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Abstract

For a class of partially hyperbolic Ck , k > 1 diffeomorphisms with circle center leaves we prove the existence and finiteness
of physical (or Sinai–Ruelle–Bowen) measures, whose basins cover a full Lebesgue measure subset of the ambient manifold. Our
conditions hold for an open and dense subset of all Ck partially hyperbolic skew-products on compact circle bundles.

Our arguments blend ideas from the theory of Gibbs states for diffeomorphisms with mostly contracting center direction together
with recent progress in the theory of cocycles over hyperbolic systems that call into play geometric properties of invariant foliations
such as absolute continuity. Recent results show that absolute continuity of the center foliation is often a rigid property among
volume preserving systems. We prove that this is not at all the case in the dissipative setting, where absolute continuity can even
be robust.

1. Introduction

This work started off as a contribution to the theory of physical measures for partially hyperbolic dynamics. Given a
diffeomorphism f : N → N on a compact Riemannian manifold N , we call physical (Sinai–Ruelle–Bowen) measure
any invariant probability μ such that

1

n

n−1∑
j=0

δf i(z) → μ
(
in the weak∗ sense

)
(1)

for a subset of points z ∈ N with positive volume. This set is denoted by B(μ) and is called the basin of μ.
A program for investigating the physical measures of partially hyperbolic diffeomorphisms was initiated by Alves,

Bonatti and Viana in [6,21], who proved existence and finiteness when f is either “mostly expanding” (asymptotic
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forward expansion) or “mostly contracting” (asymptotic forward contraction) along the center direction. A few years
later, Tsujii [59] was able to obtain similar conclusions for generic partially hyperbolic surface endomorphisms, where
the main novelty is that one makes no assumption on the behavior along the center direction.

There have been several other important contributions, that we will mention in a while. Still, it is fair to say that
little is known for diffeomorphisms (in dimension d � 3) if one allows for “mostly neutral” behavior along the center
direction. On the other hand, we felt that recent progress in the theory of cocycles, specially [13,14] could shed some
light into such situations.

As the project evolved, we became aware of certain unforeseen connections between physical measures and abso-
lute continuity of invariant foliations. We say that a foliation of a manifold N is leafwise absolutely continuous if zero
volume subsets of N are characterized by the property that their intersection with the leaf through almost every point
has zero volume inside that leaf.

Previous works [15,53,57] had established that absolute continuity of the center foliation is a rare and rigid phe-
nomenon in the realm of volume preserving dynamics. Thus, it was surprising to realize that that is not true in the
more general setting of dissipative dynamics. As a consequence, our project was naturally broadened. The follow-
ing conjecture emerged in the process and encodes an important part of our current views on the subject (dynamical
coherence means that the map admits invariant center stable and center unstable foliations):

Conjecture 1.1. Let k > 1 and Ck be the space of partially hyperbolic, dynamically coherent Ck diffeomorphisms with
mostly contracting center direction. Then, for an open and dense subset,

• if there is a unique physical measure then the center stable foliation is leafwise absolutely continuous;
• if there is more than one physical measure then the center stable foliation is not (upper) leafwise absolutely

continuous.

Examples of the second situation will appear in a forthcoming paper [63].
In this direction we prove a certain number of results that concern more directly partially hyperbolic diffeomor-

phisms with center circle leaves. To illustrate the reach of our methods let us, for the time being, restrict ourselves to
perturbations of partially hyperbolic skew-products.

Suppose that N = M × S1, for some compact manifold M , and f0 : N → N is a partially hyperbolic skew-product

f0 : M × S1 → M × S1, f0(x, θ) = (
g0(x), h0(x, θ)

)
(2)

with center bundle Ec coinciding with the vertical direction {0} × T S1 at every point. This implies g0 is an Anosov
diffeomorphism, and we also take it to be transitive (all known Anosov diffeomorphisms being transitive). Assume f0
is of class Ck for some k > 1, not necessarily an integer. Accessibility means that any two points may be joined by a
piecewise smooth path whose legs are tangent to the strong or the strong unstable directions.

Theorem A. There exists a Ck neighborhood U0 of f0 such that for every f ∈ U0 which is accessible and whose
center stable foliation is absolutely continuous there exists a finite number of physical measures. These measures are
ergodic, the union of their basins has full volume in N , and the center Lyapunov exponents are either negative or zero.
In the latter case the physical measure is unique.

The subset of accessible systems is C1 open and Ck dense among all partially hyperbolic diffeomorphisms with
one-dimensional center direction, by Burns, Rodriguez Hertz, Rodriguez Hertz, Talitskaya and Ures [26]; see also
Theorem 1.6 in Niţică and Török [43]. Absolute continuity of the center foliation is also quite common in this context
as we are going to see. This is in contrast with recent work of Avila, Viana and Wilkinson [15,16], where it was
shown that absolute continuity of the center foliation is a rigid property for volume preserving perturbations of skew-
products.

The next result provides a global picture of absolute continuity in a neighborhood of f0 under some mild additional
assumptions. We say that a vertical fiber � = {x} × S1 is in general position if there exists κ � 1 such that f κ(�) = �,
the restriction of f κ to � is Morse–Smale with a unique attractor a and repeller r , and the strong stable and strong
unstable leaves through these two points intersect some other vertical leaf in 4 distinct points. See Fig. 1.
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Fig. 1. A mechanism for robustly absolutely continuous center foliations.

Theorem B. Suppose that f0 exhibits some vertical leaf � in general position. Then there exists a Ck neighborhood
V of f0 such that for every f ∈ V ,

• the center stable, the center unstable and the center foliation are absolutely continuous, and
• both f and its inverse have a unique physical measure, whose basin has full Lebesgue measure in N .

Clearly, given any transitive Anosov diffeomorphism g0, the product g0 × id is Ck approximated by diffeomor-
phisms f0 as in the hypothesis of the theorem.

Theorems A and B follow from more detailed statements that we present in the next section, where we also recall
the main notions involved. Let us close this Introduction with some additional references to the literature.

As mentioned before, existence and finiteness of physical measures for partially hyperbolic diffeomorphisms was
proved by Alves, Bonatti and Viana [6,21], under certain assumptions of weak hyperbolicity along the center direc-
tion. Short afterwards, Castro [30] and Dolgopyat [31] proved exponential decay of correlations and other ergodic
properties for certain diffeomorphisms with mostly contracting center. Stable ergodicity of mostly contracting, vol-
ume preserving diffeomorphisms with mostly contracting center was studied by Burns, Dolgopyat, Pesin and Pollicott
[24,25]. Also, Dolgopyat [32] showed that most small perturbations of the time-1 map of a geodesic flow on a manifold
with negative curvature admits a unique physical measure. Moreover, Andersson [10] proved the rather surprising fact
that the set of partially hyperbolic diffeomorphisms whose center is mostly contracting is Ck-open for every k > 1.

Non-uniformly expanding maps, a non-invertible counterpart to diffeomorphisms with mostly expanding center,
was also introduced by Alves, Bonatti and Viana [6] and has been studied by several authors. Alves, Luzzatto and
Pinheiro [7,8] constructed Markov structures and used them to study fine ergodic properties of these maps. See also
Alves and Araújo [4] and Pinheiro [48]. A general approach to invariant measures of weakly expanding maps, not
restricted to physical measures, was recently proposed by Pinheiro [47]. Perturbations of certain skew-products over
hyperbolic maps have been studied by Alves [1,2], Buzzi, Sester and Tsujii [29] and Gouezel [34].

In a remarkable recent paper, Tsujii [59] proved that generic (dense Gδ) partially hyperbolic surface endomor-
phisms do admit finitely many physical measures, such that the union of their basins has full Lebesgue measure. His
approach is very different from the one in the present paper and it is not clear how it could be extended to diffeomor-
phisms in higher dimensions, even in the case of one-dimensional center bundle.

An important point in our analysis is that we prove that in the present setting center Lyapunov exponents cannot be
positive (Proposition 3.6). Then we have to deal with two very different situations, depending on whether the center
exponent is zero or negative. In the first case, existence and uniqueness of the physical measure is tied to rigidity
(which is novel for the dissipative set-up): the map must be conjugate to another one that acts by rotations on the
center leaves. In the second case, we check that the center direction is mostly contracting, which allows us to apply
the criterion of Bonatti and Viana [21]. In this way, we expand the scope of application of this criterion, which leads
to new classes of examples for which existence and finiteness of physical measures was previously unknown (e.g. the
open set V in Theorem B).
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2. Statement of results

Let Pk∗ (N) be the space of partially hyperbolic, dynamically coherent, Ck diffeomorphisms whose center leaves
are compact, with any dimension, and form a fiber bundle. Unless otherwise stated, we always assume k > 1. Most of
our results concern the subspace Pk

1 (N) of diffeomorphisms with one-dimensional center dimension. Let us begin by
recalling the notions involved in these definitions.

2.1. Basic concepts

A diffeomorphism f : N → N is partially hyperbolic if there exists a continuous Df -invariant splitting T N =
Eu ⊕ Ec ⊕ Es and there exist constants C > 0 and 0 < λ < 1 such that

(a) ‖Df −n
x (vu)‖ � Cλn and ‖Df n

x (vs)‖� Cλn,
(b) ‖Df −n

x (vu)‖ � Cλn‖Df −n
x (vc)‖ and ‖Df n

x (vs)‖� Cλn‖Df n
x (vc)‖

for all unit vectors vu ∈ Eu
x , vc ∈ Ec

x , vs ∈ Es
x and all x ∈ N and n � 0. Condition (a) means that the derivative

Df is uniformly expanding along Eu and uniformly contracting along Es . Condition (b) means that the behavior of
Df along the center bundle Ec is dominated by the behavior along the other two factors. Here all three bundles are
assumed to have positive dimension.

The bundles Eu and Es are always integrable: there exist foliations Wu and Ws of N tangent to Eu and Es ,
respectively, at every point. In fact these foliations are unique. Moreover, they are absolutely continuous, meaning that
the projections along the leaves between any two cross-sections preserve the class of sets with zero volume inside the
cross-section. See [22,39,55]. A diffeomorphism f : N → N is dynamically coherent if the bundles Ecu = Ec ⊕ Eu

and Ecs = Ec ⊕ Es also admit integral foliations, Wcu and Wcs. Then, intersecting their leaves one obtains a center
foliation Wc tangent at every point to the center bundle Ec.

Let πc : N → N/Wc be the canonical quotient map to the leaf space N/Wc. We say that the center leaves form a
fiber bundle if for any Wc(x) ∈ N/Wc there is a neighborhood V ⊂ N/Wc of Wc(x) and a homeomorphism

hx : V ×Wc(x) → π−1
c (V )

smooth along the verticals {�} ×Wc(x) and mapping each vertical onto the corresponding center leaf �.

Remark 2.1. The fiber bundle condition may not be strictly necessary. For instance, let f be a volume preserving,
partially hyperbolic, dynamically coherent diffeomorphisms in dimension 3 whose center foliation is absolutely con-
tinuous and whose generic center leaves are circles. Then, according to Avila, Viana and Wilkinson [15,16], all center
leaves are circles and they form a fiber bundle up to a finite cover. Our arguments extend easily to such a situation.

A partially hyperbolic diffeomorphism f : N → N is accessible if any points z, w ∈ N can be joined by a piecewise
smooth curve γ such that every smooth leg of γ is tangent to either Eu or Es at every point. Equivalently, every smooth
leg of the curve γ is contained in a leaf of either Wu or Ws .

The center Lyapunov exponent λc(μ) of an f -invariant probability measure μ is defined by

λc(μ) =
∫

λc(z) dμ(z) where λc(z) = lim
n→∞

1

n
log

∣∣Df n
∣∣ Ec

z

∣∣. (3)

By the ergodic theorem, this may be rewritten

λc(μ) =
∫

log
∣∣Df

∣∣ Ec
z

∣∣dμ(z). (4)

If μ is ergodic then λc(μ) = λc(z) for μ-almost every z.
Finally, the center direction is mostly contracting (Bonatti and Viana [21]) if

lim sup
n→+∞

1

n
log

∥∥Df n
∣∣ Ec

x

∥∥ < 0 (5)

for a positive volume measure subset of any disk inside a strong unstable leaf. It was shown by Andersson [10] that
this is a Ck , k > 1 open property.
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2.2. The leaf space

Let d be the Riemannian distance on N . We endow the leaf space N/Wc with the distance defined by

dc(ξ, η) = sup
x∈ξ

inf
y∈η

d(x, y) + sup
y∈η

inf
x∈ξ

d(x, y) for each ξ, η ∈ N/Wc.

The quotient map πc : (N,d) → (N/Wc, dc) is continuous and onto. In particular, the metric space (N/Wc, dc) is
compact.

Let fc : N/Wc → N/Wc be the map induced by f on the quotient space N/Wc. The stable set of a point ξ ∈
N/Wc for fc is defined by

Ws(ξ) = {
η ∈ N/Wc: dc

(
f n

c (ξ), f n
c (η)

) → 0 when n → +∞}
and the local stable set of size ε > 0 is defined by

Ws
ε (ξ) = {

η ∈ N/Wc: dc

(
f n

c (ξ), f n
c (η)

)
� ε for all n� 0

}
.

The unstable set and local unstable set of size ε > 0 are defined in the same way, for backward iterates. It follows
from the definitions that there exist constants K , τ , ε, δ > 0 such that

(1) dc(f
n
c (η1), f

n
c (η2)) � Ke−τndc(η1, η2) for all η1, η2 ∈ Ws

ε (ξ), n� 0;
(2) dc(f

−n
c (ζ1), f

−n
c (ζ2)) � Ke−τndc(ζ1, ζ2) for all ζ1, ζ2 ∈ Wu

ε (ξ), n� 0;
(3) if dc(ξ1, ξ2) � δ then Ws

ε (ξ1) and Wu
ε (ξ2) intersect at exactly one point, denoted [ξ1 ξ2] and this point depends

continuously on (ξ1, ξ2).

This means that fc is a hyperbolic homeomorphism (in the sense of Viana [62]).
By Anosov’s closing lemma [11], periodic points are dense in the non-wandering set of fc. By Smale’s spectral

decomposition theorem [58], the non-wandering set splits into a finite number of compact, invariant, transitive, pair-
wise disjoint subsets. Among these basic pieces of the non-wandering set, the attractors Λi , i = 1, . . . , k of fc are
characterized by the fact that

Λi =
∞⋂

n=0

f n
c (Ui)

for some neighborhood Ui of Λi and it is transitive. The union of the stable sets Ws(Λi), i = 1, . . . , k is an open
dense subset of N/Wc. Every attractor Λi consists of entire unstable sets, and so π−1

c (Λi) is Wu-saturated, that is, it
consists of entire strong unstable leaves of f . Additionally, every Λi has finitely many connected components Λi,j ,
j = 1, . . . , ni that are mapped to one another cyclically. The unstable set Wu(x) of every x ∈ Λi,j is contained and
dense in Λi,j . In particular, π−1

c (Λi,j ) is also Wu-saturated. If fc is transitive, there is a unique attractor Λ1 = N/Wc.
We say f is accessible on Λi if, for every j , any points z, w ∈ π−1

c (Λi,j ) can be joined by a piecewise smooth
curve γ such that every smooth leg of γ is tangent to either Eu or Es at every point and the corner points belong
to the same π−1

c (Λi,j ). The center direction of f | π−1
c (Λi) is mostly contracting if (5) holds for a positive volume

measure subset of any disk inside a strong unstable leaf contained in π−1
c (Λi).

2.3. Physical measures

We are ready to state our main result on existence and finiteness of physical measures.

Theorem 2.2. If f ∈ Pk
1 (N), k > 1, is accessible on every attractor and the center stable foliation is absolutely

continuous then, for each attractor Λi , exactly one of the following two conditions holds:

(a) there is a metric on each leaf of π−1
c (Λi), depending continuously on the leaf, invariant under f and Lipschitz

equivalent to the Riemannian metric on the leaf, with uniform Lipschitz constant; then f admits a unique physical
measure, which is ergodic, whose basin has full volume in the stable set of π−1

c (Λi) and whose center Lyapunov
exponent vanishes;
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(b) the center direction of f | π−1
c (Λi) is mostly contracting; then f | π−1

c (Λi) has finitely many physical measures,
they are ergodic for f and Bernoulli for some iterate, the union of their basins is a full volume subset of the stable
set of π−1

c (Λi) and their center Lyapunov exponents are negative.

The union of the basins of these physical measures has full volume in N .

To see that Theorem A is contained in Theorem 2.2 let us note that, for every k � 1, any Ck partially hyperbolic
skew-product f0 is in the interior of Pk

1 (N). Indeed, partial hyperbolicity is well known to be a C1 open property
and the stability theorem for normally hyperbolic foliations (Hirsch, Pugh and Shub [39]) gives that every f in a
C1 neighborhood of f0 admits an invariant W∗

f foliation, for each ∗ ∈ {cu, cs, c}, and there exists a homeomorphism
mapping the leaves of W∗

f diffeomorphically to the leaves of W∗
f0

. In particular, the center leaves of f form a circle
fiber bundle.

Both cases in Theorem 2.2 can occur. For instance, let fc : T2 → T
2 be an Anosov diffeomorphism and

ω : T2 → S1 be non-cohomologous to a constant. Then (x, θ) 	→ (fc(x), θ + ω(x)) is an example of alternative (a) in
T

2 ×S1. Accessibility follows from the cohomology assumption, see [27]. As observed below, it is part of the theorem
that all examples look like this.

Remark 2.3. If condition (a) in Theorem 2.2 holds then f | π−1
c (Λi) is topologically conjugate to a rotation extension

of fc | Λi , that is, a continuous fiber bundle morphism over fc | Λi that acts by isometries on the fibers. When the
center fiber bundle is trivial, as happens near skew-products, the rotation extension takes the form

Λi ×R/Z→ Λi ×R/Z, (x, θ) 	→ (
fc(x), θ + ω(x)

)
. (6)

To construct the conjugacy in this case, fix some consistent orientation of the center leaves and any continuous section
σ : N/Wc → N of the center foliation, that is, any continuous map such that σ(�) ∈ � for every � ∈ N/Wc. Then
define

h : π−1
c (Λi) → Λi ×R/Z, h(z) = (

πc(z),
∣∣σ (

πc(z)
)
, z

∣∣)
where |σ(πc(z)), z| denotes the length, with respect to the f -invariant Lipschitz metric, of the (oriented) curve seg-
ment from σ(πc(z)) to z inside the center leaf. This map sends the center leaves of f to verticals {w}×R/Z, mapping
the f -invariant Lipschitz metric on the center leaves to the standard metric on R/Z. Then h ◦ f ◦ h−1 preserves the
standard metric measure on the verticals and so it is of the form (6), as stated. Observe that, in addition, both h and
its inverse are Lipschitz on every leaf. A similar construction holds in general, using trivializing local charts for the
center bundle.

Explicit bounds on the number of physical measures can be given in many cases. For instance, we will see in
Theorem 5.3 that if f admits some periodic center leaf � restricted to which f is Morse–Smale then the number of
physical measures over the attractor containing πc(�) is bounded by the number of periodic orbits on �. Notice that
we must have alternative (b) of Theorem 2.2 in this case, since alternative (a) is incompatible with the existence of
hyperbolic periodic points.

We also want to analyze the dependence of the physical measures on the dynamics. For this, we assume N =
M × S1 and restrict ourselves to the subset Sk(N) ⊂ Pk

1 (N) of skew-product maps. We prove in Theorem 5.6 that
there is an open and dense subset of diffeomorphisms f ∈ Sk(N) with mostly contracting center direction, such
that the number of physical measures is locally constant and these physical measures vary continuously with the
diffeomorphism. This property of statistical stability has been studied in a number of recent works, including Alves
and Viana [9], for certain skew-products, Vásquez [61,60] for diffeomorphisms with mostly expanding center and
Andersson [10] for diffeomorphisms with mostly contracting center. See also Alves, Araújo and Vásquez [3,5] for
statements of stochastic stability, that is stability under small random noise.

2.4. Absolute continuity

For volume preserving diffeomorphisms, it was pointed out by Shub and Wilkinson [57] that foliations tangent
to the center subbundle Ec are often not absolutely continuous. In fact, Ruelle and Wilkinson [53] showed that the
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disintegration of Lebesgue measure along the leaves is often atomic. Hirayama and Pesin [38] showed that, generically
among C1 diffeomorphisms with compact center leaves, the center foliation is not absolutely continuous; Saghin and
Xia [54] conjectured that the same is true in the non-compact case as well. Moreover, Avila, Viana and Wilkinson
[15,16] announced recently that for certain classes of volume preserving diffeomorphisms, including perturbations
of skew-products (2) and of time-1 maps of hyperbolic flows, absolute continuity of the center foliation is a rigid
property: it implies that the center foliation is actually smooth and the map is smoothly conjugate to a rigid model.

However, we prove that this is not at all the case in our dissipative setting:

Theorem 2.4. There is an open set U ⊂ Pk
1 (N), k > 1, such that the center stable, the center unstable and the center

foliation are absolutely continuous for every f ∈ U . Moreover, U may be chosen to accumulate on every skew-product
map f0 that admits a periodic vertical fiber restricted to which the map is Morse–Smale with a unique periodic
attractor and repeller.

Two weaker forms of absolute continuity are considered by Avila, Viana and Wilkinson [15,16]. Let vol denote
Lebesgue measure in the ambient manifold and volL be Lebesgue measure restricted to some submanifold L. A foli-
ation F on N is (lower) leafwise absolutely continuous if for every zero vol-measure set Y ⊂ N and vol-almost every
z ∈ M , the leaf L through z meets Y in a zero volL-measure set. Similarly, F is upper leafwise absolutely continuous
if volL(Y ) = 0 for every leaf L through a full measure subset of points z ∈ M implies vol(Y ) = 0. Absolute continuity
implies both lower and upper leafwise absolute continuity (see [15,16,23]); the converse is not true in general. We will
see in Proposition 6.2 that the center stable foliation of a partially hyperbolic, dynamically coherent diffeomorphism
with mostly contracting center direction is always upper leafwise absolutely continuous. This does not extend to lower
leafwise absolutely continuity, in general: robust counter-examples will appear in our forthcoming paper [63]; see also
Example 6.1 for a related construction. However, as stated before, full absolute continuity of the center foliation does
hold on some open subsets of diffeomorphisms with mostly contracting center.

2.5. Conservative systems

Although we are primarily interested in general (dissipative) diffeomorphisms, our methods also shed some light
on the issue of absolute continuity in the volume preserving context. Let λc(f ) denote the integrated center Lyapunov
exponent of f relative to the Lebesgue measure.

Theorem 2.5. For any small C1 neighborhood W of f0 = g0 × id in the space of volume preserving diffeomorphisms
of N ,

(1) the subset W0 of diffeomorphisms f ∈W such that λc(f ) �= 0 is C1 open and dense in W ;
(2) if f ∈ W0 and λc(f ) > 0 then the center foliation and the center stable foliation are not (even upper leafwise)

absolutely continuous;
(3) there exists a non-empty C1 open set W1 ⊂ {f ∈ W0: λc(f ) > 0} such that the center unstable foliation of every

Ck diffeomorphism g ∈ W1 is absolutely continuous.

Claims (2) and (3) remain true when λc(f ) < 0, if one exchanges center stable with center unstable. Every Ck , k > 1
diffeomorphism f ∈ W1 has a Ck neighborhood Wf in the space of all ( possibly dissipative) diffeomorphisms where
the center unstable foliation remains absolutely continuous.

A brief discussion of the volume preserving case will also be given in Section 7.3.

3. Gibbs u-states

Let f : N → N be a partially hyperbolic diffeomorphism. In what follows we denote Ir = [−r, r] for r > 0 and
d∗ = dimE∗ for each ∗ ∈ {u, cu, c, cs, s}. We use vol∗ to represent the volume measure induced by the restriction of
the Riemannian structure on the leaves of the foliation W∗ for each ∗ ∈ {u, cu, c, cs, s}.
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Following Pesin and Sinai [45] and Alves, Bonatti and Viana [6,21] (see also [19, Chapter 11]), we call Gibbs
u-state any invariant probability measure m whose conditional probabilities (Rokhlin [52]) along strong unstable
leaves are absolutely continuous with respect to the volume measure volu on the leaf. More precisely, let

Φ : I du

1 × I
dcs
1 → N

be any foliated box for the strong unstable foliation. By this we mean that Φ is a homeomorphism and maps every
horizontal plaque I

du

1 ×{η} diffeomorphically to a disk inside some strong unstable leaf. Pulling m back under Φ one

obtains a measure mΦ on I
du

1 × I
dcs
1 . The definition of Gibbs u-state means that there exists a measurable function

αΦ(·,·)� 0 and a measure mcs
Φ on I

dcs
1 such that

mΦ(A) =
∫
A

αΦ(ξ, ζ ) dξ dmcs
Φ(ζ ) (7)

for every measurable set A ⊂ I
du

1 × I
dcs
1 .

Proofs for the following basic properties of Gibbs u-states can be found in Section 11.2 of Bonatti, Díaz and
Viana [19]:

Proposition 3.1. Let f : N → N be a partially hyperbolic diffeomorphism.

(1) The densities of a Gibbs u-state with respect to Lebesgue measure along strong unstable plaques are positive and
bounded from zero and infinity.

(2) The support of every Gibbs u-state is Wu-saturated, that is, it consists of entire strong unstable leaves.
(3) The set of Gibbs u-states is non-empty, weak∗ compact and convex. Ergodic components of Gibbs u-states are

Gibbs u-states.
(4) For Lebesgue almost every point x in any disk inside some strong unstable leaf, every accumulation point of

n−1 ∑n−1
j=0 δf j (x) is a Gibbs u-state.

(5) Every physical measure of f is a Gibbs u-state and, conversely, every ergodic u-state whose center Lyapunov
exponents are negative is a physical measure.

The following fact was first observed by Bonatti and Viana [21]:

Proposition 3.2. If f : N → N be a partially hyperbolic diffeomorphism with mostly contracting center direction then
it admits finitely many ergodic Gibbs u-states. Moreover, the physical measures of f coincide with the ergodic Gibbs
u-states, and their basins cover a full Lebesgue measure subset of N .

Now let f ∈ Pk∗ (N). Recall that πc : N → N/Wc denotes the natural quotient map and fc : N/Wc → N/Wc

is the hyperbolic homeomorphism induced by f in the leaf space. Given small neighborhoods V s
ξ ⊂ Ws

ε (ξ) and
V u

ξ ⊂ Wu
ε (ξ) inside the corresponding stable and unstable sets, the map

(η, ζ ) 	→ [η, ζ ] (8)

defines a homeomorphism between V u
ξ × V s

ξ and some neighborhood Vξ of ξ . A probability measure μ on N/Wc

has local product structure if for μ-almost every point ξ and any such product neighborhood Vξ the restriction μ | Vξ

is equivalent to a product νu × νs , where νu is a measure on V u
ξ and νs is a measure on V s

ξ .
In the sequel we prove three additional facts about Gibbs u-states that are important for our arguments.

Proposition 3.3. Take f ∈ Pk∗ (N), k > 1 such that the center stable foliation is absolutely continuous. For every
ergodic Gibbs u-state m the support of the projection (πc)∗(m) coincides with some attractor of fc. In particular,
periodic points are dense in the support of (πc)∗(m).

Moreover, any two such projections with the same support must coincide. In particular, the set of projections of all
ergodic Gibbs u-states of f down to N/Wc is finite.
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Proposition 3.4. Take f ∈ Pk∗ (N), k > 1 such that the center stable foliation is absolutely continuous. If m is a Gibbs
u-state for f then μ = (πc)∗(m) has local product structure.

Remark 3.5. Suppose f is volume preserving. The Lebesgue measure vol is both an s-state and a u-state, because the
strong stable foliation and the strong unstable foliation are both absolutely continuous. Thus, Proposition 3.4 implies
that (πc)∗(m) has local product structure if either Wcu or Wcs is absolutely continuous.

Proposition 3.6. Let f ∈ Pk∗ (N), k > 1 and Λ be an attractor of fc. Suppose the center stable foliation of f is
absolutely continuous and f is accessible on Λ. Then every ergodic Gibbs u-state of f supported in π−1

c (Λ) has at
least one non-positive center Lyapunov exponent.

As a special case, we get that if f ∈ Pk
1 (N), k > 1 is accessible on an attractor Λ of fc and the center stable foliation

is absolutely continuous, then the (unique) center Lyapunov exponent of every ergodic Gibbs u-state supported in
π−1

c (Λ) is non-positive.
The proofs of these propositions are given in Sections 3.1 through 3.3.

3.1. Finiteness in leaf space

Here we prove Proposition 3.3. Let m1 be any ergodic Gibbs u-state and μ1 = (πc)∗(m1). Notice that μ1 is ergodic
and so its support is a transitive set for fc. Moreover, suppμ1 = πc(suppm1) consists of entire unstable sets, because
the support of m1 is Wu-saturated (Proposition 3.1). Thus, suppμ1 is an attractor Λ of fc. As pointed out before,
periodic points are dense in each attractor of fc.

Now we only have to show that if μ2 = (πc)∗m2 for another ergodic Gibbs u-state m2 and suppμ2 = Λ = suppμ1
then μ1 = μ2. For this, take xc ∈ Λ, let Uc be a neighborhood of xc in the quotient space N/Wc and let U = π−1

c (Uc).
Then U has positive mi -measure for i = 1,2. So, since the mi are ergodic Gibbs u-states, there are disks Di ⊂ U , i =
1,2 contained in strong unstable leaves and such that Lebesgue almost every point in Di is in the basin B(mi) of mi .
Moreover, these disks may be chosen such that the center stable foliation induces a holonomy map hcs : D1 → D2.
Since the center stable foliation is absolutely continuous, it follows that hcs maps some point x1 ∈ D1 ∩ B(m1) to a
point x2 ∈ D2 ∩ B(m2) in the basin of m2. Then x1 and x2 belong to the same center stable leaf of f , and so their
projections πc(x1) and πc(x2) belong to the same stable set of fc. Notice that πc(B(mi)) ⊂ B(μi) for i = 1,2 and so
each point π(xi) ∈ B(μi). Since either basin consists of entire stable sets, this proves that B(μ1) and B(μ2) intersect
each other and so μ1 = μ2. This completes the proof of Proposition 3.3.

3.2. Local product structure

Here we prove Proposition 3.4. Let m be any Gibbs u-state and �0 be any center leaf. Since the center leaves form
a fiber bundle, we may find a neighborhood V ⊂ N/Wc and a homeomorphism

φ : V × �0 	→ π−1
c (V ), (�, ζ ) 	→ φ(θ, ζ )

that maps each vertical {�} × �0 to the corresponding center leaf �. Clearly, we may choose V to be the image of the
bracket (recall Section 2.2)

Wu
ε (�0) × Ws

ε (�0) → V, (ξ, η) 	→ [ξ, η]
for some small ε > 0. Then, by dynamical coherence, the homeomorphism

Wu
ε (�0) × Ws

ε (�0) × �0 → π−1
c (V ), (ξ, η, ζ ) 	→ φ

([ξ, η], ζ )
(9)

maps each {ξ} × Ws
ε (�0) × �0 onto a center stable leaf and each Wu

ε (�0) × {η} × �0 onto a center unstable leaf.
For each x ∈ π−1

c (V ), let Wu
loc(x) denote the local strong unstable leaf over V , that is, the connected component of

Wu(x) ∩ π−1
c (V ) that contains x. Each Wu

loc(x) is a graph over the unstable set Wu(πc(x)) and the center stable
holonomy defines a homeomorphism

hcs
x,y :Wu

loc(x) →Wu
loc(y)
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between any two local strong unstable leaves. By assumption, all these homeomorphisms are absolutely continuous.
Now let

m | π−1
c (V ) =

∫
mx dm̂

be the disintegration of m relative to the partition of π−1
c (V ) into local strong unstable leaves. By definition of Gibbs

u-states, each mx is equivalent to the Lebesgue measure along Wu
loc(x). It follows that the center stable holonomies

are absolutely continuous relative to the conditional probabilities of m along local strong unstable leaves:

mx(E) = 0 if and only if my

(
hcs

x.y(E)
) = 0 (10)

for x and y in some full m-measure subset of π−1
c (V ) and for any measurable set E ⊂ Wu

loc(x). By the con-
struction of (9), center stable holonomies preserve the coordinate ξ . Thus, identifying π−1

c (V ) with the space
Wu

ε (�0) × Ws
ε (�0) × �0 through the homeomorphism (9), property (10) becomes

mx

(
A × Ws

ε (�0) × �0
) = 0 if and only if my

(
A × Ws

ε (�0) × �0
) = 0 (11)

for any measurable set A ⊂ Wu
ε (�0) and for m-almost every x and y in π−1

c (V ). Let μ | V = ∫
μu

η dμs(η) be the
disintegration of μ relative to the partition of V into unstable slices Wu(�0)×{η}; notice that μs is just the projection
of μ | V to Ws

ε (�0). Projecting m | π−1
c (V ) down to V ≈ Wu

ε (�0) × Ws
ε (�0), property (11) yields

μη

(
A × Ws

ε (�0)
) = 0 if and only if μη′

(
A × Ws

ε (�0)
) = 0 (12)

for any measurable set A ⊂ Wu
ε (�0) and for μ-almost every η and η′ in V . This means that the conditional probabilities

μu
η are (almost) all equivalent. Consequently, there is ρ : Wu

ε (�0) × Ws
ε (�0) → (0,∞) such that μu

η = ρ(·, η)μu at μ-
almost every point, where μu denotes the projection of μ | V to Wu

ε (�0). Replacing in the disintegration of μ | V , we
get that μ | V = ρ μu × μs . This proves that μ has local product structure, as claimed.

3.3. Positive Gibbs u-states

Here we prove Proposition 3.6. We begin by proving the following fact, which is interesting in itself:

Proposition 3.7. For f ∈P1∗ (N), given c > 0 and l � 1 there is n0 such that #(S ∩ Γc,l) < n0 for every center leaf S,
where

Γc,l =
{

x ∈ N : lim inf
1

n

n∑
i=1

log
∥∥Df −l

∣∣ Ec
(
f il(x)

)∥∥−1 � c

}
.

Proof. Recall that volc denotes the Riemannian volume on center leaves. The main ingredient is

Lemma 3.8. Given c > 0 and l � 1 there exists δ > 0 such that for any x ∈ S ∩ Γc,l and any neighborhood U of x

inside the center leaf S that contains x, one has

lim inf
1

n

n−1∑
i=0

volc
(
f il(U)

)
� δ.

Proof. Let x ∈ S ∩ Γc,l be fixed. Fix 0 < c1 < c2 < c and define H(c2) to be the set of c2-hyperbolic times for x, that
is, the set of times m � 1 such that

1

k

m∑
i=m−k+1

log
∥∥Df −l

∣∣ Ec
f il (x)

∥∥−1 � c2 for all 1 � k �m. (13)

By the Pliss Lemma (see [1,6]), there exist n1 � 1 and δ1 > 0 such that

#
(
H(c2) ∩ [1, n)

)
� nδ1 for all n� n1.
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Notice that (13) implies Df −kl is an exponential contraction on Ec
f ml(x)

:

∥∥Df −kl
∣∣ Ec

f ml(x)

∥∥�
m∏

i=m−k+1

∥∥Df −l
∣∣ Ec

f il (x)

∥∥� e−c2k for all 1 � k � m.

It also follows from [6] that the points f ml(x) with m ∈ H(c2) admit backward-contracting center disks with size
uniformly bounded from below: there is r > 0 depending only on f and the constants c1 and c2 such that

f −kl
(
Bc

r

(
f ml(x)

)) ⊂ Bc

e−c1kr

(
f (m−k)l(x)

)
for all 1 � k � m,

where Bc
ρ(y) denotes the ball inside Wc

y of radius ρ around any point y. Let a1 > 0 be a lower bound for mc(Bc
r (y))

over all y ∈ N . Fix n2 such that the ball of radius e−c1kr around x is contained in U for every k � n2. Then, in
particular,

f ml(U) ⊃ Bc
r

(
f ml(x)

)
and so mc

(
f ml(U)

)
� a1

for every m ∈ H(c2) with m � n2. So, for n � max{n1, n2},
1

n

n−1∑
i=0

mc
(
f il(U)

)
� 1

n
a1

[
#
(
H(c2) ∩ [1, n)

) − n2
]
� 1

n
a1[nδ1 − n2] � δ1

2
a1.

To finish the proof of Lemma 3.8 it suffices to take δ = a1δ1/2. �
To deduce Proposition 3.7 from Lemma 3.8, take any n0 � V/δ where V is an upper bound for the volume of

center leaves. Suppose S ∩ Γc,l contains n0 distinct points xj , j = 1, . . . , n0. Let Uj , j = 1, . . . , n0 be pairwise
disjoint neighborhoods of the xj inside S. Take n large enough that

1

n

n−1∑
i=0

mc
(
f i(Uj )

)
> δ for 1 � j � n0.

Then

V � 1

n

n−1∑
i=0

mc
(
f i(S)

)
�

n0∑
j=1

1

n

n−1∑
i=0

mc
(
f i(Uj )

)
> n0δ > V.

This contradiction proves Proposition 3.7. �
Proof of Proposition 3.6. We argue by contradiction. Suppose there exists some ergodic Gibbs u-state ν supported
in π−1

c (Λ) whose center Lyapunov exponents are all positive.

Lemma 3.9. There is k0 � 1 and some ergodic Gibbs u-state ν∗ of f k0 supported in π−1
c (Λ) such that∫

log
∥∥Df −k0

∣∣ Ec
x

∥∥−1
dν∗(x) > 0. (14)

Proof. The assumption implies that the smallest center Lyapunov exponent

lim
k

1

k
log

∥∥Df −k
∣∣ Ec

x

∥∥−1

is positive ν-almost everywhere. Hence, using the domination convergence theorem,∫
log

∥∥Df −k0
∣∣ Ec

x

∥∥−1
dν(x) > 0

whenever k0 is sufficiently large. The measure ν need not be ergodic for f k0 but, since it is ergodic for f , it has a
finite number k of ergodic components νi (k divides k0). Moreover,∫

log
∥∥Df −k0

∣∣ Ec
x

∥∥−1
dνi(x) > 0
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Fig. 2. The stable set of any periodic center leaf intersects some generic unstable disk.

for some ergodic component νi . Since, by Proposition 3.1, each ergodic component νi is a Gibbs u-state, this com-
pletes the proof of the lemma. �

Let k0 � 1 be fixed from now on and λ > 0 denote the expression on the left hand side of (14). Let g = f k0 and

Γ =
{

x ∈ N : lim
n→∞

1

n

n∑
j=1

log
∥∥Dg−1

∣∣ Ec
gj (x)

∥∥−1 = λ

}

be the set of regular points of log‖Dg−1 | Ec‖ for the transformation g. By ergodicity, ν∗(Γ ) = 1. A statement similar
to the next corollary was proved by Ruelle and Wilkinson [53] when the diffeomorphism is C1+ε and the center is
one-dimensional.

Corollary 3.10. There is n0 � 1 such that #(Wc(w) ∩ Γ ) < n0 for every w ∈ N .

Proof. Just use Proposition 3.7 with c = λ/2 and l = k0. Clearly, Γ ⊂ Γc,l . �
Let �0 be any periodic center leaf intersecting suppν∗ (periodic center leaves are dense in the support, by Propo-

sition 3.3) and κ � 1 be minimal such that gκ(�0) = �0. Since ν∗ is a Gibbs u-state and Γ has full measure,
volu(Wu(x) \ Γ ) = 0 for ν∗-almost every x, where volu denotes the Riemannian volume along strong unstable man-
ifolds. In particular, the stable set Ws(�0) = ⋃

z∈�0
Ws(z) must intersect some strong unstable disk Du such that

volu(Du \ Γ ) = 0. See Fig. 2.

Lemma 3.11. Every point x ∈ Du ∩Ws(�0) belongs to the strong stable manifold of some periodic point y ∈ �0 of f

with period bounded by k0κn0.

Proof. Let y ∈ �0 be such that x ∈ Ws(y) and let g0 = gκ | �0. Suppose first that the orbit of y under g0 is infinite.
We refer the reader to Fig. 3. Fix y∗ ∈ ω(y) and let (yj )j be an injective sequence of iterates of y converging to y∗.
Let (xj )j be a sequence of iterates of x with xj ∈ Ws(yj ) and d(xj , yj ) → 0. Choose disks Du

j around the xj inside
the forward iterates of Du, small but with uniform size. Since Γ is an invariant set, mu(Du

j \ Γ ) = 0 for every j . For
every large j , the center leaves Wc(xj ) are close to �0 and so one can define a cs-holonomy map πcs from Du

j to the
local strong unstable leaf through y∗. Since Wcs is absolutely continuous, the image of every Du

j ∩Γ is a full volume
measure subset of a neighborhood of y∗ inside Wu(y∗), where these neighborhoods also have uniform size for all
large j . Let J = {j0, j0 + 1, . . . , j0 + n0} where j0 is some large integer and n0 is as in Corollary 3.10. On the one
hand, it follows from the previous considerations that

Γ ∗ =
⋂
j∈J

πcs(Du
j ∩ Γ

)
is a full volume measure subset of some neighborhood of y∗ inside Wu(y∗). Fix some w ∈ Γ ∗ close to y∗. For
each j ∈ J , let wj ∈ Du

j ∩ Γ be such that πcs(wj ) = w. Moreover, let zj be the point where the local strong stable
manifold of wj intersects Wcu(y∗) = Wcu(w). It is clear from the definition that wj ∈ Wcs(w) and so zj ∈ Wc(w)
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Fig. 3. Positive center Lyapunov exponent yields periodic points.

for all j ∈ J . Moreover, by choosing w close enough to y∗ we can ensure that wj is close to xj for every j ∈ J and
so zj is close to yj for all j ∈ J . The latter implies that the zj are all distinct. Observe also that zj ∈ Γ for all j ∈ J ,
because Γ is (clearly) saturated by strong stable leaves. This proves that #(Wc(w) ∩ Γ ) � #J > n0, in contradiction
with Corollary 3.10. This contradiction proves that the g0-orbit of y cannot be infinite.

Similar arguments handle the case when y is a periodic point for g0. Let k � 1 be the (minimal) period of y for g0.
Forward iterates of Du accumulate on the strong unstable manifolds of the iterates of y. Using, in much the same way
as before, that the center stable foliation is absolutely continuous and Γ is saturated by strong stable leaves, we find
w ∈ Wcu(y) arbitrarily close to y whose center leaf Wc

w intersects Γ at points close to each of the k iterates of y. In
view of Corollary 3.10 this implies that k < n0. This means that the period of y for f is less than k0κn0 as stated. The
proof of Lemma 3.11 is complete. �
Lemma 3.12. Every point z ∈ �0 is periodic for f , with period bounded by k0κn0.

Proof. Let y ∈ �0 be a periodic point as in Lemma 3.11 and let z ∈ �0 be arbitrary. Choose y′ ∈Wu(y)∩π−1
c (Λi)\�0

and z′ ∈ Ws(z)∩π−1
c (Λi)\�0. By accessibility, there exists some su-path connecting y′ to z′ or, in other words, there

exist points

b0 = y, a1 = y′, b1, . . . , ai, bi, . . . , as = z′, bs = z

which belong to π−1
c (Λi) such that aj and bj belong to the same strong stable manifold and bj and aj+1 belong to

the same strong unstable manifold. We are going to find an (arbitrarily) nearby su-path

b̃0 = y, ã1, b̃1, . . . , ai, bi, . . . , ãs , b̃s (15)

with b̃s ∈ �0 and such that every b̃i belongs to some periodic center leaf in π−1
c (Λi). The first step is to ob-

serve that, since periodic leaves are dense, one may always find periodic leaves �1, . . . , �s−1 arbitrarily close to
Wc(b1), . . . ,Wc(bs−1), respectively. Let �s = �0. Assume b̃0, ã1, . . . , b̃k have been defined, for some 0 � k < s.
Since Wu(bk) intersects the stable set of Wc(bk+1) transversely at ak+1, and stable and unstable sets vary continu-
ously with the base point, we can find b̃k+1 ∈ �k+1 close to bk+1 such that Wu(b̃k) intersects Ws(b̃k+1) at some point
ãk+1 close to ak . Repeating this procedure s times, we obtain an su-path as in (15).

The next step is to prove that the points b̃i themselves are periodic. Recall that b̃0 = y is taken to be periodic
and Du intersects Ws(b̃0). So, the iterates accumulate on Wu(b̃0) and, in particular, on ã1. This implies there exist
points w ∈ �1 arbitrarily close to b̃1 whose strong stable manifold intersects f n(Du) for some n. Since Γ has full
volume inside every f n(Du), we may use Lemma 3.11 to conclude that w is periodic, with period uniformly bounded.
Consequently, b̃1 itself is periodic. It also follows that the iterates of Du accumulate on Wu(b̃1). This means we may
now repeat the construction with b̃1 in the place of b̃0 and conclude that b̃2 is periodic. After s steps we conclude that
z̃ = b̃s is periodic. Since z̃ is arbitrarily close to z and all the periods are bounded, we get that z itself is periodic. This
completes the proof of the lemma. �
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In particular, Lemma 3.12 implies that no periodic point on the support of ν∗ is hyperbolic. This is a contradiction
since, by a classical result of Katok [40], the support of any hyperbolic measure contains hyperbolic periodic points.
This completes the proof of Proposition 3.6. �
4. Mostly contracting center

In this section we prove some useful facts about partially hyperbolic diffeomorphisms with mostly contracting
center direction. We call Wu-disk any image of a ball in Eu embedded inside some strong unstable leaf.

Lemma 4.1. The center direction of f is mostly contracting if and only if the center Lyapunov exponents of all ergodic
Gibbs u-states are negative.

If f ∈ Pk
1 (N), k > 1 and Λ is an attractor of fc, then the center direction of f | π−1

c (Λ) is mostly contracting if
and only if the center Lyapunov exponent is negative for every ergodic Gibbs u-state supported in π−1

c (Λ).

Proof. Bonatti and Viana [21] show that if the center direction is mostly contracting then the center exponents of
every ergodic Gibbs u-state are negative. To prove the converse, let D be any disk inside a strong unstable leaf. By
[19, Lemma 11.12] every Cesaro accumulation point of the iterates of Lebesgue measure on D is a Gibbs u-state. By
[19, Lemma 11.13] every ergodic component of a Gibbs u-state is again a Gibbs u-state. This implies that the iterates
f n(D) accumulate on the support of some ergodic Gibbs u-state ν. The hypothesis implies that ν-almost every point
has a Pesin (local) stable manifold which is an embedded disk of dimension dcs. Using also the absolute continuity of
the Pesin stable foliation (Pesin [46]), we conclude that a positive Lebesgue measure subset of points in some f n(D)

belongs to the union of these ds -disks. This implies that (5) holds on a positive Lebesgue measure subset of D, as we
wanted to show.

The second part of the lemma follows from similar arguments. �
4.1. Supports of Gibbs u-states

We derive a few topological properties of the supports of Gibbs u-states.

Lemma 4.2. If the center direction of f is mostly contracting then the supports of the ergodic Gibbs u-states of f are
pairwise disjoint.

Proof. Let m1 and m2 be ergodic Gibbs u-states of f and suppose suppm1 ∩ suppm2 contains some point z. Let
D be any Wu-disk around z. Then D ⊂ suppm1 ∩ suppm2, since the supports are Wu-saturated (Proposition 3.1).
By Lemmas 11.12 and 11.13 in [19], every ergodic component ν of every Cesaro accumulation point of the iterates
of Lebesgue measure on D is an ergodic Gibbs u-state. Clearly, the support of ν is contained in suppm1 ∩ suppm2.
By Pesin theory (see [21] for this particular setting) ν-almost every point has a local stable manifold which is an
embedded dcs-disk. Recall (Proposition 3.1) that the density of Gibbs u-states along strong unstable leaves is positive
and finite. Thus, we may find a Wu-disk Dν ⊂ suppν such that every point x in a full Lebesgue measure subset D∗

ν

has a Pesin stable manifold and belongs to the basin of ν. Moreover, Dν is accumulated by Wu-disks Di ⊂ suppm1
such that Lebesgue almost every point is in the basin of m1. Assuming Di is close enough to Dν , it must intersect the
union of the local stable manifolds through the points of D∗

ν on some positive Lebesgue measure subset D∗
i (because

the Pesin local stable lamination is absolutely continuous [46]). Then D∗
i is contained in the basin of ν and some

full Lebesgue measure subset is contained in the basin of m1. That implies m1 = ν. Analogously, m2 = ν, and so the
ergodic Gibbs u-states m1 and m2 coincide. That completes the proof of the lemma. �
Remark 4.3. It follows from Proposition 3.1 and Lemma 4.2 that if f has mostly contracting center direction and
minimal strong unstable foliation then it has a unique Gibbs u-state. This was first observed in [21].

Proposition 4.4. Suppose the center direction of f is mostly contracting and let m be an ergodic Gibbs u-state of f .
Then the support of m has a finite number of connected components. Moreover, each connected component S is
Wu-saturated and Wu(x) is dense in S for any x ∈ S.
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Proof. Let p be any periodic point in the support of m with stable index equal to dcs (such periodic points do exist,
by Katok [40]) and let κ be its period. By Proposition 3.1, the unstable manifold of every f j (p) is contained in
suppm. We claim that

⋃κ
j=1 Wu(f j (p)) is dense in suppm. To see this, let D be any disk inside Wu(p). Consider

the forward iterates of Lebesgue measure on D. Using Lemmas 11.12 and 11.13 in [19], one gets that any ergodic
component of any Cesaro accumulation point of these iterates is an ergodic Gibbs u-state ν supported inside the
closure of

⋃κ
j=1 Wu(f j (p)). By Lemma 4.2, the Gibbs u-states m and ν must coincide. In particular, suppm is

contained in the closure of
⋃κ

j=1 Wu(f j (p)). That proves our claim.

Since m is ergodic for f , its ergodic decomposition relative to f κ has the form m = l−1 ∑l
i=1 f i∗m̃ where l divides

κ and m̃ is f κ -invariant and ergodic. Then

suppm =
l⋃

i=1

f i(supp m̃).

We claim that the f i(supp m̃), i = 1, . . . , l are precisely the connected components of suppm. On the one hand, the
previous paragraph gives that p ∈ f s(supp m̃) for some s. Replacing either p or m̃ by an iterate, we may suppose
s = 0. Then, by the argument in the previous paragraph applied to f κ (it is clear from the definition (5) that if f has
mostly contracting then so does any positive iterate), supp m̃ coincides with the closure of Wu(p) and, in particular,
it is connected. On the other hand, Lemma 4.2 gives that the f i(supp m̃), i = 1, . . . , l are pairwise disjoint. Since they
are closed, it follows that they are also open in suppm. This proves our claim.

We are left to prove that the strong unstable foliation is minimal in each connected component Si = f i(supp m̃).
This will follow from an argument of Bonatti, Díaz and Ures [18]:

Lemma 4.5. There is a neighborhood Us
i of f i(p) inside Ws(f i(p)) such that every unstable leaf in Si has some

transverse intersection with Us
i .

Proof. For any x ∈ Si , let Dx be a small Wu-disk around x. Since m̃j is the unique ergodic u-state of f κ with
support contained in Sj , it is also the unique Cesaro accumulation point of the iterates of volDx under f κ . In particular,
there is nx � 1 such that f nxκ(Dx) intersects the local stable manifold of f i(p) transversely. This implies that Dx

intersects the global stable manifold of f i(p) transversely. Then, by continuity of the strong unstable foliation, there
is a neighborhood Vx of x and a bounded open set Ux ⊂ Ws

f κ (f
i(p)) such that Wu(y) intersects Ux transversely for

every y ∈ Vx . The family {Vx : x ∈ Si} is an open cover of the compact set Si . Let {Vx1, . . . , Vxm} be a finite subcover.
Choose Us

j a bounded neighborhood of f i(p) inside Ws
f κ (f

i(p)) containing Uxj
for all j = 1, . . . ,m. It follows from

the construction that every strong unstable leaf contained in Si intersects Us
i transversely. This finishes the proof of

the lemma. �
Let us go back to proving Proposition 4.4. The lemma gives that Wu(f −nκ(x)) intersects Us

i transversely and so
Wu(x) intersects f nκ(Us

i ) transversely, for every x ∈ Si and every n � 0. Since f nκ(Us
i ) converges to f i(p) when

n → ∞, it follows that Wu(f i(p)) is contained in the closure of Wu(x). Hence, Wu(x) is dense in Sj , as claimed.
The proof of the proposition is complete. �
4.2. Bernoulli property

An invariant ergodic measure η of a transformation g is called Bernoulli if (g, η) is ergodically conjugate to a
Bernoulli shift.

Theorem 4.6. Suppose f is a Ck , k > 1 partially hyperbolic diffeomorphism with mostly contracting center direction.
Then there are l � 1 and a Ck neighborhood U of f such that for any g ∈ U , every ergodic u-state of gl is Bernoulli.

Proof. Let m1, . . . ,mu be the ergodic Gibbs u-states of f (cf. Proposition 3.2). Proposition 4.4 gives that for each
j = 1, . . . , u there exists lj � 1 such that the support of mj has lj connected components Sj,i , i = 1, . . . , lj . Moreover,
each connected component Sj,i carries an ergodic component mj,i = f i∗m̃j of the Gibbs u-state mj for the iterate f lj .
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Let l be any common multiple of l1, . . . , lu. Then every Sj,i is fixed under f l . Moreover, every Gibbs u-state mj,i

is f l-invariant and f nl-ergodic for every n � 1: otherwise Si would break into more than one connected component
(cf. the proof of Lemma 4.2). Then, by Ornstein and Weiss [44], every mi,j is a Bernoulli measure for f l . We claim
that {mj,i : 1 � j � u and 1 � i � lj } contains all the ergodic u-states of f nl for every n � 1. Indeed, let m∗ be any
ergodic u-state for f nl . Then

m = 1

nl

nl∑
k=1

f k∗ m∗

is a u-state for f . Let m = a1m1 + · · · + aumu be its ergodic decomposition for f and let s be such that as > 0. Then
suppms ⊂ suppm. Since suppms is f -invariant, it must intersect suppm∗. Using Lemma 4.2 for f nl we conclude
that m∗ must coincide with some ergodic component of ms for the iterate f nl . In other words, it must coincide with
ms,i for some i = 1, . . . , ls . This proves our claim.

Now we extend these conclusions to any diffeomorphism g in a Ck , k > 1 neighborhood of f . By Andersson [10],
any such g has mostly contracting center direction, and so the previous argument applies to it. However, we must
also prove that the integer l can be taken uniform on a whole neighborhood of f . Notice that the only constraint on l

was that it should be a multiple of the periods lj of the ergodic components mj . Observe that [10] also gives that the
number of ergodic Gibbs u-states does not exceed the number of ergodic Gibbs u-states of f . So, we only need to
check that the periods lj remain uniformly bounded for any g in a neighborhood. We do this by arguing with periodic
points, as follows. Let us fix, once and for all, f -periodic points pj with stable index dcs in the support of each mj ,
j = 1, . . . , u. The period of each pj is a (fixed) multiple of lj . Let pj (g) be the continuation of these periodic points
for some nearby diffeomorphism g, and let {m1(g), . . . ,ms(g)}, with s � u be the ergodic Gibbs u-states of g. We
claim that every suppmj(g), 1 � j � s contains some pi(g), 1 � i � u. This can be seen as follows. As observed
before, any accumulation point of Gibbs u-states of g when g → f is a Gibbs u-state for f . We fix some small
ε > 0 and consider the ε-neighborhoods B(pj , ε) of the periodic points pj . Then, for any g close enough to f every
ergodic Gibbs u-state mj(g) must give positive weight to some B(pi, ε) and, consequently, also to B(pi(g),2ε). By
continuous dependence of stable manifolds of periodic points on the dynamics, and the fact that the supports of Gibbs
u-states are u-saturated, it follows that suppmj(g) contains some Wu-disk that intersects Ws(pi(g)) transversely.
Then, the support of mj(g) must contain pi(g). This proves our claim. It follows that the period lj (g) of each ergodic
Gibbs u-state of g divides the period of some pi(g) which, of course, coincides with the period of pi . Since the latter
have been fixed once and for all, this proves that the lj (g) are indeed uniformly bounded on a neighborhood of f . The
proof of the theorem is complete. �
4.3. Abundance of mostly contracting center

We also give a family of new examples of diffeomorphisms with mostly contracting center.

Theorem 4.7. Suppose dimM = 3. The set of ergodic diffeomorphisms such that either f or f −1 has mostly con-
tracting center direction is C1 open and dense in the space of Ck , k > 1 partially hyperbolic volume preserving
diffeomorphisms with one-dimensional center and admitting some center leaf that is a circle and is invariant under
the diffeomorphism.

Proof. Denote by Vk
m the set of Ck volume preserving partially hyperbolic diffeomorphisms with one-dimensional

center and some invariant circle center leaf. This is a C1 open set, cf. [39, Theorem 4.1]. Moreover, the diffeomor-
phisms such that both the strong stable foliation and the strong unstable foliation are minimal fill an open and dense
subset U1 of V1

m. This follows from a conservative version of the results of [18]: one only has to observe that blenders,
that they use for the proof in the dissipative context, can be constructed also in the conservative setting, as shown
by [35]. By [17], there is an open and dense subset U2 for which the center Lyapunov exponent∫

log
∣∣Df

∣∣ Ec(x)
∣∣dm(x) �= 0.

Furthermore, by [33], there is an open and dense subset U3 of V1
m consisting of accessible diffeomorphisms. Let

U = U1 ∩ U2 ∩ U3. Before proceeding, let us recall that C∞ diffeomorphisms are C1 dense in the space of volume



M. Viana, J. Yang / Ann. I. H. Poincaré – AN 30 (2013) 845–877 861
preserving diffeomorphisms, by Avila [12]. In particular, the C1 open and dense subset U has non-trivial intersection
with the space of Ck diffeomorphisms, for any k > 1.

We claim that for every Ck , k > 1 diffeomorphism f in U , either f or its inverse has a unique ergodic Gibbs
u-state and the corresponding center Lyapunov exponent is negative. In particular, by Lemma 4.1, either f or its
inverse has mostly contracting center direction. The first step is to note that f is ergodic, since it is accessible (see
[28,37,50]). Then the Lebesgue measure vol is an ergodic Gibbs u-state for both f and f −1. Since the strong stable
and strong unstable foliations are minimal, the Gibbs u-state is unique; see Remark 4.3. This completes the proof of
Theorem 4.7. �
5. Finiteness and stability of physical measures

In this section we prove Theorem 2.2. As remarked before, Theorem A is a particular case. We begin by recalling
certain ideas from Bonatti, Gómez-Mont and Viana [20] and Avila and Viana [14] that we use for handling the case
when the center Lyapunov exponent vanishes.

5.1. Smooth cocycles

By assumption, the center leaves of f define a fiber bundle πc : N → N/Wc over the leaf space. Then f may be
seen as a smooth cocycle (as defined in [14]) over fc:

f : N → N

↓ ↓
fc: N/Wc → N/Wc.

It follows from the form of our maps that the strong stable manifold Ws(x) of every point x ∈ M is a graph over
the stable set Ws

πc(x) of πc(x) ∈ N/Wc. For each η ∈ Ws(ξ), the strong stable holonomy defines a homeomorphism
hs

ξ,η : ξ → η between the two center leaves. In fact (see [14, Proposition 4.1]),

hs
ξ,η(θ) = lim

n→∞
(
f n

∣∣ η
)−1 ◦ (

f n
∣∣ ξ

)
(θ) (16)

(for large n one can identify f n(ξ) ≈ f n(η) via the fiber bundle structure), for each θ ∈ ξ and the limit is uniform on
the set of all (ξ, η, θ) with θ ∈ ξ and ξ and η in the same local stable set. These s-holonomy maps satisfy

• hs
η,ζ ◦ hs

ξ,η = hs
ξ,ζ and hs

ξ,ξ = id,
• f ◦ hs

ξ,η = hs
fc(ξ),fc(η) ◦ f ,

• (ξ, η, θ) 	→ hs
ξ,η(θ) is continuous on the set of triples (ξ, η, θ) with ξ and η in the same local stable set and

θ ∈Wc(ξ).

Let m be any f -invariant probability measure and μ = (πc)∗(m). A disintegration of m into conditional proba-
bilities along the center leaves is a measurable family {mξ : ξ ∈ suppμ} of probability measures with mξ(ξ) = 1 for
μ-almost every ξ and

m(E) =
∫

mξ(E)dμ(ξ) (17)

for every measurable set E ⊂ M . By Rokhlin [52], such a family exists and is essentially unique. A disintegration is
called s-invariant if(

hs
ξ,η

)
∗mξ = mη for every ξ, η ∈ suppμ in the same stable set.

In a dual way one defines u-holonomy maps and u-invariance. We call a disintegration bi-invariant if it is both s-
invariant and u-invariant, and we call it continuous if mξ varies continuously with ξ on the support of μ, relative to
the weak∗ topology.
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Proposition 5.1. Let f ∈ Pk∗ (N), k > 1 be such that the center stable foliation is absolutely continuous. Let m be an
ergodic Gibbs u-state with vanishing center Lyapunov exponents. Then m admits a disintegration {mξ : ξ ∈ suppμ}
into conditional probabilities along the center leaves which is continuous and bi-invariant.

Proof. Proposition 3.4 gives that (πc)∗m has local product structure. Thus, we are in a position to use Theorem D of
Avila and Viana [14] to obtain the conclusion of the present proposition. �
5.2. Zero Lyapunov exponent case

The following result provides a characterization of the systems exhibiting ergodic Gibbs u-states with vanishing
central exponent.

Proposition 5.2. Let f ∈ Pk
1 (N), k > 1 be such that the center stable foliation is absolutely continuous. Let Λ be an

attractor of fc such that f is accessible on Λ, and let m be an ergodic Gibbs u-state with vanishing center Lyapunov
exponent. Then

(1) the conditional probabilities {mx : x ∈ Λ} are equivalent to Lebesgue measure on the center leaves, with densities
bounded from zero and infinity;

(2) suppm = Wc(Λ) and m is the unique Gibbs u-state supported in π−1
c (Λ); consequently, B(m) has full Lebesgue

measure in Ws(π−1
c (Λ)).

Proof. By Proposition 5.1, there is a disintegration {mx : x ∈ Λ} of m along the center foliation which is continuous,
s-invariant, and u-invariant. Let ξ and η be any two points in π−1

c (Λ). By accessibility on Λ, one can find an su-
path b0 = ξ, b1, . . . , bs−1, bs = η connecting ξ to η. This su-path induces a holonomy map h : Wc(ξ) → Wc(η),
defined as the composition of all strong stable/unstable holonomy maps hi : Wc(bi−1) → Wc(bi). The fact that the
disintegration is bi-invariant gives, in particular, that

mη

(
h
(
Bc

ε (ξ)
)) = mξ

(
Bc

ε (ξ)
)
. (18)

It is a classical fact that the strong stable and strong unstable foliations are absolutely continuous in a strong sense:
their holonomy maps have bounded Jacobians. See [22,42]. Those arguments extend directly to their restrictions to
each center stable or center unstable leaf, respectively: the restricted strong stable and strong unstable foliations are
also absolutely continuous with bounded Jacobians. By compactness, the su-path may be chosen such that the number
s of legs and the length of each leg are uniformly bounded, independent of ξ and η.1 Then, we may fix a uniform
upper bound constant K > 1 on the Jacobians of all associated strong stable and strong unstable holonomies. Notice
volc(Br(ζ )) = 2r , since the center leaves are one-dimensional. Then

K−1 volc
(
Bc

ε (ξ)
)
� volc

(
h
(
Bc

ε (ξ)
))

� K volc
(
Bc

ε (ξ)
)
. (19)

From (18) and (19) we obtain

1

K

mξ(B
c
ε (ξ))

volc(Bc
ε (ξ))

� mη(h(Bc
ε (ξ)))

volc(h(Bc
ε (ξ)))

� K
mξ(B

c
ε (ξ))

volc(Bc
ε (ξ))

,

and, taking the limit as ε → 0,

1

K

dmξ

dvolc
(ξ) � dmη

dvolc
(η) �K

dmξ

dvolc
(ξ).

1 This may be deduced from [13] as follows. By Proposition 8.3 in [13], given any x0 ∈ M there exists w ∈ M such that x0 is connected to every
point in a neighborhood of w by a uniformly bounded su-path. Then the same is true if one replaces w by an arbitrary point z ∈ M : connect w

to z by some su-path; the “same” su-path determines a bijection between neighborhoods of w and z; concatenating with su-paths from x0 to the
neighborhood of w one obtains uniformly bounded su-paths from x0 to any point near z. The claim now follows by compactness of the ambient
manifold.
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Since we can always find η where the density is less or equal than 1 (respectively, greater or equal than 1), this implies
that

dmξ

dvolc
(ξ) ∈ [

K−1,K
]

(20)

for every ξ , and that proves claim (1).
To prove claim (2), let m′ be any other ergodic Gibbs u-state supported in π−1

c (Λ). The center Lyapunov exponent
of m′ must vanish: otherwise, by [40], there would be some hyperbolic periodic point in π−1

c (Λ), and that is incompat-
ible with the conclusion in part (1) that there exist invariant conditional probabilities equivalent to Lebesgue measure
along the center leaves. So, all the previous considerations apply to m′ as well. In particular, it has a continuous disinte-
gration {m′

x : x ∈ Λ} along the center foliation such that each m′
x is equivalent with volc. Moreover, by Proposition 3.3,

(πc)∗(m) = (πc)∗(m′). Then, volc-almost every point in almost every center leaf, relative to (πc)∗(m) = (πc)∗(m′),
belongs to the basin of both m and m′. In particular, the two basins intersect, which implies m = m′. Now, Propo-
sition 3.1(4) implies that the time average of almost every point in any unstable disk inside Ws(π−1

c (Λ)) converges
to m. Since the strong unstable foliation is absolutely continuous, this means that B(m) has full Lebesgue measure in
Ws(π−1

c (Λ)). In particular, m is the unique physical measure supported in Wc(Λ). That completes the proof of the
lemma. �
5.3. Construction of physical measures

We are nearly done with the proof of Theorem 2.2. By Proposition 3.6, all ergodic Gibbs u-states have non-positive
center Lyapunov exponent. The case when the exponent vanishes for some Gibbs u-state is handled by Proposition 5.2:
we get alternative (a) of the theorem in this case. Finally, if the center Lyapunov exponent is negative for all Gibbs
u-states over some attractor Λi of fc then, by Lemma 4.1, the center direction of f is mostly contracting on that
attractor Λi . Then, cf. Proposition 3.2, there are finitely many ergodic Gibbs u-states supported in π−1

c (Λi), these
u-states are the physical measures of f , and the union of their basins covers a full volume measure subset of a
neighborhood of π−1

c (Λi). By Theorem 4.6, all these physical measures are Bernoulli for some iterate of f . Thus, we
get alternative (b) of the theorem in this case.

From now on, let {mi,j }J (i)
j=1 be the physical measures supported on each attractor Λi . As we have just seen, their

basins cover a full Lebesgue measure subset of a neighborhood Ui of π−1
c (Λi). We want to prove that the union

of all these basins contains a full Lebesgue measure subset of the ambient manifold. Suppose otherwise, that is,
suppose the complement C of this union has positive Lebesgue measure. Let C0 be the subset of points of C that
are Lebesgue density points of C. Notice that C0 is f -invariant and vol(C0) = vol(C). Since the unstable foliation
is absolutely continuous, there is a Wu-disk Du such that volDu(Du ∩ C0) > 0. Denote Iu = Du ∩ C0. Then every
Cesaro accumulation point of the iterates of Lebesgue measure on Iu is a Gibbs u-state (see [19], section 11.2), and
so its ergodic components are ergodic Gibbs u-states. Let m∗ be any such accumulation point and mi,j be an ergodic
component of m∗. The support of mi,j is contained in Ui , and so there is n0 � 1 such that f n0(Iu) intersects Ui .
Recalling that C0 is invariant, we get that vol(C0 ∩ Ui) > 0. This contradicts the definition of C0, since Lebesgue
almost every point in Ui belongs to the basin of mi,l for some l = 1, . . . , J (i). This contradiction proves that the union
of the basins does have full Lebesgue measure in N . That completes the proof of Theorem 2.2.

5.4. Number of physical measures

In this section, we give explicit upper bounds on the number of physical measures for some diffeomorphisms with
mostly contracting center direction:

Theorem 5.3. Let f ∈ Pk
1 (N), k > 1 be accessible on some attractor Λ and have absolutely continuous center stable

foliation. Assume there exists some center leaf � ⊂ π−1
c (Λ) such that f κ(�) = � for some κ � 1 and f κ | � is Morse–

Smale with periodic points p1, . . . , ps .
Then the center direction is mostly contracting over Λ and f has at most s physical measures supported in π−1

c (Λ).
If Wu(pi) intersects Ws(�) \ ⋃s

j=1 Ws(pj ) for every i then f has at most s/2 physical measures supported in

π−1
c (Λ).
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Proof. Since f has hyperbolic periodic point in π−1
c (Λ) the restriction of f to π−1

c (Λ) cannot be conjugate to a
rotation extension over Λ. Compare Remark 2.3. Thus, by Theorem 2.2, f has mostly contracting center direction
over Λ.

Lemma 5.4. Suppose f ∈ Pk
1 (N), k > 1 has mostly contracting center direction on an attractor Λ and let p be any

periodic point in π−1
c (Λ). Then any disk Du in unstable manifold of p contains a positive measure subset Iu such

that any ξ ∈ Iu belongs to the basin of some physical measure and has local stable manifold Ws
loc(ξ).

Proof. As in the proof of Lemma 4.1, there is a positive measure subset Iu of Du belonging to the basin of some
physical measure m, and for ξ ∈ Iu, there is n0 such that f n0(ξ) belongs to the Pesin stable manifold of some point ζ .
Iterating backward we obtain a local stable manifold for ξ . �

Suppose f has physical measures {mj }Jj=1 on π−1
c (Λ). Let pt , t = 1, . . . , s be chosen as in Theorem 5.3. We

use Ws(pt ) to denote the stable manifold of the periodic point pt . Clearly, it contains the strong stable leaf Ws(pt ).
Indeed, the two manifolds coincide precisely if pt is a repeller for f | �. Since the support of each physical measure
is a u-saturated compact set, the following fact is an immediate consequence of Lemma 4.2:

Corollary 5.5. For each 1 � t � s there is at most one physical measure whose support intersects Ws(pt ).

As observed before, the unstable foliation is minimal in every attractor in the quotient. So, the orbit of every
strong unstable leaf intersects Ws(�) = ⋃s

t=1 Ws(pt ). Since the supports of physical measures are Wu-saturated and
invariant, it follows that for every 1 � j � J there exists some 1 � t � s such that suppmj intersects Ws(pt ). So, by
Corollary 5.5, J � s.

Let {psi }s/2
i=1 be periodic points in � with stable index ds (i.e. repellers for f | �) and let {psi }si=s/2+1 be periodic

points in � with stable index dcs (i.e. attractors for f | �). We claim that if Wu(pi) intersects Ws(�) \ ⋃s
j=1 Ws(pj )

for every i, then the support of every physical measure contains some pi , s/2 + 1 � i � s. Indeed, by the previous
observations the support must intersect Ws(pi) for some i, corresponding to either an attractor or a repeller of f | �.
In the former case, the claim is proved; in the latter case, our assumption on � implies that the support intersects the
stable set of some other periodic point pj which is an attractor, and so the claim follows in just the same way. So, by
the previous argument, the number of physical measures cannot exceed s/2 in this case. The proof of Theorem 5.3 is
complete. �
5.5. Statistical stability

We also want to analyze the dependence of the physical measures on the dynamics. For this, we assume N =
M × S1 and restrict ourselves to the set Sk(N) ⊂ Pk

1 (N) of skew-product maps. Notice that every f ∈ Sk(N) is
dynamically coherent, has compact one-dimensional center leaves, and absolutely continuous center stable foliation.
As pointed out before, partially hyperbolicity is an open property and accessibility holds on an open and dense subset
of Sk(N).

Theorem 5.6. For any k > 1 there exists a C1 open and Ck dense subset Bk(N) of Sk(N) such that every f ∈ Bk(N)

has mostly contracting center direction. Moreover, on a Ck open and dense subset of Bk(N) the number of physical
measures is locally constant and these physical measures depend continuously on the diffeomorphisms.

Proof. Notice that every f ∈ Sk(N) is dynamically coherent, has compact one-dimensional center leaves, and abso-
lutely continuous center stable foliation. We claim that the set of diffeomorphisms in Sk(N) which are accessible on
all attractors is C1 open and Ck dense. Assume this for a while (the proof will be given in the next paragraph). Then it
is easy to see that the set of diffeomorphisms in Sk(N) which have a center leaf containing some hyperbolic periodic
point is C1 open and Cr dense. Take Bk be the intersection of above two sets. Then by Theorem 2.2, any f ∈ Bk

has mostly contracting center bundle. By Andersson [10], for any partially hyperbolic diffeomorphism f with mostly
contracting center direction there is a Ck , k > 1 neighborhood U of f such that any g ∈ U has mostly contracting
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center direction also, and on a Ck open and dense subset of U , the number of physical measures is locally constant
and these physical measures depend continuously on the diffeomorphism.

We are left to prove the claim above. For this, it suffices to show that every f ∈ Sk(N) is Ck approximated by
diffeomorphisms that are accessible on all attractors. We begin by approximating f by some diffeomorphism f1 such
that for every i there exists some Morse–Smale periodic center leaf λi ⊂ π−1

c (Λi). Of course, the same remains true
in a whole C1 neighborhood U1 of f1. Let pi,1, . . . , pi,2mi

be the periodic points in �i . We claim that there exists some
C1 open set U2 ⊂ U1, arbitrarily close to f1 such that for every f2 ∈ U2, the accessibility class of every pi,j contains
a neighborhood of pi,j inside the center leaf. Since accessibility classes of periodic points are periodic sets, and the
dynamics on each �i is Morse–Smale, it follows that all the points in �i belong to the same accessibility class Ai .
Then, Ai contains a neighborhood of �i . Since the unstable sets are dense in each attractor Λi (by transitivity), it
follows that all points in π−1

c (Λi) belong to Ai . This proves that every f2 ∈ U2 is accessible on all attractors.
Our second claim can be proved as follows. Let �′

i be another center leaf close to �i inside π−1
c (Λi). Then we

can find a short 4-legged su-path starting from pi,j , ending at some point qi,j ∈ �i , and such that the second corner
lies in �′

i . Observe that first and third corners lie in π−1
c (Λi) as well, because the attractor is Wu-saturated. As in

[43, Lemma 3.8] (a stronger fact is proved in [26, Proposition 6.2]), we can perturb the diffeomorphism on small
(disjoint) neighborhoods of first and third corners so as to ensure that pi,j �= qi,j for all i and j . This can be obtained
by a vertical perturbation of the diffeomorphism, which does not affect the skew-product structure. By shrinking the
unstable legs of such su-paths, in such a way that all four corners remain all the time in π−1

c (Λ), we conclude that all
points in the center leaf segment Si,j connecting pi,j to qi,j belong to the accessibility class of pi,j . By continuity of
su-paths, it also follows that every point of �i \ Si,j close to pi,j is in the accessibility class of some point close to qi,j

inside Si,j . So, the accessibility class of pi,j does contain a neighborhood of pi,j inside �i . This completes the proof
of our claims and of Theorem 5.6. �
6. Absolute continuity for mostly contracting center

Throughout this section f : N → N is a partially hyperbolic, dynamically coherent, Ck , k > 1 diffeomorphism
with mostly contracting center direction. Recall the later is a robust (open) condition, by Andersson [10]. We develop
certain criteria for proving absolute continuity of the center stable, center unstable, and center foliations and we apply
these tools to exhibit several robust examples of absolute continuity. In particular, this yields a proof of Theorem 2.4.

The starting point for our criteria is the observation that for maps with mostly contracting center the Pesin stable
manifolds are contained in, and have the same dimension as the center stable leaves. Since the Pesin stable lamination
is absolutely continuous [46,49], in this way one can get a local property of absolute continuity for the center stable
foliation. This initial step of the construction is carried out in Section 6.2. Then one would like to propagate this
behavior to the whole ambient manifold, in order to obtain actual absolute continuity. It is important to point out that
this cannot possibly work without additional conditions. Example 6.1 below illustrates some issues one encounters.
A more detailed analysis, including explicit robust counter-examples will appear in [63]. Suitable assumptions are
introduced in Section 6.1, where we also give the precise statements of our criteria. In Section 6.3 we present the main
tool for propagating local to global behavior. The criteria are proved in Sections 6.4 through 6.6.

Before proceeding, let us give a simple example of a map whose center foliation is leafwise absolutely continuous
and locally absolutely continuous, but not globally absolutely continuous. This kind of construction explains why
Pesin theory alone cannot give (global) absolute continuity of center foliations, even when the center direction is
mostly contracting.

Example 6.1. Let us start with f0 : S1 × [0,1] → S1 × [0,1], f0(x, t) = (2x,g(t)) where g : [0,1] → [0,1] is a
C2 diffeomorphism such that g(0) = 0, g(1) = 1, g(t) < t for all t ∈ (0,1), and 0 < g′(t) < 2 for every t ∈ [0,1].
Then f0 is a partially hyperbolic endomorphism of the cylinder, with the vertical segments as center leaves. Next,
let f : S1 × [0,1] → S1 × [0,1] be a C2-small perturbation, preserving the two boundary circles Ci = S1 × {i},
i = 0,1 and the vertical line {0} × [0,1] through the fixed point (0,0). Moreover, the horizontal derivatives of f at
the endpoints of this vertical line should be different:

∂f
(0,0) �= ∂f

(0,1). (21)

∂x ∂x
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By structural stability of center foliations (see [39]), the new map f has a center foliation whose leaves are curve
segments with endpoints in the two boundary circles. Thus, they induce a holonomy map h : C0 → C1 that conjugates
the two expanding maps f | C0 and f | C1. Condition (21) implies that the conjugacy cannot be absolutely continuous
(see [56]). This shows that the center foliation is not absolutely continuous. Yet, it is absolutely continuous restricted
to S1 × [0,1), as we are going to explain. Notice that our assumptions imply that g′(0) < 1 < g′(1) and so the lower
boundary component C0 is an attractor for f0, with S1 × [0,1) as its basin of attraction. Then the same is true for the
perturbation f . Moreover, restricted to this basin, the center leaves coincide with the Pesin stable manifolds of the
points in the attractor, and so they do form an absolutely continuous foliation. In particular, this also shows that the
center foliation is leafwise absolutely continuous.

6.1. Criteria for absolute continuity

We assume that some small cone field around the strong unstable bundle has been fixed. We call u-disk any embed-
ded disk of dimension du whose tangent space is contained in that unstable cone field at every point. Previously, we
introduced the special case of Wu-disks, which are contained in strong unstable leaves. To begin with, in Section 6.4
we prove that upper leafwise absolute continuity always holds in the present context:

Proposition 6.2. The center stable foliation of f is upper leafwise absolutely continuous, if it exists.

For the next criterion we assume the diffeomorphism is non-expanding along the center direction. This notion
is defined as follows. Assume also f is dynamically coherent. Given r > 0 and ∗ ∈ {s, cs, c, cu, u}, we denote by
W∗

r (x) ⊂W∗(x) the ball of radius r around x, relative to the distance induced by the Riemannian metric of N on the
leaf W∗(x). In what follows we always suppose r is small enough so that W∗

r (x) is an embedded disk of dimension
d∗ for all x ∈ N and every choice of ∗. We use Ŵ s(p) and Ŵu(p) to denote the stable and unstable sets of a periodic
point p. We say that f is non-expanding along the center direction if there exist ρ > 0 and ε > 0 such that

• f n(Wcs
ε (x)) ⊂Wcs

ρ (f n(x)) for every n� 0 and every x ∈ N ;
• the support of every ergodic Gibbs u-state m contains some periodic point p such that Ŵ s(p) ⊃Wcs

2ρ(p).

Proposition 6.3. If f is non-expanding along the center direction then the center stable foliation is absolutely contin-
uous.

The proof of this proposition is given in Sections 6.2 through 6.5. We will see that the hypothesis holds for a
classical construction of partially hyperbolic, robustly transitive diffeomorphisms due to Mañé [41] (Section 7.1).
It also holds for a more recent class of examples introduced by Bonatti and Viana [21], which are not even partially
hyperbolic (though they do admit a dominated invariant splitting of the tangent bundle), but this fact will not be proved
here.

Let f ∈ Pk
1 (N). Let � be a periodic center leaf �, with period κ � 1. For ∗ ∈ {s, u}, we denote W∗(�) =⋃

ζ∈�W∗(ζ ). We call homoclinic leaf associated to � any center leaf �′ contained in Ws(�) ∩ Wu(�). Then there
exist strong stable and strong unstable holonomy maps

hs : � → �′ and hu : � → �′. (22)

We say that � is in general position if

(a) f κ | � is Morse–Smale with a single periodic attractor a and a single periodic repeller r ;
(b) hs(a ∪ r) is disjoint from hu(a ∪ r), for some homoclinic leaf associated to the center leaf �.

Notice that Ws(�′) \Ws(hs(r)) is contained in the stable manifold Ŵ s(a) of the attractor. Thus, condition (b) implies
that Wu(a) and Wu(r) intersect Ŵ s(a) transversely. Analogously, Ws(a) and Ws(r) intersect Ŵu(r) transversely.

Proposition 6.4. Suppose f ∈ Pk
1 (N) has some center leaf � in general position and such that every strong unstable

leaf intersects Ws(�). Then the center stable foliation of f is absolutely continuous.
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This proposition is proved in Section 6.6. In Section 7.2 we use it to prove Theorems B and 2.4, and in Sec-
tion 7.3 we give an application to volume preserving systems. Noticing that, apart from dynamical coherence, all the
hypotheses of Proposition 6.4 are robust, we get the following immediate consequence:

Corollary 6.5. Suppose f ∈ Pk
1 (N) is robustly dynamically coherent and has some periodic center leaf � in gen-

eral position and such that every strong unstable leaf intersects Ws(�). Then the center stable foliation is robustly
absolutely continuous.

6.2. Local absolute continuity

The following lemma will allow us to obtain some property of local absolute continuity:

Lemma 6.6. For any ergodic u-state m of f and any disk D contained in an unstable leaf inside suppm, there is
a positive measure set Γ ⊂ D such that the points in Γ have (Pesin) stable manifolds with uniform size. Moreover,
these stable manifolds form an absolutely continuous lamination, in the following sense: there is K > 0 such that for
any two u-disks D1, D2 sufficiently close to D, the stable manifolds of points in Γ define a holonomy map between
subsets of D1 and D2, and this is absolutely continuous, with Jacobian between 1/K and K .

Proof. Because f has mostly contracting center direction, m is a hyperbolic ergodic measure of f , by Pesin theory,
there is a Pesin block Λ with positive m measure such that every point x ∈ Λ has uniform size of stable manifold,
and these stable manifolds on Λ form a uniformly absolutely continuous foliation. Notice that the stable manifolds
are contained in the center stable leaves. Since m is a u-state, there is a disk D0 contained in an unstable leaf inside
the support and intersecting Λ on an mu-positive measure subset D∗

0 . Then the points in D∗
0 have stable manifolds of

size bounded below by some δ0 > 0. Denote B0 = ⋃
x∈D∗

0
Ws

δ0
(x). Since m is a u-state, m(B0) = a0 > 0. We claim

that there is n0 > 0 such that (f n0)∗ volD(B0) �= 0.
Let us prove this claim. Let D∗

ε be the ε-neighborhood of D∗
0 inside the corresponding unstable leaf. Denote

by Bε = ⋃
x∈D∗

ε
W cs

δ0
(x), it is an open set, and m(Bε) � a0 > 0. Because every Cesaro accumulation point of the

iterates of Lebesgue measure on D is a Gibbs u-state with support contained in suppm, and there is a unique ergodic
u-state with support contained in suppm, then m is the unique Cesaro accumulation of the iterates of Lebesgue
measure on D. Since Bε is open, one has limn→∞ 1

n

∑n−1
i=0 (f i)∗ volD(Bε) � m(Bε) = a0, so there is arbitrarily big

n such that f n∗ (volD)(Bε) > a0/2. For δ > 0 sufficiently small, denote by Dδ = {x ∈ D,du(x, ∂(D)) � δ}, one has
mu(D \ Dδ) < a0/4. Then there is y ∈ Dδ such that f n(y) ∈ Bε and f n(D) contains a disk Dy around y and for
any x ∈ D∗

ε one has W cs
δ0

(x) ∩ Dy �= ∅. Then the stable manifolds of D∗
0 define a holonomy map between D∗

0 and

B0 ∩Dy , by the uniform absolute continuity of these stable manifolds, volDy (Dy ∩B0) > 0, then f
n0∗ (volD)(B0) > 0.

This proves the claim.
This claim implies volf n(D)(f

n(D) ∩ B∗
0 ) > 0, let Γ = D ∩ f −n0(B∗

0 ), then volD(Γ ) > 0, every point in Γ has
uniform size of stable manifold, and these stable manifolds are uniformly absolutely continuous. �

Suppose f ∈ Diffk(N), k > 1 admits a dominated splitting Eu ⊕ Ecs, and it is dynamically coherent, that is, it
has center stable and center unstable foliation. We call cs-block for f the image B = h(Σ × Idcs) of any embedding
h : Σ × I dcs → N , with Σ ⊂ I dcu , satisfying the following properties:

(1) h({a} × Idcs) is contained in Wcs(h(a,0)), for every a ∈ Σ ;
(2) h({a} × I dcs) is contained in the stable set of h(a,0), for every a ∈ Σ ;
(3) h(Σ × {0}) is a positive measure subset of some disk D transverse to Wcs;
(4) there is K > 0 such that for any u-disks D1,D2 ⊂ N that cross h(Σ × Idcs) (that is, such that Di intersects

h(a × I dcs) for every a ∈ Σ ) the center stable foliation Wcs induces a holonomy map hcs from D1 ∩ h(a × I dcs)

to D2 ∩ h(a × I dcs) whose Jacobian (relative to the volume measures on D1 and D2) relative to volD1 and volD2

is bounded by K from above and 1/K from below.

We also say that B is a cs-block over the disk D in (3). If D is contained in the unstable manifold of an index dcs

periodic point p, then we say the cs-block is associated with p.
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Remark 6.7. If D is in the support of some ergodic Gibbs u-state m then m(B) > 0: this is a consequence of the
absolute continuity property (4) and the fact that Gibbs u-states have positive densities along strong unstable leaves
(Proposition 3.1).

We say that the cs-block has size r > 0 if the plaque h({a}× Idcs) contains Wcs
r (h(a,0)) for every a ∈ Σ . If a map

h̃ : Σ × I dcs → N satisfies

h̃ | Σ × {0} ≡ h | Σ × {0} and h̃
(
a × I dcs

) ⊂ h
(
a × I dcs

)
for every a ∈ Σ then B̃ = h̃(Σ × I dcs) is called a sub-block of B.

Lemma 6.8. Let m be an ergodic u-state of f and p ∈ suppm be a periodic point of stable index dcs whose stable
manifold Ŵ s(p) has size r . Then there is a cs-block associated with p with size r .

Proof. By Lemma 6.6, there is a cs-block over any u-disk D ⊂ Wu(p). Let κ be the period of p. For every large n,
the backward image f −nκ(B) is a cs-block of size r over the u-disk f −n(D). �
6.3. Recurrence to cs-blocks

The next proposition is a key ingredient in the proof of our criteria for absolute continuity.

Proposition 6.9. Let mi , i = 1, . . . , s be the ergodic Gibbs u-states of f and, for each i = 1, . . . , s, let Bi be some
cs-block over a Wu-disks Di ⊂ suppmi . Then for any positive Lebesgue measure subset D∗ of any Wu-disk D, there
exists n > 0 arbitrarily large and there exists 1 � i � s such that volD(D∗ ∩ f −n(Bi )) > 0.

Proof. (For notational simplicity, we use mu to denote volf n(Γ ) for any u-disk Γ and any n > 0.) We may suppose
from the start that D∗ is compact: otherwise, just replace it by some positive measure compact subset. Let Bε(x,D)

represent the ball of radius ε and center x inside D, and take

D∗
ε =

⋃
x∈D∗

Bε(x,D).

Since D∗ is closed, D∗
ε decreases to D∗ when ε → 0. Consequently, the total mass mu(D∗

ε ) is close to mu(D∗) if ε

is small enough. Let m and mε be Cesaro accumulation points of the iterates of Lebesgue measure on D∗ and D∗
ε ,

respectively. More precisely, we assume that there is {nj }∞j=1 with

lim
j→∞

1

njmu(D∗)

nj −1∑
i=0

(
f i

)
∗m

u
∣∣ D∗ = m;

lim
j→∞

1

njmu(D∗
ε )

nj −1∑
i=0

(
f i

)
∗m

u
∣∣ D∗

ε = mε.

By Proposition 3.1(4), both probability measures m and mε are Gibbs u-states. Let m = a1m1 + · · · + asms and
mε = a1,εm1 + · · · + as,εms be the ergodic decompositions of m and mε , respectively. Up to renumbering the ergodic
components, if necessary, we may take a1 to be non-zero. Since mu(D∗

ε ) is close to mu(D∗), the measure mε is close
to m in the weak∗ topology. In particular, a1,ε � a1/2 as long as ε is sufficiently small. Denote D∗

1 = D1 ∩ B1 and
D∗

1,δ = ⋃
x∈D∗

1
Bu

δ (x,D1) and

B∗
1,δ = {

z ∈ Wcs
loc(x) ∩Wu

loc(y) for some x ∈ D∗
1,δ and y ∈ B1

}
.

Given any u-disk Γ that crosses B∗
1,δ , we have

mu(Γ ∩B1) �
1

mu(D1 ∩B1) > 0

K
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where K is a bound for the Jacobian of the center stable foliation in B1. Noting that mu(Γ ∩B∗
1,δ) is bounded above,

it follows that

mu(Γ ∩B1)

mu(Γ ∩B∗
1,δ)

� K1, (23)

where K1 depends only on K and the aforementioned upper bound. Choosing ε properly, we may ensure that
mu(∂D∗

ε ) = 0. Moreover, by Remark 6.7 we have that b0 = m1(B1) is positive. Since B∗
1,δ is open,

lim
j→∞

1

njmu(D∗
ε )

nj −1∑
i=0

(
f i∗mu

∣∣ D∗
ε

)(
B∗

1,δ

)
� mε

(
B∗

1,δ

)
� mε(B1,δ)� b0a1,ε �

a1b0

2
.

So, there is nj arbitrarily large such that(
f

nj∗ mu
∣∣ D∗

ε

)(
B∗

1,δ

)
� a1b0

4
mu

(
D∗

ε

)
. (24)

We claim that there is b1 > 0 such that, for every ε > 0 sufficiently small,(
f

nj∗ mu
∣∣ D∗

ε

)
(B1)� 2b1m

u
(
D∗

ε

)
.

To see this, let D∗
ε,ε1

denote the subset of points x ∈ D∗
ε such that dD(x, ∂D∗

ε ) > ε1. Clearly, Dε,ε1 increases to Dε as
ε1 → 0. Hence, mu(D∗

ε,ε1
)� (1 − a1b0/8)mu(D∗

ε ) as long as ε1 is sufficiently small. In view of (24) it follows that(
f

nj∗ mu
∣∣ D∗

ε,ε1

)(
B∗

1,δ

)
� a1b0

8
mu

(
D∗

ε

)
. (25)

Moreover, for any x ∈ f nj (D∗
ε,ε1

)∩B∗
1,δ there is a u-disk Dx ⊂ f nj (D∗

ε ) containing x and intersecting the local center
stable leaf Wcs

loc(y) of every y ∈ D∗
1,δ . Applying (23) with Γ = Dx , we conclude that

mu(f −nj (Dx ∩B1))

mu(f −nj (Dx ∩B∗
1,δ))

� K2,

where K2 depends only on K1 and a bound for the distortion along unstable leaves. Now (25) yields

mu
(
D∗

ε ∩ f −nj (B1)
)
� K2m

u
(
D∗

ε,ε1
∩ f −nj

(
B∗

1,δ

))
� 2b1m

u
(
D∗

ε

)
,

with b1 = K2a1b0/16. This proves our claim. Since limε→0 mu(D∗
ε \ D∗) = 0, it follows that mu(D∗ ∩ f −nj (B1)) �

b1m
u(D∗) > 0. This completes the proof of the proposition. �

Remark 6.10. Assuming there exists a unique Gibbs u-state, m, the arguments in the proof of Proposition 6.9 yield
a slightly stronger conclusion that will be useful in the sequel: given any cs-block B over a u-disk inside suppm,
there exists b1 > 0 such that, for any positive Lebesgue measure subset D∗ of any Wu-disk D ⊂ suppm, there exist
arbitrarily large values of n > 0 such that

volD
(
D∗ ∩ f −n(B)

)
� b1 volD

(
D∗).

6.4. Upper leafwise absolute continuity

Here we prove Proposition 6.2. Suppose there exists some measurable set Y with vol(Y ) > 0 that meets almost
every center stable leaf Wcs(z) on a zero volcs-measure subset. Up to replacing Y by some full measure subset, we
may suppose that every x ∈ f n(Y ) is a Lebesgue density point of f n(Y ) for every n� 0:

lim
ρ→0

vol(Bρ(x) ∩ f n(Y ))

vol(Bρ(x))
= 1. (26)

Since f has finitely many ergodic u-states and their basins cover a full measure subset of N (see [21]), it is no
restriction to suppose that Y is contained in the basin of some ergodic Gibbs u-state m. Let B be a cs-block over
some u-disk contained in the support of m (recall Proposition 3.1 and Section 6.2). Since the strong unstable foliation
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is absolutely continuous (see [22]), we can find a u-disk D such that D∗ = D ∩ Y has positive volD-measure. By
Proposition 6.9, there exists n > 0 such that volf n(D)(f

n(D∗) ∩B) > 0. Take y ∈ D∗ such that f n(y) ∈ B and f n(y)

is a Lebesgue density point for f n(D∗) ∩B inside f n(D). Then, for every small ρ > 0,

volf n(D)(B
u
ρ (f n(y)) ∩B)

volf n(D)(Bu
ρ (f n(y)))

�
volf n(D)(B

u
ρ (f n(y)) ∩ f n(D∗) ∩B)

volf n(D)(Bu
ρ (f n(y)))

≈ 1,

where Bu
ρ(x) denotes the connected component of Bρ(x) ∩ Wu(x) that contains x. Then, since the center stable

foliation is uniformly absolutely continuous on the cs-block, there exists c > 0 such that

vol(Bρ(f n(y)) ∩B)

vol(Bρ(f n(y)))
� c for all small ρ > 0.

Together with (26), this implies that vol(f n(Y ) ∩ B) > 0. On the other hand, the hypothesis implies that f n(Y )

intersects almost every center stable leaf on a zero Lebesgue measure subset. Using, once more, that the center stable
leaf is absolutely continuous on the cs-block, we get that vol(f n(Y )∩B) = 0. This contradicts the previous conclusion,
and that contradiction completes the proof of Proposition 6.2.

6.5. Non-expansion along the center

Now we prove Proposition 6.3. Consider ergodic u-states {mi}mi=1, periodic points {pi}mi=1, and constants ρ, ε as
in the definition of non-expansion along the center. By Lemma 6.8, we can choose cs-blocks {Bi}mi=1 associated with
mi with size ρ. Notice that this uses the second condition in the definition of non-expanding along the center.

In order to prove the center stable foliation is absolutely continuous, we just need show that for any two u-disks
D1, D2 which are ε near, the holonomy map induced by Wcs between D1 and D2 maps Lebesgue positive measure
subset to a Lebesgue positive measure subset, where two u-disks D1, D2 are ε near if for any x ∈ D1, there is y ∈ D2
belonging to Wcs

ε (x).
Suppose D∗

1 ⊂ D1 is a positive measure subset, denote by D∗
2 ⊂ D2 the image of D∗

1 under cs-holonomy map.
Since f is non-expanding along the center, we can assume that for any x ∈ D∗

1 , one has f n(Wcs
ε (x)) ⊂ Wcs

ρ (f n(x))

for n > 0. For each i, let us consider a sub-block B̃i with the same base as Bi but with arbitrarily small height. By
Proposition 6.9, there are n and j such that mu(f n(D∗

1) ∩ B̃j ) > 0. Since f n(D∗
1) and f n(D∗

2) are ρ close to each
other, it follows that f n(D∗

2) crosses Bj . Moreover, since the cs-holonomy map in Bj is absolutely continuous, one
also has that mu(f n(D∗

2) ∩ Bj ) > 0. Clearly, this implies that mu(D∗
2) > 0. In this way we conclude that Wcs is

absolutely continuous.

6.6. Center leaves in general position

We are going to prove Proposition 6.4. Let us start by giving an overview of the argument. We need to compare a
set on any u-disk with its projection to another u-disk under cs-holonomy. The idea is to consider appropriate iterates
of both u-disks intersecting a given cs-block, and then take advantage of the uniform structure on the cs-block. The
problem is that, because cs-blocks have gaps along the center direction, one cannot immediately ensure that iterates of
both disks intersect the same cs-block. To this end, we use the twisting property in the assumption of general position
to find a pair of cs-blocks whose union covers the whole center direction, in the sense that it intersects any large iterate
of any u-disk. Then, we show that some iterate of any of the disks intersects both cs-blocks, which gives the required
property.

Now we fill in the details in the proof. Let f and � be as in the statement of the proposition. For simplicity, consider
the center leaf � to be fixed (in other words, κ = 1) and we also take the attractor a and repeller r of f | � to be fixed.
Extension to the general case is straightforward. We will consider the points as = hs(a), au = hu(a), rs = hs(r),
ru = hu(r) in �′. The assumption that � is in general position means that these points are all distinct.

Lemma 6.11. The diffeomorphism f has a unique ergodic u-state and its support contains the attractor a.

Proof. By Lemma 4.2, the supports of all ergodic Gibbs u-states are pairwise disjoint. Thus, it suffices to show that
the support of any ergodic u-state contains the attractor a. By Proposition 3.1, the support of m consists of entire
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Fig. 4. A mechanism for robustly absolutely continuous center foliations.

strong unstable leaves. So, it suffices to prove that every strong unstable leaf L intersects the stable manifold Ŵ s(a)

of the attractor. Now, by hypothesis, every strong unstable leaf intersects Ws(�). Moreover, Ws(�) is the union of
Ŵ s(a) with the strong stable leaf Ws(r) of r . So, the conclusion is obvious, unless L intersects Ws(r). Moreover,
if this is the case then the forward orbit of L accumulates on Wu(r) and, in particular, on ru. Since ru �= rs and rs

is the unique point where Ws(r) intersects �′, we have that ru ∈ Ws(a). Thus, some iterate of L intersects Ŵ s(a).
Observing that Ŵ s(a) is invariant, we conclude that L itself must intersect Ŵ s(a). This completes the argument. �

Let τ be an upper bound for the distance between x and hu(x) along the corresponding unstable leaf, taken over
all x ∈ �. For ρ, ε > 0 small, and ζ ∈ �′, denote

Ws
ρ

(
�′) =

⋃
ξ∈�′

Ws
ρ(ξ) and V cs

ε (ζ ) =
⋃

ξ∈Bc
ε (ζ )

Ws
ρ(ξ).

Let B̃ be a cs-block over Wu
loc(a) (Lemma 6.8). The backward iterates f −n(B̃) accumulate on the stable manifold

of a and, thus, eventually intersect the unstable manifold of as . This means that for n sufficiently large, there exist
subsets D∗

1 of f −n(B̃)∩Wu(as) and D∗
2 of f −n(B̃)∩Wu(a), with positive measure inside the corresponding unstable

manifolds.
Then, we may choose a cs-block B1 ⊂ f −n(B̃) over some u-disk D̃1 ⊃ D̃∗

1 such that

Wu
2τ (ζ ) ∩B1 �= ∅ for all ζ ∈Ws

ρ

(
�′) \ V cs

ε (rs).

We think of the union Wu
2τ (V

cs
ε (rs)) of the local unstable manifolds through the local center stable manifold of rs as

the gap of B1 along the center direction. See Fig. 4.
Similarly, we may consider a cs-block B2 ⊂ f −n(B̃) over some u-disk D̃2 ⊃ D∗

2 such that

Wu
2τ (ζ ) ∩B2 �= ∅ for all ζ ∈Ws

ρ

(
�′) \ V cs

ε (ru).

The union Wu
2τ (V

cs
ε (ru)) of the local unstable manifolds through the local center stable manifold of ru is the gap of

B2 along the center direction. Moreover, we may fix δ0 > 0 such that, for any ζ ∈ Ws
ρ(�′), either

mu
(
Wu

2τ (ζ ) ∩B1
)
> δ0 or mu

(
Wu

2τ (ζ ) ∩B2
)
> δ0.

This is, in precise terms, what we meant when we announced that the union B1 ∪B2 of the two cs-blocks would cover
the whole center direction.

Now consider a new cs-block B defined as the union of(
Wu

2τ (ξ) ∩B2
) ∪ (

Wu
2τ (ξ) ∩B1

)
over all ξ ∈ Ws

ρ(�′)\ (V cs
ε (rs)∪V cs

ε (ru)). In other words, B is obtained from B1 ∪B2 by removing the two gaps. Thus,
B = B1 ∪ B2 with B1 ⊂ B1 and B2 ⊂ B2. We are going to show that arbitrarily large iterates of any u-disk intersect
both connected components of B on positive measure subsets.
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Lemma 6.12. Given any u-disk D and any positive volD-measure subset D∗ there exist ζ ∈ D∗ and k arbitrarily
large such that

volf k(D)

(
Wu

2τ

(
f k(ζ )

) ∩ f k
(
D∗) ∩Bi

)
> 0 for both i = 1,2.

Proof. It is no restriction to suppose every point of D∗ is a Lebesgue density point. Fix ε > 0 small (the precise choice
will be given later). Take any point x ∈ D∗ and let r > 0 be small enough so that volD(D∗

r ) > (1−ε)volD(Dr), where
Dr is the disk of radius r around x and D∗

r = Dr ∩ D∗. By Remark 4.3 there is a unique Gibbs u-state. Then, cf.
Remark 6.10, there exists b1 > 0, independent of x and r , such that

volD
(
D∗

r ∩ f −ni
(
B1))� b1 volD

(
D∗

r

)
� b1(1 − ε)volD(Dr)

for a sequence ni → ∞. Let ρ > 0 be slightly smaller than r , so that

volD(Dρ) > (1 − ε)volD(Dr).

Then f −ni (Wu
2τ (f

ni (y))) ⊂ Dr for any ni sufficiently large and any y ∈ Dρ . Since the local unstable manifold of
f ni (y) cuts across both B1 and B2, this means that we can associate to y ∈ D∗

ρ ∩ f −ni (B1) the following subsets
of Dr :

D1
i (y) = f −ni

(
Wu

2τ

(
f ni (y)

) ∩B1) and D2
i (y) = f −ni

(
Wu

2τ

(
f ni (y)

) ∩B2).
By bounded distortion, there exists κ = κ(f ) > 0 such that

volD
(
D2

i (y)
)
� κ volD

(
D1

i (y)
)

for every y and every i.

We also denote by D1
i and D2

i the (disjoint) unions of D1
i (y) and D2

i (y), respectively, over all y ∈ D∗
ρ ∩ f −ni (B1).

Then, the previous inequality gives

volD
(
D2

i

)
� κ volD

(
D1

i

)
for every i.

By Proposition 6.9 and Remark 6.10, there exists a sequence (ni)i of positive integers and there exists b1 > 0 such
that

volD
(
D∗

ρ ∩ f −ni
(
B1)) � b1 volDρ

(
D∗

ρ

)
� b1(1 − ε)2 volD(Dρ).

Consequently,

volD
(
D1

i

)
� b1(1 − ε)2 volD(Dρ) � b1(1 − ε)3 volD(Dr).

This implies that volD(D2
i ) � b2 volD(Dr), where the constant b2 > 0 is independent of i and the choice of r . Now,

suppose the lemma is false. Then D2
i (y)∩D∗ is empty, for every y ∈ D∗

ρ ∩f −ni (B1), that is, D2
i ∩D∗ = ∅. It follows

that volD(D∗
r ) � (1 − b2)volD(Dr). This contradicts the choice of D∗

r at the beginning of the proof, as long as we fix
ε < b2. The proof of the lemma is complete. �
Proof of Proposition 6.4. Let hcs : D1 → D2 be a cs-holonomy between u-disks D1 and D2. Let D∗

1 ⊂ D1 be a
positive volD1 -measure subset and D∗

2 = hcs(D∗
1). We want to prove that volD2(D

∗
2) is also positive. By Lemma 6.12,

there exist ζ ∈ D∗
1 and k � 1 such that

volf k(D)

(
Wu

2τ

(
f k(ζ )

) ∩ f k
(
D∗

1

) ∩Bi
)
> 0 for both i = 1,2. (27)

Notice that for k big enough, Wu
2τ (f

k(ζ )) and Wu
2τ (f

k(hcs(ζ ))) are contained in nearby cu-disks. That is because
the stable foliation is uniformly contracting. Then Wu

2τ (h
cs(ζ )) ∩ Ws

ρ(�′) �= ∅. This implies Wu
2τ (h

cs(ζ )) ∩ B̃1 �= ∅
or Wu

2τ (h
cs(ζ )) ∩B2 �= ∅. Since B̃1, B2 are cs-blocks, whose cs-foliations are uniformly absolutely continuous, from

(27) one gets that

volf k(D2)

(
Wu

2τ

(
f k

(
hcs(ζ )

)) ∩ f k
(
D∗

2

) ∩Bi
)
> 0

for either i = 1 or i = 2. This implies that volD2(D
∗
2) > 0. Thus, the center stable foliation is absolutely continuous,

as claimed. �



M. Viana, J. Yang / Ann. I. H. Poincaré – AN 30 (2013) 845–877 873
7. Robust absolute continuity

Here we use the results in the previous section to give examples of open sets of diffeomorphisms with absolutely
continuous center stable/unstable foliations.

7.1. Mañé’s example

Mañé [41] constructed a C1 open set of diffeomorphisms U such that every f ∈ U is partially hyperbolic (but not
hyperbolic), dynamically coherent, and transitive. From Proposition 6.3 one gets that every Ck , k > 1 diffeomorphism
f in some non-empty C1 open subset U ′ has absolutely continuous center stable foliation. To explain this, let us recall
some main features in Mañé’s construction.

One starts from a convenient linear Anosov map A : T3 → T
3 with eigenvalues 0 < λ1 < λ2 < 1 < λ3. Let p

be a fixed point of A and ρ > 0 be small. One deforms A inside the ρ-neighborhood of p, so as to create some
fixed point with stable index 1, while keeping the diffeomorphism unchanged outside Bρ(p). Mañé [41] shows that
this can be done in such a way that the diffeomorphism f0 : T3 → T

3 thus obtained is partially hyperbolic, with
splitting Es ⊕Ec ⊕Es where all factors have dimension 1, and every diffeomorphism in some C1 neighborhood U is
dynamically coherent and transitive. The presence of periodic points with both stable indices 1 and 2 ensures that f0
is not Anosov. Bonatti and Viana [21] observed that every Ck , k > 1 diffeomorphism f ∈ U has mostly contracting
center direction. Here, as well as in the steps that follow, one may have to reduce the neighborhood U . Then Bonatti,
Díaz and Ures [18] showed that the unstable foliation of every f ∈ U is minimal. According to [21], this implies that
every Ck , k > 1 diffeomorphism f ∈ U admits a unique physical measure, whose basin contains Lebesgue almost
every point. The non-expansion condition in Proposition 6.3 can be checked as follows.

A crucial observation is that the center stable bundle Ec ⊕ Es is uniformly contracting outside Bρ(p), for all
diffeomorphisms in a neighborhood, because f0 = A outside Bρ(p). Let q be another fixed or periodic point of A and
assume ρ was chosen much smaller than the distance from p to the orbit of q . Then q remains a periodic point for f0,
with stable index 2 and stable manifold of size � 5ρ. Let qf denote the hyperbolic continuation of q for every f in a
neighborhood of f0: qf is a periodic point with stable index 2 and stable manifold of size � 4ρ. The fact that Ec ⊕Es

is uniformly contracting outside Bρ(p) also implies that f n(Wcs
ρ (x)) ⊂ Wcs

2ρ(f n(x)) for all x ∈ T
3 and n � 0. This

proves that f is non-expanding along the center direction, and so we may apply Proposition 6.3 to conclude that the
center stable foliation of every f near f0 is absolutely continuous.

We ignore whether the center unstable foliation and the center foliation are absolutely continuous or not in this case.
However, in the next section, a different construction allows us to give examples where all three invariant foliations
are robustly absolutely continuous.

7.2. Robust absolute continuity for all invariant foliations

Here we prove Theorem 2.4 and use it to deduce Theorem B. We begin with an intermediate result:

Proposition 7.1. Let f0 : N → N be a Ck , k > 1 skew-product of the form f0(x, θ) = (g0(x), h0(x, θ)), where g0 is a
transitive Anosov diffeomorphism. Assume that f0 has some periodic center leaf in general position. Then there exists
a Ck neighborhood V of f0 such that for every f ∈ V , the center direction is mostly contracting and the center stable
foliation, center unstable foliation, and center foliation are all absolutely continuous.

Proof. Every skew-product has absolutely continuous center stable and center unstable foliation and is robustly dy-
namically coherent (by [39]; the center foliation of a partially hyperbolic skew-product is always plaque expansive).
We claim that the center direction is mostly contracting for f0 and, thus, for every map in a neighborhood. This can
be seen as follows. By Proposition 3.1, we only have to check that every ergodic Gibbs u-state has negative center
exponent.

Suppose first that there exists some ergodic Gibbs u-state μ with vanishing center exponent. Then, by the Invariance
Principle (Proposition 5.1), μ admits a continuous bi-invariant disintegration {μx : x ∈ M} along the center leaves.
The conditional measure on the leaf � must be a convex combination of Dirac masses sitting on the attractor a and the
repeller r . On the one hand, by s-invariance, the conditional measure on the leaf �′ must be supported on {as, rs}. On
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the other hand, by u-invariance, that same conditional measure must be supported on {au, ru}. Since these two sets
are disjoint, by definition of general position, we have reached a contradiction. Thus, there can be no ergodic Gibbs
u-state with zero center exponent.

Now suppose that μ is an ergodic Gibbs u-state with positive center exponent. We are going to use Lemma 3.11
with �0 = �. Recall that the support of μ is invariant and u-saturated. Since every u-leaf intersects the stable manifold
of �, it follows that the support of μ contains the strong unstable leaf through at least one of the points a or r . Then,
supp(μ) contains either au or ru, neither of which belongs to the strong stable leaves through a and r . Now, since μ

is a Gibbs u-state with positive center exponent, there exists some u-disk contained in the support such that Lebesgue
almost every point in this disk has positive center exponent. Moreover, the previous observation shows that we can
take this u-disk intersecting the stable manifold of � outside the strong stable leaves through a and r . This contradicts
Lemma 3.11.

The assumption that g0 is transitive also ensures that every strong unstable leaf intersects Ws(�). So, we are in a
position to apply Corollary 6.5 to conclude that the center stable foliation is robustly absolutely continuous. The same
reasoning applied to the inverse of f0 gives that the center unstable foliation is also robustly absolutely continuous.
From the following general fact we get that the center foliation is also robustly absolutely continuous:

Lemma 7.2. (See Pugh, Viana and Wilkinson [51].) Let F1, F2, F3 be foliation in some smooth manifold N such that
F1 and F2 are transverse at every point and the leaves of F3 coincide with the intersections of leaves of F1 and F2:
for every point x ∈ N , F3(x) =F1(x) ∩F2(x). If F1 and F2 are absolutely continuous then so is F3.

Proof. Suppose D1, D2 are two disks transverse with F3, and h3 : D1 → D2 is the holonomy map induced by F3.
Then F1 and F2 induce two foliations F̂1

i and F̂2
i on Di , i = 1,2, and these two foliations are absolutely continuous

in Di . Fix l1 ⊂ D1 a leaf of F̂2
1 , and denote by l2 = h3(l1), then l2 is a leaf of F̂2

2 . Since the foliations F̂1
i , i = 1,2 are

absolutely continuous, one has that the disintegration of the Lebesgue measure volD1 along the foliation F̂1
1 is

volD1 = ϕx(y) d volF̂1
1 (x)

(y) d voll1(x), where ϕx(y) > 0

and the disintegration of the Lebesgue measure of D2 along the foliation F̂1
2 is

volD2 = φx(y) d volF̂1
2 (x)

(y) d voll2(x), where φx(y) > 0.

Now for any set �1 ⊂ D1 with volD1(�1) > 0, denote its image for h3 by �2. By the above formulas for the disinte-
gration, there is a positive voll1 measure subset Γ1 ⊂ l1 such that for any x ∈ Γ1, one has

vol
F̂ 1

1 (x)

(
�1 ∩ F̂ 1

1 (x)
)
> 0.

Denote Γ2 = h3(Γ1) ⊂ l2. By the absolute continuity of F1 and F2, voll2(�2) > 0 and vol
F̂ 1

2 (x)
(�2 ∩ F̂ 1

2 (x)) > 0 for

any x ∈ Γ2. This implies volD2(�2) > 0, and so the proof is complete. �
This completes the proof of Proposition 7.1. �
To complete the proof of Theorem 2.4 it suffices to note that any skew-product f0 with a Morse–Smale center leaf,

as in the statement of the theorem, is approximated by skew-products with center leaves in general position: all that is
missing is property (b) in the definition of general position, and this can be achieved by a Ck small perturbation inside
the space of skew-products. Then Theorem 2.4 follows from Proposition 7.1.

The first of Theorem B is contained in Proposition 7.1. The proposition also gives that every f in a neighborhood of
f0 has mostly contracting center. Thus, we may apply Lemma 6.11 to conclude that f has a unique ergodic Gibbs u-
state and, thus, a unique physical measure. Since the hypotheses of the theorem are not affected when time is reversed,
the same is true for f −1. This finishes the proof of Theorem B.

7.3. Volume preserving systems

Here we prove Theorem 2.5 and a pair of related results. Based on these, we also describe a, partially conjectural,
scenario for absolute continuity of foliations of conservative and dissipative systems.
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Part (1) of Theorem 2.5 is a direct consequence of the main result of Baraviera and Bonatti [17]. Part (2) is given
by the following result:

Lemma 7.3. For any f ∈ W0 with λc(f ) > 0, the center foliation and the center stable foliation are not upper leafwise
absolutely continuous.

Proof. Fix c ∈ (0, λc(f )). Then, by the Birkhoff ergodic theorem, the set

Γc,1 =
{

x ∈ N : lim
1

n

n∑
i=1

log
∥∥Df −1

∣∣ Ec
(
f i(x)

)∥∥−1 � c

}
has positive volume. Then, by Proposition 3.7, there is n0 � 1 such that the intersection of any center leaf with Γc,1
has at most n0 points. In particular, the intersection has zero volume inside the center leaf. So, the center foliation of f

is not upper leafwise absolutely continuous. Next, observe that the set Γc,1 consists of entire strong stable leaves. So,
the intersection of Γc,1 with any center stable leaf consists of no more than n0 strong stable leaves. This implies that
the intersection has zero volume inside the center stable leaf. Consequently, the center stable foliation is not upper
leafwise absolutely continuous. In particular, we get that the center foliation and the center stable foliation are not
absolutely continuous, as claimed. �

Now we prove part (3) of the theorem. Let p ∈ M be a periodic point of g0 and a ∈ M be a homoclinic point
associated to p. For simplicity, we take the periodic point to be fixed. Let us begin by constructing W1. The first step
is to approximate f0 by some diffeomorphism f1 such that λc(g) > 0 for any g in a C1 neighborhood. This can be
done by the perturbation method in [17]; the perturbation may be chosen such that f1 = f0 on a neighborhood of
{p}× S1, and we assume that this is the case in what follows. The second step is to find f2 arbitrarily close to f1 such
that, denoting by �p and �a the center leaves associated to the continuation of p and a,

• every strong unstable leaf of f2 intersects Ws(�p);
• the restriction of f2 to �p is a Morse–Smale diffeomorphism, with a single attractor ξ and a single repeller η;
• and Wu(η) and Ws(ξ) are in general position (we call this non-strong connection).

These properties remain valid in a small neighborhood of f2. As a final step, we use [18,36,35] to find a diffeomor-
phism f3 arbitrarily close to f2 and such that the strong stable and the strong unstable foliations are minimal in a
whole C1 neighborhood of f3. We take W1 to be such a neighborhood. By [21], for every Ck diffeomorphism f ∈W
the inverse f −1 has mostly center direction. Then, by [10], the same is true in a whole Ck neighborhood Wf in the
space of all (possibly dissipative) diffeomorphisms. Hence, we are in a position to apply Corollary 6.5 to conclude
that the center unstable foliation is absolutely continuous for every diffeomorphism in Wf .

This finishes the proof of Theorem 2.5. The next proposition is a variation of results in [15] where center foliations
are replaced by center stable or center unstable foliations.

Proposition 7.4. Let f0 be as in Theorem A, where M is a surface, and let f be any C1 nearby accessible, volume
preserving diffeomorphism with λc(f ) = 0. If either the center stable foliation or the center unstable foliation is
absolutely continuous then f is smoothly conjugate to a rotation extension and the center foliation is a smooth
foliation.

Proof. Suppose Wcs is absolutely continuous. Then we may apply Theorem 2.2. In this case Lebesgue measure is a
Gibbs u-state with zero center exponent, and so we are in the elliptic case (a) of the theorem. In particular, the center
foliation is leafwise absolutely continuous. Then we can apply [15,16] to conclude that the center foliation is smooth
and f is smoothly conjugate to a rigid model. In the present case, where the center fiber bundle is trivial, we get that
f is topologically conjugate to a rotation extension (cf. Remark 4.3). �
Remark 7.5. Suppose f is partially hyperbolic, dynamically coherent, volume preserving, and all the center exponents
are negative at almost every point. Then the center stable foliation of f is upper leafwise absolutely continuous. This
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Fig. 5. A partly conjectured scenario for conservative maps.

is a fairly direct consequence of Pesin theory. Indeed, if all the Lyapunov exponents are negative then the Pesin local
stable manifold of almost every point is a neighborhood of the point inside its center stable leaf. Then the absolute
continuity of Pesin laminations [46] implies that the center stable foliation is upper leafwise absolutely continuous.

We close with a conjecture on the issue of absolute continuity.

Conjecture 7.6. Let k > 1 and Vk be the space of partially hyperbolic, dynamically coherent, volume preserving Ck

diffeomorphisms whose center Lyapunov exponents are negative at almost every point. Then, for an open and dense
subset, the center stable foliation is absolutely continuous.

Fig. 5 outlines a scenario for these issues in a relevant special case, namely near the map f0 = g0 × id as in
Theorem A. Accessibility is assumed throughout (but is not needed for the negative results in λc �= 0). Generically
means for open and dense in Ck topology, k � 1. Upper leafwise absolute continuity of the center unstable is known
for λc > 0, as we have seen, and we have also found an open subset with (full) absolute continuity of the center
unstable.
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