x)
∣∣2 = (N − 2 − 2α)

2|x|2 � 0 in R
N \ B1.

In particular, X is recurrent in view of Theorem 3.1(ii). Furthermore, since the invariant density of X is given by
μ = e−2αψ , we have

μ(x) = e−2αψ(x) = |x|−2α, x ∈R
N \ B1.

This implies that μ ∈ L1(RN) if and only if 2α > N . Hence, X is ergodic if and only if α > N/2.

The next ergodic theorem will be used in later discussions.

Theorem 3.3. Let X = (Xt ) be the A-diffusion. Then the following (i)–(ii) hold.

(i) Suppose that X is ergodic with an invariant probability measure μ. Then, for any f ∈ L∞
loc(R

N) with∫
RN |f (y)|μ(dy) < ∞ and for any x ∈R

N ,

Ex

[
f (Xt )

] →
∫
RN

f (y)μ(dy) as t → ∞.

In particular,

1

T
Ex

[ T∫
0

f (Xt ) dt

]
→

∫
RN

f (y)μ(dy) as T → ∞.

(ii) Suppose that X is not ergodic. Then, for any f ∈ C(RN) such that f (y) → 0 as |y| → ∞ and for any x ∈R
N ,

1

T
Ex

[ T∫
0

f (Xt ) dt

]
→ 0 as T → ∞.

Proof. We refer to [13, Proposition 2.6] for the first convergence result in (i). The second convergence can be easily
deduced from the first one. The proof of (ii) can be found in [15, Theorem 1.3.10]. We emphasize here that claim (i)
holds true not only for f ∈ L∞(RN) but also for unbounded f provided it is integrable with respect to the invariant
probability measure μ. �

We next recall a local gradient estimate of solutions φ of (EP). Hereafter, we use the notation r± := max{±r,0} for
r ∈ R.

Theorem 3.4. For any R > 0, there exists a K > 0 depending only on N , m in (A2), and the W 1,∞-norm of σ , b,
and Σ in BR+1 such that for any solution (λ,φ) of (EP),

sup
BR

|Dφ|� K
{

1 + sup
BR+1

(λ + βV )− + |β| sup
BR+1

|DV |
}
. (3.2)

In particular, φ is Lipschitz continuous on R
N .
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Proof. If σ , b and Σ are sufficiently smooth, then (3.2) can be obtained by a version of the Bernstein method taking
into account that H(x,p) is superlinear in p. Namely, we first derive the equation for w := (1/2)|Dφ|2 and then use
the maximum principle after some localization arguments. See, for instance, [16,17] or [12, Appendix A] for details.
For general σ,b,Σ ∈ W 1,∞(RN), we can take the standard approximation procedure. The Lipschitz continuity of φ

is obvious from (A3) and (3.2). �
In view of Theorem 3.4, together with the classical regularity theory for elliptic equations, one has the following

solvability result for (EP).

Theorem 3.5. Let λ∗(β) be defined by (2.1). Then λ∗(β) is well-defined, finite, and (EP) has a solution φ ∈ C2(RN)

if and only if λ � λ∗(β). In particular,

λ∗(β) = max
{
λ ∈ R

∣∣ (EP) has a subsolution φ0 ∈ Φ
} = max

{
λ ∈R

∣∣ (EP) has a solution φ ∈ C2(
R

N
)}

.

Proof. The proof is similar to that of [12, Theorem 2.1], so that we omit to reproduce it. �
Remark 3.6. Theorem 3.5 remains valid without (A3) provided V ∈ W

1,∞
loc (RN) and supRN V < ∞.

The next proposition collects some key properties of H that are deduced from (A2).

Proposition 3.7. Let H = H(x,p) be a function satisfying (A2). Then the following (i)–(v) hold.

(i) H ∈ W 1,∞(RN × BR) for all R > 0, and p �→ H(x,p) is strictly convex for all x ∈ R
N .

(ii) p �→ H(x,p) is superlinear growing in the sense that, for suitable γ > 1 and C > 0, C−1|p|γ − C � H(x,p)

and |DpH(x,p)| � C(1 + |p|γ−1) for all x,p ∈ R
N , and |DxH(x,p)| � C(1 + |p|γ ), a.e. in x ∈ R

N for all
p ∈ R

N .
(iii) For any K > 0, there exist some κ1, κ2 > 0 such that

κ1|p|m � H(x,p)� κ2|p|m, x ∈R
N, |p|� K,

where m is the constant in (A2).
(iv) Suppose that 1 < m� 2. Then for any K > 0, there exists a κ0 > 0 such that

H(x,p + q) − H(x,p) − DpH(x,p) · q � κ0

2
|q|2, x ∈R

N, |p|, |q|� K. (3.3)

(v) Suppose that m > 2. Then for any K > 0 and ε > 0, there exists a κε > 0 such that

H(x,p + q) − H(x,p) − DpH(x,p) · q � κε

2
|q|2 − ε, x ∈R

N, |p|, |q| �K. (3.4)

Proof. Claims (i)–(iii) are obvious from (A2). Note that (ii) is valid with γ = m. It thus remains to prove (iv) and (v).
To this end, choose an arbitrary K > 0 and fix any x ∈ R

N and p,q ∈ R
N with |p|, |q| � K . We assume that pt :=

p + (1 − t)q �= 0 for all t ∈ [0,1]. Then by Taylor’s theorem, we see that

H(x,p + q) − H(x,p) − DpH(x,p) · q

=
1∫

0

tD2
pH(x,pt )q · q dt

=
1∫

0

t
∣∣ΣT (x)pt

∣∣m−2
{∣∣ΣT (x)q

∣∣2 + (m − 2)
(ΣT (x)pt · ΣT (x)q)2

|ΣT (x)pt |2
}

dt

� min{1,m − 1}∣∣ΣT (x)q
∣∣2

1∫
0

t
∣∣ΣT (x)pt

∣∣m−2
dt,

where D2
pH(x,p) denotes the Hessian matrix of H(x,p) with respect to p.
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We first assume 1 < m � 2 and prove (iv). Since |ΣT (x)pt |m−2 � ν
(2−m)/2
2 |pt |m−2 � ν

(2−m)/2
2 (2K)m−2 for all

t ∈ [0,1], where ν2 is the constant in (A2), we have

H(x,p + q) − H(x,p) − DpH(x,p) · q � 1

2
(m − 1)ν

2−(m/2)

2 (2K)m−2|q|2.

This inequality is still valid if pt = 0 for some t ∈ [0,1]. Hence, (iv) holds with κ0 := (m − 1)ν
2−(m/2)

2 (2K)m−2.
We next assume m > 2 and prove (v). We first consider the case where |q| � 4. Then the Lebesgue measure of the

set E := {t ∈ [0,1] | pt /∈ B1} is greater than 1/4. In particular,

1∫
0

t
∣∣ΣT (x)pt

∣∣m−2
dt � ν

(m/2)−1
2

1∫
0

t |pt |m−2 dt � ν
(m/2)−1
2

∫
E

t dt �
ν

(m/2)−1
2

32
.

Hence, we have

H(x,p + q) − H(x,p) − DpH(x,p) · q �
ν

m/2
2

32
|q|2.

We next consider the case where |q| � 4. Then, for any ε > 0, we have

H(x,p + q) − H(x,p) − DpH(x,p) · q � 0 � ε

16
|q|2 − ε.

Hence, (v) holds with κε := min{νm/2
2 /16, ε/8}. �

Remark 3.8. Theorems 2.1 to 2.5 remain valid if H = H(x,p) in (EP) satisfies (i)–(v) of Proposition 3.7 instead
of (A2).

The following verification theorem connects (EP) with the ergodic control problem (1.2)–(1.3).

Proposition 3.9. Let (λ,φ) satisfy (EP). Then the following (i)–(ii) hold.

(i) For any T > 0, x ∈ R
N , and ξ ∈A,

λT + φ(x) � Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}
dt + φ

(
X

ξ
T

)]
. (3.5)

(ii) Let X = (Xt ) be the Aφ-diffusion and set ξ∗
t := DpH(Xt ,Dφ(Xt )). Then for any T > 0 and x ∈ R

N ,

λT + φ(x) = Ex

[ T∫
0

{
L

(
Xt, ξ

∗
t

) − βV (Xt)
}
dt + φ(XT )

]
. (3.6)

Proof. We first show (i). Fix any ξ ∈ A and apply Ito’s formula to φ(X
ξ
t ). Then, noting that H(x,p) − ξ · p �

−L(x, ξ) for any x, ξ,p ∈R
N , and that |Dφ| is bounded in R

N , we have

Ex

[
φ
(
X

ξ
T

)] − φ(x) = Ex

[ T∫
0

{
(Aφ)

(
X

ξ
t

) − ξt · Dφ
(
X

ξ
t

)}
dt

]
� λT − Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}
dt

]
,

from which we obtain (3.5). We next prove (ii). Since ξ∗ ∈A and

H
(
Xt,Dφ(Xt )

) − ξ∗
t · Dφ(Xt) = −L

(
Xt, ξ

∗
t

)
for all 0 < t < T , we obtain (3.6) by the same argument as in the proof of (i). �



N. Ichihara / Ann. I. H. Poincaré – AN 32 (2015) 623–650 633
In what follows, we use the notation

F [φ](x) := −Aφ(x) + H
(
x,Dφ(x)

)
, φ ∈ C2(

R
N

)
.

The following proposition is useful in later discussions.

Proposition 3.10. Let φ,ψ ∈ C2(RN), and set Aφ := A − DpH(x,Dφ(x)) · D. Then the following (i)–(ii) hold.

(i) The function u := φ − ψ satisfies Aφu� F [ψ] − F [φ] in R
N .

(ii) Suppose that supRN (|Dφ|+ |Dψ |) < ∞. Then, for any ε > 0, there exists a κ > 0 such that u := eκ(φ−ψ) satisfies

Aφu� κu
(
F [ψ] − F [φ] + ε

)
in R

N. (3.7)

Moreover, if 1 < m � 2 in (A2), then (3.7) is valid with ε = 0.

Proof. This proposition has been essentially proved in [10]. We reproduce the proof for the convenience of the
reader. We first prove (i). Since H(x,p) is convex in p, we see that H(x,q) − H(x,p) � DpH(x,p)(q − p) for all
x,p, q ∈ R

N . In particular,

Aφ(φ − ψ) = A(φ − ψ) − DpH(x,Dφ)(Dφ − Dψ)

� Aφ − Aψ + H(x,Dψ) − H(x,Dφ) = F [ψ] − F [φ].
We next prove (ii). Set K := supRN (|Dφ| + |Dψ |) and fix any ε > 0. We first consider the case where m > 2. In

view of Proposition 3.7(iv), there exists some κε > 0 such that (3.4) holds. In particular, w := φ − ψ satisfies

Aφw � F [ψ] − F [φ] − κε

2
|Dw|2 + ε in R

N.

Set κ := κεν1 and u := eκw , where ν1 is the constant in (A1). Then, in view of the last inequality and (A1), we have

Aφu = κu

(
Aφw + κ

2

∣∣σT Dw
∣∣2

)
� κu

(
F [ψ] − F [φ] − κε

2
|Dw|2 + ε + κ

2ν1
|Dw|2

)
= κu

(
F [ψ] − F [φ] + ε

)
.

Thus, (3.7) is valid. Suppose next that 1 < m � 2 in (A2). Then the stronger estimate (3.3) holds in place of (3.4). By
a similar argument as above, we easily see that (3.7) is valid with ε = 0 and κ = κ0ν1. Hence, we have completed the
proof. �
4. General results on (EP)

This section is devoted to some fundamental results on the solvability of (EP). In this section, parameter β does
not play any role, so that we always assume that β = 1. The generalized principal eigenvalue of (EP) is denoted by λ∗
in place of λ∗(1).

We begin with the following theorem which will play a substantial role in succeeding sections.

Theorem 4.1. Let φ0 ∈ Φ satisfy

λ∗ + F [φ0] + V � −ρ in R
N \ BR (4.1)

for some ρ > 0 and R > 0. Then (EP) with λ = λ∗ has a unique solution φ ∈ Φ . Moreover, the following (i)–(ii) hold:

(i) φ − φ0 � δ|x| − M in R
N for some δ > 0 and M > 0.

(ii) The associated Aφ-diffusion is ergodic with an invariant probability measure μ such that
∫
RN eγ |x|μ(dx) < ∞

for some γ > 0.

We divide the proof of Theorem 4.1 into several steps.
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Proposition 4.2. Under the hypothesis of Theorem 4.1, there exists a solution (λ,φ) of (EP) such that φ − φ0 �
δ|x| − M in R

N for some δ > 0 and M > 0.

Proof. Set ψ(x) := √
1 + |x|2 and f := φ0 +δ0ψ , where δ0 ∈ (0,1) will be specified later. We consider the following

elliptic equation with small parameter ε > 0:

εv + F [v] + V = εf in R
N. (4.2)

Set C := supRN (|F [f ]|+ |V |). Then f −C/ε and f +C/ε are, respectively, sub- and supersolutions of (4.2). Hence,
we can construct a solution v = vε ∈ C2(RN) of (4.2) such that

f − C

ε
� vε � f + C

ε
in R

N. (4.3)

See, for instance, [12, Proposition 5.2] for the construction of such solution. It is also not difficult to see that {εvε(0) |
ε > 0} is bounded and {vε − vε(0) | ε > 0} is precompact in C2(RN). Indeed, the former is obvious from (4.3), and
the latter can be obtained in view of the local estimate of |Dvε| uniformly in ε, which is deduced from a minor
modification of Theorem 3.4 (see, e.g. [11, Appendix A]), as well as the classical regularity estimate for elliptic
equations. In particular, there exists a sequence {εn} with εn → 0 as n → ∞ such that λn := εnvεn(0) converges to
some λ and wn := vεn − vεn(0) converges in C2(RN) to some φ ∈ C2(RN) as n → ∞. Since (λn,wn) solves the
equation

λn + εnwn + F [wn] + V = εnf in R
N, wn(0) = 0, (4.4)

we see that (λ,φ) is a solution of (EP) by letting n → ∞ in (4.4). Furthermore, since λ � λ∗, we may assume, by
renumbering {εn} if necessary, that λn � λ∗ + ρ/2 for all n� 1.

To estimate the lower bound of φ, we set M := supn�1 maxBR
(|wn|+|φ0|+|ψ |) < ∞, where R > 0 is the constant

in (4.1). We claim that, if δ0 is sufficiently small, then for any n� 1 and δ ∈ (0, δ0), we have

φ0 + δψ − M � wn in R
N. (4.5)

Note that (4.5) yields the estimate φ − φ0 � δ|x| − M in R
N by sending n → ∞, so it remains to prove (4.5). To this

end, we observe that z := φ0 + δψ − M , with δ ∈ (0, δ0), satisfies

F [z] = F [φ0] − δAψ + H(x,Dφ0 + δDψ) − H(x,Dφ0).

Since Aψ , Dψ and Dφ0 are bounded in R
N , we see that F [z] � F [φ0] + δK in R

N for some K > 0 not depending
on δ. Using (4.1) and noting that z < f in R

N , we have

λn + εnz + F [z] + V − εnf � λ∗ + ρ

2
+ F [φ0] + V + δK � −ρ

2
+ δK in R

N \ BR.

Fix δ0 > 0 so small that δ0K < ρ/4. Then we obtain

λn + εnz + F [z] + V � εnf − ρ

4
in R

N \ BR. (4.6)

This inequality, together with (4.4), yields that z � wn in R
N . Indeed, z � wn in BR by the definition of M . Fur-

thermore, in view of (4.3), we see that infRN (wn − f ) > −∞. This implies that (wn − z)(x) = (wn − f )(x) +
(δ0 − δ)ψ(x)+M → ∞ as |x| → ∞. In particular, for each n� 1, there exists a bounded domain Dn, with B̄R ⊂ Dn,
such that z � wn in R

N \ Dn. Since wn and z satisfy (4.4) and (4.6), respectively, we can apply the comparison the-
orem in the bounded domain Dn \ BR to conclude that z � wn in Dn \ BR . Thus, we obtain z � wn in R

N , and the
proof is complete. �
Proposition 4.3. Let (λ,φ) be the solution of (EP) constructed in Proposition 4.2. Then the Aφ-diffusion is ergodic
with an invariant probability measure μ such that

∫
RN eγ |x|μ(dx) < ∞ for some γ > 0.

Proof. Since λ� λ∗ by the definition of λ∗, we see in view of Proposition 3.10(i) and (4.1) that

Aφ(φ − φ0) � F [φ0] − F [φ] � −λ∗ − ρ + λ� −ρ in R
N \ BR.
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Furthermore, since (φ −φ0)(x) → ∞ as |x| → ∞, we can apply Theorem 3.1(iii) to conclude that the Aφ-diffusion is
ergodic. To prove the integrability property, let μ = μ(dx) be the invariant probability measure for the Aφ-diffusion X.
Fix any ε > 0 such that ε < ρ. Then, by Ito’s formula and Proposition 3.10(ii), there exists a κ > 0 such that u :=
eκ(φ−φ0) satisfies

Ex

[
u(XT ∧τn)

] − u(x) = Ex

[ T ∧τn∫
0

Aφu(Xt) dt

]

� Ex

[ T ∧τn∫
0

κu(Xt )
(
F [φ0](Xt ) − F [φ](Xt ) + ε

)
dt

]

� −κ(ρ − ε)Ex

[ T ∧τn∫
0

u(Xt )1RN\BR
(Xt ) dt

]
+ κK1Ex[T ∧ τn],

where τn := inf{t > 0 | Xt /∈ Bn} for n ∈ N, and K1 := supBR
{u(F [φ0] + V + λ∗ + ε)}. Sending n → ∞ and noting

that u = eκ(φ−φ0) > 0, we obtain

κ(ρ − ε)Ex

[ T∫
0

u(Xt ) dt

]
� u(x) + κK1T + κ(ρ − ε)K2T ,

where K2 := supBR
u. We divide both sides by T and let T → ∞. Then, in view of Theorem 3.3(i), the left-hand side

can be estimated as

∫
RN

(u1Bn)(y)μ(dy) = lim
T →∞

1

T
Ex

[ T∫
0

(u1Bn)(Xt ) dt

]
� lim sup

T →∞
1

T
Ex

[ T∫
0

u(Xt) dt

]

for any n ∈ N. Noting that φ − φ0 � δ|x| − M in R
N for some δ > 0 and M > 0, we have

e−κM

∫
RN

eκδ|y|μ(dy) � lim
n→∞

∫
RN

eκ(φ−φ0)(y)1Bn(y)μ(dy) � K1

ρ − ε
+ K2.

Hence,
∫
RN eγ |y|μ(dy) < ∞ with γ := κδ, and we have completed the proof. �

Proposition 4.4. Let (λ,φ) be the solution of (EP) constructed in Proposition 4.2. Then λ = λ∗.

Proof. We argue by contradiction. Suppose that λ < λ∗. Then the Aφ-diffusion should be transient. Indeed, let φ∗ be
a solution of (EP) with λ = λ∗. Fix an ε > 0 such that λ + ε < λ∗. Then, in view of Proposition 3.10(ii), there exists a
κ > 0 such that u := eκ(φ−φ∗) satisfies

Aφu � κu
(
F

[
φ∗] − F [φ] + ε

) = κu
(
λ + ε − λ∗) < 0 in R

N. (4.7)

This implies that u does not attain a minimum in R
N . Otherwise, by the strong maximum principle, u is constant

in R
N , and so is φ−φ∗. But this is a contradiction. Hence, there exists an x0 ∈ R

N \B1 such that u(x0) < inf|x|=1 u(x).
Applying Theorem 3.1(i), we conclude that the Aφ-diffusion is transient. But, this is inconsistent with Proposition 4.3
claiming that the Aφ-diffusion is ergodic. Hence, λ = λ∗. �

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. It remains to prove that (EP) with λ = λ∗ has at most one solution. Let (λ,φ) be the solution
of (EP) constructed in Proposition 4.2. In view of Proposition 4.4, we have λ = λ∗. Furthermore, Proposition 4.3
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implies that the Aφ-diffusion X is ergodic with an invariant probability measure μ such that
∫
RN eγ |x|μ(dx) < ∞ for

some γ > 0.
We now set ξ∗

t := DpH(Xt ,Dφ(Xt )), and fix any solution ψ of (EP) with λ = λ∗. Then, in view of Proposition 3.9,
we see that

ψ(x) �Ex

[ T∫
0

{
L

(
Xt, ξ

∗
t

) − V (Xt )
}
dt + ψ(XT )

]
− λ∗T = φ(x) + Ex

[
(ψ − φ)(XT )

]
.

Letting T → ∞ and applying Theorem 3.3(i), we have

(ψ − φ)(x)�
∫
RN

(ψ − φ)(y)μ(dy), x ∈R
N.

Since suppμ = R
N and x ∈ R

N is arbitrary, we conclude that ψ − φ is constant in R
N . Recalling that φ(0) =

ψ(0) = 0, we obtain ψ = φ in R
N . Hence, we have completed the proof. �

Remark 4.5. By a careful reading of the arguments above, we see that Theorem 4.1 holds true without assuming
that V (x) → 0 as |x| → ∞. Moreover, the positivity of γ in Theorem 4.1(ii) is locally uniform with respect to the
W 1,∞-norm of V . More precisely, suppose that there exists a C > 0 such that supRN (|V | + |DV |) � C. Then there
exist some γ > 0 and K > 0 depending on ρ and R in (4.1) and C, but independent of the specific choice of V , such
that

∫
RN eγ |y|μ(dy) � K .

As an easy corollary of Theorem 4.1, we obtain the following.

Theorem 4.6. Let V1,V2 be two functions satisfying (A3), and let λ∗
i denote the generalized principal eigenvalue

of (EP) with V = Vi for i = 1,2. Assume that λ∗
1 < λ∗

2 . Then (EP) with λ = λ∗
1 and V = V1 has a unique solution

φ1 ∈ Φ , and the Aφ1 -diffusion is ergodic with an invariant probability measure μ such that
∫
RN eγ |x|μ(dx) < ∞ for

some γ > 0. Moreover, for any solution φ2 of (EP) with λ = λ∗
2 and V = V2, there exist some δ > 0 and M > 0 such

that φ1 − φ2 � δ|x| − M in R
N .

Proof. Set ρ := (λ∗
2 − λ∗

1)/2 > 0, and let φ2 be a solution of (EP) with λ = λ∗
2 and V = V2. Choose an R > 0 such

that V1 − V2 � ρ in R
N \ BR . Then we have

λ∗
1 + F [φ2] + V1 = λ∗

2 − 2ρ + F [φ2] + V2 + (V1 − V2) � −ρ in R
N \ BR.

In particular, condition (4.1) in Theorem 4.1 is satisfied with φ2 in place of φ0. Hence, we have completed the
proof. �

The next proposition will be used in Section 6.

Proposition 4.7. Let 1 < m � 2 in (A2). Assume that there exists a subsolution ψ ∈ C2(RN) of (EP) with λ = λ∗ such
that supRN |Dψ | < ∞ and λ∗ +F [ψ](y)+V (y) < 0 for some y ∈ R

N . Then, for any solution φ of (EP) with λ = λ∗,
the associated Aφ-diffusion is transient.

Proof. Fix any solution φ of (EP) with λ = λ∗, and set K := supRN (|Dφ| + |Dψ |). Since 1 < m� 2 in (A2), we see
by Proposition 3.10(ii) that there exists a κ > 0 such that u := eκ(φ−ψ) satisfies

Aφu � κu
(
F [ψ] − F [φ]) � 0 in R

N. (4.8)

We claim here that u does not have a minimum in R
N . Otherwise, in view of (4.8) and the strong maximum principle,

we see that u, and therefore, φ −ψ is constant in R
N . But, this does not agree with the assumption of ψ . Hence, there

exists an x0 ∈ R
N \ B1 such that u(x0) < minB̄1

u. Applying Theorem 3.1(i), we conclude that the Aφ-diffusion is
transient. �

By considering the contraposition of Proposition 4.7, we obtain a uniqueness result for (EP).
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Corollary 4.8. Let 1 < m � 2 in (A2). Assume that there exists a solution φ of (EP) with λ = λ∗ such that the
associated Aφ-diffusion is recurrent. Then (EP) with λ = λ∗ has no subsolution in Φ which is strict at some point
in R

N . In particular, φ is the unique solution of (EP) with λ = λ∗.

Remark 4.9. A probabilistic interpretation of Proposition 4.7 can be stated as follows. Let φ ∈ C2(RN) be a solution
of (EP) with λ = λ∗, and let X = (Xt ) be the associated Aφ-diffusion. Fix any subsolution ψ ∈ Φ of (EP) with λ = λ∗
and set f := −(λ∗ +F [ψ]+V )� 0. Then, in view of Proposition 3.10(ii) and Ito’s formula, there exists a κ > 0 such
that, for any x ∈ R

N and T > 0, the function u := eκ(φ−ψ) satisfies

Ex

[
u(XT )

] − u(x) = Ex

[ T∫
0

Aφu(Xt) dt

]
� −κEx

[ T∫
0

(uf )(Xt ) dt

]
. (4.9)

We now choose any bounded domain D ⊂ R
N such that D ⊂ supp(f ). Then, sending T → ∞ in (4.9), we easily see

that

Ex

[ ∞∫
0

1D(Xt) dt

]
< ∞ (4.10)

for all x ∈R
N , which implies the transience of X. This makes a striking contrast to the conclusion of Theorem 4.1(ii),

where the Aφ-diffusion is ergodic, and therefore, the left-hand side of (4.10) is infinite for all x ∈R
N .

Remark 4.10. In the proof of Proposition 4.7, the assumption 1 < m � 2 is crucial since we required (3.7) with ε = 0.
We do not know, in general, whether Proposition 4.7 as well as Corollary 4.8 is still valid for m > 2.

5. Characterization of λ∗ = Λ

In this section we prove Theorems 2.1 and 2.2. Let λ∗(β) be the generalized principal eigenvalue of (EP). Recall
that S(β) denotes the set of solutions of (EP) with λ = λ∗(β).

Proposition 5.1. The mapping β → λ∗(β) is concave.

Proof. Let β1 < β2 and φi ∈ S(βi) for i = 1,2. Then, by the convexity of H(x,p) in p, the function φ := (1−δ)φ1 +
δφ2 for δ ∈ (0,1) satisfies

F [φ] + {
(1 − δ)β1 + δβ2

}
V � (1 − δ)

(
F [φ1] + β1V

) + δ
(
F [φ2] + β2V

) = −{
(1 − δ)λ∗(β1) + δλ∗(β2)

}
.

In particular, λ∗((1 − δ)β1 + δβ2) � (1 − δ)λ∗(β1) + δλ∗(β2) by the definition of λ∗(β). Hence, β �→ λ∗(β) is
concave. �

We next investigate the asymptotic behavior of λ∗(β) as |β| → ∞.

Proposition 5.2. The mapping β �→ λ∗(β) is not constant in R. More precisely, the following (i)–(ii) hold.

(i) Suppose that supRN V > 0. Then λ∗(β) → −∞ as β → ∞.
(ii) Suppose that infRN V < 0. Then λ∗(β) → −∞ as β → −∞.

Proof. We rewrite (EP) with λ = λ∗(β) in the divergence form, namely,

λ∗(β) − div
(
a(x)Dφ

) − g(x) · Dφ + H(x,Dφ) + βV = 0 in R
N,

where aij := (1/2)(σσT )ij and gi := bi − ∑N
k=1 ∂aik/∂xk for i, j = 1, . . . ,N . Let η ∈ C∞

c (RN) be any nonnegative
function satisfying

∫
N ηm∗

(x) dx = 1, where m∗ := m/(m − 1) > 1. Then, for any φ ∈ S(β), we see that

R
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λ∗(β) +
∫
RN

H
(
x,Dφ(x)

)
η(x)m

∗
dx + β

∫
RN

V (x)η(x)m
∗
dx

= −
∫
RN

a(x)Dφ(x) · D(
η(x)m

∗)
dx +

∫
RN

g(x)Dφ(x)η(x)m
∗
dx.

Using (A2), Young’s inequality, and the relation 1/m + 1/m∗ = 1, we have

λ∗(β) + κ1

∫
RN

∣∣Dφ(x)
∣∣mη(x)m

∗
dx + β

∫
RN

V (x)η(x)m
∗
dx

� m∗
∫
RN

∣∣Dφ(x)
∣∣∣∣a(x)Dη(x)

∣∣η(x)m
∗−1 dx +

∫
RN

∣∣Dφ(x)
∣∣∣∣g(x)

∣∣η(x)m
∗
dx

� κ1

2

∫
RN

∣∣Dφ(x)
∣∣mη(x)m

∗
dx + C0

∫
RN

(∣∣a(x)Dη(x)
∣∣m∗ + ∣∣g(x)

∣∣m∗
η(x)m

∗)
dx

for some κ1 > 0 and C0 > 0 not depending on β . In particular, there exists a C > 0 independent of β such that

λ∗(β) + β

∫
RN

V (x)η(x)m
∗
dx � C.

We now assume supRN V > 0 and choose η so that
∫
RN V (x)η(x)m

∗
dx > 0. Then, by sending β → ∞, we see

that λ∗(β) → −∞ as β → ∞. Hence, (i) is valid. Similarly, if infRN V < 0, then we have λ∗(β) → −∞ as β → −∞
by choosing η so that

∫
RN V (x)η(x)m

∗
dx < 0. Hence, we have completed the proof. �

Let us now study the differentiability of λ∗(β) with respect to β . Recall that λ := sup{λ∗(β) | β ∈ R}.

Proposition 5.3. Let βi be such that λ∗(βi) < λ for i = 1,2, and let φi and μi = μi(dx) be, respectively, the unique
solution of (EP) with λ = λ∗(βi) and the invariant probability measure associated with the Aφi -diffusion. Then

−(β2 − β1)

∫
RN

V (x)μ2(dx)� λ∗(β2) − λ∗(β1) �−(β2 − β1)

∫
RN

V (x)μ1(dx).

Proof. Set v := φ2 − φ1. Then, we see that

λ∗(β2) − λ∗(β1) − Av + H(x,Dφ2) − H(x,Dφ1) + (β2 − β1)V = 0.

In view of the convexity H(x,p) − H(x,q) � DpH(x, q) · (p − q), we have

λ∗(β2) − λ∗(β1) − Aφ1v + (β2 − β1)V � 0. (5.1)

Let X = (Xt ) denote the Aφ1 -diffusion, and apply Ito’s formula to v(Xt ). Then, noting (5.1) and the fact that |Dv|
is bounded in R

N , we have

Ex

[
v(XT )

] − v(x) = Ex

[ T∫
0

Aφ1v(Xt ) dt

]
�

(
λ∗(β2) − λ∗(β1)

)
T + (β2 − β1)Ex

[ T∫
0

V (Xt ) dt

]
.

Since
∫
RN |v(y)|μ1(dy) < ∞ by Theorem 4.6, we conclude in view of Theorem 3.3(i) that

λ∗(β2) − λ∗(β1)� lim
T →∞

Ex[v(XT )]
T

− lim
T →∞

β2 − β1

T
Ex

[ T∫
0

V (Xt) dt

]
= −(β2 − β1)

∫
RN

V (x)μ1(dx).

Changing the role of β1 and β2, we also have
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λ∗(β1) − λ∗(β2) �−(β1 − β2)

∫
RN

V (x)μ2(dx).

Hence, we have completed the proof. �
Proposition 5.4. λ∗(β) is differentiable at any β ∈ I := {β | λ∗(β) < λ}. Moreover, the following representation
formula holds:

dλ∗

dβ
(β) = −

∫
RN

V (y)μβ(dy), β ∈ I, (5.2)

where μβ = μβ(dx) denotes the invariant probability measure associated with the Aφ-diffusion for φ ∈ S(β).

Proof. Fix any β ∈ I . Let {βn} be any sequence such that βn → β as n → ∞. We may assume without loss of
generality that βn ∈ I for all n. Let φn ∈ S(βn), and let μn = μn(dx) be the invariant probability measure for the
Aφn -diffusion. By virtue of Proposition 5.3, it suffices to prove that μn converges weakly to μ = μβ as n → ∞.

Observe first that the family {μn} is tight since supn

∫
RN eγ |x|μn(dx) < ∞ for some γ > 0 (see Remark 4.5).

By choosing a suitable subsequence of {βn} if necessary, we may assume that μn converges weakly to a probability
measure μ∞ as n → ∞. Since μn satisfies∫

RN

(
Aη(x) − DpH

(
x,Dφn(x)

) · Dη(x)
)
μn(dx) = 0, η ∈ C∞

c

(
R

N
)
, (5.3)

and {φn} is precompact in C2(RN), which can be verified from Theorem 3.4 and the classical regularity theory for
elliptic equations, we see by taking n → ∞ in (5.3) that∫

RN

(
Aη(x) − DpH

(
x,Dφ(x)

) · Dη(x)
)
μ∞(dx) = 0, η ∈ C∞

c

(
R

N
)
,

where φ is the unique solution of (EP) with λ = λ∗(β). The last equality, together with the uniqueness of the invariant
probability measure for the Aφ-diffusion, yields that μ∞ = μ. In particular, μn converges weakly to μ as n → ∞.
Hence, we obtain (5.2) by virtue of Proposition 5.3. �

In view of the propositions above, we obtain claim (i) of Theorem 2.1.

Remark 5.5. Proposition 5.4 shows that λ∗(β) is differentiable on R \ ∂I . We conjecture that λ∗(β) is differentiable
at β ∈ ∂I if and only if there is no φ ∈ S(β) such that the associated Aφ-diffusion is ergodic, although we do not have
any rigorous proof at this stage. Note that this conjecture is true in the “linear” case, more precisely, in the case where
σ = Σ = I and b = 0 (e.g., [25]). The method in [25] is based on the analysis of the linear Schrödinger operator
−(1/2)� − βV which is completely different from the one developed in this paper.

Now, we proceed to the proof of (ii) and (iii) in Theorem 2.1. Let Λ(β) = infξ∈A Jβ(ξ) be the optimal value of the
ergodic control problem (1.2)–(1.3). We first claim that one side inequality λ∗(β) �Λ(β) is always valid.

Proposition 5.6. For any β ∈ R, one has λ∗(β) � Λ(β).

Proof. Fix any β . Let {fn} be a family of C2-functions such that supn |Dfn| < ∞, 0 � fn � |λ∗(β)|+supRN |βV |+2
in R

N , fn = 0 in Bn, and fn = |λ∗(β)| + supRN |βV | + 2 in R
N \ Bn+1 for each n. Clearly, {fn} is decreasing and

converges to zero in C(RN) as n → ∞.
Let λn = λn(β) be the generalized principal eigenvalue of

λ + F [φ] + βV − fn = 0 in R
N, φ(0) = 0. (5.4)
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Notice here that, for each n, λn is well defined and finite in view of Remark 3.6. Furthermore, by the choice of {fn},
we easily see that λn � λn+1 � λ∗(β) for all n. In particular, there exists a λ∞ � λ∗(β) such that λn → λ∞ as n → ∞.

We now claim that λ∞ = λ∗(β). Let φn be the solution of (5.4) with λ = λn such that φn(0) = 0. Since {φn}
is precompact in C2(RN), we can extract a subsequence of {φn}, still denoted by {φn}, such that φn converges in
C2(RN) to a φ ∈ C2(RN) as n → ∞. Noting fn → 0 in C(RN) and λn → λ∞ as n → ∞, we see that (λ∞, φ) is
a solution of (EP). By the definition of λ∗(β), we have λ∞ � λ∗(β). Hence, λ∞ = λ∗(β). In what follows, we may
assume without loss of generality that λn � λ∗(β) + 1 for all n.

Let us investigate the ergodicity of the Aφn -diffusion. To this end, observe first that φ0 ≡ 0 satisfies

λn + F [φ0] + βV − fn � λ∗(β) + 1 + βV −
(∣∣λ∗(β)

∣∣ + max
RN

|βV | + 2
)
� −1 in R

N \ Bn+1.

Thus, we can apply Theorem 4.1 (see also Remark 4.5) to conclude that φn is the unique solution of (5.4) with
λ = λn such that φn(0) = 0, and that the associated Aφn -diffusion is ergodic with an invariant probability measure μn

satisfying
∫
RN eγ |x|μn(dx) < ∞ for some γ > 0.

Let X = (Xt ) denote the Aφn -diffusion. Set ξ∗
t := DpH(Xt ,Dφn(Xt )). Then, in view of Theorem 3.3(i), Proposi-

tion 3.9(ii) with βV − fn in place of βV , and the nonnegativity of fn, we have

λn = lim
T →∞

1

T
Ex

[ T∫
0

{
L

(
Xt, ξ

∗
t

) − βV (Xt ) + fn(Xt )
}
dt + φn(XT )

]

� lim inf
T →∞

1

T
Ex

[ T∫
0

{
L

(
Xt, ξ

∗
t

) − βV (Xt)
}
dt

]
�Λ(β).

Sending n → ∞, we obtain λ∗(β) �Λ(β). Hence, we have completed the proof. �
We next discuss the validity of the opposite inequality λ∗(β) � Λ(β). For this purpose, let us consider the following

stochastic control problem of finite time horizon:

Minimize Jβ(ξ ;T ,x) := Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}
dt

]

subject to dX
ξ
t = −ξt dt + b(Xt ) dt + σ

(
X

ξ
t

)
dWt .

It is well known that the value function

uβ(T , x) := inf
ξ∈A

Jβ(ξ ;T ,x) (5.5)

belongs to C([0,∞) ×R
N) ∩ C1,2((0,∞) ×R

N) and uβ is a solution of the HJB equation⎧⎨
⎩

∂u

∂t
− Au + H(x,Du) + βV = 0 in (0,∞) ×R

N,

u(0, ·) = 0 in R
N.

(5.6)

Moreover, for each T > 0, there exists a CT > 0 such that |uβ(t, x)| � CT (1 + |x|) in [0, T ] ×R
N . We also mention

here that the comparison theorem holds for classical sub- and supersolutions of (5.6). That is, if u1 and u2 are,
respectively, sub- and supersolutions of (5.6) such that u1(0, ·) � u2(0, ·) in R

N and |ui(t, x)| � CT (1 + |x|) in
[0, T ] ×R

N for i = 1,2, then u1 � u2 in [0, T ] ×R
N . See, for instance, [8, Chapter IV] for details.

We begin with establishing a few propositions.

Proposition 5.7. The function β �→ Λ(β) is concave. Moreover, Λ(0) = 0.
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Proof. Fix any β0 < β1, and set βδ := (1 − δ)β0 + δβ1 for δ ∈ (0,1). Then, for any S > 0,

inf
T�S

Jβδ (ξ ;T ,x)

T
� (1 − δ) inf

T�S

Jβ0(ξ ;T ,x)

T
+ δ inf

T�S

Jβ1(ξ ;T ,x)

T
.

Sending S → ∞ and then taking the infimum over all ξ ∈ A, we conclude that Λ(βδ) � (1 − δ)Λ(β0) + δΛ(β1) for
all δ ∈ (0,1). Hence, Λ(β) is concave.

We next show that Λ(0) = 0. Since L � 0 in R
2N , we see that Λ(0) � 0. On the other hand, by choosing ξ ≡ 0,

we have

Λ(0) � lim
T →∞

1

T
Ex

[ T∫
0

L
(
X0

t ,0
)
dt

]
= 0.

Hence, Λ(0) = 0, and we have completed the proof. �
Proposition 5.8. Let β be such that λ∗(β) < 0, and let uβ(T , x) be the value function defined by (5.5). Then

λ∗(β) � lim inf
T →∞

uβ(T , x)

T
.

Proof. Set φ0(x) := log(1+|x|2). Note that φ0 satisfies (4.1) with ρ := (1/2)|λ∗(β)| for some R > 0 since λ∗(β) < 0
and |F [φ0](x)| → 0 and V (x) → 0 as |x| → ∞. Then, applying the same argument as in the proof of Theorem 4.1,
we can find a decreasing sequence {εn} converging to zero as n → ∞ and a family of solutions (λn,wn) of

λ + εnw + F [w] + βV = εnφ0 in R
N, w(0) = 0,

such that λn → λ∗(β) as n → ∞ and φ0 − M � wn � φ0 + Cn in R
N for some M > 0 not depending on n, and for

some Cn > 0 which may depend on n. Hereafter, we may assume without loss of generality that λn < 0 for all n.
Now, fix any γ > 0 and set

v(t, x) := (
1 − e−t

){
(1 − δ)wn − δ

√
1 + |x|2 − K

} + (
λ∗(β) − γ

)
t,

where n � 1, δ ∈ (0,1), and K > 0 will be specified later. Since |F [−√
1 + |x|2]| � C in R

N for some C > 0, we
have

∂v

∂t
+ F [v] + βV � λ∗(β) − λn − γ + εnM + δ|βV | + δC + e−t

(
φ0 − δ

√
1 + |x|2 + |βV | + Cn − K

)
.

By choosing n, δ, and then K so that the right-hand side becomes less than zero, we see that v is a subsolution of (5.6)
with v(0, ·) ≡ 0 in R

N . It is also obvious from the definition of v that, for any T > 0, there exists a CT > 0 such that
|v(t, x)| � CT (1 + |x|) in [0, T ] ×R

N . We can thus apply the comparison theorem for solutions of (5.6) to conclude
that v � uβ in [0,∞) ×R

N . In particular,

λ∗(β) − γ = lim
T →∞

v(T , x)

T
� lim inf

T →∞
uβ(T , x)

T
.

Since γ > 0 is arbitrary, we obtain the desired estimate. �
Set J− := {β ∈ R | λ∗(β) < 0}, J := {β ∈ R | λ∗(β) = 0}, and J+ := {β ∈ R | λ∗(β) > 0}. We investigate the

validity of λ∗ = Λ on each set.

Proposition 5.9. λ∗(β) = Λ(β) for all β ∈ J−.

Proof. Fix any β ∈ J−. In view of Propositions 5.6, it suffices to show that λ∗(β) � Λ(β). Let uβ(T , x) be the value
function defined by (5.5). Then, by the definition of uβ , we see that
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inf
T�S

uβ(T , x)

T
� inf

T�S

1

T
Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV (Xt)
}
dt

]
, S > 0, ξ ∈A.

Sending S → ∞, and then taking the infimum over all ξ ∈A, we obtain

lim inf
T →∞

uβ(T , x)

T
� Λ(β).

This inequality, together with Proposition 5.8, implies that λ∗(β) � Λ(β). Hence, we have completed the proof. �
Proposition 5.10. λ∗(β) = Λ(β) for all β ∈ J .

Proof. By the concavity of λ∗(β), the form of J turns out to be one of the following: (a) J = {β0} for some β0 ∈ R;
(b) J = {β−, β+} for some β± ∈ R with β− < β+; (c) J = [β−, β+] for some β± ∈ R with β− < β+; (d) J =
(−∞, β0] for some β0 ∈R; (e) J = [β0,∞) for some β0 ∈R.

Suppose first that (a) holds. Then, by Proposition 5.2, there exists a sequence {βn} such that λ∗(βn) < 0 for all n� 1
and βn → β0 as n → ∞. Since λ∗(βn) = Λ(βn) in view of Proposition 5.9, we obtain λ∗(β0) = Λ(β0) by sending
n → ∞. Hence, the claim is valid in case (a). We can also prove the identity λ∗(β) = Λ(β) in case (b) since the same
argument can be applied to β− and β+ in place of β0. We now assume (c). Since two functions λ∗(β) and Λ(β) are
both concave and their values coincide in J− = R \ [β−, β+], we observe in combination with Proposition 5.6 that
λ∗(β) = Λ(β) = 0 for all β ∈ [β−, β+]. Hence, the claim is true in case (c). We next suppose that (d) holds. Note
by virtue of Proposition 5.2 that this situation happens only when V � 0 in R

N . In particular, by the definition of Λ

and the nonnegativity of V , we have Λ(β) � 0 for all β < 0. Since λ∗ and Λ are both concave and they coincide in
(β0,∞), we conclude, in view of Proposition 5.6, that λ∗(β) = Λ(β) = 0 in (−∞, β0]. Thus, the claim is valid in
case (d). We can also apply the same argument in case (e). Hence, we have completed the proof. �

We now compare the values of λ∗ and Λ in J+. For this purpose, we first remark the following result.

Proposition 5.11. Suppose that the A-diffusion is recurrent. Then λ∗(0) = 0.

Proof. Since λ∗(0) � 0, it suffices to prove that λ∗(0) � 0. We argue by contradiction assuming that λ∗(0) > 0. Let
φ ∈ S(0). Note that φ cannot be constant. Fix any ε ∈ (0, λ∗(0)) and set K := supRN |Dφ|. Then, from Proposi-
tion 3.10(ii), there exists a κ > 0 such that u := e−κφ satisfies

Au = A0u � κu
(
F [φ] − F [0] + ε

) = κu
(
ε − λ∗(0)

)
< 0 in R

N.

Since the A-diffusion is recurrent, we can see, as in the proof of Proposition 4.7, that u attains a minimum in R
N . Ap-

plying the strong maximum principle, we conclude that u, and therefore, φ is constant in R
N . This is a contradiction.

Hence, λ∗(0) � 0. �
Proposition 5.12. The following (i) and (ii) hold.

(i) Suppose that λ∗(0) > 0. Then Λ(β) = 0 for all β ∈ J+.
(ii) Suppose that λ∗(0) = 0. Then λ∗(β) = Λ(β) for all β ∈ J+.

Proof. We first assume that λ∗(0) > 0. Then Λ(β) � 0 for all β ∈ R. Indeed, since the A-diffusion is transient by
Proposition 5.11, we see in view of Theorem 3.3(ii) that

Λ(β) � lim inf
T →∞

1

T
Ex

[ T∫
0

{
L

(
X0

t ,0
) − βV

(
X0

t

)}
dt

]
= − lim sup

T →∞
1

T
Ex

[ T∫
0

βV
(
X0

t

)
dt

]
= 0.

Hence, Λ(β) � 0 for all β ∈ R. On the other hand, by the concavity of β �→ λ∗(β), the form of J+ becomes one of
the following (a)–(c): (a) J+ = (−∞, β+) for some β+ > 0; (b) J+ = (β−,∞) for some β− < 0; (c) J+ = (β−, β+)

for some β± ∈R with β− < 0 < β+.
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Let us consider (a). Note that this situation happens only when V � 0 in R
N by Proposition 5.2. We can also see

that Λ(β) � 0 for all β < 0 by the definition of Λ and the nonnegativity of V . In particular, Λ(β) = 0 in (−∞,0].
Since Λ(β+) = λ∗(β+) = 0 and Λ(β) = λ∗(β) < 0 in (β+,∞), we conclude that Λ(β) = 0 for all β ∈ (−∞, β+).
Hence, claim (i) is true in case (a). By a symmetric argument, we can also see that (i) is true in case (b). Let us
assume (c). Then Λ(β±) = λ∗(β±) = 0. Since Λ is concave and Λ(0) = 0, we conclude that Λ(β) = 0 in (β−, β+).
Hence, (i) is proved.

Suppose next that λ∗(0) = 0. Fix any β ∈ J+ and let φ ∈ S(β). Since λ∗(0) = 0 < λ∗(β), we see by Theorem 4.6
with (V1, φ1) = (0,0) and (V2, φ2) = (βV,φ) that φ is bounded above in R

N . We now fix any ξ ∈ A. Then, in view
of Proposition 3.9(i) and the fact that φ is bounded above, we have

λ∗(β) � lim inf
T →∞

1

T
Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}
dt + φ

(
X

ξ
T

)]
� lim inf

T →∞
1

T
Ex

[ T∫
0

{
L

(
X

ξ
t , ξt

) − βV
(
X

ξ
t

)}]
.

Taking the infimum over all ξ ∈A, we obtain λ∗(β) � Λ(β), and therefore λ∗(β) = Λ(β) by Proposition 5.6. Hence,
we have completed the proof. �

It is now easy to prove Theorem 2.1 by combining Propositions 5.9, 5.10, and 5.12. We can also prove Theorem 2.2
as follows.

Proof of Theorem 2.2. Since λ∗(β) < λ̄, we see in view of Theorem 4.6 that (EP) with λ = λ∗(β) has a unique
solution φ ∈ C2(RN), and that the associated Aφ-diffusion X is ergodic with an invariant probability density μ such
that eγ |x|μ ∈ L1(RN) for some γ > 0. Applying Proposition 3.9(ii), together with the ergodicity of X, we conclude
that

λ∗(β) = lim
T →∞

1

T
Ex

[ T∫
0

{
L

(
Xt, ξ

∗
t

) − βV (Xt )
}]

,

where ξ∗
t := DpH(Xt ,Dφ(Xt )). This implies that ξ∗ is optimal if λ∗(β) = Λ(β). It is also obvious that ξ∗ is not

optimal if λ∗(β) > Λ(β). In the latter case, we have Λ(β) = 0 by virtue of Theorem 2.1, and similarly as in the proof
of Proposition 5.12(i), we see that ξt ≡ 0 is optimal. Hence, we have completed the proof. �
Remark 5.13. It can happen that λ∗(0) > 0. For instance, let ψ ∈ C3(RN) satisfy ψ(x) = |x| in R

N \ B1, and set
σ := I and b := αDψ , where α > 0 will be specified later. Note that the A-diffusion is transient for any α > 0. Indeed,
let u ∈ C2(RN) be such that u(x) = |x|−1 in R

N \ B1. Then

Au = 1

2
�u + αDψ · Du = 3 − N

2|x|3 − α

|x|2 � 0 in R
N \ BR

for some R > 0. Applying Theorem 3.1(i), we conclude that the A-diffusion is transient.
We now claim that λ∗(0) > 0 if α is sufficiently large. We argue by contradiction supposing that λ∗(0) = 0. Then,

since H(x,p) � κ2|p|m in R
2N for some κ2 > 0, we have

F [ψ] �−N − 1

2|x| − α + κ2 in R
N \ B1.

In particular, if α > κ2, then there exist some ρ > 0 and R > 0 such that λ∗(0)+F [ψ] � −ρ in R
N \BR . This implies

that condition (4.1) in Theorem 4.1 is satisfied with φ0 = ψ . Hence, we conclude that φ ≡ 0 is the unique solution
of (EP) with λ = λ∗(0) and V ≡ 0, and that the Aφ = A-diffusion is ergodic. But, this is a contradiction since the
A-diffusion is transient for any α > 0. Hence, λ∗(0) > 0 as far as α > κ2.

Remark 5.14. Let us consider the special case where H(x,p) = (1/2)|σT (x)p|2, and let u(T , x) be the solution
of (5.6). Then v := e−u turns out to be a solution to the Cauchy problem for linear parabolic equation
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⎧⎨
⎩

∂v

∂t
− Av − βV v = 0 in (0,∞) ×R

N,

v(0, ·) ≡ 1 in R
N.

In particular, by the Feynman–Kac formula for v, we obtain

u(T , x)

T
= − 1

T
logEx

[
exp

(
β

T∫
0

V (Xt ) dt

)]
. (5.7)

The long time behavior of the right-hand side of (5.7) was studied in [14], while we investigated that of the left-hand
side, which is valid for any H satisfying (A2). Hence, Theorem 2.1 covers [14] as a particular case.

6. Qualitative properties of λ∗(β)

In this section we prove Theorems 2.3, 2.4, and 2.5. Namely, we investigate the recurrence and transience of
diffusion X governed by (1.5) as well as qualitative properties of λ∗(β) around the origin. Throughout this section,
we always assume that λ := sup{λ∗(β) | β ∈R} = 0. We begin with a few sufficient conditions so that λ = 0.

Proposition 6.1. Suppose one of the following (a) or (b) holds. Then λ = 0.

(a) The A-diffusion is transient and λ∗(0) = 0.
(b) The A-diffusion is null-recurrent.

Proof. We first assume (a). We argue by contradiction assuming that λ∗(β) > 0 = λ∗(0) for some β �= 0. Then, by
Theorem 4.6, φ ≡ 0 is the unique solution of (EP) with β = 0 and λ = λ∗(0). Furthermore, the associated A0-diffusion
is ergodic. But this is inconsistent with (a). Hence, λ = 0.

We next assume (b). Suppose that λ∗(β) > 0 for some β �= 0. Since λ∗(0) = 0 by virtue of Proposition 5.11, we
can apply the same argument as above to deduce a contradiction. Hence, λ = 0. �

The following proposition provides another sufficient condition in terms of the asymptotic behavior of b as
|x| → ∞.

Proposition 6.2. Suppose that |x|−1(b(x) · x) → 0 as |x| → ∞. Then λ = 0.

Proof. Let ψ ∈ C3(RN) be any function such that |Dψ | � 1 in R
N and ψ(x) = |x| in R

N \ B1. Fix any ε ∈ (0,1)

and let Xε = (Xε
t ) be the solution of

dXε
t = εDψ

(
Xε

t

)
dt + b

(
Xε

t

)
dt + σ

(
Xε

t

)
dWt . (6.1)

Note that Xε is transient. Indeed, choose any u ∈ C2(RN) such that u(x) = |x|−1 in R
N \ B1. Then

Au + εDψ · Du = − tr(σσT )

|x|3 + 3
|σT (x)x|2

|x|5 − |x|−2
(

b(x) · x
|x| + ε

)
in R

N \ B1.

Since |x|−1b(x) · x → 0 as |x| → ∞, we conclude that Au + εDψ · Du � 0 in R
N \ BR for some R > 0. Hence,

Xε is transient in view of Theorem 3.1(i).
We next show that

lim sup
T →∞

Ex[|Xε
T |]

T
� 4ε. (6.2)

Since b(x) · x � ε|x| in R
N \ BR for some R > 0, we have (εDψ(x) + b(x)) · x � 2ε|x| in R

N \ BR . In particular,(
εDψ(x) + b(x)

) · x � sup
(|Dψ | + |b|)R + 2ε|x| in R

N.

BR
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We now apply Ito’s formula to |Xε
t |2. Then,

Ex

[∣∣Xε
T ∧τn

∣∣2] − |x|2 = Ex

[ T ∧τn∫
0

{
2
(
εDψ

(
Xε

t

) + b
(
Xε

t

)) · Xε
t + tr

(
σσT

(
Xε

t

))}
dt

]

� 2R
(

1 + sup
RN

|b|
)
T + 4εEx

[ T∫
0

∣∣Xε
t∧τn

∣∣dt

]
+ sup

RN

tr
(
σσT

)
T ,

where τn := inf{t > 0 | |Xε
t | > n}. This implies that

sup
0�t�T

Ex

[∣∣Xε
t∧τn

∣∣2] � CT + 4εT sup
0�t�T

Ex

[∣∣Xε
t∧τn

∣∣]� CT + 8ε2T 2 + 1

2
sup

0�t�T

Ex

[∣∣Xε
t∧τn

∣∣2]
for some C > 0 not depending on n and T . Thus, we conclude that

Ex

[∣∣Xε
T

∣∣]� lim inf
n→∞ Ex

[∣∣Xε
T ∧τn

∣∣] � lim inf
n→∞

√
Ex

[∣∣Xε
T ∧τn

∣∣2]� √
2CT + 16ε2T 2.

Dividing both sides by T and sending T → ∞, we obtain (6.2).
We finally show that λ = 0. Since λ∗(0) � 0, it suffices to prove that λ∗(β) � 0 for all β . Fix any ε ∈ (0,1), and

set ξε
t := εDψ(Xε

t ). Observe that ξε ∈ A. Let φ ∈ S(β). Since L(x, ξ) � C|ξ |m∗
and |φ(x)| � C(1 + |x|) for some

C > 0, we see that

φ(x) + λ∗(β)T � Ex

[ T∫
0

{
L

(
Xε

t , ξ
ε
t

) − βV
(
Xε

t

)}
dt + φ

(
Xε

T

)]

� εm∗
CT − βEx

[ T∫
0

V
(
Xε

t

)
dt

]
+ C

(
1 + Ex

[∣∣Xε
T

∣∣]).
We now divide both sides by T and send T → ∞. Then, noting (6.2) and Theorem 3.3(ii), we have λ∗(β) � Cεm∗ +
4Cε. Letting ε → 0, we obtain λ∗(β) � 0. �

We now set J := {β ∈ R | λ∗(β) = 0}. By the concavity of λ∗(β) and the assumption that λ̄ = 0, we observe that J

is a nonempty, connected, and closed subset of R.

Proposition 6.3. Assume that λ = 0. Then the following (i)–(iii) hold.

(i) J = (−∞, β] for some β � 0 if V � 0 in R
N .

(ii) J = [β,∞) for some β � 0 if V � 0 in R
N .

(iii) J = [β,β] for some β � 0 � β if V is sign-changing.

Proof. We first assume that V � 0 in R
N . Then the mapping β �→ λ∗(β) is non-increasing by the definition of

λ∗(β). Since λ∗(0) � 0 and λ = 0 by assumption, we have λ∗(β) = 0 for all β < 0. On the other hand, in view of
Proposition 5.2, we have λ∗(β) → −∞ as β → ∞. In particular, there exists a β � 0 such that J = (−∞, β]. Suppose
next that V � 0 in R

N . Then, similarly as above, we see that J = [β,∞) for some β � 0. We finally assume that V is

sign-changing. Then, by Proposition 5.2 and the concavity of λ∗(β), we conclude that J = [β,β] for some β � 0 � β .
Hence, we have completed the proof. �

We now prove our main theorems. We first show Theorem 2.3.

Proof of Theorem 2.3. It suffices to prove (ii) since (i) is obvious from Theorem 4.6. In what follows, we assume
1 < m� 2 in (A2) and IntJ �= ∅.
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Fix any β ∈ IntJ and φ ∈ S(β). Suppose first that V � 0 in R
N . Then there exists a β � 0 such that J = (−∞, β].

In particular, any ψ ∈ S(β) is a subsolution of (EP) with λ = λ∗(β) = 0 which is strict at some point in R
N . Applying

Proposition 4.7, we conclude that the Aφ-diffusion is transient. By the symmetric argument as above, we also see that
(ii) is valid when V � 0 in R

N .
It thus remains to consider the case where V is sign-changing. In this case, J = [β,β] for some β < β . Fix any

ψ1 ∈ S(β) and ψ2 ∈ S(β). Then there exists a δ ∈ (0,1) such that β = (1 − δ)β + δβ . Set ψ := (1 − δ)ψ1 + δψ2. In

view of the convexity of H(x,p) in p, we easily see that ψ is a subsolution of F [ψ]+βV = 0 in R
N . Moreover, there

exists a y ∈ R
N such that F [ψ](y) + βV (y) < 0. Indeed, if this is not true, then ψ is a solution of F [ψ] + βV = 0

in R
N . In particular, H(x,Dψ(x)) = (1−δ)H(x,Dψ1(x))+δH(x,Dψ2(x)) for all x ∈ R

N . Since H(x,p) is strictly
convex in p, we have Dψ1 = Dψ2 in R

N . This implies that ψ1 −ψ2 is constant in R
N , and therefore βV = βV in R

N .

But this is a contradiction since β < β and V �≡ 0. Hence, ψ is a subsolution of F [ψ] + βV = 0 in R
N which is strict

at some y ∈ R
N . Applying Proposition 4.7 again, we conclude that the Aφ-diffusion is transient. Hence, we have

completed the proof of Theorem 2.3. �
We turn to the proof of Theorem 2.4. To this end, we establish a few propositions.

Lemma 6.4. Assume that λ = 0. Then, for any β /∈ J , there exists a C > 0 such that the unique solution φ of (EP)
with λ = λ∗(β) satisfies

C−1|x| − C � φ(x) � C
(
1 + |x|), x ∈ R

N.

Proof. Since λ∗(0) = 0, we obtain the first inequality by choosing (V1, φ1) = (βV,φ) and (V2, φ2) = (0,0) in Theo-
rem 4.6. The second inequality is obvious from the Lipschitz continuity of φ. �
Proposition 6.5. Let λ = 0, and let Gα be the function defined by (2.2). Assume that

lim|x|→∞ |x|m∗
V (x) = 0, lim inf|x|→∞ Gm∗(x) > 0,

where m∗ := m/(m − 1). Then, for any β ∈ ∂J , there exists a φ ∈ S(β) such that infRN φ > −∞. Moreover, if m � 2
in (A2), then φ(x) → ∞ as |x| → ∞, and the associated Aφ-diffusion is recurrent.

Proof. Let β ∈ ∂J . It suffices to prove the claim when β = maxJ < ∞. The opposite case β = minJ > −∞ can be
proved similarly. Set γ := (m − 2)/(m − 1) ∈ (−∞,1) and choose any φ0 ∈ C3(RN) such that

φ0(x) =
{

c log |x| (m = 2),
c
γ
|x|γ (m �= 2)

in R
N \ B2,

where c ∈ (0,1) is some constant which will be specified later. Note that φ0 is bounded below on R
N , and δ|x| −

φ0(x) → ∞ as |x| → ∞ for any δ > 0. Furthermore, observing that γ − 2 = m(γ − 1) = −m∗, we have

F [φ0](x) � c|x|−m∗(−Gm∗(x) + Kcm−1) in R
N \ B2

for some K > 0. Since Gm∗ � ε in R
N \ BR0 for some ε > 0 and R0 > 0, we can choose c > 0 and ρ > 0 so that

F [φ0]� −ρ|x|−m∗
in R

N \ BR0 . (6.3)

Hereafter, we fix such c and ρ.
Let {βn} be any decreasing sequence such that βn → β as n → ∞. We may assume without loss of generality that

β < βn < β + 1 for all n� 1. Then, in view of (6.3) and the assumption on V , there exists an R > R0 such that for all
μ ∈ (1/2,1) and n� 1,

μF [φ0] + βnV � 0 in R
N \ BR. (6.4)

Let φn ∈ S(βn) and define M1 > 0 by
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M1 := sup
{∣∣φ0(x)

∣∣ + ∣∣φn(x)
∣∣ ∣∣ n� 1, x ∈ BR

}
,

where R > 0 is the constant in (6.4). Notice that M1 < ∞ since |φn(x)| = |φn(x) − φn(0)| � C|x| in R
N for some

C > 0 not depending on n.
We now claim that φn � φ0 − M1 in R

N for all n. Indeed, if we set w0 := φ0 − M1, then φn � w0 in BR by the
definition of M1. Since φn(x) is linearly growing as |x| → ∞ by Lemma 6.4, there exists a bounded domain Dn in
R

N such that BR ⊂ Dn and φn �w0 in R
N \ Dn. Observing that λ∗(βn) < 0 for any n� 1 and that φ0 satisfies (6.4),

we have

F [w0] + βnV = F [φ0] + βnV � 0 < −λ∗(βn) in Dn \ B̄R.

This implies that w0 is a strict subsolution of λ∗(βn) + F [φ] + βnV = 0 in Dn \ B̄R . Since φn is a solution to the
same equation, we obtain φn � w0 in Dn \ B̄R by the standard comparison theorem. Hence, φn � φ0 − M1 in R

N .
On the other hand, in view of Theorem 3.4 and the classical regularity theory for elliptic equations, we can extract a
subsequence of {φn}, still denoted by {φn}, such that φn converges in C2(RN) to a function φ as n → ∞. Sending
n → ∞ and noting that λ∗(βn) → λ∗(β) as n → ∞, we conclude that φ ∈ S(β) and infRN (φ − φ0) > −∞. Since φ0
is bounded below on R

N , we obtain infRN φ > −∞.
We now assume m � 2 in (A2) and prove the recurrence of the associated Aφ-diffusion. Note that φ0(x) → ∞ as

|x| → ∞, and therefore φ(x) → ∞ as |x| → ∞. Fix any μ ∈ (1/2,1). Then, observing that μF [φ0] + βV � 0 in
R

N \ BR by virtue of (6.4) and that λ∗(β) = 0, we have

Aφ(φ − μφ0) � μF [φ0] − F [φ] � μF [φ0] + βV + λ∗(β) � 0 in R
N \ BR.

Since (φ − μφ0)(x) → ∞ as |x| → ∞, we conclude in view of Theorem 3.1(ii) that the Aφ-diffusion is recurrent.
Hence, we have completed the proof. �

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. We first show (i). Since Gα(x) � 0 in R
N \ BR for some α � 2 and R > 0, we see that the

A-diffusion is recurrent. Indeed, let u ∈ C2(RN) be any function satisfying

u(x) =
{

log |x| (α = 2),

(2 − α)−1|x|2−α (α < 2)
in R

N \ B2.

Then, a straightforward calculation shows that Au(x) = |x|−αGα(x) � 0 in R
N \ BR for some R > 0. Since

u(x) → ∞ as |x| → ∞, we conclude in view of Theorem 3.1(ii) that the A-diffusion is recurrent.
We now assume 0 ∈ IntJ and deduce a contradiction. Suppose first that V � 0 in R

N . Then, in view of Propo-
sition 6.3(i), there exists a β � 0 such that J = (−∞, β]. By assumption, we have β > 0. Since any φ ∈ S(β) is a
subsolution of (EP) with β = 0 and λ = λ∗(0) = 0 which is strict at some point in R

N , we see in view of Proposi-
tion 4.7 that the A = A0-diffusion is transient. But this is a contradiction. Hence, ∂J = {0}. Suppose next that V � 0
in R

N . Then, by a similar argument as above, we can also see that ∂J = {0}. We finally consider the case where V is
sign-changing. In this case, as in the proof of Theorem 2.3, we can construct a subsolution ψ of (EP) with β = 0 and
λ = λ∗(0) = 0 which is strict at some point in R

N . In particular, the A = A0-diffusion is transient. But this is again a
contradiction. Hence, ∂J = {0}. The proof is complete.

We next prove (ii). Suppose contrarily that 0 ∈ ∂J . Then, in view of Proposition 6.5, there exists a φ ∈ S(0) such
that φ(x) → ∞ as |x| → ∞ and the associated Aφ-diffusion is recurrent. Since Aφφ � −F [φ] = 0 in R

N and φ has
a minimum in R

N , we can apply the strong maximum principle to conclude that φ is constant in R
N . But this is a

contradiction. Hence, 0 /∈ ∂J , namely, 0 ∈ IntJ . �
Theorem 2.5 is now easily proved as a corollary of Theorems 2.3 and 2.4.

Proof of Theorem 2.5. Claim (i) follows directly from Proposition 6.2. Claim (ii) is also obvious from Theorem 2.3
and Proposition 6.5. To prove (iii), we observe that Gα(x) = (N − α)/2. If N � 2, then G2 � 0 in R

N . In particular,
∂J = {0} by virtue of Theorem 2.4(i). On the other hand, if N � 3, then G2(x) � 1/2 in R

N . Thus, we can apply
Theorem 2.4(ii) to conclude that 0 /∈ ∂J . Hence, we have completed the proof of Theorem 2.5. �
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We close this section with an example which shows that Theorem 2.3(ii) as well as Theorem 2.5(ii)–(iii) are not
true when m > 2. Let us consider the simple equation

λ − 1

2
�φ + 1

m
|Dφ|m + βV = 0 in R

N, φ(0) = 0. (6.5)

In what follows, we assume the following:

(H) m > 2, V �≡ 0, V � 0 in R
N , and |x|N+εV (x) → 0 as |x| → ∞ for some ε > 0.

Let λ∗(β) denote the generalized principal eigenvalue of (6.5). Since (6.5) does not contain the first-order term, we
see in view of Proposition 6.2 that λ = 0. Set J := {β ∈R | λ∗(β) = 0}.

Proposition 6.6. Let (H) hold. Assume that N � 2. Then J = (−∞, β] for some β > 0. Furthermore, for any β ∈
(0, β), there exists a solution φ of (6.5) with λ = λ∗(β) such that infRN φ > −∞.

Proof. The positivity of β is obvious from Proposition 6.5 since Gm∗(x) ≡ (N −m∗)/2 and 1 < m∗ < 2. To prove the
latter claim, fix any α ∈ (0,1) and ψ ∈ C3(RN) such that ψ(x) = |x| in R

N \ B1. We define the differential operator
Aα by Aα := (1/2)�−αDψ ·D. Note that the Aα-diffusion is ergodic. Indeed, if we set u(x) = |x|2, then Aαu(x) =
N − 2α|x| � −1 in R

N \ BR for some large R > 0. Hence, the Aα-diffusion is ergodic in view of Theorem 3.1(iii).
Furthermore, its invariant probability density is given by μα(x) = Z−1e−2αψ(x), where Z := ∫

RN e−2αψ(x) dx < ∞.
In particular, eκ|x|μα ∈ L1(RN) for any 0 < κ < 2α.

Fix any β ∈ (0, β) and consider the following ergodic problem with parameter α:

λ − Aαφ + 1

m
|Dφ|m + βV = 0 in R

N, φ(0) = 0. (6.6)

Let λ∗
α be the generalized principal eigenvalue of (6.6). Then we see that λ∗

α < 0 for all α ∈ (0,1). To verify this, let
X = (Xt ) be the Aα-diffusion, and let φ be any solution of (6.6) with λ = λ∗

α . Then, in view of Theorem 3.9(i) with
L(x, ξ) := (1/m∗)|ξ |m∗

and the ergodicity of X, we have

λ∗
α � lim

T →∞
1

T
Ex

[ T∫
0

{
L(Xt ,0) − βV (Xt)

} + φ(Xt )

]
= −β

∫
RN

V (y)μα(dy) < 0.

In particular, we observe from Theorem 4.1 with φ0 ≡ 0 that there exists a unique solution φα ∈ C2(RN) of (6.6) with
λ = λ∗

α , and that φα(x) → ∞ as |x| → ∞.
We now fix any γ ∈ (N − 2,N − 2 + ε), where ε > 0 is the constant in (H). Let φ0 ∈ C3(RN) be any function such

that φ0(x) = (1/γ )|x|−γ in R
N \ B1. Then, by a straightforward calculation, we see that

Fα[φ0] := −Aαφ0 + 1

m
|Dφ0|m � −γ + 2 − N

2|x|γ+2
− α

|x|γ+1
+ K

|x|m(γ+1)
in R

N \ B1

for some K > 0 not depending on α. Since γ + 2 − N > 0 and γ + 2 < m(γ + 1) by the assumption on m, there exist
some R > 0 and ρ > 0 not depending on α such that

Fα[φ0] + βV � −ρ in R
N \ BR. (6.7)

We claim here that there exists a solution (λ,φ) of (6.5) such that infRN φ > −∞. Since the family {λ∗
α}α is

bounded and {φα}α is precompact in C2(RN), we can extract a subsequence {αn} converging to zero as n → ∞
such that λn := λ∗

αn
→ λ for some λ ∈ R and φn := φαn → φ in C2(RN) for some φ as n → ∞. In particular,

(λ,φ) is a solution of (6.5). Observe that λ � 0 since λ∗(β) = 0. We now prove that infRN φ > −∞. Set M :=
sup{|φn(x)| + |φ0(x)| | n � 1, x ∈ BR}, where R > 0 is the constant given in (6.7). Note in view of Theorem 3.4
that M < ∞ since the W 1,∞-norm of αnDψ is bounded uniformly in n. Then, by the definition of M , we see that
φn � φ0 − M in BR . On the other hand, since φn(x) → ∞ as |x| → ∞ and φ0 is bounded in R

N , there exists a
bounded domain Dn containing BR such that φn � φ0 − M in R

N \ Dn. Furthermore, we observe that
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Fαn[φn] + βV = −λ∗
αn

> 0 in R
N.

In particular, φn is a supersolution of Fαn[φ] + βV = 0 in Dn \ BR . Since φ0 − M is a strict subsolution of the same
equation in Dn \BR , we can apply the standard comparison theorem to conclude that φn � φ0 −M in Dn \BR . Thus,
φn � φ0 − M in R

N . Letting n → ∞, we obtain φ � φ0 − M in R
N . Hence, infRN φ > −∞.

We finally show that λ = 0 arguing by contradiction. Suppose that λ < 0. Then, by the same argument as in the
proof of Proposition 4.4, we see that the Aφ-diffusion is transient. On the other hand, set ψ(x) := −c

√
1 + |x|2, where

c > 0 is chosen so that |F [ψ]| � (1/2)|λ| in R
N . Then, there exists an R > 0 such that

Aφ(φ − ψ)� F [ψ] − F [φ] � 1

2
|λ| + λ + βV � −1

4
|λ| in R

N \ BR.

Since (φ − ψ)(x) → ∞ as |x| → ∞, we conclude that the Aφ-diffusion is recurrent. But this is a contradiction.
Hence, λ = 0, and we have completed the proof. �

In view of Proposition 6.6, we obtain the recurrence of Aφ-diffusions in the two dimensional case.

Proposition 6.7. Let (H) hold and assume that N = 2. For a given β ∈ (0, β), let φ be the solution of (6.5) constructed
in Proposition 6.6. Then, the Aφ-diffusion is recurrent.

Proof. Let φ0 ∈ C3(R2) be such that φ0(x) = − log log |x| in R
2 \ B2. Then a direct computation shows that

F [φ0] = −1

2
�φ0 + 1

m
|Dφ0|m �− 1

2(|x| log |x|)2
+ 1

m(|x| log |x|)m in R
2 \ B2.

Since |x|2+εV (x) → 0 as |x| → ∞ for some ε > 0, there exists an R > 0 such that

F [φ0] + βV � 0 in R
2 \ BR.

In particular, we have

Aφ(φ − φ0) �
(
F [φ0] − F [φ]) � 0 in R

2 \ BR.

Since (φ − φ0)(x) → ∞ as |x| → ∞, we can apply Theorem 3.1(ii) to conclude that the Aφ-diffusion is recurrent.
Hence, we have completed the proof. �

The last proposition implies that Theorem 2.3(ii) is not true, in general, for m > 2.
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