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Abstract

We study the initial value problem associated to the dispersion generalized Benjamin—Ono equation. Our aim is to establish
persistence properties of the solution flow in weighted Sobolev spaces and to deduce from them some sharp unique continuation
properties of solutions to this equation. In particular, we shall establish optimal decay rate for the solutions of this model.

© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous étudions le probleme de Cauchy associé a 1’équation de Benjamin—Ono avec dispersion généralisée. Notre objectif est
d’établir les propriétés de persistance de la solution dans des espaces de Sobolev avec poids et d’en déduire quelques propriétés de
prolongement unique pour ses solutions. En particulier, nous établirons un taux de décroissance optimal pour les solutions de ce

modele.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This work is concerned with the initial value problem (IVP) for the dispersion generalized Benjamin—Ono (DGBO)
equation

du+ Do u+udu=0 t,xeR 0<a<]l,
u(x,0) =up(x),

(1.1)
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where D® denotes the homogeneous derivative of order s € R,
D' =(=A)"? so D'f=c(I&I°F)", with D =(Hd,)* ifn=1,

where H denotes the Hilbert transform,

1 1 1 - Y
Hf(x) = —p.V-<— * f) (x) = —lim f Ma'y = (—isgn() f(©)) ().
T X T €l0 y
IyI=e

These equations model vorticity waves in the coastal zone, see [37] and references therein.
When a = 1 the equation in (1.1) becomes the famous Korteweg—de Vries (KdV) equation

du—u+udu=0, 1,xeR, (1.2)
and when a = 0 the equation in (1.1) agrees with the well-known Benjamin—Ono (BO) equation
du+Ho*u +udu=0, r,xeR. (1.3)

Both the KdV and the BO equations originally arise as models in one-dimensional waves propagation (see [33,5,
39]) and have widely been studied in many different contexts. They present several similarities: both possess infinite
conserved quantities, define Hamiltonian systems, have multi soliton solutions and are completely integrable. The
local well-posedness (LWP) and global well-posedness (GWP) of their associated IVP in the classical Sobolev spaces
H*(R), s € R, have been extensively investigated.

In the case of the KdV equation this problem has been studied in [41,6,26,29,7,30,11], and finally [ 18] where global
well-posedness was established for s > —3/4.

In the case of the BO equation the same well-posedness problem has been considered in [41,1,24,40,31,27,43,35,
8], and [23] where global well-posedness was established for s > 0 (for further discussion we refer to [34]).

However, there are two remarkable differences between the existence theory for these two models. The first is
the fact that one can give a local existence theory for the IVP associated to the KdV in H¥(R) based only on the
contraction principle. This cannot be done in the case of the BO. This is a consequence of the lack of smoothness of
the application data—solution in the BO setting established in [37]. There it was proved that this map is not locally C2.
Actually, in [32] it was proved that this map is not even locally uniformly continuous.

The second remarkable difference between these equations is concerned with the persistent property of the so-
lutions (i.e. if the data ug € X, a function space, then the corresponding solution u(-) describes a continuous curve
in X,ueC(-T,T]: X), T >0) in weighted Sobolev spaces. In [26] it was shown that the KdV flow preserves
the Schwartz class. However, it was first established by Iorio [24,25] that in general, polynomial type decay is not
preserved by the BO flow. The results in [24,25] were recently extended to fractional order weighted Sobolev spaces
in [15]. In order to present these results, we introduce the weighted Sobolev spaces

Z,,=H' R NL*(Ix|*" dx), s,reR, (1.4)
and
Zs, ={f e H*®) NL*(x[* dx): f(0)=0}, s,reR. (1.5)

The well-posedness results for the IVP associated to the BO equation in weighted Sobolev spaces can be stated as:
Theorem A. (See [15].)

(1) Lets > 1,re€[0,s], andr <5/2. Ifug € Zs ,, then the solution u of the IVP associated to the BO equation (1.3)
satisfies that

ue C([O, o0) : Z“).

(i) Fors >9/8 (s >23/2), r €[0, s], and r <5/2 the IVP associated to the BO equation (1.3) is LWP (GWP resp.)
inZs,.
(i) Ifr €[5/2,7/2) and r < s, then the IVP (1.3) is GWP in Z; ,.
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Theorem B. (See [15].) Let u € C([0,T] : Z32) be a solution of the IVP (1.3). If there exist two different times
t1,tp € [0, T] such that

u( 1)) € Zsppsp, =12, then Wo(0)=0 (sou(-1)€ Zs;5p). (1.6)

Theorem C. (See [15].) Let u € C([0,T] : Z'3,3) be a solution of the IVP (1.3). If there exist three different times
t1, 0, 13 €10, T] such that

u(tj)) € Z1p72,  j=1,2,3, then u(x,t)=0. (1.7)

We point out that Iorio’s results correspond to the indexes s > r = 2 in Theorem A part (ii), s 2> r = 3 in Theorem A
part (iii) and s > r = 4 in Theorem C.

Regarding the DGBO equation (1.1), we notice that for a € (0, 1) the dispersive effect is stronger than the one for
the BO equation but still too weak compared to that of the KdV equation. Indeed it was shown in [37] that for the
IVP associated to the DGBO equation (1.1) the flow map data—solution from H*(R) to C([0, T]: H*(R)) fails to
be locally C? at the origin for any T > 0 and any s € R as in the case of the BO equation. Therefore, so far local
well-posedness in classical Sobolev spaces H®(R) for (1.1) cannot be obtained by an argument based only on the
contraction principle. Local well-posedness in classical Sobolev spaces for (1.1) has been studied in [29,20,36,19,21]
where local well-posedness was established for s > 0.

Real solutions of the IVP (1.1) satisfy at least three conserved quantities:

oo o0

Il(u)=/u(x,t)dx, Iz(u):/uz(x,t)dx,
T I+a |2 M3
Ig(u)zf(wTu\ +F)(x,t)dx. (1.8)

In particular, we have that the local results in [21] extend globally in time.
Concerning the form of the traveling wave solution of (1.1) it is convenient to consider

v(x,t) =—u(x, —1),
where u(x, t) satisfies Eq. (1.1). Thus,

dv—D"9v+vdv=0, f,xeR, 0<a<l. (1.9)
Traveling wave solutions of (1.9) are solutions of the form

v(x,t) =c! T, (c(x - CH'“I)), c>0,

where ¢, is called the ground state, which is an even, positive, decreasing (for x > 0) function. In the case of the KdV
equation (@ = 1 in (1.9)) one has that

3
p1(v) =3 sechz(g),
whose uniqueness follows by elliptic theory.
In the case of the BO equation (a = 0 in (1.9)) one has that

$o(x) = (1.10)

1+x2’

whose uniqueness (up to symmetry of the equation) was established in [2].
In the case a € (0, 1) in (1.9) the existence of the ground state was established in [44] by variational arguments.

Recently, uniqueness of the ground state for a € (0, 1) was established in [17]. However, no explicit formula is know

for ¢4, a € (0, 1). In [28] the following upper bound for the decay of the ground state was deduced

Ca
¢a(x)<m, O<a<l.
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Thus, one has that for a € [0, 1) the ground state has a very mild decay in comparison with that for the KdV equation
a = 1. Roughly speaking, this is a consequence of the non-smoothness of the symbol modeling the dispersive relation
in (1.1) 0q(§) = |§]" €.

Our goal in this work is to extend the results in Theorems A—C for the DGBO equation (1.1), by proving persistent
properties of solution of (1.1) in the weighted Sobolev spaces (1.4). This will lead us to obtain some optimal unique-
ness properties of solutions of this equation as well as to establish what is the maximum rate of decay of a solution
of (1.1).

In order to motivate our results we first recall the fact that for dispersive equations the decay of the data is preserved
by the solution only if they have enough regularity. More precisely, persistence property of the solution u = u(x, t) of
the IVP (1.1) in the weighted Sobolev spaces Z; , can only hold if s > (1 4+ a)r. This can be seen from the fact that
the linear part of Eq. (1.1)

L=09 + D'y, commutes with I' =x — (a +2)rD'*. (1.11)
Hence, it is natural to consider well-posedness in the weighted Sobolev spaces Z; ,, s = (1 +a)r.
Let us state our main results:

Theorem 1.1.

(a) Leta € (0, 1). If up € Zs,, then the solution u of the IVP (1.1) satisfies u € C([-T,T]: Zs ) if either
i) s=>U+4+a)andr €(0,1], or
(1)) s >22(14+a)andr e (1,2], or
i) s 2 [(r+1)"1(1+a)and 2 <r <5/2 + a, with [-] denoting the integer part function.
) Ifug e Z'”, then the solution u of the IVP (1.1) satisfies

ueC([-1,T1: Z,),
whenever
i) s2[r+ D)7 11 4+a)and5/2+a<r<7/2+a.
Theorem 1.2. Letu e C([—-T,T]: Z‘Y,(S/Z—i-a)_) with
T>0 and s>20+a)5/2+a)+ 1 —a)/2

be a solution of the IVP (1.1). If there exist two times t1,ty € [T, T], t1 # ta, such that

u(-,tj) € Zss/24a, Jj=12, (1.12)
then

u(0,1) :/u(x, dx = / uo(x)dx =ug(0)=0 forallt €[-T,T]. (1.13)
Remarks.

(a) Theorem 1.2 shows that persistence in Z; , with r = (5/2 4+ a)™ is the best possible for general initial data. In
fact, it shows that for data ug € Zs,, s > (1 +a)r + (1 —a)/2, r = 5/2 4+ a with uy(0) # 0 the corresponding
solution u = u(x, t) verifies that

x| 72+ 7y e L°([0, T1: L*(R)), T >0,
but there does not exist a non-trivial solution u corresponding to data ug with 7 (0) # 0 such that
Ix]>/?t ey e L([0,1']: LZ(R)), for some 77 > 0.
(b) The result in Theorem 1.1 for s = 1 + a was established in [10].

Theorem 1.3. Letu € C([—=T,T]: Z; (7/21a)-) With

1_
T>0 and s>(1+a)(7/2+a)+T“
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be a solution of the IVP (1.1). If there exist three different times t1,t,t3 € [—T, T] such that
u(. 1)) € Zyap4ar  J=1.2.3, (1.14)

then

S
I
e

Remarks.

(a) Theorem 1.3 shows that the decay r = (7/2 4+ a)~ is the largest possible. More precisely, Theorem 1.1 part (b)
tells us that there are non-trivial solutions u = u(x, t) verifying

x| 724y e L°([0, T1: L*(R)), T >0,
and Theorem 1.3 guarantees that there does not exist a non-trivial solution such that
Ix|7/?+ay e LOO([O, T’] : Lz(]R)), for some 7’ > 0.

(b) We shall prove this result in the most general case s = (1 +a)(7/2+a) + 1%“ Also, we will carry out the details
in the case a € [1/2, 1). It will be clear from our argument how to extend the result to the case a € (0, 1/2).

Theorem 1.4. Letu € C([—T,T1: Z; (7/21a)-) With
T>0 and s>0+a)T7/24+a)+1—a)/2
be a solution of the IVP (1.1). If there exist t1,t, € [—T, T], t1 # ta, such that
u(,t;) € Zs 104 J =12,
and
fxu(x,tl)dx=0 or fxu(x,tz)dx=0, (1.15)

then

<
1]
e

Remark. Theorem 1.4 tells us that the conditions of Theorem 1.3 can be reduced to two times provided the first
momentum of the solution « vanishes at one of them.

Theorem 1.5. Letu e C([—-T,T]: Zs,(7/2+a)*) with
T>0 and s>1+a)(7/2+[1+2a]/2)+ 1 —a)/2

be a non-trivial solution of the IVP (1.1) such that

o0
uer.s’%Jra, a=1[142al/2, and f xug(x)dx #0. (1.16)
—00
Then there exists t* # 0 with
o0
. 4
" =— 5 / xup(x)dx, (1.17)
lluolls

. .
such that u(t*) € Zs,%+&'
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Remarks.

(a) Notice thata > a, so Theorem 1.5 shows that the condition of Theorem 1.3 at two times is in general not sufficient
to guarantee that u = 0. So, in this regard Theorem 1.4 is optimal.

(b) The results in Theorems 1.3 and 1.5 present a striking difference with other unique continuation properties de-
duced for other dispersive models. Using the information at two different times, uniqueness results have been
established for the generalized KdV equation in [13], for the semi-linear Schrodinger equation in [14], and for
the Camassa—Holm model in [22]. Theorem 1.5 affirms that the uniqueness condition with the weight |x|7/2+¢
does not hold at two different times but Theorem 1.3 guarantees that it does at three times. Similar result for the
Benjamin—Ono equation (¢ = 0 in (1.1)) was obtained in [16].

One can consider the IVP (1.1) with a > 1. In this case our results still hold, with the appropriate modification in
the well-posedness in H*(R), if a is not an odd integer. In the case where a is an odd integer, one has solutions with
exponential decay as in the case of the KdV equation (@ = 1 in (1.1)).

Finally, we consider the generalization of the IVP (1.1) to higher nonlinearity

oru + DH'“E)XM + ukaxu =0, t,xeR, keZ™,
u(x,0) =up(x).
In this case our positive results, Theorems 1.1-1.2, still hold (with the appropriate modification in the well-

posedness in H*(R)). Our unique continuation results (Theorems 1.3—1.4) can be extended to the case where k in
(1.18) is odd. In this case one has that the time evolution of the first momentum of the solution is given by the formula

(1.18)

o o0 1 r oo
/xu(x,t)dx: /xuo(x)dx—f—m// uk+1(x,t)dx.
—00 —00 0 —o0

Thus, it is an increasing function. Hence, defining t* # 0 as the solution of the equation

t* oo
//xu(x,t)dxdt:O, (1.19)
0 —o0

one sees that there is at most one solution of (1.19) but its existence is not guaranteed. So the statements in Theo-
rems 1.3—1.4 would have to be modified accordingly to this fact.

The rest of this paper is organized as follows: Section 2 contains some preliminary estimates to be used in the
coming sections. Section 3 contains the proof of Theorem 1.1. Theorems 1.2, 1.3, 1.4, and 1.5 will be proven in
Sections 4, 5, 6, and 7 respectively.

2. Preliminary estimates

We begin this section by introducing the notation needed in this work. We use || - ||L» to denote the L” (R) norm. If
necessary, we use subscript to inform which variable we are concerned with. The mixed norm L?L; of f=f(x,t)

is defined as
4 1/q
1/ =</||f(~,t) ?, dt) ,

with the usual modifications when g = 0o or r = co. The L’ L{ norm is similarly defined.
We define the spatial Fourier transform of f(x) by

fe = / e~ f(x)dx.

R

We shall also define J* to be the Fourier multiplier with symbol (£)* = (1 + |& |2)% . Thus, the norm in the Sobolev
space H®(R) is given by
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102 =17 Flp = 1€ 7l -

A function x € Cgo, supp x € [—2,2]and x = 11in (—1, 1) will appear several times in our arguments.
For a € (0, 1) fixed we introduce F;’s as being

Fj(t,€,70) = 8] (71" 5500(8)), @.1)
for j =0, 1,2,3, 4. Thus

Fi(t,&,70) = —(2 + a)it|g]"+e 7 5 g0 () + eI E g ),
Fa(t,&,T0) = ¢ "1™ "8 (it 2 4+ a) (1 + @) |&]” sgn (&)t ()
— 2+ a)* PPV E) — 20t 2+ a) &[T B0 (8) + 07100 (E))
= (B1 + By + B3+ B4)(t, £, up),
F3(t,&,T0) = e "1™ (—ita(1 + a) (2 + @) |1~ T (€)
=322+ a)* (1 +a) P sgn(©)iio(§) +it? 2+ a)’ |EP 10,
= 3it2+a)(1 + a)|§|* sgn(®)diio () — 32+ a)*|E P19 10p (&)
—3it 2+ a)|E"T U0 () + 70 (&)
= (D1 + Dy + D3+ D4 + Ds + D7) (t, €, up),
Fat, €, 70) = e "E "8 (it 2 + a) (1 + @)a(a — 1)1 sgn(€)in(€)
— 224 a)*(1 +a)(Ta + 3)|E[*To (&) + 6132 + a) (1 + a)|E*+? sgn(€)ap (€)
+ '@+ )TV @) (E) — dita(l + a) 2+ )| dTin ()
— 12072+ a)* (1 + a) [£** T sgn(&)dg o (€)
+4i’ 2+ )5 PV 8¢t — 6172+ a)?[5P 1TV 8100 )
—6it(2+a)(1 +a)|&|* sgn(§)dFT0(€) — 4it 2+ a)|§|' 0310 (€) + OFTi0(£))
=(E1+---+ En), & up).

The next two results will be essential in the analysis below.
The first one is an extension of the Calderén commutator theorem [9]:

Lemma 2.1. Let H denote the Hilbert transform. Then for any p € (1,00) and any I,m € Z U {0} there exists
c=c(p;l;m) > 0 such that

|otir y1a £, < clam ™y | el FllLr. 2.2)
The proof follows by results in [4], for a different proof see [12, Lemma 3.1].

Proposition 2.2. Let o« € [0, 1), B € (0, 1) with o + B € [0, 1]. Then for any p, q € (1, 00) and for any § > 1/q there
exists c = c(a; B; p; q; 6) > 0 such that

|D*[DP: gD = “HP f|| < || JPacw | L I F Il (2.3)
where J := (1 — 32)!/2,

See [12, Proposition 3.2].
Using the notation

W () f = (e MEITEF)Y 2.4)

we recall the following linear estimates:
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Proposition 2.3 (Smoothing effects and maximal function).

(1) Homogeneous:
| DIHOPWa) f] o2 < call £l (2.5)

(2) Nonhomogeneous and duality:
t
Di/W@Q—wﬁFOjdﬂ
0
< T2 ps= Va2 || Lo (2.6)

+
LPLY

t
Ds+a/2+l/2/ Wa(t —l‘/)F(t/) dt’
0

LFLY

(3) Maximal function estimate
[Wa® £ 2100 <cO+TI1flls2 2.7)

where p > 3/4 and s > 2+ a)/4.
Proof. For the proof of inequalities (2.5) and (2.7) see [29]. The inequality (2.6) follows by interpolation. O
Proposition 2.4.

(i) Given ¢ € L*®°(R), with 3¢¢ LZ(R)for o =1,2, then for any 6 € (0, 1)

1778111, < cosll fla: (2.8)
@ii) Ifn € (0, 1], then
[77Cre) = £I7g |, <elldxFlhliglla. (2.9)

Proof. We first prove (2.8). Since

([1%: ) ) @ = (1@ — I £) &) = / (1+&)"2 = (1+2%)"*) & — ) Fny dn,
the mean value theorem leads to

(761 @ <o [ 16 =@ =l Fon|dn=co(@91 1 71)©).
Then by Young’s inequality

I[7%: 0] £, < collldedl * 1 F 12 < colldedlli Il Fllz < colldxdlli2ll fllz < co.gll 2

To show (2.9) we notice that
|77 (fe) — £, < H f|(1 FIEP)? = (14127 | F & —g)!|§(;>|d¢”
2
<H f|s—¢||f<s—¢>||§<;>|d;H2<|||827|*|§|||
<lacflillgl. O

Proposition 2.5. Given ¢ € L*°(R), with 03¢ € L%(R) for a = 1,2, then for any 6 € (0, 1)
[77@N ], <ol I f (2.10)
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Proof. We just need to write

19N =[" 0l +¢J°f
and use the hypotheses and Proposition 2.4 (2.8). O

We recall the following characterization of the L (R") = (1 — A)™*/2LP (R") spaces given in [42] (see [3] for the
case p =2).

Theorem 2.6. (See [42].) Let b € (0, 1) and 2n/(n + 2b) < p < oo. Then f € Lg(R") if and only if

(a) f GLP(R"), (2.11)
_ 2 1/2
(b) Db f(x) = ( %dy) e LP(R"), (2.12)
Rn
with

sy =l =", =17 71, = 1,1, + D" £, =171+ D £ - (2.13)
For the proof of this theorem we refer the reader to [42]. One sees that from (2.12) for p =2 and b € (0, 1) one has
Dol <7D, + [eD" 7, 214

and
|2 £, =c| D], 2.15)

We shall use these estimates throughout in our arguments.
As an application of Theorem 2.6 we also have the following estimate:
Proposition 2.7. Let b € (0, 1). Forany t >0
Db(efitl)cll*“x) < C(|l|b/(2+a) + |l|b|X|(1+a)b), (216)

For the proof of Proposition 2.7 we refer to [38].
Also as a consequence of the estimate (2.14) one has the following interpolation inequality.

Lemma 2.8. Let o, b > 0. Assume that J* f = (1 — A)*/? f € L*>(R) and
(xX)P f =1+ |x[»)?? f € L*(R). Then for any 6 € (0, 1)
_ 1-6 0
|77 (@ Al <el @ £, 1 f 1 2.17)

Moreover, the inequality (2.17) is still valid with (x)?\, in (3.2) instead of (x) with a constant c independent of N.

We refer to [15] for the proof of Lemma 2.8.

As a further direct consequence of Theorem 2.6 we deduce the following result. It will be useful in several of our
arguments.
Proposition 2.9. For any 6 € (0, 1) and o > 0,

el +er, a0, <1,
D (151X @)~ e(=Inln2, a=6. o<1, (2.18)
W, nl>1,

with DY (|E|% x (£))(-) continuous in n € R — {0}.
In particular, one has that

DY (1% () e LA(R) ifand onlyif 6 <a+1/2.
Similar result holds for DY (|€]* sgn(€) x (€))(1).
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Proof. We restrict ourselves to the case « # 6. First we consider the case DY (|£|% x (&)). It is easy to see that for
n#0, DY (|€|%x (£))(n) is continuous in € < |n| < 1/€ for any € > 0.
Let us consider |n| < 1/2. Without loss of generality we assume that n € (0, 1/2). Thus

o _ o 2
(D9(|§|“X(g))(,7))2=/ (I& + X & +m) = Inl"x (m)° .

|E|1+20
" (& + 71" — In|*)? 7 (& + 71" +In1*)?
Sce / |§|1+29 dé—l—c |§|1+29 dé
-n/2 n/2
=A|+ Aj.

To bound A; we use that
c
|(é+n)“—n“|<|s|nl—io, V& —n/2 <& <n/2.

Thus
n/2
2
A <c |§7|d§<c 2@=6)
IS 20— g[120 45 ST :
—1/2

For A, we have that

(6 +m® + %] <c&% forg: n/2<E<2.

So
p E2a
A2<c/ md&gcn2(a_9)+c1, ifa#0,
n/2

where c; =01if 6 > «.
Let us consider the case || > 100. Without loss of generality we assume 1 > 100. Then

o 2 7
(1§ +nl*xE +m) dggc/ ¢

|E|1+20 |%-|1+29 = n1+20'

(D (1% x (&) (p)” =
—2-p

Finally we consider D? (|&|* sgn(£) x (£))(17). We notice that the previous computation for || > 100 is similar, so
we just need to consider the case || < 1. Assume without loss of generality that 0 <n < 1.
Since

2—n
+nl* + +n) —nl* 2
D (J& | sgn(®) x () () = / (1€ +nl%sgn(§ n)x|(§|l+27;) [n|* sgn(n) x (1)) d.

—2—n
The bound for £ 4+ n > 0 is similar to that given before, so we assume & + n < 0 (§ < —n) and consider

—2n

" 4l 4 )2 r

|§- | 1426
—2-7 =27 —2-n

A familiar argument shows that

2a

T n . 2(a—6)
Al ganwn_n

and
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- &% 2ab)
A < W dé =n +c,
—2—n

withc=0if0 >«a. O

3. Proof of Theorem 1.1

Proposition 3.1. If ug € H't*(R) and |x|?ug € L*(R), 6 € (0, 1), then the solution u of the IVP (1.1) satisfies

ueC([0,T1: H®) N L*(1x1*) = Z14a,0),

where T is given by the local theory.

773

(3.1

Proof. We use the differential equation and the local theory such that u € C([0, T]: H'*“(R)) exists and is the limit

of smooth solutions.
We define for 6 € (0, 1)

)0 = ) =1 +x292 if x| <N,
N7 ey, if |x| = 3N,

with (x)?\, smooth, even, nondecreasing for x > 0.

We multiply the equation in (1.1) by (x)%veu and integrate in the x-variable to get

1d
2dt

/(<x)§{,u)2dx+/(x)?vp”“axu(xﬁvuder/(x)%v@uzaxudx=0.

Ay Aj

To estimate A, we integrate by parts to get

1
Ay = g/(;cﬁfax(bﬁ)ozx = _gfax(m%v")ﬁdx.
We shall use that
3 ((00F) Scot)y ' <ot}
since 6 € (0, 1). Notice that cg is independent of N. Thus

Ay <

)G 2l -

Now we turn to Aj. We write

(x)% D' du = D ((x)§, Ddsu) — [ D% (x)% | Ddsu = By + B,.

Using Proposition 2.2
[[D% R ]D= ], < e TPac o [, 1£ 2.

with § > 1/¢. Thus
1Ball2 = | [D; () | Dosu |, < co | DO

2°

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

with cg independent of N since 9, (x)?\, is bounded independent of N. Here we are assuming that 6 < 1 such that
J%9, (x)?v € L1 for appropriate values of §, g with § > 1/g. When 6 =1, || J%, (x)}V |4 is not bounded uniformly on

N by a constant and we cannot do this.

Also observe that the bound || D®d,u||» is natural from the fact that the operator I" = x — (2 4+ a)t D'+ which

commutes with 9, + D193, .
Hence it remains to consider Bj in (3.6). We write

Bi = D*((x)% Ddu) = D, ((x)% Du) — D*((dx (x)%) Du) = C1 + C,

(3.9)
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with
IC2ll2 = | D*((8x (x)%) Du) |,
< [[D% 9x (x)§ ] Du], + [ 0x (x)§y D Hu ],
<c||1582 Wl 1D ]y + ¢ DM ul]

Jitey

< cH y € independent of N, (3.10)

where in (3) we have used again (3.7) (Proposition 2.2).
To estimate Cy in (3.9) we write

C1 = D*d;((x)% Du) = D“9, D({x)%u) — D“8,[ D; (x)5 Ju = K1 + K». (3.11)
Since D = H0, one has
[D: ()} ]f =D((0)% f) — ()4 Df
= Ho ()3 ) — (Y HO f

=H((3:x)%) f) = [H: ()50« £ (3.12)
Therefore
Ky = —D 9, H((3:(x)% )u) + D0 [H; (x)§ Joxu = Q1 + Q2. (3.13)
To bound Q> we use the commutator estimate in Lemma 2.1
|87 1H; ad™ £, < e[| 97T al I f1l2. (3.14)

and interpolation (|| D9 f|l2 < || I3~ “IIDfII3) to get

1021l = || D“0x[H; (x)% ]0xu,
<[ Dau[H: ) Jowu |5 9x[H: 0 Jowu,™
<020 0 Jaeu | | 0x [H: (00 Jou ]y~
(|20 | o+ 1920008 | o) a2 (3.15)

Using previous arguments we also have

1Q1ll2 = [ H D8 (3 () )u) |

< D@2 N )u) |5 + [ D (8 tx)y ) o) [

< (D) [ lulloo + 03 0)% H | Dul),)
+[[[D% oy Jowull, + [ (8 (0)y) DB
gc”‘ll—’_a ”2 (316)

Finally, we turn to the term K in (3.11), Parseval’s identity yields

/DaaxD«x)?vu)(x)?vu — / axD(l+a)/2((xﬁvu)D(l-i-a)/Z((x)(]?Vu) —0.

Since from the local existence theory [19] we know that

$p [ 112 = S0 4O 1 < (3.17)

combining the above estimate and taking limit as N — oo we obtain
sup || (x)?u(r) |,<é forallo el0,1), (3.18)
[0.T]

which yields the result.
We observe that the argument above shows that if in addition to ug € H'T¢(R) N L2(|x|*?), 6 € (0, 1), ug €
Htat(R) with D*ug € L2(|x|??), for & > 0, then D%u € C([0, T]: H*(R) N L2(|x|*)),« > 0. O



G. Fonseca et al. / Ann. 1. H. Poincaré — AN 30 (2013) 763-790 775

3.1. Cases=14a,r=1

Let ug € H'7*(R) N L*(|x|> dx). We observe that the persistence result in this case was already proved by Col-
liander, Kenig and Stafillani [ 10]. However, by convenience we present a different proof.
First notice that

xDIT, f = (xD" 8, )" = (idg (1€ i 1))
= (~Q+a)e"tF g M igiog )

=—Q+4a)D'" f + D', (xf). (3.19)
Hence if u satisfies
du+ D" u + udou =0, (3.20)
then
3 (xu) + D49, (xu) — 2+ a) D" U + xudu = 0. (3.21)
In this case the standard energy estimate argument shows that
d 2
Tl <ea| D u® ][ ru@ ], + lulioo @], [xu) | (3.22)
Since
[sou%Hu(t) | ian <@ Ts lluollisa), (3.23)

one has from (3.22) that

sup [xu(®) ||, < c(as Ts luolli+a,2; Ilxuoll2)- (3.24)
[0,T]

Remark 3.2. By taking derivatives D% in Eq. (3.20) and repeating the above argument we have that if in addition to
ug € H'*4(R) N L?(|x|? dx) one has

D% e H'T([R),  xD%ge L*(R), forsomea >0, (3.25)

then

[%up]HxD“u(r) |, < e(Ts as luollirata.2; IIxuolla: [xD%uol,). (3.26)
T

3.2. Cases =2(14+a), re(1,2)

Let ug € H*MHO N L2(|x|¥ dx), r=1+46,0 € (0, 1).
Reapplying the method for the weight (x)%vg, 0 € (0, 1), multiplying Eq. (3.21) by (x)%vgxu and integrating the
result, one gets

L (@) dx 4 / (), DY, (e () x
- (2+a)/(x)?le+“u(x)?vxu +/(x)§)vxu8x(x)?vxu
—o. (3.27)

From the previous analysis and Proposition 3.1, we only need to handle the last two terms in (3.27).
First we notice that

/ (D rudx < ) D ] | ) e (5:28)

Next
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()4 D' f = —[D% (x)}, ] D' D f + D“(x)§, D,

Ci C

and by the commutator estimate
ICil2 < |D*f|, uniformly in N for 6 € (0, ).
On the other hand,
Cy =D x){ o Hf = D0x ()Y Hf) — D (0 ()4 Hf) = K1 + Ko,
where
IK2ll2 = | D (8 IR HL) [, < [ (0 0N HA) ],
<% R THS |y + [0x 0k JHS |
SIflla+ |70f |, < el 71|,
So we consider Ky,
Ki =D ((x)yHf) = DM ()} f) + D*0x[(0)3: H]f = K11 + K12
For K » we write
IK12ll2 = || DO [ ()5 H] ]|,
< HDax[<x> HIF 15 fo [ HL £ ,
<[ 92 )% | 1A% 8 (x NHOO LIS < coll fl2.

Finally,

1K1l = [ D7 () ), < 177 (0% )

< ”J(1+a>(1+0)fH1/1+0 H 1+9f”0/1+0
<

172049 £ 4 |00 f | + 1 F 2 + 1z,

which completes the estimate for (3.28) if s > 2(1 + a).
For the nonlinear term coming from (3.21) we have that

f (0 Q) g < [0 x| 210xulloo < 6 x| 2llulla04a).2-

This proves that if ug € H>T9(R) and |x|'*%u € L2(R), 6 € (0, 1), then persistence holds in

H2(l+a) N L2(|x|2(1+9) dx)

Remark 3.3. The above argument also shows that if in addition to ug € H 2a+a) Ry N L2(Jx |21+ dx) one has
D%y € H*1H(R) N L2(|x > dx), o > 0, then DY € C ([0, T]: H2>3+D(R) N L2(|x |21+ dx)).

3.3. Cases =2(14+a), r=2

We observe that an argument similar to that in [10] also gives the persistence of the solution to the IVP (1.1) in
ug € H*"F(R) N L2 (1x|* dx). (3.29)
In fact, using for
xzDH'anf — ()CZDH_aaxf)/\v — (—3§(|E|l+ai§f))v
= (~@+ @)1+ )&% sgn®) F — 22 + )l H5F + g1 g (x2 )
=-Q+a)(1+a)D*Hf —22 +a) D' (xf) + D8, (x* f),
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we get the equation for x2u
3 (x%u) + D', (x?u) — 22 + @)D" (xu) — (1 + a)(2 + a) D Hu — x*udsu =0,
for which a familiar argument also shows that

55 lluoll2(i+a).2)- (3.30)

sup Hx2u(t)||2 < c(T; a; |x2uo’
[0,T]

As before we notice that if in addition to (3.29) one has that

D%ug e H*M®R) N L2 (|x|* dx) = Za(14ay 2, @ >0, (3.31)
then

sup [x*Du(®)|, < (T a: |x*uo | y: |x*D%uo | lluoll2(1+a)+a.2)- (3.32)

[0,T]

34. Cases=s,=[r+ D710 +a),re2,5/24+a)

We observe that the equation for xu
& (xu) + D99, (xu) — 2+ a) D" U + (xu)dyu =0, (3.33)

and the previous argument for |x |l , with [ € (0, 2) will provide the result if the contribution for the extra term in (3.33)
ca D% can be handled, i.e. if for [ =1+ 6

sup [lx["* D u)|, < M. (3.34)
[0,T]
We claim that if 6 € (0,a + 1/2), ug € H (R) N L?(|x|**?), s = r[(r + 1)~1(1 4+ a), we obtain (3.34) and hence
the desired result. From Remark 3.2 it will suffice to have
|1 D1 o], < e[|l uo | 3 [P gl ), (3.35)

with ¢ independent of N.

Proof of (3.35). Using the identity

xDf = D™(xf) + (1 +a) DA, (3.36)
we have to control the L norms of the terms

Ki=|x|’DHug and K> = |x|? D' (xup). (3.37)

We can estimate K| as

IK1ll2 < | DE(151° sgn(&) x §)ito(®)) | ,

+ | DE(161 sgn(&) (1 — x ©))@o©)) |, = K11 + K12, (3.38)
where
Ki1 < || DE (11" sen@®x @0(0) |, + | DL 1&1° sen©)x @ (@6 — @) |
L)
=K1+ D{L|,.

Next we have that

ID¢Ll, < L@, oL@l
Then
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19 LI < c(I19gTolloo + || DETH0] )

< c(IFTlloo + | Ix1Puo],)

<e(lxuoli + [1x17uo|,) < e ¢x) 2 uol,,

and
K1 <o

(by Proposition 2.9). 0O

Consider now || K3||2, we introduce the cutoff function x to obtain
IK2ll2 = || IxI? D' (xuo) |,
= | D (151" @) |
< DL (11" x @) Fmp)) |, + | DE(1E1H (1 = x (&) xuw)) [,
<Ky 1+ Kop.

Using Stein’s derivative, Leibniz rule (2.14) and Proposition 2.9, we estimate K> 1 as

Ky = | D (&1 x &) (Fup) ||
<c|DL(1E1 % ®) | Tl + 11 x ®)] | PE o)
< callxuollz + ca | D (K1) |
< cal () P uo .

1 (1—x (&)

On the other hand, we notice that ¢ (§) = E)Fa

and hence it follows that
Kao = | D& (1 - x(®)Fu0) |,

14a 1—
Jg(lél <§>1+aX(E)) (é)““x’%)

<cf| (5 0em0) |
<c||Jf 0 (&) u0) ||, + [ ¢ (9 (€)' )ao) |,

§ cian
()|
£ (5)@:) uo 5

el T w4 [ () Tuol

<cy ” (x)2+9u0 ”;—1/(2+0) ”J(2+9)(1+a)u0||;/(2+0) Ty ” <x>2+9

and ¢2(§) = é—) satisfy the hypothesis in Proposition 2.5,

X

2

el (& ) |, +

e e

where in the last inequality we have applied complex interpolation (g € H* (R) N L*>(|x|*" dx) with r =2 +6 €
(2,5/2+a)).
3.5. Persistence property in Z'sr,, withs, =[(r+1)"]J(1 +a)andr €[5/24+a,7/2+a)
To simplify the exposition we assume » € [3,7/2 4+ a).
We have established persistence in
Z, » withre[2,5/2+a), (3.39)
for the equation (we are assuming a € (0, 1/2) for simplicity)

du+ D" u 4+ udu =0, (3.40)
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and that xu satisfies the equation

3 (xu) + D49, (xu) — 2+ a) DU + xudu = 0. (3.41)
Thus if we prove that ug € Z.X“, with r € [5/2 4+ a,7/2 + a), then the solution u satisfies

Ix|*D'" 9y e L>(R) fora=r—1€[2,5/2+4a), (3.42)

the argument for proving the result in Z, , as in (3.39) will provide the result.

Since u(0, ) =up(0) = f up(x)dx is preserved by the solution flow, it will suffice to show that if ug € Z.r(pra),,,
rel5/2+a,7/2+a), then |x|*D'*u, e L*(R) fora =r — 1.

Since @ € [2,5/2 4 a) witha € (0, 1/2) write =2+ 0, 6 € (0, 1), and use that

2D f = —(1+a)aD ' f —2(1 + @)D H(xf) + D' (x* f). (3.43)
Thus
X2 D ug = —(1 + a)alx|” D*'ug — 2(1 + a) DM (xug) + |x|° D'+ (xu)
=G+ G, +Gs. (3.44)
First we write G| using that
121 D uo |, = [ DE (1£1° 50 [
<[ D1~ x @) |, + | D (1€1°7H (1 = x@®)iwo) |

Now using that 7o (0) = 0, the Taylor expansion allows to write

&
ﬁo(€)=éasﬁo(0)+/($ — OFu) de. (3.45)
0

So

&
617 % ®)ido (&) = |51 sgn(&) x (§)deTi0 (&) + x (§)[€]* / (& — )dzu(s)de
0

=[] sgn(&) x (§)d¢uo(§) + Q1
and by Proposition 2.9

D{(1&|° sgn(&)x (€)dz10(€)) € L*(R)  ifand onlyif 6 <a+1/2,
ifandonlyif ¢=2+6<5/2+a,
which holds from our hypotheses, and
|DEO1], <1011l Q1115

10112 < | x @11 8200 ] o ||, < [22u0] o, < | 5%u0]],

{I&1<1}
<l tx)3 uo| .
and
H &
19 Q1112 < x’<s>|s|“—1f(s—c>a§ﬁo(;)dc + x(&)(a—1)|§|“—2f(é—;>a§ﬁo(c)d;

0 2 0 2

H
+ [ x@®lgl*! / o (¢)dg
0 2
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< |02 o, + cal| x ®)NEI] 0FT0]| . |
< ca|| 05100 | o < cal| ¥2uo]| o, < cax?uol, ,

< ca( @ 2uo |, + [ FPuo]y | ) 2uo3).

This provides the bound of G in (3.44).
For G, we write

[1x1° D*H (xuo) ||, = | DY (&1 sgn(€) (xup)) | ,
< | DE(1&1 sgn(&) x &) (Fup)) |, + | DL (1€1* sgn&) (1 — x &)) Fuo)) |,
< XU lloo + IXT0 12 + || JE ((6)xu0) |,
< lxuoll + llxuolla + || 714 (&)@0) |, + [ 79 (8 500) ||,

el uoll, + [0 0 s uo], + | o -

To complete the estimate we use that

N

[ 0 o, < e oy "o

holds if m(%) =a<r(l+ a)(%). Since r > 3 we just need (1 4+ a)(2 — 6) > a, which holds since 6 € (0, 1).
This finishes the bound for G,.
Finally, we consider G3 in (3.44):

| x1” DY (Puo) ||, = | DE (161 sgn(€)dZ 7o) |,
< | DY (161" sgn(&) x (&)dF o) |, + | DL (1€1" sgn(&) (1 — x (&))Z0) |,
= A+ As.
The Leibniz rule and Stein’s derivatives give
A< || DE(161 sgn@)x ©) | | 9270 [, + 151 sen@) x §) | o | DE8FT0 ||, < [ (6)*uo]
and
Az < || DE (92 (151" sgn(@) (1 — x &))a0)) ||, + | D (2 (151" sen(®) (1 — x (€))deTno)) [
+ | DE (82 (151" sen®)(1 — x(&))ao)) | ,
=K1+ K> + K3.
Notice that
9 (16" sgn(®) (1 — x(©))) = A+ a)|&]* sgn(€) (1 — x(§)) + €] sgn(&) x (&)
and
07 (1€ sgn(&) (1 — x(§))) = cl&|*" sgn(€) (1 — x (&) + c[&|“ sgn(&)x" (&) + |&]' T sgn(€) x " (€).
So to bound K3 we just need to consider
| DE(1€1* " sgn(&)(1 — x(€))ito) ||
< | DE(1E1 sen@) (1= x (©))) | ol + [[161°7 sgn@) (1 = x®)) | | PLTo ]
< lluoll2 + [[1x1%uo -

To bound K> we just need to consider

a 1—
|D2(er sence) (1~ x@)ae)l < | of (EEECIED gy )|
2

a 1— .
< Jse(m Sgn(Z)ga x(&)) (g)“3§u0>

2
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Now notice that

€1 sgn(&)(1 — x(§))

1 1
() = e L™, ded = — Bo=— el

(&) &) (€)?

Thus Proposition 2.5 and interpolation (Lemma 2.8) yield

a 1— ~ I
‘k(m sen©)(1=x ) 10y uo)“ FAGEED]
2

(&)

INCINN

|
HJ1+9( aﬁ°)”2+”J%‘ﬁ0”2
| )0 7 uol, + 1l uo .

Finally to bound K3 we just need to consider

| DE (181" sgn(@) (1 — x &))ito) |, < || 7€ (1617 sgn(&)(1 — x (&))iwo) |

<|
< o, < [ (x)°

where we have used Proposition 2.5.
4. Proof of Theorem 1.2

Without loss of generality we assume that 1 =0 < t>.
We consider the case 0 < a < 1/2 and hence % +a=24a<3.
From the hypothesis we have thatu e C([-7,T]: Z(1+a)(§+a)+‘—7” Sta—e

udsu € C([-T,T]: Z<1+a)<g+a>—#,4+za—ze)

and
ud U € Ll([—T, T]: H‘YU(R)), with sg € (O, ¢! —|—a)(§ —|—a>>.

The solution to the IVP (1.1) can be represented by Duhamel’s formula
u(t) = Wa(t)uo — / Wt — 1" Yu(') () it
0

or equivalently in Fourier space as

t
W, 1) = e ME T E Gy ) — ’E/efiofz’)lml*“séﬁz(g’ ¢)dr'
0

With the notation introduced in (2.1), we have

t

B = Fatr .20 — 5 [ Falt =1 66761 )

0

A
_ZB(zguo)——/ZB,z—t £,£0°)dt
1

We notice that for any ¢ € R, and any j = 2, 3, 4, we have

|0 7¢ (€ @) [, + ¢ (©)* @) |

), for some 0 < € < 1. Therefore

781

“.1)

4.2)

(4.3)
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Claim1.Letaw =} +ae (4, 1) and j =2,3,4. Then
. 1
Bj(t.£. 1) — %/Bj(t — ¢ &, £0%)dt' € HY(R), (4.4)
0
forallt e R.

If we assume (4.4), it follows that
. 1
agﬁ(s, t) € H*(R) ifandonlyif Bj(z,&, %) — %/Bl (t —1tE, E’IZZ) dt’ € H*(R). 4.5)
0
We split now Bj as

B (t, &, 1) = c1t|€] sgn(&)e I E ()
= c1t[€]“ sgn(®)e " E E o (8) (x €) + (1 — X (©)))
= B11+ B2, (4.6)

where c¢; = —i(2 4 a)(1 + a). From the hypothesis, it is easy to check that for any t € R — {0}, B2 € H\(R).
Next, we consider By j

Bi1 = c1tl&|“ sgn(&)x (&) (e ETE 1) @) + citlE| sgn(&) x (§)iio(€) = B, + BL,.

Once again, we can easily check that for any r € R — {0}, Bll’l e H'(R).
We rewrite I~3’1,1 as:

Bf | = c1t]g|* sgn(€) x (€) (o (€) — o (0)) + c1¢[€]* sgn(€) x (€)1t (0) (4.7)

and notice that for any r € R — {0}, c1£|£|? sgn(&) x (€) (o () — o (0)) € H' (R).
Now, we apply the above argument for the inhomogeneous term
t
/ Bi(r—1' &, €0%)dr,
0

to conclude that

t
(Bl(tfﬁo) - %fBl(f —t/,E,Eﬁz)dt/>
0
t

—c (r|s|“ sgn(€) x (§)ip(0) — ’5 f (t —1)I&1" sgn(&) x ()Ew*(0, r’)) e H'(R) (4.8)
0
and therefore from (4.5) and (4.8) we have that for any r € R — {0}

dzi(€.1) € H*(R) if and only if
t
1161 sgn(&) x (§)uo(0) — %/(f — ') E]* sgn(®) x (6)6°(0.1') € H*(R).
0
Finally, we observe that for any t € R — {0}

t

u (t —t)IE1* sgn(&) x (§)&u(0,1') € H' (R),
2
0
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and hence
agﬁ(s, t) € H*(R) if and only if 7]&]|%sgn(§)x (§)up(0) € H*(R) 4.9)

and since @ = % + a, it follows from Proposition 2.9, that (4.9) holds at ¢ = ¢, if and only if 7 (0) =
In order to complete the proof we go back to Claim 1.

Proof of Claim 1. We will only give the details in the case j =2. We have
~ i 1+4+a —~
Ba(t,§,T10) = cae™ "1 2 P D 6) (4.10)
and therefore

| B2(t, -, 30) |, < e | D*“T Do, < crlluollz@sy.2 (4.11)

and from Propositions 2.7, 2.5 and Lemma 2.8

| D% Bat, -, o) |, < er (luollzasny 2 + 16129 |, + | DE (152 Do) |,)

Pt
< Cz(||140||(2+a)(a+1),2 + HD§<W@> ¢ uo) )
2

< er(luolls/2rara+n.2 + [ JE (€)1 0) ||,)
<

(
et (luolls/24ay@rn.2 + [ (x)* T2 HDug] )
(

< cr(luollsy2ay@sny,2 + | (6)F ug | 77 | J O/ @ Dy || 37) (4.12)

which are all finite since ug € Z5/24a)(a+1),5/24a- O
5. Proof of Theorem 1.3

As it was remarked, we carry out the details for a € [1/2, 1). Thus, 7/2+a =4+« witha =a — 1/2 € [0, 1/2).
Again, we shall use the integral equation associated to the IVP (1.1)

u(t) = Wy(t)uo — / Wa(t —t")u(')ou(t')dr’,
0

which in Fourier space reads as

t

e ) = e itlEl l+a ‘e 0(€) — _/e—i(f—t/)|§|l+a~§§ﬁ2(s’ t/) dr'. (5.1)
0
With the notation introduced in (2.1), we have that

t

st = R .20 — 5 [ Fale -1 66761 )

0
11 ; AT
=ZEj(t,$,ﬁo)—§/ZEj(t—t/,é,siiz)dt/. (5.2)
1 o 1

By hypothesis we have that

ueC(-1,71:Z for some 0 < € < 1. (5.3)

(l+a)(%+a)+'%”,%+a—e)’

Therefore

udeu € C(I=T. T1: Z (1 ay (3 +ay- 152 6:420-2¢) (5.4)
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and by using Proposition 2.3

udue L'([-T,T1: HO(R)), so€ (0,(1+a)(7/2+a)). (5.5)
In Fourier space these last two properties are
e C(=T.T1: 21, e (14a)G4ar+152) (5.6)
and
Euxu € C([—T, T]:Zﬁ+2a72e,(l+a)(%+a)—‘#)' (5.7)
Also for j = 1,2, 3 one has that
u(1;) € Zapray(i+a)12+a  andso W, 1)) € Z7/24a,(7/2+a)(14a)- (5.8)
We observe that from the equation in (1.1) it follows that
d [ 1 1
& [t dx =S lul} = 3 ol (59)
—0o0
and hence
o o
t
/ xu(x,t)dx = / xuo(x)dx+§||uol|% (5.10)
—0oQ —0o0

so the first momentum of a non-null solution is a strictly increasing function of z. If we prove that there exist f1€(t1, )
and f, € (f, t3) such that for j =1, 2

e ¢]

/ xu(x,t;)dx =0, (5.11)

it will follow that ||ug|l» = 0, and therefore u = 0.
So we just need to show that using the hypothesis in (5.8) and (5.9) for j = 1, 2 there exists ] € (1, t;) such that

e ¢]

f xu(x,f)dx =0. (5.12)

Without loss of generality we assume that f{ =0 < #, < t3. Then, going back to Eq. (5.2) we observe that

Ey = E\(1, £, 1) = crt|g 1“2 sgn(@)e ™1™ Sy )
= cutl€l" 2 sgn(€)e M ) (x (€) + 1 - x(®))
=Ei1+Ei, (5.13)
with E1o € H L(R) for any ¢ € R. On the other hand, by using Taylor’s formula and the fact that 7, (0) = 0, we obtain

&
uo(§) = &9¢1u0(0) + /(5 — 0)3z4(0) dO = £¢iin(0) + Ra(E). (5.14)
0

Therefore we can write Ep 1 as
~ _ —i I4a ~
E11(1.8.70) = c11[§|* "2 sgn(€)e 1 y (6) (80700 (0) + Ra(8))
= c11]g|4 eI (£)0eT0 (0) + Ra(E. 1) (5.15)
Let us see that for any r € R, 132(5, 1) € H'(R). Thus
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R0, <1619 X E)IER] 5700 o |

< el Puo] o, < e Puol

<t )3 uol,.

Sincea e (1/2,1) (soa — 1> —1/2)

|95 R, 0|, < e (161472 x @)1 P 0370] o |1, + 161280 x (€)1 ]| 9270 o [,

+ [1EPH x @ |[0zu0] o ||, + 1819 x ©)1€N 0770 . |,)

<a(uolly + [ dxuo], ,)-

Next we observe that

t1E197 sgn(€)e 8  (8)0, 10 (0)
= 1]&1°7" sgn(&) x (€)de o (0) (1 + (e EI"E 1))
= 1]€1*" " sgn(€)x (€)0e70(0) + Qa(t, €)

with

0»(t,-) € H'(R),

for all r € R, which follows by combining the estimate |¢!* — 1| < |z| and the fact that a € (1/2, 1).

Gathering the information from (5.13) to (5.18) we can conclude
E1 —cit|€]* " sgn(€)x (€)d:100(0) € H' (R),

forallt e R, withc; = —Q2 +a)(1 +a)a(a — 1)i.
Combining the above argument and (5.4) we also conclude that

t

/El(t—t/,é,éﬁz(é,t’))dt’—c1/(t—t’)|§|“_1x(§)85(§722)(0, t')dt' e H'(R)

0
forall r € R.

t

0

Now we shall rewrite the terms E5’s in (2.1) as

Es = Es(t,,Tp) = cst £ sgn(&)e 11" ¢ g 6)
— c11E1 2 sgn(®)e T E T () (X (€) + 1 — X (©))
=Es1+ Es 2,
with E5» € H'(R) for any 7 € R. In fact

1Es 202 < e (| D* Geuo) |, + [[x)?uo )

<cr(llxuolizz + [ (x)2uol,)

< e (l10xuoll2 +
Also

| (xyoguo |, + || (x)uo ).

Es = cst|€[* sgn(&)e 18 y (£),10(0)
+ o5t €197 sgn(&)eETE y (8) (0g a0 (€) — ¢Ti0(0)).

An argument similar to that one in (5.15)—(5.16) shows that

‘l+a%~

est|E|* " sgn(&)e "

for all € R. Now we consider

X (&) (370 (8) — d¢i40(0)) € H' (R),

785

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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est|E] " sgn(&)e " EE 5 (£)0:100(0)

= cst €7 sgn(&)x (£)3:0(0) + est|E|* " sgn(&) (e EITE — 1) (£)3:70(0).

The arguments in (5.17) and (5.18) show that
€1~ sgn(@) (e — 1) x (€)d710(0) € H' (R,

for all + € R. Hence gathering the information from (5.20) to (5.24)
Es(1,§.10) — cst|€]* ™ sgn(&) x (€)9gio(0) € H' (R)

for all t € R, with ¢c5 = —4i(2 4+ a)(1 +a)a.
The above argument and (5.4) show that
t t

/Es(t—l £ £72(E, r))—cs[(t—t/)|s|“—1x<s>ag(sﬁ2)(0, () e H'®),
0 0
for all r € R. We claim that for all € R,

Ex(t,-,70), E3(t, -, 7o) € H' (R).
It suffices to consider E3. So

1E3l2 < crlluollza+2,2

and
|0z E3ll2 <Ct(H £)1H H2+ || 3H23Ei‘\0” )
<@ o, + [ o () ao) [ )
<er(luollaars.2 + [ e (8 ) |,)
(

3
< cr(lollaasa.s + | 70 | (&Y $0) |.3)

3
< colluollaarsz + | o) o ¥ 7%+ S uo | 3).

Since 4a + % < (% +a)(1+a), and 4 < % + a, the claim is proved.
A similar argument and (5.5) show that for j = 2,3
t

f J(t—1. & &0 (g, 1)) dt' e H' (R),
0
for all # € R. Let us see now that for j = 6,9,

E;(t,- @) € H' (R),
for all # € R. In both cases the proof is similar so we just consider the case j =9. So
1Eoll> < e[| (5)“0Z0
<e(l[©) o, + 1) o],)
<er(|74@) o, + [ uoll,)

and
19 Eollz < e (161 050 [, + | (6) 0z 00] H “d¢io]|,)
<er([9z0] o + )2 I | 5 ) Foll, + [ 6) 0] )
<er(xuol o+ 727 ) %uo |, + [ () J“uo||2+ luollza+1.2)
<er(x?uoly + 727 ) 2uoll, + [ 0020 uoll, + luollzat.2),

which can be bounded by interpolation as well.

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
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Also a similar argument and (5.5) show again that for j = 6,9

t

/Ej(t —t & 0t (E,1))dt' e H'(R), (5.34)
0
for all + € R. By hypotheses (5.3), (5.5) and (5.8) we have

Claim 2. Leta—a——e(O 2) and j =4,7,8 and 11. Then

t
Ej(t—1,& d(5a7)), / Ei(t—1 £u?)(£,1')dt' e H*(R), (5.35)
0
forallt eR.

Proof. Due to the form of the terms, by interpolation it suffices to consider the cases j =4 and j = 11. Thus,

I1Esll2 < ¢ 161" 90, < crlluollagitay.2 (5.36)
and
||En||2<Ct“3§ﬁo||2<6z||<$>4u0||2, (5.37)

and hence both quantities are finite. Now
| D Eally < er(lig1™ 0], + |11 0 |, + D (161*50) )
<a([@ 0@ |, + | Dg (61 m) )
<er(luoll@tayitay.2 + ||Ds (11" )

< |lp jgHe+D 4(14a)+,
S || Pe W(E) uo ,

c(l©* a0, + [ Dg ()" w0) )

<c(|
(74 g |, + |8 (€)' uo) )
<c(

(

but

| D2 (1€1* ) |

c(luollaciray2 + || (1) 4+ Ouqg|,)

< c(luollagrrars + | o6y g | 357 | S @0ty | 77, (5.38)
therefore

| DE Eal, < c(luolldtaratar2 + | ) ug ). (5.39)
which is finite by the hypothesis at 7 = 0. Also

|D£ Enill, < i[9l + 16100, + | D (25700) |)

<ar (@ uol, + [ €)YV, + eI uo )

<ar (79 (o) [, + [0 uol,)

<a (|79 (0 uo) [, + 74 () 2uo) [, + 74 Vo, + | ) uol )
< ([ g 577 | D |55 | b | 2 Dug

+ ” Ja(l+a)”0||2 + ” <x)4+a”0”2)
< er(luolldari4ar2 + | () uq I,)- (5.40)
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Combining (5.36)—(5.40) and (5.5) it follows that

t
/Ej(t —t,&,&0%) (5,1 dt’ € H*(R),
0

for all € R for j =4, 11, and consequently for j =7, 8,9 as well.
Summing up, we can conclude that

Dgafu(-, 1) € L*(R)  if and only if

t

Dy (fléll_ax(é)asﬁo(o) - / (t =) &1 x &)3: (0, 1) dr’) e L*(R),
0
for any fixed ¢t € R. We observe that

3 110(0) = —ixuo(0) = —i/xuo(x)dx,

and by (5.9)

¢ (i%f) (O, t’) = —@u(o, t’) = —i/xuaxu(x, t’) dx

= %Hu(;') ||§ = %”u((}) ||§ :i% /xu(x’t)dx’

and by integration by parts
. i
tzag’u\()(()) — 15 /(tz — t’)ag (éﬁz) (O, t/) dt’
0
5]

:—itg/xuodx—i/(t2—t’)%/xu(x,t’)dxdt’

0

=—itzfxuo(x)dx—i(tz—t’)/xu(x,t’)dx

15}
=—i //xu(x,t’)dxdt’.
0

Thus from our hypothesis at ¢ = 5, it follows that

B

1'=t o / /
o z//xu(x,t)dxdt

0

[9)
Dg(x(§)|é|“_l)//xu(x,t’) dxdi’ € L*(R),
0

but we recall that « = a — 1/2 and from Proposition 2.9

DE(x®)E1* ) ~Dg(x ®)IE1*7?) ¢ L*(R) ife € (0, 1).
Therefore for (5.46) to hold it is necessary that

19}
// xu(x, t/) dxdt' =0,
0

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

and since F(t) = f xu(x,t)dx is a continuous function, there exists 71 € (0, #;) where F(¢) must vanish and this

completes the proof. 0O
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6. Proof of Theorem 1.4

Without loss of generality we can assume that
t1 =0 and /xuo(x) dx =0. (6.1)

Thus in this case, combining (5.43), (5.45)—(5.47) and (5.10), we have for #, # 0 that
Dgogu(-.1) € L*(R), if and only if

19}
/fxu(x,t/)dxdt/zo, if and only if
0

5]

1 £2
/Ez/nuongdﬂ:fnuon%:o, if and only if
0

luoll5 =0 if and only if uo=0. (6.2)
7. Proof of Theorem 1.5

We shall consider only the case a € [1/2, 1), so thata = 1.
From the argument of the proof in Theorem 1.3, with ¢ = 1/2 in (5.36)—(5.40) and (5.5), we can conclude from
our hypothesis s > (% +a)(1+a)+ 1_7“ that for t £ 0

¢/20¢i (1) € LA(R), if and only if

t
D" t|§|a_1)((§‘)35/u\0(0)—/(Z—t/)|§|a_lx($)8g(éﬁ2(0,t))dt/ e L*(R), ifand only if
0

D

t
D (x@®)g1" ") / / xu(x,t')dxdi’ € L*(R), if and only if
0

t t
/ r_ 1, 2 ’_ 1 2\ _
xu(x,t)dxdt = xuo(x)dx—i—it luolly ) dt" =1t xuo(x)dx—l—ZtHuon =0.
0 0
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