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Abstract

We analyze an elliptic equation arising in the study of the gauged O(3) sigma model with the Chern—Simons term. In this paper,
we study the asymptotic behavior of solutions and apply it to prove the uniqueness of stable solutions. However, one of the features
of this nonlinear equation is the existence of stable nontopological solutions in R2, which implies the possibility that a stable
solution which blows up at a vortex point exists. To exclude this kind of blow up behavior is one of the main difficulties which we
have to overcome.
© 2014 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The classical O(3) sigma model in 2 + 1 dimension originated to describe physical phenomena such as planar
ferromagnet [3]. However, the solitons in this model are not suitable for particle models due to their scale invariance
which makes particles have arbitrary size. This problem was overcome by Schroers in [23], where a U(1) gauge field
was added and the dynamics was governed by the Maxwell term. After his work, there have been many studies on
U(1) gauged O(3) sigma model, where the gauge field dynamics was governed by the Chern—Simons term [1,14,18,
19] or both of Maxwell and Chern—Simons terms [18].

In this paper, we consider another Chern—Simons gauged O(3) sigma model whose Lagrangian is defined by

K 1 1
L= 78" Fudp+5Dud - D'¢ — (v +n- ¢)?n x ¢|%.
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The unknowns are the spin vector ¢ = (¢1, ¢2, ¢3) : R"2 — §2 C R? and the gauge field A, : R""> — R with p =
0, 1, 2. The gauge covariant derivative is defined by

Djp=0j¢p+A;(mx¢),
and the curvature Fj,, is given by

Fuy=0,A, —0,A,.
Moreover, n = (0, 0, 1) is the north pole of S? and £*AY is the totally antisymmetric tensor with %12 = 1. The constant
k > 0 represents the strength of the Chern—Simons action, and the constant y € [—1, 1] is a free parameter which

determines the vacuum manifold of the potential. Since the Euler—Lagrangian equation is very complicated to study
even for stationary solution, we restrict to consider energy minimizers only. The static energy from the Lagrangian is

E@,A) = /6(45, A)dx,
R2
where the energy density e(¢, A) is given by

1 2F2 1
e(¢,A)=5( iV +|Dl¢|2+|Dz¢|2+p<y+n-¢)2|nx¢|2>.

In x ¢

We see that

2
5(¢,A>=1/{< Rl il<y+n-¢>|nx¢|> +|D1¢i¢><D2¢|2}dx
2 nx¢| «

R2

i/¢ (D19 x Dy¢) — Fio(y +n x ¢p) dx.
]RZ

Then the self-dual equations for solutions minimizing the static energy are given by

Di¢+¢ x D2 =0,

Fiot 5 +n-¢)lnx o =0. (1.1
If we set u = In[(1 4 ¢3)/(1 — ¢3)] and prescribe

'S ={pi1s Pl T M ={p12s-.., Parals

where s = (0,0, —1) is the south pole of S2, then we can reduce the system (1.1) to the following equation:

where 7 = }J_r—; € (0,00), mj; € NU {0}, and §,, stands for the Dirac measure concentrated at p. For the details of

derivation of the above equation from (1.1), we refer the readers to [8].
In this paper, we want to consider the above equation in a flat 2-dimensional torus £2:

1 e4(1—¢e")
Au_|__—=47122mj,16[,j,1—4yrZ:mj’28pj12 on £2. (1.2)

This consideration is physically meaningful, due to the theory suggested by "t Hooft in [25]. We also refer to [4,6,7,11]
for more developments of Eq. (1.2).

Before we go further, we shall make some remarks about our nonlinear term f7 (¢) =
cally, solutions u, of (1.2) might tend to +o0. If u; — —o0, then (1.2) tends to:

et (1—e")

e As ¢ — 0, heuristi-

Au + e" = a sum of Dirac measure.
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On the other hand, if u — 400, then Eq. (1.2) tends to

Au — e " = a sum of Dirac measure,

in other words, (—u) satisfies the Liouville equation again. Thus one of the limiting equation is the Liouville equation,
which shares the same property of the well-known Chern—Simons—Higgs (CSH) equation:

d
1
Au+8—2e”(l—e“)=4ﬂz;mj5pj on 2. (1.3)
j:

The CSH model has been proposed more than twenty years ago in [16] and independently in [17] to describe vortices
in high temperature superconductivity. Actually, (1.3) was derived from the Euler-Lagrange equations of the CSH
model via a vortex ansatz, see [16,17,27,28]. We also refer to [9,10,20-22] for more developments.

In a recent paper [26], Tarantello proved the following theorem:

Theorem A. For given {p;} and m; € N, there exists eo = eo(pj, m;) > 0 such that if ¢ € (0, &9), then there exists a
unique topological solution u, for (1.3), i.e. a unique solution which satisfies u, — 0 a.e. in 2 as ¢ — 0.

It is natural to ask whether Theorem A also holds for Eq. (1.2). In [26], Tarantello proved that if u, is a topological
solution of (1.3), then u, is strictly stable solution. As a consequence of this fact, the uniqueness of the topological
solutions was established. In this paper, we study the uniqueness of stable solutions instead of topological solutions,
because the definition of a topological solution depends on a sequence of solutions, not only the solution itself. Here
u is called a stable solution of (1.2) if the linearized equation of (1.2) at u has nonnegative eigenvalues.

Our main purpose is to prove the equivalence of stable solutions and topological solutions under certain assump-
tions. To state our result, we need the following conditions:

(H1): Nj # Nj where N; = Z‘f’;l mj;
(H2): either t =1 or, if N; > Ny, then mj; €[0,1]forall 1 < j <d;.

Then we have the following theorem.
Theorem 1.1. Let u, be a sequence of solutions of (1.2) with & > 0.

(1) ifue —> Oa.e. in 2\ Uj,i{l’j,i} as ¢ — 0, then u, is a strictly stable solution for sufficiently small ¢ > 0.
(i) if (HI)—(H2) hold and u. is a sequence of stable solutions, then u; — 0 a.e. in 2\ {p;;} as ¢ — 0.

Remark 1.2. A nontopological entire solution of the CSH equation (1.3) is always unstable (see Appendix A). Hence
for a sequence of stable solutions u, of the CSH equation (1.3), we can prove that u, is a topological solution for
small & > 0. The proof is simpler than (ii) of Theorem 1.1.

As a consequence of Theorem 1.1, we also have the following result about the uniqueness of stable solutions
of (1.2).

Theorem 1.3. Let u, be a sequence of solutions of (1.2) with ¢ > 0. If (H1)—(H2) hold, then there exists gy :=
eo(pj,i-mji) > 0 such that there exists a unique stable solution of (1.2) for each ¢ € (0, &).

We remark that the uniqueness of topological solutions of (1.2) always holds even without the assumptions
(H1)—(H2). Indeed, this result and (i) of Theorem 1.1 can be proved by a suitable adaptation of the argument in [26].
Roughly speaking, this is due to the fact that the behavior of a topological solution is the same no matter whether it is
a solution of (1.3) or of (1.2). See either Proposition 4.8 in [26] or Lemma 5.1 below.

However, there are dramatic differences between these two equations when stable solutions are considered. First
of all, the asymptotic analysis is relatively easier for the CSH equation (1.3). By the maximum principle, any solution
u of the CSH equation (1.3) is always negative, thus e (1 — e%) is always positive. On the contrary, a solution u(x) of
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Eq. (1.2) could tend to either +00 or —oo as x converges to a vortex point in case N1 # 0 and N # 0. This fact readily
implies that the nonlinear term f; (#) must change sign in §2 and this is of course the cause of a lot of difficulties in
the study of the asymptotic behavior of u, as ¢ — 0.

Secondly, any nontopological entire solution of the CSH equation (1.3) is always unstable. This might not be true
for Eq. (1.2). Indeed, it has been proved that any nontopological radially symmetric entire solution of (1.2) is unstable
provided that either 7 =1 or m;; € [0, 1] for all i, j. Hence if 7 # 1 and m; > 1 for some i, j, then there might
exist nontopological stable entire solutions for (1.2). Of course, this fact might complicate our analysis, because stable
solutions might be bubbling even at a vortex point p; ;, where T # 1 and m ;; > 1. Our condition (H2) partly reflects
this fact. However, (H2) still allows the possibility that m ; ; > 1 as far as the global condition N; > Ny is satisfied,
since in this case one can prove that stable solutions cannot blow up at p; ;. But it is still an interesting open problem
to see whether those conditions are necessary or not and we will discuss it in another paper.

Remark 1.4. If any one of the N;’s is zero, then Theorems 1.1 and 1.3 hold even without the assumptions (H1)—(H2).

To understand the asymptotic behavior of solutions of (1.2) as ¢ — 0, we also ask whether or not there might exist
a sequence of solutions u, for (1.2) such that

lim(supu€>=oo and lim(infu6)=—oo, (1.4)
e—>0\ g e—~0\ K

where K = 2\ ;. ; Br(pj,i) for any fixed r > 0. The following theorem tells us that the kind of blow-up behavior
as introduced in (1.4) cannot occur.

Theorem 1.5. Let Z = Uj,i{Pj,i} and Z; = Uj{pj,i}for i =1,2. We assume that {u.} is a sequence of solutions
of (1.2). Then, up to subsequences, one of the following holds true:

(a) ug — 0 uniformly on any compact subset of 2 \ Z;
(b) for any compact subset K C §2 \ Z, there exists vk > 0 such that

lim (sup ug) < —vk;
e—=>0\ g

(c) for any compact subset K C §2 \ Z1, there exists vk > 0 such that

tim (‘infu ) > v
e—~>0\ K

Besides the application to our analysis, we believe that the above alternative could be useful in further studies
of (1.2).

We also remark that it is important to use a suitable Pohozaev type identity for handling solutions with different

asymptotic behavior. The following antiderivatives of f;(u) are used to this purpose depending on the situations at
hand:

P s 0
L S T Dt +en)?’
and
Py = (1 — 1)e" +27)

272(7 + et)2

Moreover, we denote by G the Green’s function on £2 which satisfies

1
—AxG(x,y):&V—ﬁ, x,y €S2 and /G(x,y)dx:O, (1.5)

2

and by y(x,y) =G(x,y) + % In |x — y| its regular part. We also define
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d] d2
ug ) =—4w Yy mja1GG.pi1). g () =—4m Yy mjaGx.pj2).  uo=ug —ug.
j=1 j=1
and therefore we see that it holds
di )
47 (N1 — Np)
Au():—THanj,lam — 47y “mj28y,, ong2. (1.6)
j=1 j=1

In this paper, we consider only a domain which is a subset of R? because of not only physical background but
also mathematical tools (Pohozaev Identity, Green’s function, etc.). We note that our results cannot be generalized to
higher dimensional case.

The rest of this paper is devoted to the proof of the above theorems. In Section 2, we discuss some preliminary
results. In Section 3, we investigate the asymptotic behavior of solutions of (1.2) as € — 0. In Sections 4-6, we study
the asymptotic behavior of stable solutions. The main purpose is to prove some identities involving data coming from
different regions, one being a neighborhood of the vortex point and the other one its complement. The more subtle part
is the asymptotic analysis of the bubbling behavior of stable solutions at vortex points. Finally, we prove Theorems 1.1
and 1.3.

2. Preliminaries

We consider the following limiting problem for (1.2) when Z is empty,

Uil — gt
=) _§ R, 2.1)
(T +e*)?
and we also define (recall f; (u) = e(l;(i;g?)
1
B= E/ff(“)dx‘ (2.2)
R2

By applying the method of moving planes as introduced in [12] and improved in [5] and [24], we obtain the following
lemma.

Lemma 2.1. Let u be a solution of (2.1). Assume that there exists a constant ¢ € R such that
: : |u]
either u<c or uz=c or hmsup—2 <ec.
|x|—o00 |x]
If f:(u) € LY(R?), then u is radially symmetric about some point xo € R>.

Proof. The proof of Lemma 2.1 is standard and we just provide a sketch for reader’s convenience. First of all, we
observe that f;(u) € L'(R?) N L®(R?). Next we define

1
v = 5 [ ik =1 = In(ly|+ 1)) £ (u() . 23)
R2
so that Av = f; (#) and by known elliptic estimates

v(x)

|x|—o0 In |x]|

—B. (2.4)

At this point we may define # = u + v and then observe that Ak = 0.
Step 1. Now we claim that & is constant in R2. If u < c or u > ¢ in R? for some constant ¢ € R, then 2.4)
implies that either &2 < c;(In(|x| + 1) + 1) or & > ¢;(In(|x| + 1) + 1) for some constant ¢; € R. Then, by Liouville’s
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theorem, /h(x) = u(x) + v(x) = constant. Now we consider the case lim SUP |y |00 % < c. Then, we also see that

limsup,|_, o % is bounded. By the mean value theorem, there exist constants ¢y, ¢ € R such that
a ‘1

sup |D h| < =2 sup || < ¢z,

B R (6] Br(y)

for any y e R?, R = % and |a| =2 (see Theorem 2.10 in [13]). Then D*h is a constant for |a| = 2 since D%h is

bounded and harmonic in R2. After a coordinates transformation, we can assume that either i (x) = a()c]2 — x%) +b
or h(x) = cx1 + dxa + e for some constants a, b, ¢, d, e € R where x = (x1, x2). Hence (2.4) implies that either

u(x) =a(x]2 —x%) —(B+o))In|x|+b=(a +0(1))(x12 —x%) +b as|x|— oo, (2.5)
or
u(x)=cx;+dxy — (,B —I—o(l)) In|x|4+e= (c +0(1))x1 + (d —i—o(l))xz +e as|x| — oo. (2.6)
For a fixed § € (0, 1) we can find a constant Cs > 0 such that
00 > /|f,(u)|dx > / | frw)|dx > / Csdx = Cs|{x e R?* | § <u(x) <28} 2.7
R2 s<u<2s S<u<2s

Therefore, by using (2.5) and (2.6), we see that |{x € R? | § < u(x) < 28}| = oo unless £ is constant which proves the
claim. Then, as a consequence of (2.4), we see that

u(x) _
|x|—o0 In |x| B

—B. (2.8)

Step 2. We claim that if 8 = 0 then u = 0. Suppose that there exists xp € R? such that u(xg) < 0. Then there exists
r > 0 such that

M|B,(x0) < 0. (2.9)

Let us set vs(x) = 81n(@) on R2 \ B;(xp). Then we see that vs > u on 9B(xp). Since u = o(In|x]|) as
|x] = oo (which is of course a consequence of (2.8) and 8 = 0), then there exists Rs > 0 such that vs > u
on R? \ Bgs(0). We claim that vs > u on Bpgy(0) \ B,(xp). If not, there exists x| € Bgy(0) \ B,(xo) such that
u(xy) — vs(x1) = max Bry (0)\B, (x0) (u — vs) > 0. Then by the maximum principle, we see that

0> A(u —vs)(x1) = —ff(u(xl)) >0 since u(xy) > vs(x1) = 0.
Thus, vs =§ ln(@) > u on R? \ By(xp). Since § > 0 is arbitrary, we conclude that
u(x) <0 onR?\ B(xp). (2.10)

Now we see that (2.9) and (2.10) contradict (2.2) with 8 = 0. Therefore we have u > 0 on R2, and then, by using (2.2)
with 8 = 0, we conclude that u = 0 on R?.

Step 3. From now on, we consider the case 8 # 0. By using the strong maximum principle and (2.8), we conclude
that

u>0, f:(u)<0 ifp <0, @.11)
u<0, fe(u)>0 ifB>0. ’
In view of (2.11), we can use the maximum principle to show that
u<—Blnlx|+C if <0,
p1n x| . p 2.12)
uz-—BIjx|+C if8>0,

for large |x| and a suitable constant C € R. By using (2.12), then f;(u) € L'(R?) implies that |8| > 2 and then we
deduce the sharper estimate

u(x)=—pIn|x|+ 0() as|x| — +oo. (2.13)
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At this point, the method of moving planes to be used with (2.13) shows that u is radially symmetric. Since the proof
is standard we skip it here and refer to [5,12] for further details. Therefore, the proof of Lemma 2.1 is completed. O
Let u(r; s) be the solution of the following initial value problem

L1, et —et)

u’ +—u + =0 forr>0,
r

(t +et)3 (2.14)
u(0;s)=s, u'(0;5)=0,

where 1’ denotes Z—’;(r; s) and let us set

1 o0
B(s) = T / f,(u(r; s)) = / fr (u(r; s))r dr. (2.15)
R2 0

It turns out that the solutions of (2.14) admit only three kinds of limiting conditions as r — co:

topological boundary condition: u — 0,
nontopological boundary condition of type I: u — —oo, (2.16)
nontopological boundary condition of type II: u© — oo.

We will use the following lemma recently obtained in [8].
Lemma 2.2. Let u(r; s) be a solution of (2.14). Then, we have

(1) B(0) =0. In this case, u(r; 0) = 0 is the unique topological solution of (2.14);
@ii) B:(—00,0) — (4, 00) is strictly increasing and bijective and

lim B(s)=00 and lim fB(s)=4.
s—0_ §—>—00

In this case, u(r; s) is a nontopological solution of type I;
>iii) B:(0,00) — (—o0, —4) is strictly increasing and bijective and

lim B(s) =—oco and lim B(s) =—4.
s—04 §—>00
In this case, u(r; s) is a nontopological solution of type II.

3. Proof of Theorem 1.5: the asymptotic behavior of solutions

One of the main steps in the proof of Theorem 1.5 is to obtain a uniform bound for

/ 1 e"s(1 —e")
2

€2 (1 +el)3
Toward this goal we have the following lemma.

Lemma 3.1. Let u, be a sequence of solutions of (1.2). Then, there exists a constant M € (0, co) such that

f 1 e (1 —é")
2

82 (‘L’ + eug)3
Proof. We observe that, for any a € (0, 00), it holds

1 — e 1 — et )| Ve |>ete
Au5< ¢ ):div[m( ¢ >]+(a+ Vel "e™e 3.1)

a—+ et a+ et (a+ ete)?

dx < My.
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. . . 1—ele . .
Then, multiplying both sides of Eq. (1.2) by m and integrating over 2, we conclude that
D[ Vue2ets 1 e (1 —e")? N
/(a+ IWuelrete 1 ed =) (M n,). (32)
(a + ete)? &2 (1 4 ele)3(a + ete) a

Let us fix a = 1. Then there exist some constants M, M> > 0 such that

| Vg |2ete
———dx < M, 33
S 1 (3.3)

2

and

f 1 et (1—e")? dx < M (3.4)
— x < M>. .
€2 (T + ete)3(1 + ebe) 2

2

We also see that there exists §; 1 € (1,2) such that

—1
/ |Vug|dS=/< / |Vu8|dS)dr, (3.5)

{ue=—8:1} =2 Aue=r}
and there exists a constant cp > 0 such that
| Vg |?ete
/ |Vue|? dx < co / mdx < oM. (3.6)
{—2<u. <0} {—2<u<0}
Hence we also have

-1

/ |Vu€|dS=/< / |Vu8|dS>dr= / |Vu8|2dx<coM1. (3.7

{ue=—0¢1} =2 Afue=r} {(—2<ue<—1}

Let v be an exterior unit normal vector to d{x € §2 | —8,,1 < u < 0}. By using 38”5 lu,=0 = 0 and (3.7), we see that

] Ug 1 __ plUe
0< — M X =— / Augdx
g2 (1 4 ette)3
{—86,1<ue <0} {—8e,1 <u<0)
oug Jug
=— ds — dS < |Vug|dS < coM;. (3.8)
av av
{ue=—8¢1) {ue=0} {ue=—8¢1}

The same argument with minor changes shows that we can find constants §; > € (1,2) and c¢; > 0 such that

1 e (1 —et)

2 (r o) dx <ci M. (3.9

{0<ue <Be,2}

Moreover, there exist constants ¢, c¢3 > 0 such that
1 e (1 —e")

/ g2 (1 4 ete)3

{usg_(ss,l} {us<_52,1

1 ete(l —ee)?
x<ep — dx < cayM, (3.10)
e2 (T +ete)3(1 + elte)

and
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/ 1 e" (1 — e'e)
g2 (1 4 ete)3

{ue >8£,2} {ue 255,2}

The desired conclusion follows by using (3.8), (3.9), (3.10) and (3.11). O

dx < / L e —en)” dx < c3M (3.11)
< — X< C . .
X <3 22 (7 + )3 (1 + &%) 3M»

Let us recall the following form of the Harnack inequality which will be widely used in the sequel (see [2] and [13]).

Lemma 3.2. Let D C R? be a smooth bounded domain and v satisfy:
—Av=f inD,
with f € LP(D), p > 1. For any subdomain D' CC D, there exist two positive constants o € (0,1) and y > 0,

depending on D’ only such that:

(@) if supypv < C, then suppv<oinfppv+ (A +o)y|fller + (1 —0)C,
(b) if infypv > —C, thenosupp v <infprv+ (1 + o)y | fller + (1 —0o)C.

Moreover, we have the following lemmas.

Lemma 3.3. Let u, be a sequence of solutions of (1.2). Let K be a compact subset such that K C §2 \ Z. Then there
exist constants a, b > 0 such that |ug(x¢) — ug(z5)| < ar®+b forany r > 0 and 7, € Ber(x¢) C K.

Proof. By using the Green’s representation formula for a solution u, of (1.2), we see that forx € K CC 2\ Z,

1
e (x) = @/us(y)dy+/G(x,y)(—Aug(y))dy
2

! 1 ete (1 — ete) d dz
= @ us(y)dy+ | G(x,y) g_zm — 4 ij,l‘spj.l + 47 ij,ZSp,;Q dy
2 Q j=1 =
1 eug(l _eug)

1
:ﬁ/ug()’)dy—i-/G(x,y)s—zmdy_i_0(]). (3.12)
2 2

Then,

I et (1 — )
ug(x)—ug(z):/(G(x,y)—G(z,y))S—zmdy+ O(l) forx,zeK. (3.13)
Q

In view of Lemma 3.1, we see that

1 lz = yl)e" (1 —e")
MS(X)_us(Z):2n82/1n<|x—y|> CEWIRE dy+0() forx,zeKk. (3.14)
2

For fixed r > 0, we assume that z, € B, (x;) € K. By the mean value theorem, there exists 8 =6(¢, y) € (0, 1) such
that

llze — y| — |xe — yll < [xe — zel

Injze —y|—Inlx;, — y|| = < . 3.15)
in 2 il Olze — y|+ (L= O)lxe — y| ~ Olze — ¥+ (1 = 0)|xs — v
For any y € 2 \ B (x¢), we have |z, — y| > er and |x. — y| > 2er. Thus, we see that
er 1
lIn|ze — y| —In|x, — y|| < = <1 on 2\ Boer(xe). (3.16)

Oer+(1 —0)2er 2-—6
At this point, Lemma 3.1 implies that
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1 / |ze — y|) s (1 — ")
In
2me? lxe — y| /) (x +ete)3
2\ Boer (xe)
We also see that

/ ‘1n(|zs_y|>‘dy< / |xe — z¢| dy
|xe — ¥l Olze =y + (1 = 0)|xe — y]

dy=0(1). (3.17)

Bogr (xe) Boer (xe)
< / . |xe — zel dy
minf|z, — y|, [xe — yI}
Bogr(xe)
Xe — Xg —
</ [xe Zs|+|a ZSIdy
lze =yl |xe =yl
Boer (xe)
< / |x£_zg|dy+ f |Xs_Za|dy
|ze — ¥l lxe — ¥l
Byer(ze) Boer(xe)
Xo —
<2 / % dy < 16r%%7. (3.18)
y
B4sr(0)
Therefore we conclude that
1 _ Ug 1— Ug 1 1— i3
/ Bl L ) e SO L Gl ) (3.19)
2me? Ixe —yl/) (r+et)3 rer| (T +e)3
Boer(xe)
and we readily obtain constants a, b > 0 such that for any r > 0, it holds
|us(xe) —up(ze)| <ar’+b forz; € By (x;) SK. O (3.20)

Lemma 3.4. Let K be a connected compact set such that K C §2 \ Z. Suppose that there exists a sequence of solutions
{uc} of (1.2) such that

lim(inf|u8|) —0.
K

e—0

Then, we have |lug| p~x) — 0as e — 0.

Proof. Choose a sequence of points {x.} € K such that |u.(x;)| = infx |u.|. Passing to a subsequence (still denoted
by u.), we may assume that lim,_,ox, = xo € K. We argue by contradiction. Suppose that there exists a positive
constant cx > 0 and a sequence {z.} C K such that supg |ue| = |us(z¢)| = ckx for small € > 0. We will use the
constant Mg > 0 obtained in Lemma 3.1. If u,(zs) < —ck then, by using Lemma 2.2, we can choose s; < 0 such that

Moy
B(s1) > — and —cg <s1<0.
T
If us(z¢) > ck then, by using Lemma 2.2, we can choose s1 > 0 such that
My
B(s1)) <—— and 0O0<s) <cg.
T

We can also choose y, € K such that u.(y;) = s; by the intermediate value theorem. Let i, (x) = u,(ex + y.) for
xefy,={xe R2 | ex + y. € K1} where K is a compact subset such that K C int(K7) C §2 \ Z. Then u, satisfies

elte (1 — elle)

Aﬁg + (‘[ + 655)3 = O on ngyg,

L_‘S(O) =51, (321)
e’zf(l —eﬁe)
7(1_ ) x < M.

& Ye
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By using Lemma 3.3, we see that i, is bounded in Cl(())c(.Qg, y.)- Passing to a subsequence, we may assume that i,
converges in C120c (R2) to a function u, which is a solution of

etx (1 — e'x)

_ 2
Au* + m =0 onR s
ux(0) =s1, (3.22)
e (1 — ')
ey | XS Mo

R2

By using Lemma 3.3 and Lemma 2.1, we conclude that u, is radially symmetric with respect to some point j in R?
and u, does not change sign. Hence Lemma 2.2 shows that

= N
Mo/‘/ R ‘=2ﬂ|/3(u*(p))|>2ﬂ|/3(sl)|>2Mo, (3.23)

which is the desired contradiction. Therefore, limg_.q [lug||Lox) =0. O
As a corollary of Lemma 3.4, we obtain the following proposition.
Proposition 3.5. Let u, be a sequence of solutions of (1.2). Then, up to subsequences, one of the following holds true:

(a) ug — 0 uniformly on any compact subset of 2 \ Z;
(b) for any compact subset K C §2 \ Z, there exists vg > 0 such that

lim (supus) < —vg;
K

e—0

(c) for any compact subset K C §2 \ Z, there exists vg > 0 such that

hn})(mfu8> > k.

E—>

Proof. In view of Lemma 3.4, it suffices to show that (a) holds whenever both (b) and (c) fail to hold. Suppose that
(b) and (c) do not hold. Then, we can take compact sets K1, K» C §2 \ Z and sequences {x;1 .} C K1, {x2,¢} C K> such
that

hn})ug(xl ) >0 and lin})ug(xz,g)go
E—>

For any compact set K C 2 \ Z, taking a connected compact set Kce \ Z such that
K2 KUK UK,

and using the intermediate value theorem, we can obtain a sequence {x;} C K satisfying
lim |u (xe)| =0
e—0

Hence, Lemma 3.4 yields that limg ¢ [|u¢ || ; R = 0, which completes the proof. O

Proof of Theorem 1.5 completed. First of all, we assume that (b) in Proposition 3.5 holds. In this case,
we also suppose that there exists r € (0, %dist(Zl, Z3)) such that By, (p; 1) N Bar(pj1) =¥ when i # j and
1im8_>0(supUd1 B(pis )us) 2 0. By using limy, ;,; , s (x) = —00 and the intermediate value theorem, we see that
r\Pj1

there exists x, € U ‘L1 B-(pj,1) such that |ug(x,)| =inf 4 5, lug| — 0 as ¢ — 0. Let xg € U?’:] B, (pj.1) be

Uiz Br(pjiD)
the limit point of x.. Passing to a subsequence, only one of the following two possibilities can be satisfied: either
Xo¢ Ziorxg € Z.
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Case l: x0 ¢ Z;.

Let us fix a constant d € (0, 3 dist(xo, Z)). Since Ba(xo) C 22\ Z and in particular lim,_,o(infz—— BaGo) lug|) =0,
then, in view of Lemma 3.4, we see that lim,_,o(supz—— ey |ug|) = 0. This is a contradiction since we are assuming
that Proposition 3.5(b) holds.

Case 2: xg € 7.

For the sake of simplicity, we assume that xo = 0 € Z1. Since we are assuming that Proposition 3.5(b) holds, then
there exists y > 0 such that limg—o(sup|,|—, s) < —y. By the maximum principle, we see that sup), |, us < 0. We
claim that

| xe |

lim — = oo. (3.24)

e—>0 &

We argue by contradiction and suppose that lim 1nfg%0 el — 0. Hence, passing to a subsequence, we could assume

that |x‘ < ¢ for some constant ¢ > 0 and small & > 0. Note that u.(x) =2m; 1In |x| + ve(x) near x = 0 for some
smooth functlon ve and 1 < j <dj. Let 0, (x) = ve(|xe|x) + 2m; 1 In|xg| for |x| < . Then ¥, satisfies

e | Jx [P €% (1 — |7 et)

AV + 2 1 xR =0 on BI . 0). (3.25)
We also observe that

B () = g ([xex) — 2m . In|x| < —2m 1 In x| for x| < |xr_| (3.26)

&
and
. A Xe .

lim v, — | = lim u.(x;) =0. (3.27)

e—>0 | x| e—0
Since |x;| < ¢ and sup; > | ((1+t;§| < 00, then for any p > 1 and R > 0, there exists a constant C, g > 0 such that

limg 0 [|ADe llLr(BR(0) < Cp,r. By using (3.26), (3.27), and Lemma 3.2, we see that for large R > 0, there exist
o €(0,1) and y > 0, independent of ¢ > 0, such that

~f X A
0(1):1)8(—8) < sup v, <o inf Ug—‘l_(l+0)yl|Av8||LP(BR(O))_(1 —a)2m111nR
|-x8| BR/z(O) BR/Z(

Hence v, is bounded in Cl%c(Bﬁ(O))‘ Passing to a subsequence, we may assume that lim,_.q ;—E‘ =y €S L
Xe &

|Xs|

limg_, ¢ = co = 0, and v, converges in C120C (R2) to a function ¥ satisfying

o clxPmited (1 — |x|2mited) o,
AV + — =0 inR~“. (3.28)
(T + |x |21 e%)3

Then the function & = 9 4 2m 1 In |x| < O satisfies

céeﬁ(l — e‘;)

e = 4wm ;180 in R (3.29)

Since & < 0, we have ¢g > 0 and since @ (yg) = limg—o u.(x.) =0, we have & = 0 by the strong maximum principle.
This is of course a contradiction and (3.24) is proved.

At this point, let us fix a constant s» < 0 such that B(sy) > % (see (2.15) and Lemma 3.1) and —y < s < 0. We
can choose y, on a line segment joining x, to ‘r;—;l such that u,(y,) = s and |ys| > |x¢| by the intermediate value
theorem. Let i1, (x) = u.(ex + y¢) on B\)é_ﬂ (0). We note that 0 ¢ B% (ye). Then 1, satisfies
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. e (1l —e")
Alig+ ———— =0 in B (0),
C (tei)? #©
e (0) =57,
e(0) =2 ) (3.30)
ete (1 — ee)
-~ ldx < My.
(T +ee)3
B%(O)

By using the fact that i, < 0 and i, (0) = s, with Lemma 3.2, then we see that for large R > 0 there exist o € (0, 1)
and y > 0, independent of & > 0, such that

s$2=1us(0)< sup i, <o inf g+ (1+ o)y AdgllLrro)-
Br/2(0) Br/2(0)

and i1, is bounded in CE)C(B 11 (0)). Then i, converges in C120c (R?) to a function u, satisfying
2¢

et (1 — ')

_ i T2
Auy + CEWTRE =0 inR~*,
ux(0) =52, uy<0, (3.31)
e" (1 — e') ‘
/ — " |dx < M.
(T +et)?

R2

el (1—e'*)

By using Lemma 2.1, we see that u, is radially symmetric about some point. Then, we see that | fR2 NCEvT

ldx >
27 B(s2) = 2My from Lemma 2.2 which is once more a contradiction.

At this point, by using the above results, we see that limgﬁo(supU ug) < —c for some constant ¢ > 0,

B D)
j=1Dr Pj1
which shows that (b) in Theorem 1.5 holds whenever (b) in Proposition 3.5 holds.

The proof of (c¢) in Theorem 1.5 follows essentially by the same argument and we skip it here to avoid repeti-
tions. 0O

4. Proof of Theorem 1.1: stable solution = topological solution

In this section, we will prove one of the implications in the statement of Theorem 1.1, that is, stable solution =
topological solution whenever (H1)—(H2) hold. Let u. be a sequence of stable solutions of (1.2). To prove Theo-
rem 1.1, we argue by contradiction and suppose that u, does not converge to O almost everywhere. Then either (b)

f’_lr#, without loss of generality we can assume that u, has

or (¢) of Theorem 1.5 would occur. Since f;(u) = —
the profile (b) of Theorem 1.5.

If u; —21In ¢ has a bubble at some point in §2 \ Z,, then there are two possibilities. One is that the limiting equation
is the mean field equation and it is easy to see that the solution is not stable. Another one is that the limiting equation
is (1.2), but defined in the whole R2, and after a suitable scaling, u, tends to a nontopological solution u# such that
lim| | oo #(x) = —00. Again, this is also unstable. The proof is not difficult. But for the sake of completeness, we
put the proof in Appendix A. To the best of our knowledge, even for CSH (1.3), this result has not been written in the
literature.

Therefore, from now on, we may assume that for any small r > 0, there exists ¢, > 0 such that

we =up —21ne < ¢, on.Q\U(B,(pj,g)). (4.1)
j
Now we consider

Jo IVoI* — & fl(ue)¢p? dx

He = n
T gewl22)\(0) 161175 g
1 1 L[ e (=T +2(t 4 et — )
<— | == flu)dx = dx. 42
|Q|2 / g2 Sr(ug) dx |.Q|2 / 82(‘[ + 3u8)4 * 2
Q 2
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To derive a contradiction, we want to prove that for small ¢ > 0,

/ e (=1 4+ 2(t + 1)ets — ete)
e2(T + e¥e)*

dx <0. 4.3)
2

To prove (4.3), we need to compute the integral over a small neighborhood of each p;; € Z;. Let us first show a
simple fact about w,.

Lemma 4.1. w, satisfies
either lim ||wg — uO”LOO(.Q\U (Br(pj2)) < oo or 11I1’1( sup ws) = —00. “4.4)
e=0 e e=08 2\ (B, (pj2)
Moreover, for any small r > 0, there exists C, > 0 such that

sup ‘V(ws — u0)| <Gy 4.5)
2\U;(Br(pj2))

Proof. We note that w, satisfies the following equation

e (1 —g%e")

Aw _—
et ( +£26w5)3

di dy
=4m Y “mj18y,, —4m Y mj28,, ong. (4.6)
j=1 j=1
We also see that
e (1 —g%e™)  4m(Ny—N2)
(t +82ewe)d 12|
By using (4.1) and Lemma 3.2, we readily obtain (4.4).
Next, by using the Green’s representation formula for a solution w, of (4.6), we see that for x € £2,
e¥s (1 — g2e¥s)

(T + ewe)3

A(w, — ug) + on £2.

1
we (x) — up(x) = ﬁ/ws(y)dy+/G(x,y) dy. 4.7)
2 2

By using Lemma 3.1, we conclude that there exists a constant C > 0, independent of ¢ > 0 and r > 0, such that for
x € 2\U;(Br(pj2)), itholds

eV (1 — g2e®)

(‘L’ + 82ew5)3

dy+C

1 1
IV (e () — ()| < g/ —
2

1 We (] — 2 ,we 1
<—{ su e 28we 3) / dy
27 Lo ey (pyanl (T HeZe™)? ] J =y
)
2 eV (1 — g2ee)
z R P e 48
- r f (7 + e2ev¢)3 Yt (4.8)

Q\B%(X)

By using (4.1) and Lemma 3.1, we obtain (4.5) which concludes the proof of our lemma. O

If limg ¢ ||we — u0||Loom\Uj(Br(p,.<2))) < oo for any small » > 0, then there exists a function w satisfying

we — w in CL.(2\ Z2).
By using Lemma 3.1, we also see that w satisfies

di dy
ew
Aw+ —5 =4 D mjady, +4m > Bjadp;, on 2 where 2> —1. 4.9)
j=1 j=1
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If limgﬁo(supg\uj(lgr(pj ,)) We) = —00, then for fixed xo € £2 \ Z, and by using (4.5), we see that there exists a
function g satisfying
g =we —we(x0) > ¢ in Cpo(2\ Z2),

and
di )
Ag=4mY mj18y,, +4m Y Bj2dp;,, on 2 whereBjseR. (4.10)
j=1 j=1

Clearly (4.10) implies Ny + Y% | ;2 =0.
Next we have the following property.

Lemma 4.2. For any 1 < j < da,

. . fr (ug)
lim 1 dx =—4 ; i), 4.11
rl—IPOsER) / 2 X 77("”],2 +,31,2) ( )
Br(pj,Z)
and
. . F2‘r(us) 2 2
lim lim — 5 dx=2m(Bj —mja), (4.12)
By (pj2)
where F ;(u) = 4614(2(:2_(2::;221)

Proof. For the sake of simplicity, we assume that p; > = 0. We consider the following two cases.
Case 1. we — w in CIZOC(Q \ Z7).

We integrate (4.6) on B, (0) and take the limit as ¢ — 0 to conclude that

o d
lim / ft(ZS)dxz—lim(4nmjz+ / w8d0>=—<4nmj2+ / —wdo)
e—0 e e—0 ’ av ’ av

B, (0) 9B,(0) 9B,(0)
ew
=—d4n(mjz+ Bj2) + / =3 dx.
B, (0)

Clearly Lemma 3.1 implies that

. . Sfr(ue)

lim 1 dx =—4 i i2).

Lim lim / 2 dx w(mj2+ Bj2)
B (0)

At this point we consider the function v = w — 28; > In|x| which satisfies

w

Av+55=0 onB,(0). (4.13)
T
Multiplying (4.13) by Vw - x and integrating over B, (0), we conclude that
Vol? w 2428;2)e"
/ Vv'i (Vv-x)—m+e |x] do = de. (4.14)
x| 2 73 73
3B, (0) B (0)

Let us also consider the function v, (x) = ue(x) + 2m > In|x| which satisfies

Sr(ug)

g2

Av, + =0 on B,(0). (4.15)

Multiplying (4.15) by Vu, - x and integrating over B, (0), we have
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2F VvelPlx| | F Ve -
/ 2,t2(”s) dx — / |:(Vv€ ) i)(VUg xX) — Ve |“]x| T 2,7 (1) x| —ij,Z Ve x]do' (4.16)
&

x| 2 &2 x|
B, (0) 9B, (0)

Hence, as ¢ — 0, we have

2
2F (u Vv-x+2(m; 2))? 2(m ; x| |x
lim 2,r( 8) dx — ( + ( j,2+,31,2)) —|Vu+ ( j,2+,3],2) u
e—0 g2 |x] |x|2 2
B, (0) 9B, (0)
ev|x 2mi2{Vv-x+2(m;ir+ B
Ll 2myaf mjo+ 827,
3 x|

By using (4.14), we also see that

. . FZ,T(MS)
lim lim ———
r—->0e—0 &
B (0)
which is (4.12).
Case 2. g = w, — we(x0) = g in Clzoc(.Q \ Z7).

We integrate (4.6) on B, (0) and take the limit as ¢ — 0 to conclude that

. Jr(ug) . 08¢ g
811_% 2 dx = —Slg% dm;r + B do | =—\4mm;s+ ™ do | =—4x(m;2+ B 2).
B, (0) 9B,(0) 9B,(0)

dx = 27‘[ (ﬂjz’z - m;Yz),

Let us consider the function h = g — 28, > In|x|. Then # satisfies
Ah=0 on B.(0). 4.17)
Next we also define i (x) = g¢(x) + 2m ;2 In|x| which satisfies

+ fr(Zs)

Ahg =0 on B,(0). (4.18)

Multiplying (4.18) by Vu, - x and integrating over B, (0), we see that

2

. / 2Py (ue) / (Vh-x+2mja+Bia)® _|g, . 2mjatBjo)x[*1x]
e—0 g2 |x] |x|2 2

B, (0) 9B, (0)

2mjo{Vh -x+2(mj+ ﬂj,z)}}
— do.
|x|
By using (4.17), we also conclude that
. Fo o (ue) 2 2

gg}l}) 782 dx = 27T (ﬁ]’z — mjyz),

B, (0)

whichis (4.11). O

Let iie(x) = ue(ex) which satisfies

Al + fr(ig) = —4mwm;28p,, on B: (pj2).

Moreover we have:

Lemma 4.3. There exists a constant ¢ > 0, independent of r > 0 and ¢ > 0, such that

2mja(x — pj2)

Viie(x) + >
|x — pj2l

<c onBr(pj). (4.19)
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Proof. For the sake of simplicity, we assume that p; > = 0. By using the Green’s representation formula for a solution
ug of (1.2) (see (3.12)) and Lemma 3.1, we see that for x € B, (0),

1 | fr(ue)l

271829 lx — ]

4 12(f Ifr(ug)ldy+ / |f,(us)|dy)
2me lx =yl Ix —yl

B (x) £2\Be(x)

2mjax

Vug(x) + BE

dy

S

C/
<C+_7
&

for some constants C, C’ > 0, independent of r > 0 and ¢ > 0. The desired conclusion follows by the substitution

Ue(x) =ug(ex). O

As mentioned above, we have to study the behavior of i, as ¢ — 0. This is the most delicate part of our proof.
Here, the Pohozaev identity (4.12) is used.

Lemma4.4.Ift =1o0rm;j; €0, 1], then for any n > 0,

hm( sup ﬁs(x)>=lim< sup ug(ax))z—oo. (4.20)

e0N x—pjsl=n E70N x—pjal=n

Moreover, if we — w in CIZOC(SZ \ Z2), then (4.20) always holds without any further assumptions for T and m ».

Proof. For the sake of simplicity, we assume that p; > = 0. We divide the proof of our lemma into two steps.
Step 1. We claim that for any 1 > 0, there exists ¢, > 0 such that for small ¢ > 0,

sup i (x) = sup ug(ex) < cy. 4.21)
[x|=n [x|=n

We argue by contradiction and suppose that there exists 79 > 0 such that

lim( sup ﬁs(x)) = 1irn< sup us(sx)) = +o00.

e=>0% |x|=pg e=>0 x|=pg

Since |Vii,| is locally bounded in B (0) \ {0}, we also see that

1im( inf ﬁg(x))z lim< inf ug(ex))=+oo. (4.22)
e—>0\|x|=ng e—=>0\|x|=no
Fix ¢ € (—00,0) and n € N. Since lims—0sup;p, /) e = —00, then (4.22) implies that there exists yi =
(ré cosb;, ré sind;) such that ﬁg(yé) = ¢ where 6; = % and

limrl =+oco,  lim(erl)=0 foralll<i<n.

e—0 e—0

In view of (4.19), we see that the function ﬁé(x) =u.(x + yé) satisfies
Aiil + f- (i) =0,  |Vil|<Cy onB,(0),  @(0)=c<0,
2

o0

for some constant C; > 0. Then {sz;} is uniformly bounded in L5,

(B . (0)) and there exists a function i’ such that
il — i’ in C2,(R?) and
Ai' + fr (@) =0, |Vi'|<Ci onR%  @(0)=c<0.

By using Lemma 2.1, we see that ! is radially symmetric with respect to some point p’ in R? and ﬁi does not change
sign. Hence Lemma 3.1 and Lemma 2.2 imply that there exists a large R > 0 such that fBR(O) | fr@l)|dx > 4m. Then,
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/|fr(u£)|dx Z / |f,(u8)|dx—z / |f,(ﬁi)|dx>4nn for any n € N,

B (0) =1 Br(yi) =10

which is a contradiction. Therefore (4.21) holds as claimed.
Moreover, by using (4.1), (4.21) and the maximum principle, we obtain

sup Ue(x)= sup ug(ex) <cy. (4.23)
n<lx|<g n<lx|<g

Step 2. To prove our lemma, we argue by contradiction and suppose that {ii.} is uniformly bounded in Li’o‘;(Bg )\

{0}). Then, since sup,.p | fz (#)| < oo and by using (4.19) and (4.23), we see that there exists a function & such that
iy — i in C2 (R?\ {0}) and

Al + fr (1) =—4mwmj28) on R?,

fe@ e L'(R?), sup a(x)<C, sup |Va(x)|<C (4.24)
x| >1 [x>1
for some constant C > 0. Let 8 2i fRZ f7 (@) dx. Then we obtain
u(x) N
whe Tn x| mj2 =P

In view of (4.24), we also see that we cannot have limjy|— oo i(x) > 0. Moreover, since f; (i) € L'(R?) and
SUP|x|>1 |Vi(x)| < C, then we see that

either 11m u(x)=0 or lim #(x)=—o0. 4.25)
[x]—00 |x]—00

Indeed, if there exists a sequence x, € R? such that
lim |x,| — +o0, lim #(x,) =c ¢ {0, —o0},
n—00 n—oo
then since SUP|x|>1 |[Vi(x)| < C, there exist small ry > 0 and ¢p > 0, independent of n, such that

| fe@)|>co>0 on By(xy).
Then [fpo | f ()| dx =Y 02, '/Bro(xn) | £z (i1)| dx = 400 which proves (4.25).
If limy|— o0 #(x) = 0, then (4.1) and the maximum principle imply that there exist c; > 0 and Ry > 0 such that
e <cC; on B:(0) \ Bg,(0), (4.26)
which implies that
Fa.e(ie) >0 on Bz (0)\ Bg,(0).

In view of sup, g | F2,; ()| < 0o, (4.12) and (4.26), we also see that, for any R € (R, 00), we have

27 (:3]2',2 - m?z) = lim lim / F ;(iig) dx

r,n—>0e—0
Bg (o)\Bn ()

> lim lim / Fa.c(lig)dx = / Fa.o () dx. 4.27)

n—>0e—0
Br(0)\B,(0) Bg(0)

Since lim|y|— o0 #(x) = 0, we see that

(1 —1)el +2 1
lim sz(u)— lim e (( ve+ t)—

. = 0,
|x|—o00 Ix[>o00  272(1 4 e¥)2 2(t + D2 *
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which shows that the right hand side of (4.27) could be arbitrarily large, which is impossible. Hence the first case
in (4.25) cannot occur.
If lim|y|— o0 é(x) = —00, then in view of (4.1) and the maximum principle, there exists Ry > 0 such that
i, <0 on B: (0) \ Bg,(0). (4.28)

By using Lemma 4.2 and (4.28), we see that

278 = lim / fe(@)dx = lim lLim / fe(ig) dx < lim lim / fellie)dx = —4m(m o+ Bj2).
R—o0 R—o00e—0 r—0e—0
[x|<R [x|<R mgg

Hence we conclude that

N

B<—2mj2+Bj2),
and in particular that

i(x A
S —2mj>— B =28>. (4.29)

m =
|x]—00 In |x|

By using (4.24) and lim|x|— o #(x) = —00, we see that el e L'(R?\ B(0)) and then

i(x)

m
|x|]—00 In |x|

< 2. (4.30)
At this point, the method of moving planes can be used with (4.30) to prove that z is radially symmetric (see [5,12]).
Moreover, (4.29) and (4.30) imply that

Bj2<—1. (4.31)

If w, —> win C120c(~Q \ Z3), then (4.31) contradicts (4.9). Moreover, if t =1 orm > € [0, 1], then Theorem 3.4 in [8]
imply that & cannot be stable solution, which yields a contradiction and completes the proof of our lemma. O

Lemma 4.5. If
lim( sup ﬁg(x)> = lim< sup us(sx)) = —o0, (4.32)
e=>0N x—pal=n e=>0N x—pjal=n

then
lim( sup ﬁg(x)) = lim< sup ue(sx)> = —00. (4.33)
e—0 e—0

n<lx—pj2l<E n<lx—pj2l<s

Moreover, mj o+ Bj2=0.

Proof. For the sake of simplicity, we assume that p; » = 0. We divide the proof of our lemma into the following steps.
Step 1. To prove (4.33), we argue by contradiction and suppose that for some constant ¢ € (—o0, 0), there exists
Ve € Bg (0) \ B,(0) such that #i;(y,;) = c. In view of (4.1), (4.19) and (4.32), we see that

li = d 1 =0.
lim [y;[ =0 and lim (ey: )

Moreover, by using (4.19), we see that the function i, (x) = it (x + y.) satisfies
Aug + fr(ue) =0, |Vug|<Cp on B%(O),

i1c(0)=c <0, fr(iis) € L' (B (0)),

2

o0

for some constant C; > 0. Then {u.} is uniformly bounded in Ly}

(R?) and

(B)y1(0)) and there exists a function u such that
2

it — it in CZ.
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Aii+ f- (@) =0, |Vi|<C; onR?
i#0)=c<0, fr@@)eL"(R?).

By using Lemma 2.1, we conclude that # is a nontopological radially symmetric solution. Then Theorem 3.4 in [8]
shows that # cannot be a stable solution which proves (4.33).
Step 2. By using Lemma 4.2 and (4.33) we see that

—47(mj2+Bj2) = lim lim f fofie)dx = lim lim / ¢ _dx
r,17~> E—>

r,n—>0e—0 ‘L’3
Bz (0\By(0) B (0)\B,(0)
= lim lim / Foc (i) dx =21 (B2, — m?,), (4.34)
r,n—0e—0 ’ > /s
Bz (0)\B,(0)

which implies
mjos+pj2<0, and
either m;jo+ ,Bj’z =0 or mjo— ﬂj,z =2.
To prove our lemma, we argue by contradiction and suppose that
mjas+Bj2<0, (4.35)
which implies
mjo— ﬂj,z = 2, mio <l< —,Bj,2~ (4.36)

If we — win Clzoc(.Q \ Z2), then (4.36) contradicts 8;2 > —1 in (4.9), and we obtain that m ;> + ;2 = 0 in this
case.
Therefore, from now on, we assume that

lim< sup wg) = —oo for any small r > 0. (4.37)
e=08 2\U; (B, (pj2)

Then (4.32) and (4.37) imply that for any r, n > 0,

lim ( sup  efle®y |2) —0. (4.38)
€03 xea B, (0)U3 B, (0)

Step 3. We claim that for any r, n > 0,

lim< sup eﬁf@‘)|x|2) —0. (4.39)
=0 x€B1 (0)\By(0)

Let us choose y; € Br(0) \ B,(0) such that

eﬁa()’s)|y8|2 — ( sup eﬁs(x)|x|2>_
xeBg (0\ B, (0)

We consider the function i, (x) = i, (|ye|x) + 21n|y,|. Then i, satisfies

et (= |y ?)

Aug + — =—4mrm ;890 on B_r_(0).
NGRS 20 on B ©
Moreover,
. . - (>
ite(x) =g (|ye1x) + 2In(]ye|x]) — 2In|x| < u5<|y—s|> —2Infx| onB_r (0)\ B‘;z_l(O). (4.40)
e e

To prove the claim (4.39), we argue by contradiction and consider the following two cases.
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Case I: Suppose that
i ite (Ye) 2 — .
8%(3 [ Vel ) 400

Then we see that, in view of (4.38), we have lim;_,¢ |y.| = +o00 and lim._,¢(¢|y:|) = 0.
Moreover, we see that

1
Se Eexp<——u8(|§8|>> —0 ase—0.
&€

In view of (4.40), we see that for any x € B 1 0\ Bs(0),

s (x) il <ﬁ> —21ns. (4.41)
[ Vel
By using (4.33) and limg_,¢ | y.| = +00, we also see that
us(x)
lim = lim e* (%) =0 on B1(0)\ Bs(0). (4.42)
e—>0 |Y8|2 e—0
Let we(x) =t (sox + )F‘) + 2lns, for |x| < 5-. For small ¢, § > 0, w, satisfies
e (1 - A5 |2)
Au_)g—l——wgg 0 on B (0).
(T + szly 2 )3 e

By using (4.41), we see that

8
we (x —2In§+2Ins; =—2Ind for x| < —,
e (x) < ()’6/|y£|) 3 |x] 25, (4.43)

we(0) = ’:Ze()’s/l)’eo +2Inse =0.

In view of (4.42), we also conclude that limseo(ﬁ) =0 and for small ¢ > 0,

0< =AW, < on B; (0). (4.44)

5273

By using (4.43), (4.44), and Lemma 3.2, we see that for any p > 1 and R > 0, there exist constants o € (0, 1) and
y > 0, depending on R > 0 only such that

0=w,(0) < sup w, <o inf we+ (1 +0)yIlAWe|Lr(Byk0)) —2(1 —0)1n,
Br(0) Br(0)
(R?).

which implies that W, is bounded in C?

loc (B_s_(0)). Then there exists a function w, such that we — wy in C?
2s¢

loc
By Lemma 3.1, w, satisfies

Wi

e
Aw, + 3 =0 in]Rz,
T

we(0) =0, e e L'(R?).

However we see that w, cannot be a stable solution, which yields the desired contradiction and rules out Case 1.
Case 2: Suppose that there exists ¢ > 0 such that

e < lim et 08|y, |2 < e, (4.45)

Then, in view of (4.38), we see that lim,_,.o |y:| = +00 and lim;_.¢(¢|ye|) = 0. By using (4.40) and (4.45), we also
conclude that

ﬁg(x)@g(yg) 2In|x| <c¢—2Inx| forx € By(0)\ Bs(0).

| Vel

—C< ( /lys)

(4.46)
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By using (4.33) and limg_,¢ | ys| = +00, we also have
eﬁs(x) n
lim | —— ) = lim (% =0 on B, (0) \ Bs(0). (4.47)
e—>0\ |y |2 e—0 5
Then (4.47) implies that for small ¢ > 0,
0 o= lyeP) e
X —AlUg = = X
T eIy} T 8%

By using (4.46), (4.48), and Lemma 3.2, we see that for any p > 1 and § > 0, there exist constants o € (0, 1) and
y > 0, depending only on § > 0 such that

on B% (0) \ Bs(0). (4.48)

—c< ﬁs(y8/|y£|) < sup  ilg
B%(O)\B(;(O)

- - 1)
<o ug + (1 +o)yllAiellLrs, on\8; ) + (1 — 0)(6’ - 21n<—>>,
§ 2

inf
B1 (0\B;(©0) 2

which implies that &, is bounded in C

(B_r_(0)\ {0}). Let

-
£lyel

. e (1 — e /]y ) - e (1 —e™)
o = lim lim = dx = lim lim _
5§00 (T + e /|ye )3 800 (T + efle)3
Bs(0) Bs|ye| (0)

In view of Lemma 3.1, we see that there exists a function wy such that i, — wy in C2_(R?\ {0}) and

loc

Wi

Aws+ & = (—a—d4nm; )8 nR2,
3 J-

(—a —4mm;jy) > —4m,

wy <c—2Inlx|, e e LI(RZ).

However, w, cannot be a stable solution, which yields once more a contradiction and concludes the proof of (4.39) as
claimed.
Step 4. For any d € (0, —(m 2 + B2)), there exists r, :=r¢(d) € (0, g) such that

lim / fe(iip) dx = 47d. (4.49)
e—0
By, (0)

Now we claim that

lim / Fy.. (i) dx =2md(d +2m;2). (4.50)
E—>
By, (0)

By using (4.33) and (4.39), we see that lim,_, o7, = 400 and lim._,o(er,) = 0. Let us consider the function L:tg x)=
g (rex) + 21Inr, which satisfies

N e‘if (1- eég/rgz)
Aty + ————= = —4mwm 80 on B (0).
(T + eug/rsz):‘) erg

We claim that for any § > 0, there exists Cs > 0 such that

|fie (x1) — i (x2)| < C5  forany xj,x3 € B, (0)\ B5(0). 4.51)
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By using the Green’s representation formula for a solution u, of (1.2) and Lemma 3.1, we see that for any x1, xp €
B1(0)\ B5(0).

ﬁs(xl) - ’/Aia(XZ) =ug(ergxy) — ug(ergxy)

- / (Glerex1. y) — Glerexs, ) (= Aus(y)) dy

2
= 0(1) +/(G(8r8x1’ y) - G(SFSXZ,y))Wdy
2
—o()+ i/m('”fxz —yl)frw;(y)) o
27 lerex1 — | £
2

By the mean value theorem, there exists & =6 (¢, y) € (0, 1) such that
llerexs — yl —lerexy — yll
Olerexy — y| + (1 — 0)|erex; — y|

< lere (x1 — x2)|
T Olerexa — y|+ (1 —0)|erex; — y|

|1n lerexy — y| — In|erex) — y|| =

(4.52)

For any y € £2 \ Baer. (0), we have |erx; — y| 2 % for i =1, 2. Then by using Lemma 3.1 and (4.52), we see that
§

‘1 (|srex2_)7|>fr(us)
n

lerex; — y| g2
£2\B 2¢r (0)
5

dy=0(1). (4.53)

ered

By using the fact that |er.x; — y| > 5 fori =1,2forany y € B%(O) with Lemma 3.1 and (4.52), we also have

/ I lerexa — y|'\ fe(ue)
n
lerex) — | &2
Bsrzgﬁ(o)

dy=0(Q). (4.54)

Moreover, by using (4.33) and (4.39), we see that
lerexs — ¥\ fr(ue) |rexa — y|
In In[f ——

7 dy=
lerexi —yl/) € [rex1 —yl
Basre (O\Begs (0) Bae (O\Brgs (0)

)fr (ﬁs(Y)) dy

. 1
< 2rg|x; — x2| sup (’fr(“s)‘) / —dy

Bar, (0)\B,,s (0) ¥yl
§ 2

Bay, (0)
e
167 |x1 — x3| A
SRl 2 g)
Bayy (0\B s (0)
P 2
327 — R
Tl () = 00, (4.55)
8t Bare (0\Bgs ()

At this point, (4.51) follows by using (4.53), (4.54), and (4.55).
Now we fix yg € R?2 \ {0}. Then, in view of (4.39), (4.49) and (4.51), we see that there exists a function 4 such that
he =iis — e (yo) — h in C} (R?\ {0}) and

Ah=—4w(m;y+d)sy inR2
We also conclude that the function v(x) = h(x) +2(m; > + d) In|x]| satisfies

Av=0 inR>. (4.56)
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We consider the function v (x) = he(x) + 2m > In|x| which satisfies

rgzeﬁe(rex)(l _ eﬁe(rsx))

AU& ()C) + (7,' i eﬁg(rgx))?)

=0 on B#(O).

Let vg(x) = . (rox). Then, we see that

ﬁgl_ﬁg
L Chld)

£ (‘L’ n eMA—£)3 =0 on Bg (0) (457)

Multiplying (4.57) by Vii, - x and integrating over By, (0), we conclude that

A . X . Vo, |?|x . Vi - x
f 2F (i) dx = [ |:(va~m>(Vv8-x)—|572|||+F2,T(u8)|x|—2mj,2|;—|j|da. (4.58)

B (0) 9B (0)

Hence (4.39) and (4.56) imply

lim 2F r(ig)dx

e—0
By, (0)
- x Ve |x] . Ve - x
= lim [(Vvs : m)(Vvs X) — 762 + 12 Fp 1 (il (rex)) — 2mj,2—|;| do
9B1(0)
(Vo-x—2d)° (o =~ 2dx 2lx|  2mja(Vu-x —2d) .,
= - O _ -t _ o
|x] Ix|2) 2 x|

9B1(0)

=4rd(d+2m;,), (4.59)

and we complete the proof of our claim (4.50). At this point, in view of (4.33), (4.49) and (4.59), we see that

~ . . eﬁs
4md = lim lim / fr(lig)dx = lim lim f - dx
n—>0e—0 n—0e—0 T
By, (0)\B;(0) By, (0)\ B, (0)

= lim lim / F> (i) dx =2md(d +2m; »),

n—>0e—0
B, (0\B,(0)

which implies d + 2m  » = 2. Since d > 0 can be chosen arbitrarily, we obtain a contradiction which concludes the

proof of m j » + B; 2 = 0 under the assumption (4.32). O

Remark 4.6. It turns out that Lemma 4.4 and Lemma 4.5 yield the following result. Suppose that u, — 2In¢ is
uniformly bounded in any compact subset of §2 \ Z; and u, — 2In¢e converges to w in CIZOC(Q \ Z») as ¢ — 0, then
0<mjy <1forl<j<d, NI > N3, and w satisfies

At this point, we are ready to prove one part of Theorem 1.1.

Proof of Theorem 1.1: stable solution = topological solution. To prove our theorem, we consider the following
cases.
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Case 1.If t =1, then Lemma 4.4 and Lemma 4.5 imply that for any r, n > 0,

lim< sup ﬁg(x)) = lim( sup ug(sx)) = —00,

£ 0% ylx—pjal<t £ 0% v —pjal<t (4.60)
mj>+Bj2=0 foralll<j<d.
By using (4.60) and Lemma 4.2, we see that
/ eﬁ&‘
li li ne)dx | = i li d
r,;gl()(s% / fT (ite) x) r,i;gl0<££% / 3 x)
Br(pj2\By(pj2) Br(pj2)\By(pj2)
= lim (lim / ff(ﬁg)dx>
r,n—>0\ =0
Bg (Pj,2)\By(pj2)
=—4n(mjo+ Bj2) =0. 4.61)

If limseo(supg\u By (p;2)) wg) = —oo for any small r > 0, then in view of (4.10) and (4.60), we see that
JATTAE T

d dy

Ag=4mY mj18,,, —4m Y mjas,, ong,
j=1 j=1

thus N; = N, which contradicts (H1).
On the other hand, if w, — w in CIZOC(.Q \ Z»), then in view of (4.2) and (4.61), we see that

] ff(ué‘)
I He < |.Q|2 Ho

ee (—T + 2(T + 1)e2ee — g¥e?) % o
BER rlg%elg%[ / (c T 2oy a3 [ s
2\U; (B, (p;2) I=1By (pj2)
1 w
= / dx <0,
e

2

which implies p, < 0 for small ¢ > 0. Then u, cannot be a stable solution of (1.2) which is once more a contradiction.
Case 2. If N > N then, in view of (H2), we have m; € [0, 1] for all 1 < j < d>. Then by using Lemma 4.4
and Lemma 4.5 we obtain (4.60). By using the same arguments as in Case 1, we can prove that u, cannot be stable
solution of (1.2). We skip the details of this part to avoid repetitions.
Case 3. If N < N1, then we define the following set

Joz{l‘lglgdz, lim< sup lftg(x))z—oo}.
|x—pr2l=n

If Jo={1, ..., d>}, then the desired conclusion will follow by the same argument adopted in Case 1.
Therefore we suppose that Jy # {1, ..., d>} and define J; = {1, ..., d>}\ Jo # @. By using Lemma 4.4, we see that
limgﬁo(supg\uj(Br(p/ ,)) We) = —00 for any small > 0. Then by (4.10), we have

Ny = Z mjo+ Z mjar<Ni= Z(—,Bj,Z) + Z(—ﬂj,2)~
J€Jo JeN J€Jo Jjeh
By using Lemma 4.5, we see that there exists jo € J; such that
mjo2 < —Bjo.2-

For the sake of simplicity, we assume that pj, » = 0. In view of Lemma 4.2, we see that



676 D. Bartolucci et al. / Ann. I. H. Poincaré — AN 32 (2015) 651-685

lim lim feliie)dx = =47 (mjy 2+ Bjy.2) > O.
r—0e—0
Br (0)

Since jo € Ji, the same argument adopted in the proof of Lemma 4.4 shows that there exists a function & such that
iy — 0 in C2_(R?\ {0}) and

loc

Al + fr () = —4mwmj 280 onR?,

lim #(x)=—o0,
|x]—00

fe@) e LY(R?), e e LY (R*\ B1(0)).
Let

.1 .
B = for(u)dx. (4.62)
RZ
Then we conclude that

u(x)

|x|—o0 In |x|

=2mj2—f<-2. (4.63)

Moreover, by similar arguments adopted in Step 1 in the proof of Lemma 4.5, (4.1), and (4.63), we can show that
there exist v and Ry > 0 such that

g <—V oOn BQ(O) \ Bg,(0). (4.64)

Let 4, (p) = % faBp(O) fizdo. Then @i, satisfies

dii 1 .
o — + > f fellie)dx = =2mjy 5. (4.65)

dp
B, (0)
Then (4.62), (4.63), (4.64) and (4.65) imply that there exists o > 0 such that for large p > 0,
diie
i

We claim that there exists a constant C > 0 such that

<—Q2+0). (4.66)

i (x) — it (Ix])| <€ forx e B (0) \ By (0). (4.67)
Indeed, since jo € J and in view of (4.21), we see that {ii.} is uniformly bounded in L{> (B (0) \ {0}). Then we have

lin})( sup elte™) |x|2) < 4o00.

e—

x€dBy (0)UdBR,(0)

Then, by using (4.64) and the similar argument adopted in Step 3 in the proof of Lemma 4.5, we conclude that

lim< sup eﬁs<X>|x|2) < +o0. (4.68)
6200 xeB, (0\Bry (0)

Moreover, by using the Green’s representation formula for a solution u, of (1.2) and by arguing as in the proof
of (4.51), we obtain (4.67). In view of (4.66) and (4.67) we can find a constant ¢ > 0 such that

lim / Sfe(ig)dx <cR™°.
e—0

Br (O\Br O



D. Bartolucci et al. / Ann. I. H. Poincaré — AN 32 (2015) 651-685 677

Now we see that

27f = lim / fe(@)dx = lim lim / fr(lig)dx
R—o0 R—00e—0

[x|<R [x|<R
= lim lim< / fe(le)dx — / fr(le) dx) =—4r(mjy, 2+ Bjy,2) > 0.
R—o00e—0

<L Bz (0)\Bg(0)

Moreover, the method of moving planes to be used with (4.63) shows that & is radially symmetric (see [5,12]). Now
by using Theorem 3.4 in [8] and B > 0, we see that /i cannot be stable solution.

At this point, we complete the proof of one part of Theorem 1.1: stable solution = topological solution under the
assumptions (H1)-(H2). O

5. Proof of Theorem 1.1: topological solution = strictly stable solution

In this section, we prove the other implication in the statement of Theorem 1.1, that is, topological solution =
strictly stable solution. We assume that u, is a sequence of topological solutions of (1.2) with a sequence ¢ > 0.
Although we use arguments similar to those in [26], we still need to carry out a subtle analysis to control the solution’s
sign changes.

Lemma 5.1. Let u, be a sequence of topological solutions of (1.2) with ¢ > 0. Then, as ¢ — 0, we have

(i) ue — 0in Cp,

(82 \ Z) for any m € 7" and faster than any power of &;

(i) sz(it_j—ezz)z =4+ D)y, th:l m?yi(SmV[, weakly in the sense of measures in 2.

Proof. Let 25 = {x € £2 | dist(x, Z) > §}. In view of Theorem 1.5 we have u, — 0 uniformly on any compact subset

of 2\ Z as ¢ — 0. Then we see that for any small § > 0,

2ugets (et — 1)
£2(1 + elte)3

since t(e! — 1) > 0 for any ¢ € R. Moreover, we see that

2
A(IVue ) Z

j:
2|Vue)?es (t + 14 0(1))

Alus|*) = 2| Vuel* + 2us Aug = 2|Vue|* + >0 on £, (5.1)

7 2AVuPer (<o 42t et — 1)
e2(T + ete)?

”8

0x;0x;

20z £ ehe ) >0 onf2sase—0. 5.2)
We have the following inequality,
|71 ¢
<|l—e for any ¢t € R. 5.3
v <11 Y (5-3)
By using (3.2), (5.1), (5.3), and the mean value theorem, we see that there exists a constant ¢ > 0 such that
sup |u | / |u | dx
ppel) < 1 J e
(1+ ||us||Loo<gs>)2 Jue|*
h 18251 (1 + Jue))?
£2s
(1 + e |l oo (25))* | (T +e'e)* | / s (1 — ee)?
h 25| ene VO | ey

£2s
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< ce(1 + llug || Lo2)* || (z + ") ’ 5.4)
1525 e lLeo(ay
for small ¢ > 0. In view of (3.2), (5.2), and the mean value theorem, we can find a constant C > 0 such that
1
sup(|Vuel?) < —— / |Vue|? dx
225 |95|
£2s
1 || (x+et)? |Viue|ete
< —|— —————dx
|.(25| elte LOO(QS)Q (T+eus)2
C T Ug\2
< — w , (5.5)
25111 et lleo(ay)

for small ¢ > 0. Let ¢ € C*®(£2) be such that ¢ = 0 in {x € £2 | dist(x, Z) <38}, ¢ =1 in §235 and 0 < ¢ < 1.
Since u; — 0 uniformly on any compact subset of £2 \ Z as ¢ — 0, we note that there exists some constant Cs > 0,
independent of ¢ > 0, such that

1 — e
T + ele
Next, by using (5.4), (5.5) and (5.6), we conclude that

Ug _ ole)2 Ug (pUe __ Ug __
1 e's (1 — e'e) Iy < 1 [e'(e 1) |:(e l)¢:| dx
(t + ")

2 Tteyt T NE ) (ren)?
2
Z/AMS[U]WZ/%A[M]M
(T +e"e) J (t +ete)

$22s
e — 1 2 De*sVug -V e — 1A
NG b+ (t+De"Vu, - Vo (e )A dx
T + el (T + ete)? (T + ete)

< Cslug| on £25. (5.6)

R O O 00— ®

[—(t 4+ De|Vue ¢ (v + Ve usVue - Vo (e — 1>usA¢} d
(T +e¥e)? (T +ete)? (T + ete)

N

[(t + De*su,Vu, -Vop  (ete — 1)u€A¢>}
dx
(T +ete)? (T +e'e)

[—(t + De"u2A¢p (v + De's (e —)u2Vu, -V (e" — DueAd J
2(t + e¥e)? 2(t + ete)3 (T + ete)

S

<eslluellFo g, < Cae, (5.7)

for some constants cs, Cs > 0. By a suitable iteration of (5.4), (5.7), and the elliptic estimates, we deduce that (i)
holds. In other words, for any small § > 0 and any m, n € 77T, there exists a constant ¢s.m,n > 0 such that

m
sup< Z |D°‘u8|> < csmn€". (5.8)
$225 \ |¢|=0

Moreover, we see that v.(x) = u.(x) + (—l)iij,l- In|x — p; ;| satisfies

Sr(ue)

Avg +
&€ 82

=0 on Br(pj’i). (5'9)

For the sake of simplicity, we assume that p; ; = 0. Multiplying (5.9) by Vu, - x and integrating over B, (0), we obtain
the Pohozaev type identity
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2 _1)i—1 .
/ [(va-i>(Vv8~x)— |v;€| |x|+;_2Fl,r(ug)|x|i|d0': / 2F1,r(”a)+( 1) 2mj,lfl’(u£) dx.

x| g2 g2
3B, (0) B (0)

—(1—e")?

where Flyf(u) = m-

By using (5.8), we have

1
lim —2F1,T(u8)|x|d0 =0,
£—0 &
3B,(0)
thus
2F
lim / 2000 g —azm?,,
e—0 & ’
B (0)
I (1—6"5)2 d A(T+1) 2
im —————dx =4(t + Dm5,
e—0 82(1' +e“8)2 St
B (0)

for any small r > 0 which concludes the proof of our lemma. O

For a solution u, of (1.2), let

V|2 — L f(ue)¢? dx
pe=  inf Ja ff’ ‘ , (5.10)
PeW!2(2)\(0) 161720

and ¢ be the corresponding first eigenfunction with ¢, > 0in £2 and [|¢¢ 1 2(0) = 1,
— 2 [ 2
te = | IVoel” = = fr(ue)d; dx, (5.11)
Q

and
1
— A, — 8—2ff’(us)¢g = L. (5.12)

We note that £2/4, is bounded from below:
e > = [ frtwgdx > = supl 10
teR
Q

To prove Theorem 1.1, we argue by contradiction and suppose that, along a subsequence (still denoted in the same
way), we have a sequence of topological solutions u, of (1.2) with a sequence ¢ > 0 such that

lim 2, = po < 0. (5.13)
e—0
In view of (i) of Lemma 5.1 and (5.13), we have the following lemma.
Lemma 5.2. There exist pj i, € Z and ro > 0 such that for any r € (0, ro), there exists a constant a, > 0 such that
lim (]582 dx > a,.
e—0
B, (pj(),i())

Proof. Suppose that there exists a small » > 0 such that

lim / ¢ dx =0. (5.14)

e—0
Uj.i B, (Pj,i)
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Then

lim
e—0

/ fi(ue)g? dx| < sup| fL(1)] lim / ¢2dx =0.
teR e—0

U_,",‘ Br(pj.i) U_j,[ Br(pj.i)

By using (i) of Lemma 5.1, we see that

1
/ fl(ue)p? dx = f <—m + 0(1)>¢52 dx ase— 0. (5.15)
'Q\Uj,i Br(pj.i) 'Q\Uj,i Br(pj.i)
Next, by using (5.13), (5.14) and (5.15), we see that
0> lim £z = 61135/ Vel — fl(ue) gy dx > gng})/ —fl(ue)p7 dx = P
2 2
This is the desired contradiction which concludes the proof of our lemma. O
Since fr(u) =—f.—1 (—u) /73, we can assume without loss of generality that ip =2, pj,i, =0, and v =m ;, in
Lemma 5.2. We consider the scaled function
ie(y) =uc(ey) in Br?o (0). (5.16)
Then i, satisfies
Aot =) s in B ©)
Ug + —————— = —4nv in Br .
(1 4 efe)3 0 3
Now we have the following lemma.
Lemma 5.3. lim,_, o (sup By (0) liie — u|) = 0, where u is a topological solution of
Ul — et
A+ S s, inR2
(t +et)3
sup |Vu| < +oo,
R2\ B, (0) (5.17)
2
et(1— e”)’ (1—e") Ll(Rz).
(t +e")3’ (1 4e)?
Proof. We decompose
e(y) = —2vIn|y| + 0:(y). (5.18)
Then v, satisfies
—2v 0 —2v 0,
e (1 — &
Ap, 4 A DI o By (). (5.19)
(v + [y 2velt)? :

By using Lemma 5.1, limy, ), , us (x) = +00 and the maximum principle, we conclude that there exists ¢ > 0 such

that for small ¢ > 0,

inf wug > —c.
Br(pj2)

In view of (5.18) and (5.20), we have

Uelapr0) = —c+2vInR forany R > 0.

(5.20)



D. Bartolucci et al. / Ann. I. H. Poincaré — AN 32 (2015) 651-685 681

By using the Green’s representation formula for a solution u. of (1.2) (see (3.12) and (4.19)), we see that there exists
co > 0 such that

|Vie(x)| <co on Br(0). (5.21)

We claim that ¥, is uniformly bounded in the C*“ topology. To prove our claim, we argue by contradiction and sup-
pose that there exists Rp > 0 such that lim,_, ¢ (sup By (0) Ug) = +00. Then (5.21) implies that lim,_,o(inf Br(0) Ve) =
o0 for any R > Ry. Clearly Lemma 5.1 shows that, for any R > Ry,

1oy (1= |x|72ve)? >
4(t + Dmv” > lim ———dx=nR". (5.22)
e~0 J (x4 [x]2vel)2
Bg(0)
Since the right hand side of (5.22) could be arbitrarily large, we obtain a contradiction which proves our claim.
Then we obtain a subsequence v, (still denoted in the same way) such that

e — v uniformly in CZ (R?). (5.23)

Let us define u(y) = —2vIn|y| + v(y). In view of (5.21), Lemma 3.1 and Lemma 5.1, we see that u satisfies (5.17).
(=)
(r+e“)2
a Pohozaev type identity (see Lemma 5.1), we have

Since supg2y g, (o) | V| < +00 and € L'(R?), we see that u is a topological solution in R?. Moreover, by using

(1—e")?

(T 4 et)?
RZ

dx =4(t + v (5.24)

Now we claim that a stronger convergence property holds, namely

lim( sup |ﬁg—u|)=0.
e—0 B’_Q(O)

In view of (5.23), we have

li e — =0. 5.25
sgrb(;lu(g)mg u|> ( )
We also see that
/ (es — e)? J / (' — 12 (e =12 2(1—ele)(1—e¥)
X" dx=

(T +eie)? (Tele) " (xteie)?  (zeie)
B%O(O) Bry (0)

dx.
©

BS

At this point Lemma 5.1, (5.24), and the dominated convergence theorem imply that

. (e — ey
lim —_—
e—0 (t+ e”S)2

B%o 0)

(5.26)

By using (5.17), (5.20), (5.21), (5.25), and (5.26), we obtain the desired conclusion. O
At this point, we are ready to prove Theorem 1.1.
Proof of Theorem 1.1: topological solution = strictly stable solution. In view of the strong convergence property

as stated in Lemma 5.3, we can deduce information about the limiting problem of the linearized equation of (1.2)
at u,. With this purpose, we define

Ve (y) =ede(ey)  on B (0). (5.27)
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Then we have
_A&E - fr/(ﬁs)&s = 52#«8@8 on B’?O 0),

N (5.28)
Ye >0 in Br (0),

and || Vl/A/s ”Lz(Br_o oyt ||12/5 ||L2(Br_0 o) S C for some constant C > 0. By using standard elliptic estimates, we see that

Ve is uniformly bounded in the Clzof topology. Hence, by passing to a subsequence (still denoted in the same way),
we see that there exists w 0 such that

Ve — ¥ in CE(R?),

and

— A— / A: A i 2
{ AY — flw)y = poy inR?, (5.29)

e WH(R?), ¢ >0.

Since u decays exponentially at infinity, then f)(u) + has exponentially decay at infinity. Hence by

(r+1)3
Lemma 5.3, we see that

! 72 — 1 72 —80R
0 / (f’(l“”( +1)3)¢de_ /) (f’(”)+< 1)3)‘/’ dxt 0l
ro

B Br

for some &g > 0. Hence by using (5.27), (5.28), and Lemma 5.2, we can prove that for large R > 0,

1 2 —8R
[(f(u)—f—( +1)3>1ﬁ dx > 11n})< & e + @ +1)g) / 1//8dx+0( )

Br(0)
2s

1 —80R
> — a 0
/<|,u,0|—|—(t+1)3>ag+0(6 )>0’

which implies v # 0 € W12(R?) (see Lemma 4.15 in [26] for further details). On the other side, by arguing as in
Proposition 4.16 in [26], we see that the problem (5.29) admits only the trivial solution and we obtain a contradiction.
This observation concludes the proof of Theorem 1.1: topological solution = strictly stable solution. O

6. Uniqueness of stable solution
In this section, we deduce Theorem 1.3 from Theorem 1.1.

Proof of Theorem 1.3. The existence of stable solution can be proved by well known monotone iteration schemes
and therefore we will skip it here. Hence, to prove Theorem 1.3, it suffices to prove the uniqueness property. We argue
by contradiction and suppose that there exist two sequences of distinct stable solutions u, ; and u. > of (1.2). From
Theorem 1.1, up to the extraction of subsequences, we have u, ; — 0 uniformly in any compact subset of £2 \ Z as

e — 0fori=1,2. Since u, | — ue 2 is not identically zero, we can define ¢, = Yo l7He2

= —5 2= which satisfies
lue, 1 —ue 2l 2 o)

1
A¢e + g_sz/(na)¢s =0 on§2,

where 17, is some real number between u. 1 and u.>. By using the proof of Lemma 5.2, we see that there exist
Pjo,io € Z and rg > 0 such that for any r € (0, ro), there exists a constant a, > 0 such that

lim / ¢52 dx > a,.

e—0
B (pjy.iy)
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Since fr(u) = — f;-1 (—u)/r3, we can assume without loss of generality that io =2, pj, iy =0, and v =m , ;,. We
consider the scaled function

A . ro
le,i(y) =ug,i(ey) inBr(0)= {y eR? ‘ Iyl < ;}-
In view of Lemma 5.3, we obtain
i — u; uniformly in CfOC(Rz) fori=1,2,
where u; is a topological solution of
e'i(l —e")
(T +eti)3
Moreover, we can apply the method of moving planes (see [12,15]) to conclude that u; is radially symmetric about

the origin. Since radially symmetric and topological solutions are unique (see [8]), we conclude that ] = uy in R.
Let us set u = u. We can find i such that

ege(ey) — ¥ (y) inCE.,

Au; + = —4mvdy in RZ.

and
—AY — f{y =0 inR’,
Ve Wh(R?).
By arguing as in the proof of Theorem 1.1 (see Section 5), we see that 1} # 0. Then,

\V/ 2 gt 2d
p*=  inf Ja2 1YY/ ff(uz)w <o (6.1)
yeWw2@N\(0)  fpa(l —e")y?dx

Then Lemma 5.3 shows that the infimum of (6.1) is attained at some ¥o € W1 2(R?) \ {0} satisfying
—AYo — flayo=pn* (1 —e“)¥o,  Yo>0 inR%.

At this point Theorem 3.4 in [8] shows that ©* < 0. However, by arguing as in Proposition 4.16 in [26], we can show
that ¥ = 0 which is the desired contradiction. Therefore there exists a unique stable solution of (1.2) for sufficiently
smalle > 0. O
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Appendix A

In this appendix, we discuss nontopological solutions of the following equation:
Au+ fr(u) =4mwvdy inR?,

fe(u) e L'(R?), (A.1)

lim u(x)=—o0.
|x]—o00
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As we mentioned in Section 4, we need to analyze a solution u, of (1.2), such that u, — 21In¢ has a bubble at some
point in §2 \ Z and u, (after a suitable scaling) tends to a nontopological solution u of (A.1). It is not difficult to
check that it is enough to our purposes to consider the case v > 0. Concerning this problem, we have the following
proposition.

Proposition A.1. Let u be a solution of (A.1) and v > 0. Then u is unstable.

Proof. By using the maximum principle, we always have u < 0. Moreover, if u is radially symmetric, then Theo-
rem 3.4 in [8] shows that u is unstable. In particular, if v = 0, then Lemma 2.1 shows that u is a radially symmetric
function. Thus, we only need to prove the instability of u in the case where v > 0 and u is not radially symmetric. Let
us set

0 0 0
— =xy— — X —.
00 0x1 0x2

Then we see that
A(Bgu) + fLu)(du) =0 inR>.

Let B = % fRZ fr(u)dx. Since u < 0, we see that " € L'(R?) and limy|— o0 ?f—lx) = —B + 2v < —2. Moreover, by

In |x]|
using the results in [5], we obtain the sharper estimate u(x) = (—8 +2v)In|x| + C + O(|x|™7), ug(x) = O(|x|™")
as |x| — +oo where C is a constant and y is a positive constant. We also note that there exist a local maximum point
and a local minimum point of u on each sphere of radius » since u is not radially symmetric. Thus dpu changes signs,
which implies at least that the first eigenvalue of the linearized equation of (1.2) at u is negative. Therefore we see
that u is unstable which was the desired conclusion. O
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