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Abstract

We analyze an elliptic equation arising in the study of the gauged O(3) sigma model with the Chern–Simons term. In this paper,
we study the asymptotic behavior of solutions and apply it to prove the uniqueness of stable solutions. However, one of the features
of this nonlinear equation is the existence of stable nontopological solutions in R

2, which implies the possibility that a stable
solution which blows up at a vortex point exists. To exclude this kind of blow up behavior is one of the main difficulties which we
have to overcome.
© 2014
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1. Introduction

The classical O(3) sigma model in 2 + 1 dimension originated to describe physical phenomena such as planar
ferromagnet [3]. However, the solitons in this model are not suitable for particle models due to their scale invariance
which makes particles have arbitrary size. This problem was overcome by Schroers in [23], where a U(1) gauge field
was added and the dynamics was governed by the Maxwell term. After his work, there have been many studies on
U(1) gauged O(3) sigma model, where the gauge field dynamics was governed by the Chern–Simons term [1,14,18,
19] or both of Maxwell and Chern–Simons terms [18].

In this paper, we consider another Chern–Simons gauged O(3) sigma model whose Lagrangian is defined by

L = κ

4
εμνρFμνAρ + 1

2
Dμφ · Dμφ − 1

2κ2
(γ + n · φ)2|n × φ|2.
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The unknowns are the spin vector φ = (φ1, φ2, φ3) : R1,2 → S2 ⊂ R
3 and the gauge field Aρ : R1,2 → R with ρ =

0,1,2. The gauge covariant derivative is defined by

Djφ = ∂jφ + Aj(n × φ),

and the curvature Fμν is given by

Fμν = ∂μAν − ∂νAμ.

Moreover, n = (0,0,1) is the north pole of S2 and εαβγ is the totally antisymmetric tensor with ε012 = 1. The constant
κ > 0 represents the strength of the Chern–Simons action, and the constant γ ∈ [−1,1] is a free parameter which
determines the vacuum manifold of the potential. Since the Euler–Lagrangian equation is very complicated to study
even for stationary solution, we restrict to consider energy minimizers only. The static energy from the Lagrangian is

E(φ,A) =
∫
R2

e(φ,A)dx,

where the energy density e(φ,A) is given by

e(φ,A) = 1

2

(
κ2F 2

12

|n × φ|2 + |D1φ|2 + |D2φ|2 + 1

κ2
(γ + n · φ)2|n × φ|2

)
.

We see that

E(φ,A) = 1

2

∫
R2

{(
κF12

|n × φ| ± 1

κ
(γ + n · φ)|n × φ|

)2

+ |D1φ ± φ × D2φ|2
}

dx

±
∫
R2

φ · (D1φ × D2φ) − F12(γ + n × φ)dx.

Then the self-dual equations for solutions minimizing the static energy are given by

D1φ + φ × D2φ = 0,

F12 + 1

κ2
(γ + n · φ)|n × φ|2 = 0. (1.1)

If we set u = ln[(1 + φ3)/(1 − φ3)] and prescribe

φ−1(s) = {p1,1, . . . , pd1,1}, φ−1(n) = {p1,2, . . . , pd2,2},
where s = (0,0,−1) is the south pole of S2, then we can reduce the system (1.1) to the following equation:

�u + 1

ε2

eu(1 − eu)

(τ + eu)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π

d2∑
j=1

mj,2δpj,2 on R
2,

where τ = 1+γ
1−γ

∈ (0,∞), mj,i ∈ N ∪ {0}, and δp stands for the Dirac measure concentrated at p. For the details of
derivation of the above equation from (1.1), we refer the readers to [8].

In this paper, we want to consider the above equation in a flat 2-dimensional torus Ω :

�u + 1

ε2

eu(1 − eu)

(τ + eu)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π

d2∑
j=1

mj,2δpj,2 on Ω. (1.2)

This consideration is physically meaningful, due to the theory suggested by ’t Hooft in [25]. We also refer to [4,6,7,11]
for more developments of Eq. (1.2).

Before we go further, we shall make some remarks about our nonlinear term fτ (u) ≡ eu(1−eu)

(τ+eu)3 . As ε → 0, heuristi-
cally, solutions uε of (1.2) might tend to ±∞. If uε → −∞, then (1.2) tends to:

�u + eu = a sum of Dirac measure.
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On the other hand, if u → +∞, then Eq. (1.2) tends to

�u − e−u = a sum of Dirac measure,

in other words, (−u) satisfies the Liouville equation again. Thus one of the limiting equation is the Liouville equation,
which shares the same property of the well-known Chern–Simons–Higgs (CSH) equation:

�u + 1

ε2
eu
(
1 − eu

)= 4π

d∑
j=1

mjδpj
on Ω. (1.3)

The CSH model has been proposed more than twenty years ago in [16] and independently in [17] to describe vortices
in high temperature superconductivity. Actually, (1.3) was derived from the Euler–Lagrange equations of the CSH
model via a vortex ansatz, see [16,17,27,28]. We also refer to [9,10,20–22] for more developments.

In a recent paper [26], Tarantello proved the following theorem:

Theorem A. For given {pj } and mj ∈ N, there exists ε0 ≡ ε0(pj ,mj ) > 0 such that if ε ∈ (0, ε0), then there exists a
unique topological solution uε for (1.3), i.e. a unique solution which satisfies uε → 0 a.e. in Ω as ε → 0.

It is natural to ask whether Theorem A also holds for Eq. (1.2). In [26], Tarantello proved that if uε is a topological
solution of (1.3), then uε is strictly stable solution. As a consequence of this fact, the uniqueness of the topological
solutions was established. In this paper, we study the uniqueness of stable solutions instead of topological solutions,
because the definition of a topological solution depends on a sequence of solutions, not only the solution itself. Here
u is called a stable solution of (1.2) if the linearized equation of (1.2) at u has nonnegative eigenvalues.

Our main purpose is to prove the equivalence of stable solutions and topological solutions under certain assump-
tions. To state our result, we need the following conditions:

(H1): N1 	= N2 where Ni ≡∑di

j=1 mj,i ;
(H2): either τ = 1 or, if Ni > Nk , then mj,i ∈ [0,1] for all 1 � j � di .

Then we have the following theorem.

Theorem 1.1. Let uε be a sequence of solutions of (1.2) with ε > 0.

(i) if uε → 0 a.e. in Ω \⋃j,i{pj,i} as ε → 0, then uε is a strictly stable solution for sufficiently small ε > 0.
(ii) if (H1)–(H2) hold and uε is a sequence of stable solutions, then uε → 0 a.e. in Ω \ {pj,i} as ε → 0.

Remark 1.2. A nontopological entire solution of the CSH equation (1.3) is always unstable (see Appendix A). Hence
for a sequence of stable solutions uε of the CSH equation (1.3), we can prove that uε is a topological solution for
small ε > 0. The proof is simpler than (ii) of Theorem 1.1.

As a consequence of Theorem 1.1, we also have the following result about the uniqueness of stable solutions
of (1.2).

Theorem 1.3. Let uε be a sequence of solutions of (1.2) with ε > 0. If (H1)–(H2) hold, then there exists ε0 :=
ε0(pj,i ,mj,i) > 0 such that there exists a unique stable solution of (1.2) for each ε ∈ (0, ε0).

We remark that the uniqueness of topological solutions of (1.2) always holds even without the assumptions
(H1)–(H2). Indeed, this result and (i) of Theorem 1.1 can be proved by a suitable adaptation of the argument in [26].
Roughly speaking, this is due to the fact that the behavior of a topological solution is the same no matter whether it is
a solution of (1.3) or of (1.2). See either Proposition 4.8 in [26] or Lemma 5.1 below.

However, there are dramatic differences between these two equations when stable solutions are considered. First
of all, the asymptotic analysis is relatively easier for the CSH equation (1.3). By the maximum principle, any solution
u of the CSH equation (1.3) is always negative, thus eu(1 − eu) is always positive. On the contrary, a solution u(x) of
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Eq. (1.2) could tend to either +∞ or −∞ as x converges to a vortex point in case N1 	= 0 and N2 	= 0. This fact readily
implies that the nonlinear term fτ (u) must change sign in Ω and this is of course the cause of a lot of difficulties in
the study of the asymptotic behavior of uε as ε → 0.

Secondly, any nontopological entire solution of the CSH equation (1.3) is always unstable. This might not be true
for Eq. (1.2). Indeed, it has been proved that any nontopological radially symmetric entire solution of (1.2) is unstable
provided that either τ = 1 or mj,i ∈ [0,1] for all i, j . Hence if τ 	= 1 and mj,i > 1 for some i, j , then there might
exist nontopological stable entire solutions for (1.2). Of course, this fact might complicate our analysis, because stable
solutions might be bubbling even at a vortex point pj,i , where τ 	= 1 and mj,i > 1. Our condition (H2) partly reflects
this fact. However, (H2) still allows the possibility that mj,k > 1 as far as the global condition Ni > Nk is satisfied,
since in this case one can prove that stable solutions cannot blow up at pj,k . But it is still an interesting open problem
to see whether those conditions are necessary or not and we will discuss it in another paper.

Remark 1.4. If any one of the Ni ’s is zero, then Theorems 1.1 and 1.3 hold even without the assumptions (H1)–(H2).

To understand the asymptotic behavior of solutions of (1.2) as ε → 0, we also ask whether or not there might exist
a sequence of solutions uε for (1.2) such that

lim
ε→0

(
sup
K

uε

)
= ∞ and lim

ε→0

(
inf
K

uε

)
= −∞, (1.4)

where K = Ω \⋃i,j Br(pj,i) for any fixed r > 0. The following theorem tells us that the kind of blow-up behavior
as introduced in (1.4) cannot occur.

Theorem 1.5. Let Z ≡ ⋃
j,i{pj,i} and Zi ≡ ⋃

j {pj,i} for i = 1,2. We assume that {uε} is a sequence of solutions
of (1.2). Then, up to subsequences, one of the following holds true:

(a) uε → 0 uniformly on any compact subset of Ω \ Z;
(b) for any compact subset K ⊂ Ω \ Z2, there exists νK > 0 such that

lim
ε→0

(
sup
K

uε

)
� −νK ;

(c) for any compact subset K ⊂ Ω \ Z1, there exists νK > 0 such that

lim
ε→0

(
inf
K

uε

)
� νK.

Besides the application to our analysis, we believe that the above alternative could be useful in further studies
of (1.2).

We also remark that it is important to use a suitable Pohozaev type identity for handling solutions with different
asymptotic behavior. The following antiderivatives of fτ (u) are used to this purpose depending on the situations at
hand:

F1,τ (u) ≡ −(1 − eu)2

2(τ + 1)(τ + eu)2
,

and

F2,τ (u) ≡ eu((1 − τ)eu + 2τ)

2τ 2(τ + eu)2
.

Moreover, we denote by G the Green’s function on Ω which satisfies

−�xG(x, y) = δy − 1

|Ω| , x, y ∈ Ω and
∫
Ω

G(x, y) dx = 0, (1.5)

and by γ (x, y) = G(x,y) + 1 ln |x − y| its regular part. We also define
2π
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u+
0 (x) ≡ −4π

d1∑
j=1

mj,1G(x,pj,1), u−
0 (x) ≡ −4π

d2∑
j=1

mj,2G(x,pj,2), u0 ≡ u+
0 − u−

0 ,

and therefore we see that it holds

�u0 = −4π(N1 − N2)

|Ω| + 4π

d1∑
j=1

mj,1δpj,1 − 4π

d2∑
j=1

mj,2δpj,2 on Ω. (1.6)

In this paper, we consider only a domain which is a subset of R2 because of not only physical background but
also mathematical tools (Pohozaev Identity, Green’s function, etc.). We note that our results cannot be generalized to
higher dimensional case.

The rest of this paper is devoted to the proof of the above theorems. In Section 2, we discuss some preliminary
results. In Section 3, we investigate the asymptotic behavior of solutions of (1.2) as ε → 0. In Sections 4–6, we study
the asymptotic behavior of stable solutions. The main purpose is to prove some identities involving data coming from
different regions, one being a neighborhood of the vortex point and the other one its complement. The more subtle part
is the asymptotic analysis of the bubbling behavior of stable solutions at vortex points. Finally, we prove Theorems 1.1
and 1.3.

2. Preliminaries

We consider the following limiting problem for (1.2) when Z is empty,

�u + eu(1 − eu)

(τ + eu)3
= 0 in R

2, (2.1)

and we also define (recall fτ (u) = eu(1−eu)

(τ+eu)3 )

β ≡ 1

2π

∫
R2

fτ (u)dx. (2.2)

By applying the method of moving planes as introduced in [12] and improved in [5] and [24], we obtain the following
lemma.

Lemma 2.1. Let u be a solution of (2.1). Assume that there exists a constant c ∈R such that

either u� c or u� c or lim sup
|x|→∞

|u|
|x|2 � c.

If fτ (u) ∈ L1(R2), then u is radially symmetric about some point x0 ∈R
2.

Proof. The proof of Lemma 2.1 is standard and we just provide a sketch for reader’s convenience. First of all, we
observe that fτ (u) ∈ L1(R2) ∩ L∞(R2). Next we define

v(x) ≡ 1

2π

∫
R2

(
ln |x − y| − ln

(|y| + 1
))

fτ

(
u(y)

)
dy, (2.3)

so that �v = fτ (u) and by known elliptic estimates

lim|x|→∞
v(x)

ln |x| = β. (2.4)

At this point we may define h = u + v and then observe that �h = 0.
Step 1. Now we claim that h is constant in R

2. If u � c or u � c in R
2 for some constant c ∈ R, then (2.4)

implies that either h � c1(ln(|x| + 1) + 1) or h � c1(ln(|x| + 1) + 1) for some constant c1 ∈ R. Then, by Liouville’s
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theorem, h(x) = u(x) + v(x) ≡ constant. Now we consider the case lim sup|x|→∞
|u|
|x|2 � c. Then, we also see that

lim sup|x|→∞
|h|
|x|2 is bounded. By the mean value theorem, there exist constants c1, c2 ∈ R such that

sup
B R

2
(y)

∣∣Dαh
∣∣� c1

R2
sup

BR(y)

|h| � c2,

for any y ∈ R
2, R = |y|

2 and |α| = 2 (see Theorem 2.10 in [13]). Then Dαh is a constant for |α| = 2 since Dαh is
bounded and harmonic in R

2. After a coordinates transformation, we can assume that either h(x) = a(x2
1 − x2

2) + b

or h(x) = cx1 + dx2 + e for some constants a, b, c, d, e ∈ R where x = (x1, x2). Hence (2.4) implies that either

u(x) = a
(
x2

1 − x2
2

)− (
β + o(1)

)
ln |x| + b = (

a + o(1)
)(

x2
1 − x2

2

)+ b as |x| → ∞, (2.5)

or

u(x) = cx1 + dx2 − (
β + o(1)

)
ln |x| + e = (

c + o(1)
)
x1 + (

d + o(1)
)
x2 + e as |x| → ∞. (2.6)

For a fixed δ ∈ (0,1) we can find a constant Cδ > 0 such that

∞ >

∫
R2

∣∣fτ (u)
∣∣dx �

∫
δ�u�2δ

∣∣fτ (u)
∣∣dx �

∫
δ�u�2δ

Cδ dx = Cδ

∣∣{x ∈ R
2
∣∣ δ � u(x) � 2δ

}∣∣. (2.7)

Therefore, by using (2.5) and (2.6), we see that |{x ∈R
2 | δ � u(x) � 2δ}| = ∞ unless h is constant which proves the

claim. Then, as a consequence of (2.4), we see that

lim|x|→∞
u(x)

ln |x| = −β. (2.8)

Step 2. We claim that if β = 0 then u ≡ 0. Suppose that there exists x0 ∈ R
2 such that u(x0) < 0. Then there exists

r > 0 such that

u|Br (x0) < 0. (2.9)

Let us set vδ(x) = δ ln(
|x−x0|

r
) on R

2 \ Br(x0). Then we see that vδ � u on ∂Br(x0). Since u = o(ln |x|) as
|x| → ∞ (which is of course a consequence of (2.8) and β = 0), then there exists Rδ > 0 such that vδ > u

on R
2 \ BRδ (0). We claim that vδ � u on BRδ (0) \ Br(x0). If not, there exists x1 ∈ BRδ (0) \ Br(x0) such that

u(x1) − vδ(x1) = maxBRδ
(0)\Br (x0)(u − vδ) > 0. Then by the maximum principle, we see that

0 � �(u − vδ)(x1) = −fτ

(
u(x1)

)
> 0 since u(x1) > vδ(x1) � 0.

Thus, vδ = δ ln(
|x−x0|

r
) � u on R

2 \ Br(x0). Since δ > 0 is arbitrary, we conclude that

u(x) � 0 on R
2 \ Br(x0). (2.10)

Now we see that (2.9) and (2.10) contradict (2.2) with β = 0. Therefore we have u� 0 on R
2, and then, by using (2.2)

with β = 0, we conclude that u ≡ 0 on R
2.

Step 3. From now on, we consider the case β 	= 0. By using the strong maximum principle and (2.8), we conclude
that {

u > 0, fτ (u) < 0 if β < 0,

u < 0, fτ (u) > 0 if β > 0.
(2.11)

In view of (2.11), we can use the maximum principle to show that{
u� −β ln |x| + C if β < 0,

u� −β ln |x| + C if β > 0,
(2.12)

for large |x| and a suitable constant C ∈ R. By using (2.12), then fτ (u) ∈ L1(R2) implies that |β| > 2 and then we
deduce the sharper estimate

u(x) = −β ln |x| + O(1) as |x| → +∞. (2.13)
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At this point, the method of moving planes to be used with (2.13) shows that u is radially symmetric. Since the proof
is standard we skip it here and refer to [5,12] for further details. Therefore, the proof of Lemma 2.1 is completed. �

Let u(r; s) be the solution of the following initial value problem⎧⎨
⎩u′′ + 1

r
u′ + eu(1 − eu)

(τ + eu)3
= 0 for r > 0,

u(0; s) = s, u′(0; s) = 0,

(2.14)

where u′ denotes du
dr

(r; s) and let us set

β(s) ≡ 1

2π

∫
R2

fτ

(
u(r; s))=

∞∫
0

fτ

(
u(r; s))r dr. (2.15)

It turns out that the solutions of (2.14) admit only three kinds of limiting conditions as r → ∞:⎧⎨
⎩

topological boundary condition: u → 0,

nontopological boundary condition of type I: u → −∞,

nontopological boundary condition of type II: u → ∞.

(2.16)

We will use the following lemma recently obtained in [8].

Lemma 2.2. Let u(r; s) be a solution of (2.14). Then, we have

(i) β(0) = 0. In this case, u(r;0) ≡ 0 is the unique topological solution of (2.14);
(ii) β : (−∞,0) → (4,∞) is strictly increasing and bijective and

lim
s→0−

β(s) = ∞ and lim
s→−∞β(s) = 4.

In this case, u(r; s) is a nontopological solution of type I;
(iii) β : (0,∞) → (−∞,−4) is strictly increasing and bijective and

lim
s→0+

β(s) = −∞ and lim
s→∞β(s) = −4.

In this case, u(r; s) is a nontopological solution of type II.

3. Proof of Theorem 1.5: the asymptotic behavior of solutions

One of the main steps in the proof of Theorem 1.5 is to obtain a uniform bound for∫
Ω

∣∣∣∣ 1

ε2

euε (1 − euε )

(τ + euε )3

∣∣∣∣dx.

Toward this goal we have the following lemma.

Lemma 3.1. Let uε be a sequence of solutions of (1.2). Then, there exists a constant M0 ∈ (0,∞) such that∫
Ω

∣∣∣∣ 1

ε2

euε (1 − euε )

(τ + euε )3

∣∣∣∣dx �M0.

Proof. We observe that, for any a ∈ (0,∞), it holds

�uε

(
1 − euε

uε

)
= div

[
∇uε

(
1 − euε

uε

)]
+ (a + 1)|∇uε|2euε

uε 2
. (3.1)
a + e a + e (a + e )



658 D. Bartolucci et al. / Ann. I. H. Poincaré – AN 32 (2015) 651–685
Then, multiplying both sides of Eq. (1.2) by 1−euε

a+euε and integrating over Ω , we conclude that

∫
Ω

(a + 1)|∇uε|2euε

(a + euε )2
+ 1

ε2

euε (1 − euε )2

(τ + euε )3(a + euε )
dx = 4π

(
N1

a
+ N2

)
. (3.2)

Let us fix a = 1. Then there exist some constants M1,M2 � 0 such that∫
Ω

|∇uε|2euε

(1 + euε )2
dx � M1, (3.3)

and ∫
Ω

1

ε2

euε (1 − euε )2

(τ + euε )3(1 + euε )
dx �M2. (3.4)

We also see that there exists δε,1 ∈ (1,2) such that

∫
{uε=−δε,1}

|∇uε|dS =
−1∫

−2

( ∫
{uε=r}

|∇uε|dS

)
dr, (3.5)

and there exists a constant c0 > 0 such that∫
{−2�uε�0}

|∇uε|2 dx � c0

∫
{−2�uε�0}

|∇uε|2euε

(1 + euε )2
dx � c0M1. (3.6)

Hence we also have

∫
{uε=−δε,1}

|∇uε|dS =
−1∫

−2

( ∫
{uε=r}

|∇uε|dS

)
dr =

∫
{−2�uε�−1}

|∇uε|2 dx � c0M1. (3.7)

Let ν be an exterior unit normal vector to ∂{x ∈ Ω | −δε,1 � uε � 0}. By using ∂uε

∂ν
|uε=0 � 0 and (3.7), we see that

0 �
∫

{−δε,1�uε�0}

1

ε2

euε (1 − euε )

(τ + euε )3
dx = −

∫
{−δε,1�uε�0}

�uε dx

= −
∫

{uε=−δε,1}

∂uε

∂ν
dS −

∫
{uε=0}

∂uε

∂ν
dS �

∫
{uε=−δε,1}

|∇uε|dS � c0M1. (3.8)

The same argument with minor changes shows that we can find constants δε,2 ∈ (1,2) and c1 > 0 such that∫
{0�uε�δε,2}

∣∣∣∣ 1

ε2

euε (1 − euε )

(τ + euε )3

∣∣∣∣dx � c1M1. (3.9)

Moreover, there exist constants c2, c3 > 0 such that∫
{uε�−δε,1}

∣∣∣∣ 1

ε2

euε (1 − euε )

(τ + euε )3

∣∣∣∣dx � c2

∫
{uε�−δε,1}

1

ε2

euε (1 − euε )2

(τ + euε )3(1 + euε )
dx � c2M2, (3.10)

and
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∫
{uε�δε,2}

∣∣∣∣ 1

ε2

euε (1 − euε )

(τ + euε )3

∣∣∣∣dx � c3

∫
{uε�δε,2}

1

ε2

euε (1 − euε )2

(τ + euε )3(1 + euε )
dx � c3M2. (3.11)

The desired conclusion follows by using (3.8), (3.9), (3.10) and (3.11). �
Let us recall the following form of the Harnack inequality which will be widely used in the sequel (see [2] and [13]).

Lemma 3.2. Let D ⊆R
2 be a smooth bounded domain and v satisfy:

−�v = f in D,

with f ∈ Lp(D), p > 1. For any subdomain D′ ⊂⊂ D, there exist two positive constants σ ∈ (0,1) and γ > 0,
depending on D′ only such that:

(a) if sup∂D v � C, then supD′ v � σ infD′ v + (1 + σ)γ ‖f ‖Lp + (1 − σ)C,
(b) if inf∂D v � −C, then σ supD′ v � infD′ v + (1 + σ)γ ‖f ‖Lp + (1 − σ)C.

Moreover, we have the following lemmas.

Lemma 3.3. Let uε be a sequence of solutions of (1.2). Let K be a compact subset such that K ⊂ Ω \ Z. Then there
exist constants a, b > 0 such that |uε(xε) − uε(zε)| � ar2 + b for any r > 0 and zε ∈ Bεr(xε) ⊆ K .

Proof. By using the Green’s representation formula for a solution uε of (1.2), we see that for x ∈ K ⊂⊂ Ω \ Z,

uε(x) = 1

|Ω|
∫
Ω

uε(y) dy +
∫
Ω

G(x, y)
(−�uε(y)

)
dy

= 1

|Ω|
∫
Ω

uε(y) dy +
∫
Ω

G(x, y)

(
1

ε2

euε (1 − euε )

(τ + euε )3
− 4π

d1∑
j=1

mj,1δpj,1 + 4π

d2∑
j=1

mj,2δpj,2

)
dy

= 1

|Ω|
∫
Ω

uε(y) dy +
∫
Ω

G(x, y)
1

ε2

euε (1 − euε )

(τ + euε )3
dy + O(1). (3.12)

Then,

uε(x) − uε(z) =
∫
Ω

(
G(x,y) − G(z,y)

) 1

ε2

euε (1 − euε )

(τ + euε )3
dy + O(1) for x, z ∈ K. (3.13)

In view of Lemma 3.1, we see that

uε(x) − uε(z) = 1

2πε2

∫
Ω

ln

( |z − y|
|x − y|

)
euε (1 − euε )

(τ + euε )3
dy + O(1) for x, z ∈ K. (3.14)

For fixed r > 0, we assume that zε ∈ Bεr(xε) ⊆ K . By the mean value theorem, there exists θ = θ(ε, y) ∈ (0,1) such
that ∣∣ln |zε − y| − ln |xε − y|∣∣= ||zε − y| − |xε − y||

θ |zε − y| + (1 − θ)|xε − y| �
|xε − zε|

θ |zε − y| + (1 − θ)|xε − y| . (3.15)

For any y ∈ Ω \ B2εr (xε), we have |zε − y|� εr and |xε − y|� 2εr . Thus, we see that

∣∣ln |zε − y| − ln |xε − y|∣∣� εr

θεr + (1 − θ)2εr
= 1

2 − θ
� 1 on Ω \ B2εr (xε). (3.16)

At this point, Lemma 3.1 implies that
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1

2πε2

∫
Ω\B2εr (xε)

∣∣∣∣ln
( |zε − y|

|xε − y|
)

euε (1 − euε )

(τ + euε )3

∣∣∣∣dy = O(1). (3.17)

We also see that∫
B2εr (xε)

∣∣∣∣ln
( |zε − y|

|xε − y|
)∣∣∣∣dy �

∫
B2εr (xε)

|xε − zε|
θ |zε − y| + (1 − θ)|xε − y| dy

�
∫

B2εr (xε)

|xε − zε|
min{|zε − y|, |xε − y|} dy

�
∫

B2εr (xε)

|xε − zε|
|zε − y| + |xε − zε|

|xε − y| dy

�
∫

B4εr (zε)

|xε − zε|
|zε − y| dy +

∫
B2εr (xε)

|xε − zε|
|xε − y| dy

� 2
∫

B4εr (0)

|xε − zε|
|y| dy � 16r2ε2π. (3.18)

Therefore we conclude that

1

2πε2

∫
B2εr (xε)

∣∣∣∣ln
( |zε − y|

|xε − y|
)

euε (1 − euε )

(τ + euε )3

∣∣∣∣dy � 8r2 sup
t∈R

∣∣∣∣et (1 − et )

(τ + et )3

∣∣∣∣, (3.19)

and we readily obtain constants a, b > 0 such that for any r > 0, it holds∣∣uε(xε) − uε(zε)
∣∣� ar2 + b for zε ∈ Bεr(xε) ⊆ K. � (3.20)

Lemma 3.4. Let K be a connected compact set such that K ⊂ Ω \Z. Suppose that there exists a sequence of solutions
{uε} of (1.2) such that

lim
ε→0

(
inf
K

|uε|
)

= 0.

Then, we have ‖uε‖L∞(K) → 0 as ε → 0.

Proof. Choose a sequence of points {xε} ⊆ K such that |uε(xε)| = infK |uε|. Passing to a subsequence (still denoted
by uε), we may assume that limε→0 xε = x0 ∈ K . We argue by contradiction. Suppose that there exists a positive
constant cK > 0 and a sequence {zε} ⊆ K such that supK |uε| = |uε(zε)| � cK for small ε > 0. We will use the
constant M0 � 0 obtained in Lemma 3.1. If uε(zε)� −cK then, by using Lemma 2.2, we can choose s1 < 0 such that

β(s1) >
M0

π
and −cK < s1 < 0.

If uε(zε) � cK then, by using Lemma 2.2, we can choose s1 > 0 such that

β(s1) < −M0

π
and 0 < s1 < cK.

We can also choose yε ∈ K such that uε(yε) = s1 by the intermediate value theorem. Let ūε(x) = uε(εx + yε) for
x ∈ Ωε,yε ≡ {x ∈R

2 | εx + yε ∈ K1} where K1 is a compact subset such that K ⊂ int(K1) ⊂ Ω \ Z. Then ūε satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�ūε + eūε (1 − eūε )

(τ + eūε )3
= 0 on Ωε,yε ,

ūε(0) = s1,∫
Ω

∣∣∣∣eūε (1 − eūε )

(τ + eūε )3

∣∣∣∣dx � M0.

(3.21)
ε,yε
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By using Lemma 3.3, we see that ūε is bounded in C0
loc(Ωε,yε ). Passing to a subsequence, we may assume that ūε

converges in C2
loc(R

2) to a function u∗ which is a solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u∗ + eu∗(1 − eu∗)

(τ + eu∗)3
= 0 on R

2,

u∗(0) = s1,∫
R2

∣∣∣∣eu∗(1 − eu∗)

(τ + eu∗)3

∣∣∣∣dx � M0.

(3.22)

By using Lemma 3.3 and Lemma 2.1, we conclude that u∗ is radially symmetric with respect to some point p̄ in R
2

and u∗ does not change sign. Hence Lemma 2.2 shows that

M0 �
∣∣∣∣
∫
R2

eu∗(1 − eu∗)

(τ + eu∗)3
dx

∣∣∣∣= 2π
∣∣β(u∗(p̄)

)∣∣� 2π
∣∣β(s1)

∣∣> 2M0, (3.23)

which is the desired contradiction. Therefore, limε→0 ‖uε‖L∞(K) = 0. �
As a corollary of Lemma 3.4, we obtain the following proposition.

Proposition 3.5. Let uε be a sequence of solutions of (1.2). Then, up to subsequences, one of the following holds true:

(a) uε → 0 uniformly on any compact subset of Ω \ Z;
(b) for any compact subset K ⊂ Ω \ Z, there exists νK > 0 such that

lim
ε→0

(
sup
K

uε

)
� −νK ;

(c) for any compact subset K ⊂ Ω \ Z, there exists νK > 0 such that

lim
ε→0

(
inf
K

uε

)
� νK.

Proof. In view of Lemma 3.4, it suffices to show that (a) holds whenever both (b) and (c) fail to hold. Suppose that
(b) and (c) do not hold. Then, we can take compact sets K1,K2 ⊂ Ω \Z and sequences {x1,ε} ⊂ K1, {x2,ε} ⊂ K2 such
that

lim
ε→0

uε(x1,ε) � 0 and lim
ε→0

uε(x2,ε) � 0.

For any compact set K ⊂ Ω \ Z, taking a connected compact set K̃ ⊂ Ω \ Z such that

K̃ ⊇ K ∪ K1 ∪ K2,

and using the intermediate value theorem, we can obtain a sequence {xε} ⊆ K̃ satisfying

lim
ε→0

∣∣uε(xε)
∣∣= 0.

Hence, Lemma 3.4 yields that limε→0 ‖uε‖L∞(K̃)
= 0, which completes the proof. �

Proof of Theorem 1.5 completed. First of all, we assume that (b) in Proposition 3.5 holds. In this case,
we also suppose that there exists r ∈ (0, 1

3 dist(Z1,Z2)) such that B2r (pi,1) ∩ B2r (pj,1) = ∅ when i 	= j and
limε→0(sup⋃d1

j=1 Br(pj,1)
uε) � 0. By using limx→pj,1 uε(x) = −∞ and the intermediate value theorem, we see that

there exists xε ∈ ⋃d1
j=1 Br(pj,1) such that |uε(xε)| = inf⋃d1

j=1 Br (pj,1)
|uε| → 0 as ε → 0. Let x0 ∈ ⋃d1

j=1 Br(pj,1) be

the limit point of xε . Passing to a subsequence, only one of the following two possibilities can be satisfied: either
x0 /∈ Z1 or x0 ∈ Z1.
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Case 1: x0 /∈ Z1.
Let us fix a constant d ∈ (0, 1

3 dist(x0,Z)). Since Bd(x0) ⊂ Ω \ Z and in particular limε→0(infBd(x0)
|uε|) = 0,

then, in view of Lemma 3.4, we see that limε→0(supBd(x0)
|uε|) = 0. This is a contradiction since we are assuming

that Proposition 3.5(b) holds.
Case 2: x0 ∈ Z1.
For the sake of simplicity, we assume that x0 = 0 ∈ Z1. Since we are assuming that Proposition 3.5(b) holds, then

there exists γ > 0 such that limε→0(sup|x|=r uε) < −γ . By the maximum principle, we see that sup|x|�r uε � 0. We
claim that

lim
ε→0

|xε|
ε

= ∞. (3.24)

We argue by contradiction and suppose that lim infε→0
|xε |
ε

< ∞. Hence, passing to a subsequence, we could assume

that |xε |
ε

� c for some constant c > 0 and small ε > 0. Note that uε(x) = 2mj,1 ln |x| + vε(x) near x = 0 for some
smooth function vε and 1 � j � d1. Let v̂ε(x) = vε(|xε|x) + 2mj,1 ln |xε| for |x| < r

|xε | . Then v̂ε satisfies

�v̂ε + |xε|2
ε2

|x|2mj,1ev̂ε (1 − |x|2mj,1ev̂ε )

(τ + |x|2mj,1ev̂ε )3
= 0 on B r

|xε | (0). (3.25)

We also observe that

v̂ε(x) = uε

(|xε|x
)− 2mj,1 ln |x| � −2mj,1 ln |x| for |x|� r

|xε| , (3.26)

and

lim
ε→0

v̂ε

(
xε

|xε|
)

= lim
ε→0

uε(xε) = 0. (3.27)

Since |xε |
ε

� c and supt�0 | t (1−t)

(τ+t)3 | < ∞, then for any p > 1 and R > 0, there exists a constant Cp,R > 0 such that

limε→0 ‖�v̂ε‖Lp(BR(0)) � Cp,R . By using (3.26), (3.27), and Lemma 3.2, we see that for large R > 0, there exist
σ ∈ (0,1) and γ > 0, independent of ε > 0, such that

o(1) = v̂ε

(
xε

|xε|
)
� sup

BR/2(0)

v̂ε � σ inf
BR/2(0)

v̂ε + (1 + σ)γ ‖�v̂ε‖Lp(BR(0)) − (1 − σ)2mj,1 lnR.

Hence v̂ε is bounded in C0
loc(B r

|xε | (0)). Passing to a subsequence, we may assume that limε→0
xε|xε | = y0 ∈ S1,

limε→0
|xε |
ε

= c0 � 0, and v̂ε converges in C2
loc(R

2) to a function v̂ satisfying

�v̂ + c2
0|x|2mj,1ev̂(1 − |x|2mj,1ev̂)

(τ + |x|2mj,1ev̂)3
= 0 in R

2. (3.28)

Then the function û = v̂ + 2mj,1 ln |x| � 0 satisfies

�û + c2
0e

û(1 − eû)

(τ + eû)3
= 4πmj,1δ0 in R

2. (3.29)

Since û � 0, we have c0 > 0 and since û(y0) = limε→0 uε(xε) = 0, we have û ≡ 0 by the strong maximum principle.
This is of course a contradiction and (3.24) is proved.

At this point, let us fix a constant s2 < 0 such that β(s2) � M0
π

(see (2.15) and Lemma 3.1) and −γ < s2 < 0. We
can choose yε on a line segment joining xε to rxε|xε | such that uε(yε) = s2 and |yε| � |xε| by the intermediate value
theorem. Let ûε(x) = uε(εx + yε) on B |xε | (0). We note that 0 /∈ B |xε | (yε). Then ûε satisfies
2ε 2
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ûε + eûε (1 − eûε )

(τ + eûε )3
= 0 in B |xε |

2ε
(0),

ûε(0) = s2,∫
B |xε |

2ε

(0)

∣∣∣∣eûε (1 − eûε )

(τ + eûε )3

∣∣∣∣dx � M0.

(3.30)

By using the fact that ûε � 0 and ûε(0) = s2 with Lemma 3.2, then we see that for large R > 0 there exist σ ∈ (0,1)

and γ > 0, independent of ε > 0, such that

s2 = ûε(0) � sup
BR/2(0)

ûε � σ inf
BR/2(0)

ûε + (1 + σ)γ ‖�ûε‖Lp(BR(0)),

and ûε is bounded in C0
loc(B |xε |

2ε
(0)). Then ûε converges in C2

loc(R
2) to a function u∗ satisfying⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�u∗ + eu∗(1 − eu∗)

(τ + eu∗)3
= 0 in R

2,

u∗(0) = s2, u∗ � 0,∫
R2

∣∣∣∣eu∗(1 − eu∗)

(τ + eu∗)3

∣∣∣∣dx � M0.

(3.31)

By using Lemma 2.1, we see that u∗ is radially symmetric about some point. Then, we see that | ∫
R2

eu∗ (1−eu∗ )

(τ+eu∗ )3 |dx �
2πβ(s2) � 2M0 from Lemma 2.2 which is once more a contradiction.

At this point, by using the above results, we see that limε→0(sup⋃d1
j=1 Br (pj,1)

uε) < −c for some constant c > 0,

which shows that (b) in Theorem 1.5 holds whenever (b) in Proposition 3.5 holds.
The proof of (c) in Theorem 1.5 follows essentially by the same argument and we skip it here to avoid repeti-

tions. �
4. Proof of Theorem 1.1: stable solution ⇒ topological solution

In this section, we will prove one of the implications in the statement of Theorem 1.1, that is, stable solution ⇒
topological solution whenever (H1)–(H2) hold. Let uε be a sequence of stable solutions of (1.2). To prove Theo-
rem 1.1, we argue by contradiction and suppose that uε does not converge to 0 almost everywhere. Then either (b)

or (c) of Theorem 1.5 would occur. Since fτ (u) = −f
τ−1 (−u)

τ 3 , without loss of generality we can assume that uε has
the profile (b) of Theorem 1.5.

If uε − 2 ln ε has a bubble at some point in Ω \Z2, then there are two possibilities. One is that the limiting equation
is the mean field equation and it is easy to see that the solution is not stable. Another one is that the limiting equation
is (1.2), but defined in the whole R

2, and after a suitable scaling, uε tends to a nontopological solution u such that
lim|x|→∞ u(x) = −∞. Again, this is also unstable. The proof is not difficult. But for the sake of completeness, we
put the proof in Appendix A. To the best of our knowledge, even for CSH (1.3), this result has not been written in the
literature.

Therefore, from now on, we may assume that for any small r > 0, there exists cr > 0 such that

wε ≡ uε − 2 ln ε < cr on Ω \
⋃
j

(
Br(pj,2)

)
. (4.1)

Now we consider

με ≡ inf
φ∈W 1,2(Ω)\{0}

∫
Ω

|∇φ|2 − 1
ε2 f ′

τ (uε)φ
2 dx

‖φ‖2
L2(Ω)

� 1

|Ω|2
∫

− 1

ε2
f ′

τ (uε) dx = 1

|Ω|2
∫

euε (−τ + 2(τ + 1)euε − e2uε )

ε2(τ + euε )4
dx. (4.2)
Ω Ω
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To derive a contradiction, we want to prove that for small ε > 0,∫
Ω

euε (−τ + 2(τ + 1)euε − e2uε )

ε2(τ + euε )4
dx < 0. (4.3)

To prove (4.3), we need to compute the integral over a small neighborhood of each pj,2 ∈ Z2. Let us first show a
simple fact about wε .

Lemma 4.1. wε satisfies

either lim
ε→0

‖wε − u0‖L∞(Ω\⋃j (Br (pj,2))) < ∞ or lim
ε→0

(
sup

Ω\⋃j (Br (pj,2))

wε

)
= −∞. (4.4)

Moreover, for any small r > 0, there exists Cr > 0 such that

sup
Ω\⋃j (Br (pj,2))

∣∣∇(wε − u0)
∣∣� Cr. (4.5)

Proof. We note that wε satisfies the following equation

�wε + ewε (1 − ε2ewε )

(τ + ε2ewε )3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π

d2∑
j=1

mj,2δpj,2 on Ω. (4.6)

We also see that

�(wε − u0) + ewε (1 − ε2ewε )

(τ + ε2ewε )3
= 4π(N1 − N2)

|Ω| on Ω.

By using (4.1) and Lemma 3.2, we readily obtain (4.4).
Next, by using the Green’s representation formula for a solution wε of (4.6), we see that for x ∈ Ω ,

wε(x) − u0(x) = 1

|Ω|
∫
Ω

wε(y)dy +
∫
Ω

G(x, y)
ewε (1 − ε2ewε )

(τ + ewε )3
dy. (4.7)

By using Lemma 3.1, we conclude that there exists a constant C > 0, independent of ε > 0 and r > 0, such that for
x ∈ Ω \⋃j (Br(pj,2)), it holds

∣∣∇(
wε(x) − u0(x)

)∣∣� 1

2π

∫
Ω

1

|x − y|
∣∣∣∣ewε (1 − ε2ewε )

(τ + ε2ewε )3

∣∣∣∣dy + C

� 1

2π

{
sup

Ω\⋃j (B r
2
(pj,2))

∣∣∣∣ewε (1 − ε2ewε )

(τ + ε2ewε )3

∣∣∣∣
∫

B r
2
(x)

1

|x − y| dy

+ 2

r

∫
Ω\B r

2
(x)

∣∣∣∣ewε (1 − ε2ewε )

(τ + ε2ewε )3

∣∣∣∣dy

}
+ C. (4.8)

By using (4.1) and Lemma 3.1, we obtain (4.5) which concludes the proof of our lemma. �
If limε→0 ‖wε − u0‖L∞(Ω\⋃j (Br (pj,2))) < ∞ for any small r > 0, then there exists a function w satisfying

wε → w in C2
loc(Ω \ Z2).

By using Lemma 3.1, we also see that w satisfies

�w + ew

τ 3
= 4π

d1∑
mj,1δpj,1 + 4π

d2∑
βj,2δpj,2 on Ω where βj,2 > −1. (4.9)
j=1 j=1
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If limε→0(supΩ\⋃j (Br (pj,2))
wε) = −∞, then for fixed x0 ∈ Ω \ Z, and by using (4.5), we see that there exists a

function g satisfying

gε ≡ wε − wε(x0) → g in C2
loc(Ω \ Z2),

and

�g = 4π

d1∑
j=1

mj,1δpj,1 + 4π

d2∑
j=1

βj,2δpj,2 on Ω where βj,2 ∈R. (4.10)

Clearly (4.10) implies N1 +∑d2
j=1 βj,2 = 0.

Next we have the following property.

Lemma 4.2. For any 1 � j � d2,

lim
r→0

lim
ε→0

∫
Br (pj,2)

fτ (uε)

ε2
dx = −4π(mj,2 + βj,2), (4.11)

and

lim
r→0

lim
ε→0

∫
Br (pj,2)

F2,τ (uε)

ε2
dx = 2π

(
β2

j,2 − m2
j,2

)
, (4.12)

where F2,τ (u) ≡ eu((1−τ)eu+2τ)

2τ 2(τ+eu)2 .

Proof. For the sake of simplicity, we assume that pj,2 = 0. We consider the following two cases.
Case 1. wε → w in C2

loc(Ω \ Z2).
We integrate (4.6) on Br(0) and take the limit as ε → 0 to conclude that

lim
ε→0

∫
Br(0)

fτ (uε)

ε2
dx = − lim

ε→0

(
4πmj,2 +

∫
∂Br (0)

∂wε

∂ν
dσ

)
= −

(
4πmj,2 +

∫
∂Br (0)

∂w

∂ν
dσ

)

= −4π(mj,2 + βj,2) +
∫

Br(0)

ew

τ 3
dx.

Clearly Lemma 3.1 implies that

lim
r→0

lim
ε→0

∫
Br (0)

fτ (uε)

ε2
dx = −4π(mj,2 + βj,2).

At this point we consider the function v ≡ w − 2βj,2 ln |x| which satisfies

�v + ew

τ 3
= 0 on Br(0). (4.13)

Multiplying (4.13) by ∇w · x and integrating over Br(0), we conclude that∫
∂Br (0)

[(
∇v · x

|x|
)

(∇v · x) − |∇v|2|x|
2

+ ew|x|
τ 3

]
dσ =

∫
Br(0)

(2 + 2βj,2)e
w

τ 3
dx. (4.14)

Let us also consider the function vε(x) ≡ uε(x) + 2mj,2 ln |x| which satisfies

�vε + fτ (uε)

ε2
= 0 on Br(0). (4.15)

Multiplying (4.15) by ∇uε · x and integrating over Br(0), we have
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∫
Br (0)

2F2,τ (uε)

ε2
dx =

∫
∂Br (0)

[(
∇vε · x

|x|
)

(∇vε · x) − |∇vε|2|x|
2

+ F2,τ (uε)|x|
ε2

− 2mj,2
∇vε · x

|x|
]

dσ. (4.16)

Hence, as ε → 0, we have

lim
ε→0

∫
Br (0)

2F2,τ (uε)

ε2
dx =

∫
∂Br (0)

[
(∇v · x + 2(mj,2 + βj,2))

2

|x| −
∣∣∣∣∇v + 2(mj,2 + βj,2)x

|x|2
∣∣∣∣
2 |x|

2

+ ew|x|
τ 3

− 2mj,2{∇v · x + 2(mj,2 + βj,2)}
|x|

]
dσ.

By using (4.14), we also see that

lim
r→0

lim
ε→0

∫
Br (0)

F2,τ (uε)

ε2
dx = 2π

(
β2

j,2 − m2
j,2

)
,

which is (4.12).
Case 2. gε = wε − wε(x0) → g in C2

loc(Ω \ Z2).
We integrate (4.6) on Br(0) and take the limit as ε → 0 to conclude that

lim
ε→0

∫
Br (0)

fτ (uε)

ε2
dx = − lim

ε→0

(
4πmj,2 +

∫
∂Br (0)

∂gε

∂ν
dσ

)
= −

(
4πmj,2 +

∫
∂Br (0)

∂g

∂ν
dσ

)
= −4π(mj,2 + βj,2).

Let us consider the function h ≡ g − 2βj,2 ln |x|. Then h satisfies

�h = 0 on Br(0). (4.17)

Next we also define hε(x) ≡ gε(x) + 2mj,2 ln |x| which satisfies

�hε + fτ (uε)

ε2
= 0 on Br(0). (4.18)

Multiplying (4.18) by ∇uε · x and integrating over Br(0), we see that

lim
ε→0

∫
Br (0)

2F2,τ (uε)

ε2
dx =

∫
∂Br (0)

[
(∇h · x + 2(mj,2 + βj,2))

2

|x| −
∣∣∣∣∇h + 2(mj,2 + βj,2)x

|x|2
∣∣∣∣
2 |x|

2

− 2mj,2{∇h · x + 2(mj,2 + βj,2)}
|x|

]
dσ.

By using (4.17), we also conclude that

lim
ε→0

∫
Br (0)

F2,τ (uε)

ε2
dx = 2π

(
β2

j,2 − m2
j,2

)
,

which is (4.11). �
Let ûε(x) = uε(εx) which satisfies

�ûε + fτ (ûε) = −4πmj,2δpj,2 on Br
ε
(pj,2).

Moreover we have:

Lemma 4.3. There exists a constant c > 0, independent of r > 0 and ε > 0, such that∣∣∣∣∇ûε(x) + 2mj,2(x − pj,2)

|x − pj,2|2
∣∣∣∣� c on Br

ε
(pj,2). (4.19)
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Proof. For the sake of simplicity, we assume that pj,2 = 0. By using the Green’s representation formula for a solution
uε of (1.2) (see (3.12)) and Lemma 3.1, we see that for x ∈ Br(0),∣∣∣∣∇uε(x) + 2mj,2x

|x|2
∣∣∣∣� C + 1

2πε2

∫
Ω

|fτ (uε)|
|x − y| dy

= C + 1

2πε2

( ∫
Bε(x)

|fτ (uε)|
|x − y| dy +

∫
Ω\Bε(x)

|fτ (uε)|
|x − y| dy

)

� C + C′

ε
,

for some constants C,C′ > 0, independent of r > 0 and ε > 0. The desired conclusion follows by the substitution
ûε(x) = uε(εx). �

As mentioned above, we have to study the behavior of ûε as ε → 0. This is the most delicate part of our proof.
Here, the Pohozaev identity (4.12) is used.

Lemma 4.4. If τ = 1 or mj,2 ∈ [0,1], then for any η > 0,

lim
ε→0

(
sup

|x−pj,2|=η

ûε(x)
)

= lim
ε→0

(
sup

|x−pj,2|=η

uε(εx)
)

= −∞. (4.20)

Moreover, if wε → w in C2
loc(Ω \ Z2), then (4.20) always holds without any further assumptions for τ and mj,2.

Proof. For the sake of simplicity, we assume that pj,2 = 0. We divide the proof of our lemma into two steps.
Step 1. We claim that for any η > 0, there exists cη > 0 such that for small ε > 0,

sup
|x|=η

ûε(x) = sup
|x|=η

uε(εx) < cη. (4.21)

We argue by contradiction and suppose that there exists η0 > 0 such that

lim
ε→0

(
sup

|x|=η0

ûε(x)
)

= lim
ε→0

(
sup

|x|=η0

uε(εx)
)

= +∞.

Since |∇ûε| is locally bounded in Br
ε
(0) \ {0}, we also see that

lim
ε→0

(
inf|x|=η0

ûε(x)
)

= lim
ε→0

(
inf|x|=η0

uε(εx)
)

= +∞. (4.22)

Fix c ∈ (−∞,0) and n ∈ N. Since limε→0 sup∂B(0,r/ε) ûε = −∞, then (4.22) implies that there exists yi
ε =

(ri
ε cos θi, r

i
ε sin θi) such that ûε(y

i
ε) = c where θi = 2πi

n
and

lim
ε→0

ri
ε = +∞, lim

ε→0

(
εri

ε

)= 0 for all 1 � i � n.

In view of (4.19), we see that the function ūi
ε(x) = ûε(x + yi

ε) satisfies

�ūi
ε + fτ

(
ūi

ε

)= 0,
∣∣∇ūi

ε

∣∣� C1 on Briε
2

(0), ūi
ε(0) = c < 0,

for some constant C1 > 0. Then {ūi
ε} is uniformly bounded in L∞

loc(B riε
2

(0)) and there exists a function ūi such that

ūi
ε → ūi in C2

loc(R
2) and

�ūi + fτ

(
ūi
)= 0,

∣∣∇ūi
∣∣� C1 on R

2, ūi (0) = c < 0.

By using Lemma 2.1, we see that ūi is radially symmetric with respect to some point p̄i in R
2 and ūi does not change

sign. Hence Lemma 3.1 and Lemma 2.2 imply that there exists a large R > 0 such that
∫ |fτ (ū

i
ε)|dx � 4π . Then,
BR(0)
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M0 �
∫

B r
ε
(0)

∣∣fτ (ûε)
∣∣dx �

n∑
i=1

∫
BR(yi

ε)

∣∣fτ (ûε)
∣∣dx =

n∑
i=1

∫
BR(0)

∣∣fτ

(
ūi

ε

)∣∣dx � 4πn for any n ∈N,

which is a contradiction. Therefore (4.21) holds as claimed.
Moreover, by using (4.1), (4.21) and the maximum principle, we obtain

sup
η�|x|� r

ε

ûε(x) = sup
η�|x|� r

ε

uε(εx) < cη. (4.23)

Step 2. To prove our lemma, we argue by contradiction and suppose that {ûε} is uniformly bounded in L∞
loc(B r

ε
(0)\

{0}). Then, since supt∈R |fτ (t)| < ∞ and by using (4.19) and (4.23), we see that there exists a function û such that
ûε → û in C2

loc(R
2 \ {0}) and⎧⎨

⎩
�û + fτ (û) = −4πmj,2δ0 on R

2,

fτ (û) ∈ L1(R2), sup
|x|�1

û(x) � C, sup
|x|�1

∣∣∇û(x)
∣∣� C, (4.24)

for some constant C > 0. Let β̂ = 1
2π

∫
R2 fτ (û) dx. Then we obtain

lim|x|→∞
û(x)

ln |x| = −2mj,2 − β̂.

In view of (4.24), we also see that we cannot have lim|x|→∞ û(x) > 0. Moreover, since fτ (û) ∈ L1(R2) and
sup|x|�1 |∇û(x)| � C, then we see that

either lim|x|→∞ û(x) = 0 or lim|x|→∞ û(x) = −∞. (4.25)

Indeed, if there exists a sequence xn ∈R
2 such that

lim
n→∞|xn| → +∞, lim

n→∞ û(xn) = c /∈ {0,−∞},
then since sup|x|�1 |∇û(x)| � C, there exist small r0 > 0 and c0 > 0, independent of n, such that∣∣fτ (û)

∣∣� c0 > 0 on Br0(xn).

Then
∫
R2 |fτ (û)|dx �

∑∞
n=1

∫
Br0 (xn)

|fτ (û)|dx = +∞ which proves (4.25).

If lim|x|→∞ û(x) = 0, then (4.1) and the maximum principle imply that there exist cτ > 0 and R0 > 0 such that

ûε < cτ on Br
ε
(0) \ BR0(0), (4.26)

which implies that

F2,τ (ûε) > 0 on Br
ε
(0) \ BR0(0).

In view of supt∈R |F2,τ (t)| < ∞, (4.12) and (4.26), we also see that, for any R ∈ (R0,∞), we have

2π
(
β2

j,2 − m2
j,2

)= lim
r,η→0

lim
ε→0

∫
B r

ε (0)\Bη(0)

F2,τ (ûε) dx

� lim
η→0

lim
ε→0

∫
BR(0)\Bη(0)

F2,τ (ûε) dx =
∫

BR(0)

F2,τ (û) dx. (4.27)

Since lim|x|→∞ û(x) = 0, we see that

lim F2,τ (û) = lim
eû((1 − τ)eû + 2τ)

2 û 2
= 1

2
	= 0,
|x|→∞ |x|→∞ 2τ (τ + e ) 2(τ + 1)τ
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which shows that the right hand side of (4.27) could be arbitrarily large, which is impossible. Hence the first case
in (4.25) cannot occur.

If lim|x|→∞ û(x) = −∞, then in view of (4.1) and the maximum principle, there exists R0 > 0 such that

ûε < 0 on Br
ε
(0) \ BR0(0). (4.28)

By using Lemma 4.2 and (4.28), we see that

2πβ̂ = lim
R→∞

∫
|x|�R

fτ (û) dx = lim
R→∞ lim

ε→0

∫
|x|�R

fτ (ûε) dx � lim
r→0

lim
ε→0

∫
|x|� r

ε

fτ (ûε) dx = −4π(mj,2 + βj,2).

Hence we conclude that

β̂ � −2(mj,2 + βj,2),

and in particular that

lim|x|→∞
û(x)

ln |x| = −2mj,2 − β̂ � 2βj,2. (4.29)

By using (4.24) and lim|x|→∞ û(x) = −∞, we see that eû ∈ L1(R2 \ B1(0)) and then

lim|x|→∞
û(x)

ln |x| < −2. (4.30)

At this point, the method of moving planes can be used with (4.30) to prove that û is radially symmetric (see [5,12]).
Moreover, (4.29) and (4.30) imply that

βj,2 < −1. (4.31)

If wε → w in C2
loc(Ω \ Z2), then (4.31) contradicts (4.9). Moreover, if τ = 1 or mj,2 ∈ [0,1], then Theorem 3.4 in [8]

imply that û cannot be stable solution, which yields a contradiction and completes the proof of our lemma. �
Lemma 4.5. If

lim
ε→0

(
sup

|x−pj,2|=η

ûε(x)
)

= lim
ε→0

(
sup

|x−pj,2|=η

uε(εx)
)

= −∞, (4.32)

then

lim
ε→0

(
sup

η�|x−pj,2|� r
ε

ûε(x)
)

= lim
ε→0

(
sup

η�|x−pj,2|� r
ε

uε(εx)
)

= −∞. (4.33)

Moreover, mj,2 + βj,2 = 0.

Proof. For the sake of simplicity, we assume that pj,2 = 0. We divide the proof of our lemma into the following steps.
Step 1. To prove (4.33), we argue by contradiction and suppose that for some constant c ∈ (−∞,0), there exists

yε ∈ Br
ε
(0) \ Bη(0) such that ûε(yε) = c. In view of (4.1), (4.19) and (4.32), we see that

lim
ε→0

|yε| = ∞ and lim
ε→0

(
ε|yε|

)= 0.

Moreover, by using (4.19), we see that the function ūε(x) = ûε(x + yε) satisfies⎧⎨
⎩

�ūε + fτ (ūε) = 0, |∇ūε| � C1 on B |yε |
2

(0),

ūε(0) = c < 0, fτ (ūε) ∈ L1(B |yε |
2

(0)
)
,

for some constant C1 > 0. Then {ūε} is uniformly bounded in L∞
loc(B |yε |

2
(0)) and there exists a function ū such that

ūε → ū in C2 (R2) and
loc
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{
�ū + fτ (ū) = 0, |∇ū| � C1 on R

2,

ū(0) = c < 0, fτ (ū) ∈ L1(
R

2).
By using Lemma 2.1, we conclude that ū is a nontopological radially symmetric solution. Then Theorem 3.4 in [8]
shows that ū cannot be a stable solution which proves (4.33).

Step 2. By using Lemma 4.2 and (4.33) we see that

−4π(mj,2 + βj,2) = lim
r,η→0

lim
ε→0

∫
B r

ε
(0)\Bη(0)

fτ (ûε) dx = lim
r,η→0

lim
ε→0

∫
B r

ε
(0)\Bη(0)

eûε

τ 3
dx

= lim
r,η→0

lim
ε→0

∫
B r

ε
(0)\Bη(0)

F2,τ (ûε) dx = 2π
(
β2

j,2 − m2
j,2

)
, (4.34)

which implies{
mj,2 + βj,2 � 0, and

either mj,2 + βj,2 = 0 or mj,2 − βj,2 = 2.

To prove our lemma, we argue by contradiction and suppose that

mj,2 + βj,2 < 0, (4.35)

which implies

mj,2 − βj,2 = 2, mj,2 < 1 < −βj,2. (4.36)

If wε → w in C2
loc(Ω \ Z2), then (4.36) contradicts βj,2 > −1 in (4.9), and we obtain that mj,2 + βj,2 = 0 in this

case.
Therefore, from now on, we assume that

lim
ε→0

(
sup

Ω\⋃j (Br (pj,2))

wε

)
= −∞ for any small r > 0. (4.37)

Then (4.32) and (4.37) imply that for any r, η > 0,

lim
ε→0

(
sup

x∈∂B r
ε
(0)∪∂Bη(0)

eûε(x)|x|2
)

= 0. (4.38)

Step 3. We claim that for any r, η > 0,

lim
ε→0

(
sup

x∈B r
ε
(0)\Bη(0)

eûε(x)|x|2
)

= 0. (4.39)

Let us choose yε ∈ Br
ε
(0) \ Bη(0) such that

eûε(yε)|yε|2 =
(

sup
x∈B r

ε
(0)\Bη(0)

eûε(x)|x|2
)
.

We consider the function ũε(x) ≡ ûε(|yε|x) + 2 ln |yε|. Then ũε satisfies

�ũε + eũε (1 − eũε /|yε|2)
(τ + eũε /|yε|2)3

= −4πmj,2δ0 on B r
ε|yε | (0).

Moreover,

ũε(x) = ûε

(|yε|x
)+ 2 ln

(|yε||x|)− 2 ln |x| � ũε

(
yε

|yε|
)

− 2 ln |x| on B r
ε|yε | (0) \ B η

|yε | (0). (4.40)

To prove the claim (4.39), we argue by contradiction and consider the following two cases.
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Case 1: Suppose that

lim
ε→0

(
eûε(yε)|yε|2

)= +∞.

Then we see that, in view of (4.38), we have limε→0 |yε| = +∞ and limε→0(ε|yε|) = 0.
Moreover, we see that

sε ≡ exp

(
−1

2
ũε

(
yε

|yε|
))

→ 0 as ε → 0.

In view of (4.40), we see that for any x ∈ B 1
δ
(0) \ Bδ(0),

ũε(x) � ũε

(
yε

|yε|
)

− 2 ln δ. (4.41)

By using (4.33) and limε→0 |yε| = +∞, we also see that

lim
ε→0

(
eũε(x)

|yε|2
)

= lim
ε→0

eûε(|yε |x) = 0 on B 1
δ
(0) \ Bδ(0). (4.42)

Let w̄ε(x) ≡ ũε(sεx + yε

|yε | ) + 2 ln sε for |x| < δ
2sε

. For small ε, δ > 0, w̄ε satisfies

�w̄ε +
ew̄ε (1 − ew̄ε

s2
ε |yε |2 )

(τ + ew̄ε

s2
ε |yε |2 )3

= 0 on B δ
2sε

(0).

By using (4.41), we see that⎧⎨
⎩ w̄ε(x) � ũε

(
yε/|yε|

)− 2 ln δ + 2 ln sε = −2 ln δ for |x| < δ

2sε
,

w̄ε(0) = ũε

(
yε/|yε|

)+ 2 ln sε = 0.

(4.43)

In view of (4.42), we also conclude that limε→0(
1

s2
ε |yε |2 ) = 0 and for small ε > 0,

0 � −�w̄ε �
1

δ2τ 3
on B δ

2sε

(0). (4.44)

By using (4.43), (4.44), and Lemma 3.2, we see that for any p > 1 and R > 0, there exist constants σ ∈ (0,1) and
γ > 0, depending on R > 0 only such that

0 = w̄ε(0) � sup
BR(0)

w̄ε � σ inf
BR(0)

w̄ε + (1 + σ)γ ‖�w̄ε‖Lp(B2R(0)) − 2(1 − σ) ln δ,

which implies that w̄ε is bounded in C0
loc(B δ

2sε

(0)). Then there exists a function w∗ such that w̄ε → w∗ in C2
loc(R

2).

By Lemma 3.1, w∗ satisfies⎧⎨
⎩�w∗ + ew∗

τ 3
= 0 in R

2,

w∗(0) = 0, ew∗ ∈ L1(R2).

However we see that w∗ cannot be a stable solution, which yields the desired contradiction and rules out Case 1.
Case 2: Suppose that there exists c > 0 such that

e−c < lim
ε→0

eûε(yε)|yε|2 < ec. (4.45)

Then, in view of (4.38), we see that limε→0 |yε| = +∞ and limε→0(ε|yε|) = 0. By using (4.40) and (4.45), we also
conclude that⎧⎪⎨

⎪⎩
ũε(x) � ũε

(
yε

|yε|
)

− 2 ln |x| � c − 2 ln |x| for x ∈ B 1
δ
(0) \ Bδ(0),

−c � ũε

(
yε/|yε|

)
.

(4.46)
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By using (4.33) and limε→0 |yε| = +∞, we also have

lim
ε→0

(
eũε(x)

|yε|2
)

= lim
ε→0

eûε(|yε |x) = 0 on B 1
δ
(0) \ Bδ(0). (4.47)

Then (4.47) implies that for small ε > 0,

0 � −�ũε = eũε (1 − eũε /|yε|2)
(τ + eũε /|yε|2)3

� ec

δ2τ 3
on B 1

δ
(0) \ Bδ(0). (4.48)

By using (4.46), (4.48), and Lemma 3.2, we see that for any p > 1 and δ > 0, there exist constants σ ∈ (0,1) and
γ > 0, depending only on δ > 0 such that

−c � ũε

(
yε/|yε|

)
� sup

B 1
δ
(0)\Bδ(0)

ũε

� σ inf
B 1

δ
(0)\Bδ(0)

ũε + (1 + σ)γ ‖�ũε‖Lp(B 2
δ
(0)\B δ

2
(0)) + (1 − σ)

(
c − 2 ln

(
δ

2

))
,

which implies that ũε is bounded in C0
loc(B r

ε|yε | (0) \ {0}). Let

α = lim
δ→0

lim
ε→0

∫
Bδ(0)

eũε (1 − eũε /|yε|2)
(τ + eũε /|yε|2)3

dx = lim
δ→0

lim
ε→0

∫
Bδ|yε |(0)

eûε (1 − eûε )

(τ + eûε )3
dx.

In view of Lemma 3.1, we see that there exists a function w∗ such that ũε → w∗ in C2
loc(R

2 \ {0}) and

⎧⎪⎪⎨
⎪⎪⎩

�w∗ + ew∗

τ 3
= (−α − 4πmj,2)δ0 in R

2,

(−α − 4πmj,2) > −4π,

w∗ � c − 2 ln |x|, ew∗ ∈ L1(
R

2).
However, w∗ cannot be a stable solution, which yields once more a contradiction and concludes the proof of (4.39) as
claimed.

Step 4. For any d ∈ (0,−(mj,2 + βj,2)), there exists rε := rε(d) ∈ (0, r
ε
) such that

lim
ε→0

∫
Brε (0)

fτ (ûε) dx = 4πd. (4.49)

Now we claim that

lim
ε→0

∫
Brε (0)

F2,τ (ûε) dx = 2πd(d + 2mj,2). (4.50)

By using (4.33) and (4.39), we see that limε→0 rε = +∞ and limε→0(εrε) = 0. Let us consider the function ˆ̂uε(x) ≡
ûε(rεx) + 2 ln rε which satisfies

� ˆ̂uε + e
ˆ̂uε (1 − e

ˆ̂uε/r2
ε )

(τ + e
ˆ̂uε/r2

ε )3
= −4πmj,2δ0 on B r

εrε
(0).

We claim that for any δ > 0, there exists Cδ > 0 such that

∣∣ ˆ̂uε(x1) − ˆ̂uε(x2)
∣∣� Cδ for any x1, x2 ∈ B 1 (0) \ Bδ(0). (4.51)
δ



D. Bartolucci et al. / Ann. I. H. Poincaré – AN 32 (2015) 651–685 673
By using the Green’s representation formula for a solution uε of (1.2) and Lemma 3.1, we see that for any x1, x2 ∈
B 1

δ
(0) \ Bδ(0),

ˆ̂uε(x1) − ˆ̂uε(x2) = uε(εrεx1) − uε(εrεx2)

=
∫
Ω

(
G(εrεx1, y) − G(εrεx2, y)

)(−�uε(y)
)
dy

= O(1) +
∫
Ω

(
G(εrεx1, y) − G(εrεx2, y)

)fτ (uε(y))

ε2
dy

= O(1) + 1

2π

∫
Ω

ln

( |εrεx2 − y|
|εrεx1 − y|

)
fτ (uε(y))

ε2
dy.

By the mean value theorem, there exists θ = θ(ε, y) ∈ (0,1) such that∣∣ln |εrεx2 − y| − ln |εrεx1 − y|∣∣= ||εrεx2 − y| − |εrεx1 − y||
θ |εrεx2 − y| + (1 − θ)|εrεx1 − y|

� |εrε(x1 − x2)|
θ |εrεx2 − y| + (1 − θ)|εrεx1 − y| . (4.52)

For any y ∈ Ω \ B 2εrε
δ

(0), we have |εrεxi − y|� εrε
δ

for i = 1,2. Then by using Lemma 3.1 and (4.52), we see that∫
Ω\B 2εrε

δ

(0)

∣∣∣∣ln
( |εrεx2 − y|

|εrεx1 − y|
)

fτ (uε)

ε2

∣∣∣∣dy = O(1). (4.53)

By using the fact that |εrεxi − y| � εrεδ
2 for i = 1,2 for any y ∈ Bεrεδ

2
(0) with Lemma 3.1 and (4.52), we also have∫

B εrεδ
2

(0)

∣∣∣∣ln
( |εrεx2 − y|

|εrεx1 − y|
)

fτ (uε)

ε2

∣∣∣∣dy = O(1). (4.54)

Moreover, by using (4.33) and (4.39), we see that∫
B 2εrε

δ

(0)\B εrεδ
2

(0)

ln

( |εrεx2 − y|
|εrεx1 − y|

)
fτ (uε)

ε2
dy =

∫
B 2rε

δ

(0)\B rεδ
2

(0)

ln

( |rεx2 − y|
|rεx1 − y|

)
fτ

(
ûε(y)

)
dy

� 2rε|x1 − x2| sup
B 2rε

δ

(0)\B rεδ
2

(0)

(∣∣fτ (ûε)
∣∣) ∫

B 4rε
δ

(0)

1

|y| dy

= 16π |x1 − x2|
δ

sup
B 2rε

δ

(0)\B rεδ
2

(0)

(
r2
ε

∣∣fτ (ûε)
∣∣)

� 32π |x1 − x2|
δτ 3

sup
B 2rε

δ

(0)\B rεδ
2

(0)

(
r2
ε eûε

)= O(1). (4.55)

At this point, (4.51) follows by using (4.53), (4.54), and (4.55).
Now we fix y0 ∈R

2 \ {0}. Then, in view of (4.39), (4.49) and (4.51), we see that there exists a function h such that
hε ≡ ˆ̂uε − ˆ̂uε(y0) → h in C2

loc(R
2 \ {0}) and

�h = −4π(mj,2 + d)δ0 in R
2.

We also conclude that the function v(x) = h(x) + 2(mj,2 + d) ln |x| satisfies

�v = 0 in R
2. (4.56)
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We consider the function vε(x) ≡ hε(x) + 2mj,2 ln |x| which satisfies

�vε(x) + r2
ε eûε(rεx)(1 − eûε(rεx))

(τ + eûε(rεx))3
= 0 on B r

εrε
(0).

Let vε(x) = v̂ε(rεx). Then, we see that

�v̂ε + eûε (1 − eûε )

(τ + eûε )3
= 0 on Br

ε
(0). (4.57)

Multiplying (4.57) by ∇ûε · x and integrating over Brε (0), we conclude that

∫
Brε (0)

2F2,τ (ûε) dx =
∫

∂Brε (0)

[(
∇v̂ε · x

|x|
)

(∇v̂ε · x) − |∇v̂ε|2|x|
2

+ F2,τ (ûε)|x| − 2mj,2
∇v̂ε · x

|x|
]

dσ. (4.58)

Hence (4.39) and (4.56) imply

lim
ε→0

∫
Brε (0)

2F2,τ (ûε) dx

= lim
ε→0

∫
∂B1(0)

[(
∇vε · x

|x|
)

(∇vε · x) − |∇vε|2|x|
2

+ r2
ε F2,τ

(
ûε(rεx)

)− 2mj,2
∇vε · x

|x|
]

dσ

=
∫

∂B1(0)

{
(∇v · x − 2d)2

|x| −
(

∇v − 2dx

|x|2
)2 |x|

2
− 2mj,2(∇v · x − 2d)

|x|
}

dσ

= 4πd(d + 2mj,2), (4.59)

and we complete the proof of our claim (4.50). At this point, in view of (4.33), (4.49) and (4.59), we see that

4πd = lim
η→0

lim
ε→0

∫
Brε (0)\Bη(0)

fτ (ûε) dx = lim
η→0

lim
ε→0

∫
Brε (0)\Bη(0)

eûε

τ 3
dx

= lim
η→0

lim
ε→0

∫
Brε (0)\Bη(0)

F2,τ (ûε) dx = 2πd(d + 2mj,2),

which implies d + 2mj,2 = 2. Since d > 0 can be chosen arbitrarily, we obtain a contradiction which concludes the
proof of mj,2 + βj,2 = 0 under the assumption (4.32). �
Remark 4.6. It turns out that Lemma 4.4 and Lemma 4.5 yield the following result. Suppose that uε − 2 ln ε is
uniformly bounded in any compact subset of Ω \ Z2 and uε − 2 ln ε converges to w in C2

loc(Ω \ Z2) as ε → 0, then
0 �mj,2 < 1 for 1 � j � d2, N1 > N2, and w satisfies

�w + ew

τ 3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π

d2∑
j=1

mj,2δpj,2 on Ω.

At this point, we are ready to prove one part of Theorem 1.1.

Proof of Theorem 1.1: stable solution ⇒ topological solution. To prove our theorem, we consider the following
cases.
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Case 1. If τ = 1, then Lemma 4.4 and Lemma 4.5 imply that for any r, η > 0,⎧⎨
⎩

lim
ε→0

(
sup

η�|x−pj,2|� r
ε

ûε(x)
)

= lim
ε→0

(
sup

η�|x−pj,2|� r
ε

uε(εx)
)

= −∞,

mj,2 + βj,2 = 0 for all 1 � j � d2.

(4.60)

By using (4.60) and Lemma 4.2, we see that

lim
r,η→0

(
lim
ε→0

∫
B r

ε
(pj,2)\Bη(pj,2)

f ′
τ (ûε) dx

)
= lim

r,η→0

(
lim
ε→0

∫
B r

ε
(pj,2)\Bη(pj,2)

eûε

τ 3
dx

)

= lim
r,η→0

(
lim
ε→0

∫
B r

ε
(pj,2)\Bη(pj,2)

fτ (ûε) dx

)

= −4π(mj,2 + βj,2) = 0. (4.61)

If limε→0(supΩ\⋃j (Br (pj,2))
wε) = −∞ for any small r > 0, then in view of (4.10) and (4.60), we see that

�g = 4π

d1∑
j=1

mj,1δpj,1 − 4π

d2∑
j=1

mj,2δpj,2 on Ω,

thus N1 = N2 which contradicts (H1).
On the other hand, if wε → w in C2

loc(Ω \ Z2), then in view of (4.2) and (4.61), we see that

lim
ε→0

με �
1

|Ω|2 lim
ε→0

∫
Ω

−f ′
τ (uε)

ε2
dx

= 1

|Ω|2 lim
r→0

lim
ε→0

[ ∫
Ω\⋃j (Br (pj,2))

ewε (−τ + 2(τ + 1)ε2ewε − ε4e2wε)

(τ + ε2ewε )4
dx −

d2∑
j=1

∫
B r

ε
(pj,2)

f ′
τ (ûε) dx

]

= − 1

|Ω|2
∫
Ω

ew

τ 3
dx < 0,

which implies με < 0 for small ε > 0. Then uε cannot be a stable solution of (1.2) which is once more a contradiction.
Case 2. If N2 > N1 then, in view of (H2), we have mj,2 ∈ [0,1] for all 1 � j � d2. Then by using Lemma 4.4

and Lemma 4.5 we obtain (4.60). By using the same arguments as in Case 1, we can prove that uε cannot be stable
solution of (1.2). We skip the details of this part to avoid repetitions.

Case 3. If N2 < N1, then we define the following set

J0 ≡
{
l

∣∣∣ 1 � l � d2, lim
ε→0

(
sup

|x−pl,2|=η

ûε(x)
)

= −∞
}
.

If J0 = {1, . . . , d2}, then the desired conclusion will follow by the same argument adopted in Case 1.
Therefore we suppose that J0 	= {1, . . . , d2} and define J1 ≡ {1, . . . , d2} \ J0 	= ∅. By using Lemma 4.4, we see that

limε→0(supΩ\⋃j (Br (pj,2))
wε) = −∞ for any small r > 0. Then by (4.10), we have

N2 =
∑
j∈J0

mj,2 +
∑
j∈J1

mj,2 < N1 =
∑
j∈J0

(−βj,2) +
∑
j∈J1

(−βj,2).

By using Lemma 4.5, we see that there exists j0 ∈ J1 such that

mj0,2 < −βj0,2.

For the sake of simplicity, we assume that pj0,2 = 0. In view of Lemma 4.2, we see that
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lim
r→0

lim
ε→0

∫
B r

ε
(0)

fτ (ûε) dx = −4π(mj0,2 + βj0,2) > 0.

Since j0 ∈ J1, the same argument adopted in the proof of Lemma 4.4 shows that there exists a function û such that
ûε → û in C2

loc(R
2 \ {0}) and⎧⎪⎪⎨

⎪⎪⎩
�û + fτ (û) = −4πmj0,2δ0 on R

2,

lim|x|→∞ û(x) = −∞,

fτ (û) ∈ L1(
R

2), eû ∈ L1(
R

2 \ B1(0)
)
.

Let

β̂ = 1

2π

∫
R2

fτ (û) dx. (4.62)

Then we conclude that

lim|x|→∞
û(x)

ln |x| = −2mj0,2 − β̂ < −2. (4.63)

Moreover, by similar arguments adopted in Step 1 in the proof of Lemma 4.5, (4.1), and (4.63), we can show that
there exist ν and R0 > 0 such that

ûε < −ν on Br
ε
(0) \ BR0(0). (4.64)

Let ¯̂uε(ρ) ≡ 1
2πρ

∫
∂Bρ(0)

ûεdσ . Then ¯̂uε satisfies

ρ
d ¯̂uε

dρ
+ 1

2π

∫
Bρ(0)

fτ (ûε) dx = −2mj0,2. (4.65)

Then (4.62), (4.63), (4.64) and (4.65) imply that there exists σ > 0 such that for large ρ > 0,

ρ
d ¯̂uε

dρ
�−(2 + σ). (4.66)

We claim that there exists a constant C > 0 such that∣∣ûε(x) − ¯̂uε

(|x|)∣∣� C for x ∈ Br
ε
(0) \ BR0(0). (4.67)

Indeed, since j0 ∈ J1 and in view of (4.21), we see that {ûε} is uniformly bounded in L∞
loc(B r

ε
(0) \ {0}). Then we have

lim
ε→0

(
sup

x∈∂B r
ε
(0)∪∂BR0 (0)

eûε(x)|x|2
)

< +∞.

Then, by using (4.64) and the similar argument adopted in Step 3 in the proof of Lemma 4.5, we conclude that

lim
ε→0

(
sup

x∈B r
ε
(0)\BR0 (0)

eûε(x)|x|2
)

< +∞. (4.68)

Moreover, by using the Green’s representation formula for a solution uε of (1.2) and by arguing as in the proof
of (4.51), we obtain (4.67). In view of (4.66) and (4.67) we can find a constant c > 0 such that

lim
ε→0

∫
B r (0)\BR(0)

fτ (ûε) dx � cR−σ .
ε
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Now we see that

2πβ̂ = lim
R→∞

∫
|x|�R

fτ (û) dx = lim
R→∞ lim

ε→0

∫
|x|�R

fτ (ûε) dx

= lim
R→∞ lim

ε→0

( ∫
|x|� r

ε

fτ (ûε) dx −
∫

B r
ε
(0)\BR(0)

fτ (ûε) dx

)
= −4π(mj0,2 + βj0,2) > 0.

Moreover, the method of moving planes to be used with (4.63) shows that û is radially symmetric (see [5,12]). Now
by using Theorem 3.4 in [8] and β̂ > 0, we see that û cannot be stable solution.

At this point, we complete the proof of one part of Theorem 1.1: stable solution ⇒ topological solution under the
assumptions (H1)–(H2). �
5. Proof of Theorem 1.1: topological solution ⇒ strictly stable solution

In this section, we prove the other implication in the statement of Theorem 1.1, that is, topological solution ⇒
strictly stable solution. We assume that uε is a sequence of topological solutions of (1.2) with a sequence ε > 0.
Although we use arguments similar to those in [26], we still need to carry out a subtle analysis to control the solution’s
sign changes.

Lemma 5.1. Let uε be a sequence of topological solutions of (1.2) with ε > 0. Then, as ε → 0, we have

(i) uε → 0 in Cm
loc(Ω \ Z) for any m ∈ Z

+ and faster than any power of ε;

(ii) (1−euε )2

ε2(τ+euε )2 → 4(τ + 1)π
∑

i=1,2
∑di

j=1 m2
j,iδpj,i

, weakly in the sense of measures in Ω .

Proof. Let Ωδ ≡ {x ∈ Ω | dist(x,Z) � δ}. In view of Theorem 1.5 we have uε → 0 uniformly on any compact subset
of Ω \ Z as ε → 0. Then we see that for any small δ > 0,

�
(|uε|2

)= 2|∇uε|2 + 2uε�uε = 2|∇uε|2 + 2uεe
uε (euε − 1)

ε2(τ + euε )3
� 0 on Ωδ, (5.1)

since t (et − 1)� 0 for any t ∈ R. Moreover, we see that

�
(|∇uε|2

)=
2∑

i,j=1

2

∣∣∣∣ ∂2uε

∂xi∂xj

∣∣∣∣
2

+ 2|∇uε|2euε (−e2uε + 2(τ + 1)euε − τ)

ε2(τ + euε )4

� 2|∇uε|2euε (τ + 1 + o(1))

ε2(τ + euε )4
� 0 on Ωδ as ε → 0. (5.2)

We have the following inequality,

|t |
1 + |t | �

∣∣1 − et
∣∣ for any t ∈ R. (5.3)

By using (3.2), (5.1), (5.3), and the mean value theorem, we see that there exists a constant c > 0 such that

sup
Ω2δ

(|uε|2
)
� 1

|Ωδ|
∫
Ωδ

|uε|2 dx

� (1 + ‖uε‖L∞(Ωδ))
2

|Ωδ|
∫
Ωδ

|uε|2
(1 + |uε|)2

dx

� (1 + ‖uε‖L∞(Ωδ))
2

|Ωδ| ‖ (τ + euε )4

euε
‖L∞(Ωδ)

∫
euε (1 − euε )2

(τ + euε )4
dx
Ωδ
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� cε2(1 + ‖uε‖L∞(Ωδ))
2

|Ωδ|
∥∥∥∥ (τ + euε )4

euε

∥∥∥∥
L∞(Ωδ)

, (5.4)

for small ε > 0. In view of (3.2), (5.2), and the mean value theorem, we can find a constant C > 0 such that

sup
Ω2δ

(|∇uε|2
)
� 1

|Ωδ|
∫
Ωδ

|∇uε|2 dx

� 1

|Ωδ|
∥∥∥∥ (τ + euε )2

euε

∥∥∥∥
L∞(Ωδ)

∫
Ω

|∇uε|2euε

(τ + euε )2
dx

� C

|Ωδ|
∥∥∥∥ (τ + euε )2

euε

∥∥∥∥
L∞(Ωδ)

, (5.5)

for small ε > 0. Let φ ∈ C∞(Ω) be such that φ = 0 in {x ∈ Ω | dist(x,Z) � δ}, φ = 1 in Ω2δ and 0 � φ � 1.
Since uε → 0 uniformly on any compact subset of Ω \ Z as ε → 0, we note that there exists some constant Cδ > 0,
independent of ε > 0, such that∣∣∣∣1 − euε

τ + euε

∣∣∣∣� Cδ|uε| on Ωδ. (5.6)

Next, by using (5.4), (5.5) and (5.6), we conclude that

1

ε2

∫
Ω2δ

euε (1 − euε )2

(τ + euε )4
dx � 1

ε2

∫
Ω

euε (euε − 1)

(τ + euε )3

[
(euε − 1)φ

(τ + euε )

]
dx

=
∫
Ω

�uε

[
(euε − 1)φ

(τ + euε )

]
dx =

∫
Ω

uε�

[
(euε − 1)φ

(τ + euε )

]
dx

=
∫
Ω

uε

[
�

(
euε − 1

τ + euε

)
φ + 2(τ + 1)euε∇uε · ∇φ

(τ + euε )2
+ (euε − 1)�φ

(τ + euε )

]
dx

=
∫
Ω

[−(τ + 1)euε |∇uε|2φ
(τ + euε )2

+ (τ + 1)euεuε∇uε · ∇φ

(τ + euε )2
+ (euε − 1)uε�φ

(τ + euε )

]
dx

�
∫
Ω

[
(τ + 1)euεuε∇uε · ∇φ

(τ + euε )2
+ (euε − 1)uε�φ

(τ + euε )

]
dx

=
∫
Ω

[−(τ + 1)euεu2
ε�φ

2(τ + euε )2
+ (τ + 1)euε (euε − τ)u2

ε∇uε · ∇φ

2(τ + euε )3
+ (euε − 1)uε�φ

(τ + euε )

]
dx

� cδ‖uε‖2
L2(Ωδ)

� Cδε
2, (5.7)

for some constants cδ,Cδ > 0. By a suitable iteration of (5.4), (5.7), and the elliptic estimates, we deduce that (i)
holds. In other words, for any small δ > 0 and any m,n ∈ Z

+, there exists a constant cδ,m,n > 0 such that

sup
Ω2δ

(
m∑

|α|=0

∣∣Dαuε

∣∣)� cδ,m,nε
n. (5.8)

Moreover, we see that vε(x) = uε(x) + (−1)i2mj,i ln |x − pj,i | satisfies

�vε + fτ (uε)

ε2
= 0 on Br(pj,i). (5.9)

For the sake of simplicity, we assume that pj,i = 0. Multiplying (5.9) by ∇uε ·x and integrating over Br(0), we obtain
the Pohozaev type identity
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∫
∂Br (0)

[(
∇vε · x

|x|
)

(∇vε · x) − |∇vε|2
2

|x| + 1

ε2
F1,τ (uε)|x|

]
dσ =

∫
Br(0)

2F1,τ (uε)

ε2
+ (−1)i−12mj,ifτ (uε)

ε2
dx,

where F1,τ (u) = −(1−eu)2

2(τ+1)(τ+eu)2 . By using (5.8), we have

lim
ε→0

∫
∂Br (0)

1

ε2
F1,τ (uε)|x|dσ = 0,

thus

lim
ε→0

∫
Br(0)

2F1,τ (uε)

ε2
dx = −4πm2

j,i ,

lim
ε→0

∫
Br(0)

(1 − euε )2

ε2(τ + euε )2
dx = 4(τ + 1)πm2

j,i ,

for any small r > 0 which concludes the proof of our lemma. �
For a solution uε of (1.2), let

με ≡ inf
φ∈W 1,2(Ω)\{0}

∫
Ω

|∇φ|2 − 1
ε2 f ′

τ (uε)φ
2 dx

‖φ‖2
L2(Ω)

, (5.10)

and φε be the corresponding first eigenfunction with φε > 0 in Ω and ‖φε‖L2(Ω) = 1,

με =
∫
Ω

|∇φε|2 − 1

ε2
f ′

τ (uε)φ
2
ε dx, (5.11)

and

−�φε − 1

ε2
f ′

τ (uε)φε = μεφε. (5.12)

We note that ε2με is bounded from below:

ε2με � −
∫
Ω

f ′
τ (uε)φ

2
ε dx � − sup

t∈R

∣∣f ′
τ (t)

∣∣.
To prove Theorem 1.1, we argue by contradiction and suppose that, along a subsequence (still denoted in the same
way), we have a sequence of topological solutions uε of (1.2) with a sequence ε > 0 such that

lim
ε→0

ε2με = μ0 � 0. (5.13)

In view of (i) of Lemma 5.1 and (5.13), we have the following lemma.

Lemma 5.2. There exist pj0,i0 ∈ Z and r0 > 0 such that for any r ∈ (0, r0), there exists a constant ar > 0 such that

lim
ε→0

∫
Br(pj0,i0 )

φ2
ε dx � ar .

Proof. Suppose that there exists a small r > 0 such that

lim
ε→0

∫
⋃

Br(pj,i )

φ2
ε dx = 0. (5.14)
j,i



680 D. Bartolucci et al. / Ann. I. H. Poincaré – AN 32 (2015) 651–685
Then

lim
ε→0

∣∣∣∣
∫

⋃
j,i Br (pj,i )

f ′
τ (uε)φ

2
ε dx

∣∣∣∣� sup
t∈R

∣∣f ′
τ (t)

∣∣ lim
ε→0

∫
⋃

j,i Br (pj,i )

φ2
ε dx = 0.

By using (i) of Lemma 5.1, we see that∫
Ω\⋃j,i Br (pj,i )

f ′
τ (uε)φ

2
ε dx =

∫
Ω\⋃j,i Br (pj,i )

(
− 1

(τ + 1)3
+ o(1)

)
φ2

ε dx as ε → 0. (5.15)

Next, by using (5.13), (5.14) and (5.15), we see that

0 � lim
ε→0

ε2με = lim
ε→0

∫
Ω

ε2|∇φε|2 − f ′
τ (uε)φ

2
ε dx � lim

ε→0

∫
Ω

−f ′
τ (uε)φ

2
ε dx = 1

(τ + 1)3
.

This is the desired contradiction which concludes the proof of our lemma. �
Since fτ (u) = −fτ−1(−u)/τ 3, we can assume without loss of generality that i0 = 2, pj0,i0 = 0, and ν ≡ mj0,i0 in

Lemma 5.2. We consider the scaled function

ûε(y) = uε(εy) in Br0
ε
(0). (5.16)

Then ûε satisfies

�ûε + eûε (1 − eûε )

(τ + eûε )3
= −4πνδ0 in Br0

ε
(0).

Now we have the following lemma.

Lemma 5.3. limε→0(supB r0
ε

(0) |ûε − u|) = 0, where u is a topological solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�u + eu(1 − eu)

(τ + eu)3
= −4πνδ0 in R

2,

sup
R2\B1(0)

|∇u| < +∞,

eu(1 − eu)

(τ + eu)3
,
(1 − eu)2

(τ + eu)2
∈ L1(

R
2).

(5.17)

Proof. We decompose

ûε(y) = −2ν ln |y| + v̂ε(y). (5.18)

Then v̂ε satisfies

�v̂ε + |y|−2νev̂ε (1 − |y|−2νev̂ε )

(τ + |y|−2νev̂ε )3
= 0 in Br0

ε
(0). (5.19)

By using Lemma 5.1, limx→pj,2 uε(x) = +∞ and the maximum principle, we conclude that there exists c > 0 such
that for small ε > 0,

inf
Br(pj,2)

uε �−c. (5.20)

In view of (5.18) and (5.20), we have

v̂ε|∂BR(0) � −c + 2ν lnR for any R > 0.
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By using the Green’s representation formula for a solution uε of (1.2) (see (3.12) and (4.19)), we see that there exists
c0 > 0 such that∣∣∇v̂ε(x)

∣∣� c0 on Br0
ε
(0). (5.21)

We claim that v̂ε is uniformly bounded in the C2,α topology. To prove our claim, we argue by contradiction and sup-
pose that there exists R0 > 0 such that limε→0(supBR0 (0) v̂ε) = +∞. Then (5.21) implies that limε→0(infBR(0) v̂ε) =
+∞ for any R � R0. Clearly Lemma 5.1 shows that, for any R � R0,

4(τ + 1)πν2 � lim
ε→0

∫
BR(0)

(1 − |x|−2νev̂ε )2

(τ + |x|−2νev̂ε )2
dx = πR2. (5.22)

Since the right hand side of (5.22) could be arbitrarily large, we obtain a contradiction which proves our claim.
Then we obtain a subsequence v̂ε (still denoted in the same way) such that

v̂ε → v uniformly in C2
loc

(
R

2). (5.23)

Let us define u(y) ≡ −2ν ln |y| + v(y). In view of (5.21), Lemma 3.1 and Lemma 5.1, we see that u satisfies (5.17).

Since supR2\B1(0) |∇u| < +∞ and (1−eu)2

(τ+eu)2 ∈ L1(R2), we see that u is a topological solution in R
2. Moreover, by using

a Pohozaev type identity (see Lemma 5.1), we have∫
R2

(1 − eu)2

(τ + eu)2
dx = 4(τ + 1)πν2. (5.24)

Now we claim that a stronger convergence property holds, namely

lim
ε→0

(
sup

B r0
ε

(0)

|ûε − u|
)

= 0.

In view of (5.23), we have

lim
ε→0

(
sup
B1(0)

|ûε − u|
)

= 0. (5.25)

We also see that∫
B r0

ε
(0)

(eûε − eu)2

(τ + eûε )2
dx =

∫
B r0

ε
(0)

(eûε − 1)2

(τ + eûε )2
+ (eu − 1)2

(τ + eûε )2
− 2(1 − eûε )(1 − eu)

(τ + eûε )2
dx.

At this point Lemma 5.1, (5.24), and the dominated convergence theorem imply that

lim
ε→0

∫
B r0

ε
(0)

(eûε − eu)2

(τ + eûε )2
dx = 0. (5.26)

By using (5.17), (5.20), (5.21), (5.25), and (5.26), we obtain the desired conclusion. �
At this point, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: topological solution ⇒ strictly stable solution. In view of the strong convergence property
as stated in Lemma 5.3, we can deduce information about the limiting problem of the linearized equation of (1.2)
at uε . With this purpose, we define

ψ̂ε(y) ≡ εφε(εy) on Br0 (0). (5.27)

ε
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Then we have⎧⎨
⎩

−�ψ̂ε − f ′
τ (ûε)ψ̂ε = ε2μεψ̂ε on Br0

ε
(0),

ψ̂ε > 0 in Br0
ε
(0),

(5.28)

and ‖∇ψ̂ε‖L2(B r0
ε

(0)) +‖ψ̂ε‖L2(B r0
ε

(0)) � C for some constant C > 0. By using standard elliptic estimates, we see that

ψ̂ε is uniformly bounded in the C
2,α
loc topology. Hence, by passing to a subsequence (still denoted in the same way),

we see that there exists ψ̂ � 0 such that

ψ̂ε → ψ̂ in C2
loc

(
R

2),
and {

−�ψ̂ − f ′
τ (u)ψ̂ = μ0ψ̂ in R

2,

ψ̂ ∈ W 1,2(
R

2), ψ̂ � 0.
(5.29)

Since u decays exponentially at infinity, then f ′
τ (u) + 1

(τ+1)3 has exponentially decay at infinity. Hence by
Lemma 5.3, we see that

lim
ε→0

∫
B r0

2ε

(0)

(
f ′

τ (ûε) + 1

(τ + 1)3

)
ψ̂2

ε dx =
∫

BR(0)

(
f ′

τ (u) + 1

(τ + 1)3

)
ψ̂2 dx + O

(
e−δ0R

)

for some δ0 > 0. Hence by using (5.27), (5.28), and Lemma 5.2, we can prove that for large R > 0,∫
BR(0)

(
f ′

τ (u) + 1

(τ + 1)3

)
ψ̂2 dx � lim

ε→0

(
−ε2με + 1

(τ + 1)3

) ∫
B r0

2ε

(0)

ψ̂2
ε dx + O

(
e−δ0R

)

�
(

|μ0| + 1

(τ + 1)3

)
a r0

2
+ O

(
e−δ0R

)
> 0,

which implies ψ̂ 	= 0 ∈ W 1,2(R2) (see Lemma 4.15 in [26] for further details). On the other side, by arguing as in
Proposition 4.16 in [26], we see that the problem (5.29) admits only the trivial solution and we obtain a contradiction.
This observation concludes the proof of Theorem 1.1: topological solution ⇒ strictly stable solution. �
6. Uniqueness of stable solution

In this section, we deduce Theorem 1.3 from Theorem 1.1.

Proof of Theorem 1.3. The existence of stable solution can be proved by well known monotone iteration schemes
and therefore we will skip it here. Hence, to prove Theorem 1.3, it suffices to prove the uniqueness property. We argue
by contradiction and suppose that there exist two sequences of distinct stable solutions uε,1 and uε,2 of (1.2). From
Theorem 1.1, up to the extraction of subsequences, we have uε,i → 0 uniformly in any compact subset of Ω \ Z as
ε → 0 for i = 1,2. Since uε,1 − uε,2 is not identically zero, we can define φε ≡ uε,1−uε,2

‖uε,1−uε,2‖L2(Ω)
which satisfies

�φε + 1

ε2
f ′

τ (ηε)φε = 0 on Ω,

where ηε is some real number between uε,1 and uε,2. By using the proof of Lemma 5.2, we see that there exist
pj0,i0 ∈ Z and r0 > 0 such that for any r ∈ (0, r0), there exists a constant ar > 0 such that

lim
ε→0

∫
Br (pj ,i )

φ2
ε dx � ar .
0 0
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Since fτ (u) = −fτ−1(−u)/τ 3, we can assume without loss of generality that i0 = 2, pj0,i0 = 0, and ν ≡ mj0,i0 . We
consider the scaled function

ûε,i (y) = uε,i(εy) in Br0
ε
(0) ≡

{
y ∈R

2
∣∣∣ |y| < r0

ε

}
.

In view of Lemma 5.3, we obtain

ûε,i → ui uniformly in C2
loc

(
R

2) for i = 1,2,

where ui is a topological solution of

�ui + eui (1 − eui )

(τ + eui )3
= −4πνδ0 in R

2.

Moreover, we can apply the method of moving planes (see [12,15]) to conclude that ui is radially symmetric about
the origin. Since radially symmetric and topological solutions are unique (see [8]), we conclude that u1 = u2 in R

2.
Let us set u ≡ u1. We can find ψ̂ such that

εφε(εy) → ψ̂(y) in C2
loc,

and {
−�ψ̂ − f ′

τ (u)ψ̂ = 0 in R
2,

ψ̂ ∈ W 1,2(
R

2).
By arguing as in the proof of Theorem 1.1 (see Section 5), we see that ψ̂ 	= 0. Then,

μ∗ ≡ inf
ψ∈W 1,2(R2)\{0}

∫
R2 |∇ψ |2 − f ′

τ (u)ψ2 dx∫
R2(1 − eu)ψ2 dx

� 0. (6.1)

Then Lemma 5.3 shows that the infimum of (6.1) is attained at some ψ0 ∈ W 1,2(R2) \ {0} satisfying

−�ψ0 − f ′
τ (u)ψ0 = μ∗(1 − eu

)
ψ0, ψ0 > 0 in R

2.

At this point Theorem 3.4 in [8] shows that μ∗ < 0. However, by arguing as in Proposition 4.16 in [26], we can show
that ψ0 ≡ 0 which is the desired contradiction. Therefore there exists a unique stable solution of (1.2) for sufficiently
small ε > 0. �
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Appendix A

In this appendix, we discuss nontopological solutions of the following equation:⎧⎪⎪⎨
⎪⎪⎩

�u + fτ (u) = 4πνδ0 in R
2,

fτ (u) ∈ L1(
R

2),
lim u(x) = −∞.

(A.1)
|x|→∞
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As we mentioned in Section 4, we need to analyze a solution uε of (1.2), such that uε − 2 ln ε has a bubble at some
point in Ω \ Z2 and uε (after a suitable scaling) tends to a nontopological solution u of (A.1). It is not difficult to
check that it is enough to our purposes to consider the case ν � 0. Concerning this problem, we have the following
proposition.

Proposition A.1. Let u be a solution of (A.1) and ν � 0. Then u is unstable.

Proof. By using the maximum principle, we always have u < 0. Moreover, if u is radially symmetric, then Theo-
rem 3.4 in [8] shows that u is unstable. In particular, if ν = 0, then Lemma 2.1 shows that u is a radially symmetric
function. Thus, we only need to prove the instability of u in the case where ν > 0 and u is not radially symmetric. Let
us set

∂

∂θ
= x2

∂

∂x1
− x1

∂

∂x2
.

Then we see that

�(∂θu) + f ′
τ (u)(∂θu) = 0 in R

2.

Let β = 1
2π

∫
R2 fτ (u)dx. Since u < 0, we see that eu ∈ L1(R2) and lim|x|→∞ u(x)

ln |x| = −β + 2ν < −2. Moreover, by

using the results in [5], we obtain the sharper estimate u(x) = (−β + 2ν) ln |x| + C + O(|x|−γ ), uθ (x) = O(|x|−1)

as |x| → +∞ where C is a constant and γ is a positive constant. We also note that there exist a local maximum point
and a local minimum point of u on each sphere of radius r since u is not radially symmetric. Thus ∂θu changes signs,
which implies at least that the first eigenvalue of the linearized equation of (1.2) at u is negative. Therefore we see
that u is unstable which was the desired conclusion. �
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