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ABSTRACT. - By means of comparison functions the asymptotic behaviour
of solutions of semilinear elliptic equations which blow up at the boundary
is established. The results depend only on the principal part of the second
order operator and can be expressed in a simple way in terms of the
associated Riemannian metric. In order to discuss the asymptotic behaviour
of the derivatives a blowup technique together with a scaling argument
is used.
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On utilise des fonctions de comparaison afin d’établir
le comportement asymptotique des solutions de problemes elliptiques
semilineaires qui explosent au bord. Les resultats s’ expriment de maniere
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156 C. BANDLE AND M. MARCUS

simple a l’ aide de la metrique de Riemann associee a cet operateur. L’étude
des derivees repose sur une technique de blowup et utilise une invariance
de groupe des solutions.

1. INTRODUCTION

Let D C IRN be a bounded domain and suppose that its boundary 9D is
partitioned into two parts Fo and F where F is relatively open with respect
to c~D and satisfies an interior and exterior sphere condition.

In this paper we consider solutions to quasilinear problems of the form

where

is a uniformly elliptic operator with = and aij, bi E 
We are interested in the precise behaviour of u(x) as x approaches r.

The existence of such solutions under the assumptions listed below can be
established by the method of upper and lower solutions together with (an
extension of) the uniform estimates of [4]. For an argument of this type see
for instance [2]. The function g(x, t) is supposed to grow sufficiently fast
as t ---~ oo in the following sense.

where h(x) is an arbitrary continuous and positive function in D and f (t,)
is subject to the conditions (F-l)-(F-3) listed below.

Denote by F the primitive of f such that F(to) = 0 where, to = 
t’ : f (t)  f (T) for every t  7-}. Then
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157PROBLEMS WITH BOUNDARY BLOWUP

Typical examples are f (t) = tP , p > 1 and f (t) = et. Conditions (F-l) and
(F-2) imply that f is superlinear at infinity (cf. Appendix).
The special case L = A was treated in a series of papers ([4], [5], [6],

[1], [2]). In particular it has been shown that

Here ~(~) is the inverse of ~(t) and 6(:~) : = dist(x, It should be

noted that § is a solution to the 1-dim. problem

In the first part we extend (1.2) to solutions of (1.1). It turns out that

the asymptotic behaviour doesn’t depend on the first order terms of L. The
result is expressed in the most transparent way if we introduce in D a
Riemannian metric of the form

where bz~ (x) is the inverse matrix of aij (x) and repeated indices are to be
summed up from 1 to N. In this metric the distance between two points P

and Q is given by inf J ds, 1 C D being an arc connecting P and Q. Let
7 ~~

8r(x) be the distance from x to F in the metric (1.4). With this notation
we can state the following result.

THEOREM 1.1. - The solutions of (l.l) satisfy (1.2) with 6(~~ replaced
by br~~).

In view of condition (F-l) this theorem holds also if L is replaced by
L + A(x) where À (x) is an arbitrary function in C°(D).
The result applies also to problems on Riemannian manifolds. If L is the

Laplace-Beltrami operator

with respect to the metric ds2 == bij dxz dxj [bij is the inverse of then

corresponds to the distance in the metric ds.
If r = ~D, u is called a large solution of ( 1.1 ). A particular large solution

is the maximal solution U(x) characterized by

This solution has been the object of many studies ([4], [5], [2]). It plays
an important role in geometry [5] and probability theory [3]. If g(x, t)/t is
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158 C. BANDLE AND M. MARCUS

monotone increasing in t for every fixed x e D, it turns out that it is the only
solution such that 9D ([5], [2], [6]). This is a simple
consequence of the asymptotic behaviour and the maximum principle.

Similar results were obtained by Veron [7] by a different method in the
special case where L contains only second order terms and g = h( x) tP.

In the second part we derive the asymptotic behaviour of the derivatives
of u( x) near F and extend results of [2]. In this part we shall assume that
aij is in C1°‘k(D). Here we use a blowup technique introduced in [1] and
a scaling argument. For this purpose we have to restrict (1.1) to the case
where g(x, t) satisfies (G-l) with f = tP, p > 1. If the main part of L is
the Laplacian and h(~) - 1 we obtain,

(1.6) - 1 locally uniformly as x - F with

In the general case we get

Higher derivatives are also studied and it is shown that their asymptotic
behaviour can be completely described in terms of § and its derivatives only.

2. ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS

2.1. - Throughout this section we shall use the following notation. A(x)
is the symmetric matrix ( ai~ ( ~ ) ) and S ( x ) is an orthogonal matrix such that

= C(x) is of diagonal form. Since L is uniformly elliptic,
A has an inverse and C1~2 (x) and C-1~2 (x) are well-defined. Let (x, y)
be the scalar product in (~~ and (x, y)z = (x, A-1 (z)~). Moreover put

= (x, x) z’ Let x be sufficiently near r so that there is a unique z E F
such that ~x - z~z = Denote this infimum by 03B40393(x) and
the point z by z ( ~ ) . Note that 1 as z - F, although the
two notions of distance do not coincide. If vz stands for the outer normal at

z, then z - x has the direction of A (z ) y z. Denote by U a neighborhood of r
which has the property that for every x E U the point z(x) is well-defined.

For every Xo E U n D, let E(xo) : _ {x: ~~x - be the

largest ellipsoid contained in D.
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159PROBLEMS WITH BOUNDARY BLOWUP

Let us introduce in E(xo) new coordinates

E(xo) is then transformed into the ball B(~o) :=  By the
chain rule 

.

Putting /(y) = for any function f in E(xo), we get

Observe that

Thus if u is a solution of (1.1) we have

for every Xo E U.

Note that by (G-l), for any e > 0 there exists a number t(e) such that

Therefore by (F-1 ) and the maximum principle the following lemma holds.

LEMMA 2.1. - Let u satisfy Lu  (1 - or Lu >

(1-f-~)h(x) f (~c) in a subdomain D’ C D. Suppose in addition that u (resp. u)
is bounded from below by max~to, t(~) ~. Suppose that u is a solution of
equation (l.l) such that u > max{t0, t(~)}. If u > u (u  u) on 
then ~c > u (u  u) in D’.

2.2. - Next we shall construct an upper bound for u(x) near r. For every
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Let r’ be a compact subset of r. Given c > 0, let p( c) > 0 be sufficiently
small so that c U and

and

The second inequality follows from the continuity of the coefficients of L.
Fix Xo E rP~~~ and consider the problem

where = 1 - ~ 1 + ~ and h * = infE(xo) 
This problem possesses a maximal solution Y which is radially symmetric.

By the maximum principle, Y is monotone increasing in (o, p(xo)).
Therefore

Multiplication by V’ and integration yields

This estimate shows that V(0) - oo as p -~ 0.
In addition to the previous assumptions on p( E) we shall assume that it

is sufficiently small so that

where V(r) is the maximal solution of (2.3) with Xo E 

straightforward computation yields ( r : _ ~ ~ ( )

From (2.3), (iii) and (F-l) it follows that
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161PROBLEMS WITH BOUNDARY BLOWUP

whence

Furthermore we have

From (2.4)-(2.6) we get

By (ii) and the definition of JL

By Lemma 2.1, this inequality together with (2.1) implies that û(y) :::;
V(y) in B(xo). (Here we use of course conditions (i) and (iii).) By (1.2)

Observe that for any x lying on the segment w with z = z(xo),
p - r - Moreover

From (2.9), we have for x as above

where 7]1 ~ 0 as x  z and 7]2 --~ 0 as xo  z uniformly with respect to
xo in rP~~~ . By (F-3) we deduce (cf. Appendix, Lemma C) that for given
c > 0 there exists b ( ~ ) such that

2.3. - Next we shall construct a lower bound for u(x) near r. Here we use
a variant of a localization technique introduced in [6]. Denote by Er(x) the
ellipsoid {~x - x~z(x)  r}. For x E U n DC, let ro (x) = and denote

Vol. 12, n° 2-1995.
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E*(x) = For any 7-1 > ro(x), set Ar1 (x) = Erl (x) - E*(x).
Let as before f’ be a compact subset of F. In what follows we shall
assume that x is such that z (x) E r’ and that ri is sufficiently small so
that Arl (~) n c~D is a connected subset of r’ and Drl (x) = Arl (x) n D
is a connected subset of D.

Let Txx be the linear transformation (*) defined in subsection 2.1. This
transformation maps AT1 (x) into a spherical annulus

If u is a solution of problem (1.1), then ic satisfies (2.1) in Drl (x) =

Given 6’ > 0, there exists > ro (3f) such that ifri E (ro, then,

for every x E U n DC such that E F’.
Let ri be a number in this interval such that ri  2ro. Denote by v the

radially symmetric solution of the problem

where  = 1 + ~ 1 - 2~ and h* = supDr1 (x) h. By the maximum principle, v
has no local maximum in (r0(x), rl ). If v has a local minimum at the point
rmzn in this interval, we shall replace 7-1 by the number ri E (ro(x), 
where = v (rl ) . Note that the value of ri depends only on TO(X) and
ri. Thus we may assume that ri has been so chosen that v is monotone

decreasing in (ro(3f), ri). Since

it follows that v" is positive and hence v’ is monotone increasing.
Consequently v’2 is monotone decreasing in (ro (x), rl ) . Thus
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Let ri be so close to ro(.r) that log  4 Nl- 1 . Then~ 

4~V20141;

Since v(ri) > inf Drl (x) U > 2to it follows that

Therefore the previous inequality implies that there exists a positive
number c* such that

( For instance we may put c* = + On the other hand

our assumptions on f imply that

(See Lemma B of the Appendix). Consequently, for every E’ > 0 there
exists s (~’ ) such that

From this inequality and (2.11 ) we obtain,

Now Ly can be computed as in (2.4) with h* and Xo replaced by h* and x
respectively. Assuming that ri is sufficiently small (so that the coefficients
~kl in (2.4) are small), and that é’ has been chosen sufficiently small we
obtain from (2.12) and (2.13)

The value of E’ is independent of the choice or ri (as long as 2ro).
We shall assume that ri has been chosen sufficiently near to ro so that

Hence, by (2.14)

Vol. 12, n 2-1995.
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Therefore, in view of the fact that v  ic on the boundary of Dr! (x),
Lemma 1.21 implies that v  u in Drl (x). Now proceeding as in subsection
2.2 we conclude that

for every x in DTl (~) which is colinear with :~ and z = z(x). Using again
Lemma C of the Appendix we conclude that, for every c > 0 there exists

such that

where z = z(x).
Combining estimates (2.10) and (2.15) we obtain

provided that x - z is parallel to A(z )Yz, Furthermore the convergence is
uniform with respect to z in compact subsets of F. In the following theorem
we restate this result in a form which does not explicitly involve the point z.

THEOREM 2.1. - Let r’ be a compact subset of F. Then there exists a

positive ~ such that

3. ASYMPTOTIC BEHAVIOUR OF THE DERIVATIVES

In this section we study the asymptotic behaviour of the gradient and

higher derivatives of solutions of problem (1.1), assuming that g satisfies
condition (G-l) with f (t) = First we shall discuss in detail the case

After that we shall point out the modifications needed for the more general
case. Our method combines the localization arguments of the previous
sections with a blowup technique introduced in [1].
With the notation of section 2.1, let xo be a point in U n D and set

y’ = Tx0(z(x0)). Let O denote the center of the ball B(x0) = {|y|  03C1(x0)}
and let yo be a point in the interior of the segment Oy’. Recall that

B(xo) is a ball in the y-space where y = Txo (x). Denote ,~ _ 
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~’ _ O~ = p(x~) -,(3. Let 7] be a set of Cartesian coordinates centered
at yo such that the positive 7]1 axis is in the direction y0O and denote by T’x0
the linear transformation x ~ ~. Choose a number 6 E (0, 1/2) and denote,

Clearly is contained in B(xo) for all /3 E (0, p(xo)). Denote,

where M is any set in Let r~’ == ( r~2 , ..., 7]N) and £’ == A

straightforward computation yields,

From this and the fact that ~r~~ == (31-8 on -y2"j we obtain,

Let u be a solution of (1.1). If u denotes this function in terms of the ~
coordinates in B(xo), then (2.1) can be rewritten in the form

Let § = be defined as in section 2 with respect to f (t) = tP :

Setting

we obtain

where

Vol. 12, nO 2-1995 .
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Now let r’ be a compact subset of F. Given ~o > 0 choose o-o sufficiently
small so that C U and

(By Theorem 2.1 such a choice of ao is possible.) Assume that Xo E 
Then if ,~ is sufficiently small, 

0

where x(r~) _ ~T~o~ 1(~). Hence by (3.8),

for all sufficiently small ,~ (uniformly with respect to :~o as above).
Next, let  > 0 and consider a point 7] E such that 7/1  Then

and by (3.3),

By (3.9) 6r(:c(r~)) --3 0 as j3 - 0. Hence by Theorem 2.1,

where op(1) is a quantity which tends to zero as j3 - 0, uniformly with
respect to ~ in D(/3). From (3.11) and (3.12) we obtain,

Therefore, for every c > 0 there exist positive numbers ,~~ and such
that for every {3 E (0, 

Further, by (3.3),
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Therefore, by (3.11) and (3.13),

Next let f1 > 0 and consider a point 7] in such that 7yi > 

For such a point,

Hence, for sufficiently small j3,

and consequently, by (3.12),

Therefore, for every c > 0 there exists ~c~ such that

for all sufficiently small ,~ (independent of ~).
Let K be a compact subset of the upper half space (£1 > 0 ~ . For all

sufficiently small positive /3, K c D(/3) and (by (3.10)) vj3 is bounded by a
bound independent of ,~. Therefore as satisfies (3.7), local estimates for
solutions of linear elliptic equations imply that, for every cx E (0, 1), is
bounded in by a bound independent of ~3, for all sufficiently small
,~. Hence there exists a sequence {3n -~ 0 such that ~v~n ~ converges locally
in C2 in the upper half space ~1 > 0 to a function v* which satisfies,

Here we use the fact that (by (3.3)) is contained in a ball ~~-y’ (  
with r(/3) - 0 as ~3 - 0. Consequently

and of course the same statement holds w.r. to ~~,r. Further, by (3.13)
and (3.15), 

’
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It is readily seen that problem (3.16), (3.17) possesses a unique solution,
namely,

Therefore it follows that

locally in CZ( f ~1 > 0}). By repeated differentiation of (3.7) it also follows
that v,3 -> v* locally in C"’ ( f ~1 > 0}) provided that the coefficients of
L are in 

Consider a point 7] = 0, ..., 0) where ~c is a fixed positive number.
Then, for 03B2 E (0, 

so that

Hence, by (3.20),

Since ~~ ic ~ = (3.22) implies,

for x = with 7] = 0, ..., 0). But, for sufficiently small a
any point x E I‘~ can be written in the above form with respect to an
appropriately chosen Xo in Indeed Xo can be any point in T~o such
that z(x) = z(xo) and x lies on the segment Furthermore the

convergence is uniform with respect to zo in Thus (3.23) holds

uniformly with respect to Xo E 
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We also note that the argument is local involving only values of u in
a small neighborhood of r’ . Therefore if we consider equation ( 1.1 ) with
a more general function, only the behaviour of g for large values of t is
relevant. Consequently (3.23), appropriately modified, remains valid for g
satisfying {G-1 ) with f (t) = tP. Thus we obtain,

THEOREM 3.1. - Assume that g satisfies (G-1) with f (t) = tp. Let T’ be
a compact subset of T and let r~ denote a a-neighborhood of r’. If a is
sufficiently small then, for x E r~,

Remarks. - (1) From (3.21a) we conclude that

for any tangential direction t at z(x). As before the convergence holds
uniformly with respect to x E 

(2) The arguments apply also to higher order derivatives of u if they
exist. For the special case

we get

Here n = vz is the outer normal at z(x) and 6r(~) is measured in the

Euclidean metric.

In the general case n has to be replaced by A(z)vz =: ra (cf. Section 2.1)
and the left hand side has to be multiplied by 

APPENDIX

LEMMA A (1). - Let f(t) satisfy (F-1) and (F-2). Then

(1) We are indebted to Prof. M. Essen for this lemma.
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Proof - By (F-l), F(t) is convex for t, > to. Suppose that

Since 03C8 exists we must have lim F ( t) / t2 = oo. Hence there is a sequence
tk ~ oo as k - oo such that for b = v + 1, F(tk) = bt2k. By the convexity
we have

Observe that

Since p(t)  x, the series ~ t~+1 - t~ converges. Thus for k
+ tk

sufficiently large, 
t~" 

 1~2 and tk+1  3t~.
tk+1 + tk

But then + tk) O tk)/4tk and

This contradiction shows that (1) is false. The proof is thus completed.
In view of (F-l) we have

This together with Lemma A yields,

LEMMA B. - Assume (F-1 ) and (F-2). Then

From the monotonicity of cjJ we infer that for q > 0 80

(F-3) implies a partially converse inequality.
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LEMMA C. - Let 03C8 E C[to, 00). Suppose that 03C8 is strictly monotone
decreasing and satisfies (F-3). ~-l. Then for every ~y > 1 there
exist positive numbers b.~ such that,

The proof is straightforward and will be omitted.
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