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Abstract

We consider a family of Gagliardo–Nirenberg–Sobolev interpolation inequalities which interpolate between Sobolev’s inequality
and the logarithmic Sobolev inequality, with optimal constants. The difference of the two terms in the interpolation inequalities
(written with optimal constant) measures a distance to the manifold of the optimal functions. We give an explicit estimate of the
remainder term and establish an improved inequality, with explicit norms and fully detailed constants. Our approach is based on
nonlinear evolution equations and improved entropy–entropy production estimates along the associated flow. Optimizing a relative
entropy functional with respect to a scaling parameter, or handling properly second moment estimates, turns out to be the central
technical issue. This is a new method in the theory of nonlinear evolution equations, which can be interpreted as the best fit of the
solution in the asymptotic regime among all asymptotic profiles.
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1. Introduction and main results

Consider the following sub-family of the Gagliardo–Nirenberg–Sobolev inequalities

‖f ‖2p � CGN
p,d‖∇f ‖θ

2‖f ‖1−θ
p+1 (1)

with θ = θ(p) := p−1
p

d
d+2−p(d−2)

, 1 < p � d
d−2 if d � 3 and 1 < p < ∞ if d = 2. Such an inequality holds for any

smooth function f with sufficient decay at infinity and, by density, for any function f ∈ Lp+1(Rd) such that ∇f is
square integrable. We shall assume that CGN

p,d is the best possible constant in (1). In [16], it has been established that
equality holds in (1) if f = Fp with

Fp(x) = (
1 + |x|2)− 1

p−1 ∀x ∈ R
d (2)
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and that all extremal functions are equal to Fp up to a multiplication by a constant, a translation and a scaling. See
Appendix A for an expression of CGN

p,d . If d � 3, the limit case p = d/(d − 2) corresponds to Sobolev’s inequality and
one recovers the optimal functions found by T. Aubin and G. Talenti in [3,23]. When p → 1, the inequality becomes
an equality, so that we may differentiate both sides with respect to p and recover the euclidean logarithmic Sobolev
inequality in optimal scale invariant form (see [20,25,16] for details).

It is rather straightforward to observe that inequality (1) can be rewritten, in a non-scale invariant form, as a non-
homogeneous Gagliardo–Nirenberg–Sobolev inequality: for any f ∈ Lp+1 ∩D1,2(Rd),∫

Rd

|∇f |2 dx +
∫

Rd

|f |p+1 dx � Kp,d

( ∫

Rd

|f |2p dx

)γ

(3)

with

γ = γ (p,d) := d + 2 − p(d − 2)

d − p(d − 4)
. (4)

The optimal constant Kp,d can easily be related with CGN
p,d . Indeed, by optimizing the left hand side of (3) written for

fλ(x) := λd/(2p)f (λx) for any x ∈ R
d , with respect to λ > 0, one recovers that (3) and (1) are equivalent. The detailed

relation between Kp,d and CGN
p,d can be found in Section 7.

Define now

CM :=
(

M∗
M

) 2(p−1)
d−p(d−4)

, M∗ :=
∫

Rd

(
1 + |x|2)− 2p

p−1 dx = π
d
2
Γ

( d−p(d−4)
2(p−1)

)
Γ

( 2p
p−1

) .

Consider next a generic, non-negative optimal function,

f
(p)
M,y,σ (x) := σ

− d
4p

(
CM + 1

σ
|x − y|2

)− 1
p−1 ∀x ∈R

d

and let us define the manifold of the optimal functions as

M
(p)
d := {

f
(p)
M,y,σ : (M,y,σ ) ∈ Md

}
.

We shall measure the distance to M
(p)
d with the functional

R(p)[f ] := inf
g∈M(p)

d

∫

Rd

[
g1−p

(|f |2p − g2p
) − 2p

p + 1

(|f |p+1 − gp+1)]dx.

To simplify our statement, we will introduce a normalization constraint and assume that f ∈ L2p(R2, (1 + |x|2) dx)

is such that∫
Rd |x|2|f |2p dx

(
∫
Rd |f |2p dx)γ

= d(p − 1)σ∗Mγ−1∗
d + 2 − p(d − 2)

, σ∗(p) :=
(

4
d + 2 − p(d − 2)

(p − 1)2(p + 1)

) 4p
d−p(d−4)

. (5)

Such a condition is not restrictive, as it is always possible to cover the general case by rescaling the inequality, but
significantly simplifies the expressions. As we shall see in the proof, the only goal is to fix σ = 1.

Our main result goes as follows.

Theorem 1. Let d � 2, p > 1 and assume that p < d/(d − 2) if d � 3. For any f ∈ Lp+1 ∩ D1,2(Rd) such that
condition (5) holds, we have∫

Rd

|∇f |2 dx +
∫

Rd

|f |p+1 dx − Kp,d

( ∫

Rd

|f |2p dx

)γ

� Cp,d

(R(p)[f ])2

(
∫
Rd |f |2p dx)γ

where γ is given by (4).
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Although we do not know its optimal value, we are able to give an expression of Cp;d (see Appendix A), which is
such that

lim
p→1+

Cp,d = 0 and lim
p→d/(d−2)−

Cp,d = 0.

The space Lp+1 ∩ D1,2(Rd) is the natural space for Gagliardo–Nirenberg inequalities as it can be characterized
as the completion of the space of smooth functions with compact support with respect to the norm ‖ · ‖ such that
‖f ‖2 = ‖∇f ‖2

2 + ‖f ‖2
p+1. In this paper, we shall also use the notations ‖f ‖p,q := (

∫
Rd |x|p|f |q dx)1/q , so that

‖f ‖q = ‖f ‖0,q .
Under condition (5), we shall deduce from Theorem 4 that

R(p)[f ] � CCK‖f ‖2p(γ−2)

2p inf
g∈M(p)

d

∥∥|f |2p − g2p
∥∥2

1 (6)

with δ = d + 2 − p(d + 6) for some constant CCK whose expression is given in Section 3, Eq. (13). Putting this
estimate together with the result of Theorem 1, with

Cp,d := Cd,pCCK
2,

we obtain the following estimate.

Corollary 2. Under the same assumptions as in Theorem 1, we have∫

Rd

|∇f |2 dx +
∫

Rd

|f |p+1 dx − Kp,d

( ∫

Rd

|f |2p dx

)γ

� Cp,d‖f ‖2p(γ−4)

2p inf
g∈Md (p)

∥∥|f |2p − g2p
∥∥4

1.

The critical case p = d/(d − 2) corresponding to Sobolev’s inequality raises a number of difficulties which are not
under control at this stage. However, results which have been obtained in such a critical case, by different methods,
are the main motivation for the present paper.

In [9, Question (c), p. 75], H. Brezis and E. Lieb asked the question of what kind of distance to M
(p)
d is controlled

by the difference of the two terms in the critical Sobolev inequality written with an optimal constant. Some partial
answers have been provided over the years, of which we can list the following ones. First G. Bianchi and H. Egnell
gave in [5] a result based on the concentration-compactness method, which determines a non-constructive estimate
for a distance to the set of optimal functions. In [15], A. Cianchi, N. Fusco, F. Maggi and A. Pratelli established
an improved inequality using symmetrization methods. Also see [14] for an overview of various results based on
such methods. Recently another type of improvement, which relates Sobolev’s inequality to the Hardy–Littlewood–
Sobolev inequalities, has been established in [17], based on the flow of a nonlinear diffusion equation, in the regime
of extinction in finite time. Theorem 1 does not provide an answer in the critical case, but gives an improvement with
fully explicit constants in the subcritical regime. Our method of proof enlightens a new aspect of the problem. Indeed,
Theorem 1 shows that the difference of the two terms in the critical Sobolev inequality provides a better control under
the additional information that ‖f ‖2,2p is finite. Such a condition disappears in the setting of Corollary 2.

In this paper, our goal is to establish an improvement of Gagliardo–Nirenberg inequalities based on the flow of the
fast diffusion equation in the regime of convergence towards Barenblatt self-similar profiles, with an explicit measure
of the distance to the set of optimal functions. Our approach is based on a relative entropy functional. The method
relies on a recent paper [19], which is itself based on a long series of studies on intermediate asymptotics of the fast
diffusion equation, and on the entropy–entropy production method introduced in [4,2] in the linear case and later
extended to nonlinear diffusions: see [21,22,16,12,11]. In this setting, having a finite second moment is crucial. Let
us give some explanations.

Consider the fast diffusion equation with exponent m given in terms of the exponent p of Theorem 1 by

p = 1

2m − 1
⇐⇒ m = p + 1

2p
. (7)

More specifically, for m ∈ (0,1), we shall consider the solutions of

∂u + ∇ · [u(
η∇um−1 − 2x

)] = 0 t > 0, x ∈R
d (8)
∂t
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with initial datum u(t = 0, ·) = u0. Here η is a positive parameter which does not depend on t . Let u∞ be the unique
stationary solution such that M = ∫

Rd u dx = ∫
Rd u∞ dx. It is given by

u∞(x) =
(

K + 1

η
|x|2

) 1
m−1 ∀x ∈R

d

for some positive constant K which is uniquely determined by M . The following exponents are associated with the
fast diffusion equation (8) and will be used all over this paper:

mc := d − 2

d
, m1 := d − 1

d
and m̃1 := d

d + 2
.

To the critical exponent 2p = 2d/(d − 2) for Sobolev’s inequality corresponds the critical exponent m1 for the fast
diffusion equation. For d � 3, the condition p ∈ (1, d/(d − 2)) in Theorem 1 is equivalent to m ∈ (m1,1) while for
d = 2, p ∈ (1,∞) means m ∈ (1/2,1).

It has been established in [21,22] that the relative entropy (or free energy)

F[u|u∞] := 1

m − 1

∫

Rd

[
um − um∞ − mum−1∞ (u − u∞)

]
dx

decays according to

d

dt
F

[
u(·, t)|u∞

] = −I
[
u(·, t)|u∞

]
if u is a solution of (8), where

I
[
u(·, t)|u∞

] := η
m

1 − m

∫

Rd

u
∣∣∇um−1 − ∇um−1∞

∣∣2
dx

is the entropy production term or relative Fisher information. If m ∈ [m1,1), according to [16], these two functionals
are related by a Gagliardo–Nirenberg interpolation inequality, namely

F[u|u∞]� 1

4
I[u|u∞]. (9)

We shall give a concise proof of this inequality in the next section (see Remark 1) based on the entropy–entropy
production method, which amounts to relate d

dt
I[u(·, t)|u∞] and I[u(·, t)|u∞]. We shall later replace the diffusion

parameter η in (8) by a time-dependent coefficient σ(t), which is itself computed using the second moment of u,∫
Rd |x|2u(x, t) dx. By doing so, we will be able to capture the best matching Barenblatt solution and get improved

decay rates in the entropy–entropy production inequality. Elementary estimates allow to rephrase these improved rates
into improved functional inequalities for f such that |f |2p = u, for any p ∈ (1, d/(d − 2)), as in Theorem 1.

This paper is organized as follows. In Section 2, we apply the entropy–entropy production method to the fast
diffusion equation as in [11]. The key computation, without justifications for the integrations by parts, is reproduced
here since we need it later in Section 6, in the case of a time-dependent diffusion coefficient. Next, in Section 3, we
establish a new estimate of Csiszár–Kullback type. By requiring a condition on the second moment, we are able to
produce a new estimate which was not known before, namely to directly control the difference of the solution with a
Barenblatt solution in L1(Rd).

Second moment estimates are the key of a recent paper and we shall primarily refer to [19] in which the asymptotic
behavior of the solutions of the fast diffusion equation was studied. In Section 4 we recall the main results that were
proved in [19], and that are also needed in the present paper.

With these preliminaries in hand, an improved entropy–entropy production inequality is established in Section 5,
which is at the core of our paper. It is known since [16] that entropy–entropy production inequalities amount to optimal
Gagliardo–Nirenberg–Sobolev inequalities. Such a rephrasing of our result in a more standard form of functional
inequalities is done in Section 6, which contains the proof of Theorem 1. Further observations have been collected
in Section 7. One of the striking results of our approach is that all constants can be explicitly computed. This is
somewhat technical although not really difficult. To make the reading easier, explicit computations have been collected
in Appendix A.
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2. The entropy–entropy production method

Consider a solution u = u(x, t) of Eq. (8) and define

z(x, t) := η∇um−1 − 2x

so that Eq. (8) can be rewritten as

∂u

∂t
+ ∇ · (uz) = 0.

To keep notations compact, we shall use the following conventions. If A = (Aij )
d
i,j=1 and B = (Bij )

d
i,j=1 are two

matrices, let A : B = ∑d
i,j=1 AijBij and |A|2 = A : A. If a and b take values in R

d , we adopt the definitions:

a · b =
d∑

i=1

aibi, ∇ · a =
d∑

i=1

∂ai

∂xi

, a ⊗ b = (aibj )
d
i,j=1, ∇ ⊗ a =

(
∂aj

∂xi

)d

i,j=1
.

Later we will need a version of the entropy–entropy production method in case of a time-dependent diffusion
coefficient. Before doing so, let us recall the key computation of the standard method. With the above notations, it is
straightforward to check that

∂z

∂t
= η(1 − m)∇(

um−2∇ · (uz)
)

and ∇ ⊗ z = η∇ ⊗ ∇um−1 − 2 Id .

With these definitions, the time-derivative of 1−m
m

ηI[u|u∞] = ∫
Rd u|z|2 dx can be computed as

d

dt

∫

Rd

u|z|2 dx =
∫

Rd

∂u

∂t
|z|2 dx + 2

∫

Rd

uz · ∂z

∂t
dx.

The first term can be evaluated by∫

Rd

∂u

∂t
|z|2 dx = −

∫

Rd

∇ · (uz)|z|2 dx

= 2
∫

Rd

uz ⊗ z : ∇ ⊗ z dx

= 2η

∫

Rd

uz ⊗ z : ∇ ⊗ ∇um−1 dx − 4
∫

Rd

u|z|2 dx

= 2η(1 − m)

∫

Rd

um−2∇u ⊗ ∇ : (uz ⊗ z) dx − 4
∫

Rd

u|z|2 dx

= 2η(1 − m)

∫

Rd

um−2(∇u · z)2 dx + 2η(1 − m)

∫

Rd

um−1(∇u · z)(∇ · z) dx

+ 2η(1 − m)

∫

Rd

um−1(z ⊗ ∇u) : (∇ ⊗ z) dx − 4
∫

Rd

u|z|2 dx.

The second term can be evaluated by

2
∫

Rd

uz · ∂z

∂t
dx = 2η(1 − m)

∫

Rd

(uz · ∇)
(
um−2∇ · (uz)

)
dx

= −2η(1 − m)

∫
d

um−2(∇ · (uz)
)2

dx
R
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= −2η(1 − m)

∫

Rd

[
um(∇ · z)2 + 2um−1(∇u · z)(∇ · z) + um−2(∇u · z)2]dx.

Summarizing, we have found that∫

Rd

∂u

∂t
|z|2 dx + 4

∫

Rd

u|z|2 dx = −2η(1 − m)

∫

Rd

um−2[u2(∇ · z)2 + u(∇u · z)(∇ · z) − u(z ⊗ ∇u) : (∇ ⊗ z)
]
dx.

Using the fact that

∂2zj

∂xi∂xj

= ∂2zi

∂x2
j

,

we obtain that∫

Rd

um−1(∇u · z)(∇ · z) dx = − 1

m

∫

Rd

um(∇ · z)2 dx − 1

m

∫

Rd

um
d∑

i,j=1

zi ∂2zj

∂xi∂xj

dx

and

−
∫

Rd

um−1(z ⊗ ∇u) : (∇ ⊗ z) dx = 1

m

∫

Rd

um|∇z|2 dx + 1

m

∫

Rd

um

d∑
i,j=1

zi ∂
2zi

∂x2
j

dx

can be combined to give∫

Rd

um−2[u(∇u · z)(∇ · z) − u∇u ⊗ z : ∇ ⊗ z
]
dx = − 1

m

∫

Rd

um(∇ · z)2 dx + 1

m

∫

Rd

um|∇z|2 dx.

This shows that
d

dt

∫

Rd

u|z|2 dx + 4
∫

Rd

u|z|2 dx = −2η
1 − m

m

∫

Rd

um
(|∇z|2 − (1 − m)(∇ · z)2)dx. (10)

By the arithmetic geometric inequality, we know that

|∇z|2 − (1 − m)(∇ · z)2 � 0

if 1 − m � 1/d , that is, if m� m1. Altogether, we have formally established the following result.

Proposition 3. Let d � 1, m ∈ (m1,1) and assume that u is a non-negative solution of (8) with initial datum u0 in
L1(Rd) such that um

0 and x → |x|2u0 are both integrable on R
d . With the above defined notations, we get that

d

dt
I
[
u(·, t)|u∞

]
� −4I

[
u(·, t)|u∞

] ∀t > 0.

The proof of such a result requires to justify that all integrations by parts make sense. We refer to [12,13] for a
proof in the porous medium case (m > 1) and to [11] for m1 � m < 1. The case m = 1 was covered long ago in [4].

Remark 1. Proposition 3 provides a proof of (9). Indeed, with a Gronwall estimate, we first get that

I
[
u(·, t)|u∞

]
� I[u0|u∞]e−4t ∀t � 0

if I[u0|u∞] is finite. Since I[u(·, t)|u∞] is non-negative, we know that

lim
t→∞I

[
u(·, t)|u∞

] = 0,

which proves the convergence of u(·, t) to u∞ as t → ∞. As a consequence, we also have limt→∞ F[u(·, t)|u∞] = 0
and since

d (
I
[
u(·, t)|u∞

] − 4F
[
u(·, t)|u∞

]) = d I
[
u(·, t)|u∞

] + 4I
[
u(·, t)|u∞

]
� 0,
dt dt
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an integration with respect to t on (0,∞) shows that

I[u0|u∞] − 4F [u0|u∞]� 0,

which is precisely (9) written for u = u0.

3. A Csiszár–Kullback inequality

Let m ∈ (m̃1,1) with m̃1 = d
d+2 and consider the relative entropy

Fσ [u] := 1

m − 1

∫

Rd

[
um − Bm

σ − mBm−1
σ (u − Bσ )

]
dx

for some Barenblatt function

Bσ (x) := σ− d
2
(
CM + 1

σ
|x|2) 1

m−1 ∀x ∈ R
d (11)

where σ is a positive constant and CM is chosen such that ‖Bσ ‖1 = M > 0. With p and m related by (7), the definition
of CM coincides with the one of Section 1. See details in Appendix A.

Theorem 4. Let d � 1, m ∈ (m̃1,1) and assume that u is a non-negative function in L1(Rd) such that um and
x → |x|2u are both integrable on R

d . If ‖u‖1 = M and
∫
Rd |x|2udx = ∫

Rd |x|2Bσ dx, then

Fσ [u]
σ

d
2 (1−m)

� m

8
∫
Rd Bm

1 dx

(
CM‖u − Bσ ‖1 + 1

σ

∫

Rd

|x|2|u − Bσ |dx

)2

.

Notice that the condition
∫
Rd |x|2udx = ∫

Rd |x|2Bσ dx is explicit and determines σ uniquely:

σ = 1

KM

∫

Rd

|x|2udx with KM :=
∫

Rd

|x|2B1 dx.

For further details, see Lemma 5 and (20) below, and Appendix A for detailed expressions of KM and
∫
Rd Bm

1 dx.

With this choice of σ , since Bm−1
σ = σ

d
2 (1−m)CM + σ

d
2 (mc−m)|x|2, we remark that

∫
Rd Bm−1

σ (u − Bσ )dx = 0 so that
the relative entropy reduces to

Fσ [u] := 1

m − 1

∫

Rd

[
um − Bm

σ

]
dx.

Proof of Theorem 4. Let v := u/Bσ and dμσ := Bm
σ dx. With these notations, we observe that∫

Rd

(v − 1) dμσ =
∫

Rd

Bm−1
σ (u − Bσ )dx

= σ
d
2 (1−m)CM

∫

Rd

(u − Bσ )dx + σ
d
2 (mc−m)

∫

Rd

|x|2(u − Bσ )dx = 0.

Thus ∫

Rd

(v − 1) dμσ =
∫

v>1

(v − 1) dμσ −
∫

v<1

(1 − v)dμσ = 0,

which, coupled with∫
(v − 1) dμσ +

∫
(1 − v)dμσ =

∫
d

|v − 1|dμσ ,
v>1 v<1 R
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implies∫

Rd

|u − Bσ |Bm−1
σ dx =

∫

Rd

|v − 1|dμσ = 2
∫

v<1

|v − 1|dμσ .

On the other hand, a Taylor expansion shows that

Fσ [u] = 1

m − 1

∫

Rd

[
vm − 1 − m(v − 1)

]
dμσ = m

2

∫

Rd

ξm−2|v − 1|2 dμσ

for some function ξ taking values in the interval (min{1, v},max{1, v}), thus giving the lower bound

Fσ [u] � m

2

∫
v<1

ξm−2|v − 1|2 dμσ � m

2

∫
v<1

|v − 1|2 dμσ .

Using the Cauchy–Schwarz inequality, we get
( ∫

v<1

|v − 1|dμσ

)2

=
( ∫

v<1

|v − 1|B
m
2

σ B
m
2

σ dx

)2

�
∫

v<1

|v − 1|2 dμσ

∫

Rd

Bm
σ dx

and finally obtain that

Fσ [u] � m

2

(
∫
v<1 |v − 1|dμσ )2∫

Rd Bm
σ dx

= m

8

(
∫
Rd |u − Bσ |Bm−1

σ dx)2∫
Rd Bm

σ dx
,

which concludes the proof. �
Notice that the inequality of Theorem 4 can be rewritten in terms of |f |2p = u and g2p = Bσ with p = 1/(2m−1).

See Appendix A for the computation of
∫
Rd Bm

σ dx, σ , CM and KM in terms of
∫
Rd |x|2udx and M∗. In the framework

of Corollary 2, we observe that condition (5) can be rephrased as

σ = 1

KM

‖f ‖2p

2,2p = 1

K1

‖f ‖2p

2,2p

‖f ‖2pγ

2p

= σ∗. (12)

Altogether we find in such a case that

R(p)[f ] = p − 1

p + 1
Fσ∗ [u] � CCK

∥∥|f |2p − |g|2p
∥∥2

1

with

CCK = p − 1

p + 1

d + 2 − p(d − 2)

32p
σ

d
p−1
4p∗ M

1−γ∗ . (13)

Remark 2. Various other estimates can be derived, based on second order Taylor expansions. For instance, as in [16],
we can write that

Fσ [u] =
∫

Rd

[
ψ

(
vm

) − ψ(1) − ψ ′(1)
(
vm − 1

)]
dμσ

with v := u/Bσ and ψ(s) := m
1−m

s1/m, and get

Fσ [u] � 1

m
2−2m

‖vm − 1‖2
L1/m(Rd ,dμσ )

max{‖vm‖L1/m(Rd ,dμσ ),‖1‖L1/m(Rd ,dμσ )}2− 1
m

.

Using ‖vm‖L1/m(Rd ,dμ ) = ‖1‖L1/m(Rd ,dμ ) = ‖Bm
σ ‖m and
σ σ 1
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∫

Rd

∣∣um − Bm
σ

∣∣dx =
∫

Rd

∣∣um − Bm
σ

∣∣Bm(m−1)
σ Bm(1−m)

σ dx

�
∥∥vm − 1

∥∥
L1/m(Rd ,dμσ )

∥∥Bm
σ

∥∥1−m

1

by the Cauchy–Schwarz inequality, we find

Fσ [u] � ‖um − Bm
σ ‖2

1

m22m‖Bm
σ ‖1

.

With f = um− 1
2 , this also gives another estimate of Csiszár–Kullback type, namely

R(p)[f ] � κp,d

‖f ‖
d
2 (p−1)

2,2p ‖f ‖
1
2 (d+2−p(d−2))

2p

inf
g∈M(p)

d

∥∥|f |p+1 − gp+1
∥∥2

1,

for some positive constant κp,d , which is valid for any p ∈ (1,∞) if d = 2 and any p ∈ (1, d
d−2 ] if d � 3. Also

see [24,12,10,18] for further results on Csiszár–Kullback type inequalities corresponding to entropies associated with
porous media and fast diffusion equations.

4. Recent results on the optimal matching by Barenblatt solutions

Consider on R
d the fast diffusion equation with harmonic confining potential given by

∂u

∂t
+ ∇ · [u(

σ
d
2 (m−mc)∇um−1 − 2x

)] = 0, t > 0, x ∈R
d, (14)

with initial datum u0. Here σ is a function of t . Let us summarize some results obtained in [19] and the strategy of
their proofs.

Result 1. At any time t > 0, we can choose the best matching Barenblatt as follows. Consider a given function u and
optimize λ →Fλ[u].

Lemma 5. For any given u ∈ L1+(Rd) such that um and |x|2u are both integrable, if m ∈ (m̃1,1), there is a unique
λ = λ∗ > 0 which minimizes λ → Fλ[u], and it is explicitly given by

λ∗ = 1

KM

∫

Rd

|x|2udx

where KM = ∫
Rd |x|2B1 dx. For λ = λ∗, the Barenblatt profile Bλ satisfies

∫

Rd

|x|2Bλ dx =
∫

Rd

|x|2udx.

As a consequence, we know that

d

dλ

(
Fλ[u])

λ=λ∗ = 0.

Of course, if u is a solution of (14), the value of λ in Lemma 5 may depend on t . Now we choose σ(t) = λ(t), i.e.,

σ(t) = 1

KM

∫

Rd

|x|2u(x, t) dx ∀t � 0. (15)

This makes (14) a non-local equation.
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Result 2. With the above choice, if we consider a solution of (14) and compute the time derivative of the relative
entropy, we find that

d

dt
Fσ(t)

[
u(·, t)] = σ ′(t)

(
d

dσ
Fσ [u]

)
|σ=σ(t)

+ m

m − 1

∫

Rd

(
um−1 − Bm−1

σ(t)

)∂u

∂t
dx.

However, as a consequence of the choice (15) and of Lemma 5, we know that(
d

dσ
Fσ [u]

)
|σ=σ(t)

= 0,

and finally obtain

d

dt
Fσ(t)

[
u(·, t)] = −mσ(t)

d
2 (m−mc)

1 − m

∫

Rd

u
∣∣∇[

um−1 − Bm−1
σ(t)

]∣∣2
dx. (16)

The computation then goes as in [7,8] (also see [21,22,16] for details). With our choice of σ , we gain an additional
orthogonality condition which is useful for improving the rates of convergence (see [19, Theorem 1]) in the asymptotic
regime t → ∞, compared to the results of [8] (also see below).

Result 3. Now let us state one more result of [19] which is of interest for the present paper.

Lemma 6. With the above notations, if u and σ are defined respectively by (14) and (15), then the function t → σ(t)

is positive, decreasing, with σ∞ := limt→∞ σ(t) > 0 and

σ ′(t) = −2d
(1 − m)2

mKM

σ
d
2 (m−mc)Fσ(t)

[
u(·, t)] � 0. (17)

The main difficulty is to establish that σ∞ is positive. This can be done with an appropriate change of variables
which reduces (14) to the case where σ does not depend on t . In [19], a proof has been given, based on asymptotic re-
sults for the fast diffusion equation that were established in [16,7,6,8]. An alternative proof will be given in Remark 3,
below.

5. The scaled entropy–entropy production inequality

Consider the relative Fisher information

Iσ [u] := σ
d
2 (m−mc)

m

1 − m

∫

Rd

u
∣∣∇um−1 − ∇Bm−1

σ

∣∣2
dx.

By applying (9) with u∞ = B1 and η = 1 to x → σd/2u(
√

σx) and using the fact that B1(x) = σd/2Bσ (
√

σx), we
get the inequality

Fσ [u] � 1

4
Iσ [u].

Now, if σ is time-dependent as in Section 4, we have the following relations.

Lemma 7. If u is a solution of (14) with σ(t) = 1
KM

∫
Rd |x|2u(x, t) dx, then σ satisfies (17). Moreover, for any t � 0,

we have
d

dt
Fσ(t)

[
u(·, t)] = −Iσ(t)

[
u(·, t)] (18)

and

d

dt
Iσ(t)

[
u(·, t)] �−

[
4 + 1

2
(m − mc)(m − m1) d2 |σ ′(t)|

σ(t)

]
Iσ(t)

[
u(·, t)]. (19)
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Proof. Eqs. (17) and (18) have already been stated respectively in Lemma 6 and in (16). They are recalled here only
for the convenience of the reader. It remains to prove (19).

For any given σ = σ(t), Proposition 3 gives

d

dt
Iσ(t)

[
u(·, t)] =

(
d

dt
Iλ

[
u(·, t)]

)
|λ=σ(t)

+ σ ′(t)
(

d

dλ
Iλ[u]

)
|λ=σ(t)

� −4Iσ(t)

[
u(·, t)] + σ ′(t)

(
d

dλ
Iλ[u]

)
|λ=σ(t)

.

Owing to the definition of Iλ, we obtain

d

dλ
Iλ[u] = d

2
(m − mc)

1

λ
Iλ[u] − m

1 − m
λ

d
2 (m−mc)

∫

Rd

2u
(∇um−1 − ∇Bm−1

λ

) · d

dλ

(∇Bm−1
λ

)
dx.

By definition (11), ∇Bm−1
λ (x) = 2xλ− d

2 (m−mc), which implies

λ
d
2 (m−mc)

d

dλ

(∇Bm−1
λ

) = −d

λ
(m − mc)x.

Substituting this expression into the above computation and integrating by parts, we conclude with the equality

d

dλ
Iλ[u] = d

2
(m − mc)

1

λ
Iλ[u] − 2d

λ
(m − mc)

[
2mλ− d

2 (m−mc)

1 − m

∫

Rd

|x|2udx − d

∫

Rd

um dx

]
.

A simple computation shows that

d

∫

Rd

Bm
1 dx = −

∫

Rd

x · ∇Bm
1 dx = 2m

1 − m

∫

Rd

|x|2B1 dx = 2m

1 − m
KM (20)

and, as a consequence, if λ = σ = 1
KM

∫
Rd |x|2udx, then

2mλ− d
2 (m−mc)

1 − m

∫

Rd

|x|2udx = d

∫

Rd

Bm
λ dx,

and finally

d

dλ
Iλ[u] = d

2λ
(m − mc)

(
Iλ[u] − 4d(1 − m)Fλ[u]). (21)

Altogether, we have found that

d

dt

(
Iσ(t)

[
u(·, t)]) + 4Iσ(t)

[
u(·, t)] � d

2
(m − mc)

σ ′(t)
σ (t)

(
Iσ(t)[u] − 4d(1 − m)Fσ(t)[u]).

The last term of the right hand side is non-positive because by (17) we know that σ ′(t)� 0 and

Iσ(t)[u] − 4d(1 − m)Fσ(t)[u] = d(1 − m)
(
Iσ(t)[u] − 4Fσ(t)[u]) + d(m − m1)Iσ(t)[u]

� d(m − m1)Iσ(t)[u] � 0.

This implies (19). �
To avoid carrying heavy notations, let us write

f (t) := Fσ(t)

[
u(·, t)] and j (t) := Jσ(t)

[
u(·, t)]

and denote f (0), j (0) and σ(0) respectively by f0, j0 and σ0. Estimates (17), (18) and (19) can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′ = −j � 0,

σ ′ = −κ1σ
d
2 (m−mc)f � 0,

j ′ + 4j � κ2j
σ ′

(22)
σ
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where the constants κi , i = 1, 2, are given by

κ1 := 2d
(1 − m)2

mKM

and κ2 := 1

2
(m − mc)(m − m1)d

2.

Using the fact that limt→∞ f (t) = limt→∞ f (t) = 0, as in the proof of Proposition 3, we find that j (t) − 4f (t) � 0
and f (t)� f0e

−4t for any t � 0.

Remark 3. The decay of σ can be estimated by

− d

dt

(
σ

d
2 (1−m)

) = d

2
(1 − m)κ1f � d

2
(1 − m)κ1f0e

−4t ,

thus showing that σ
d
2 (1−m)

∞ � σ
d
2 (1−m)

0 − d2(1−m)3

4mKM
f0. Since u0 and Bσ0 have the same mass and second moment, we

know that

f0 = 1

1 − m

∫

Rd

(
Bm

σ0
− um

0

)
dx = 2mKM

d(1 − m)2
σ

d
2 (1−m)

0 − 1

(1 − m)

∫

Rd

um
0 dx.

Hence we end up with the positive lower bound

σ
d
2 (1−m)

∞ � d

2
(m − mc)σ

d
2 (1−m)

0 + d2(1 − m)2

4mKM

∫

Rd

um
0 dx.

From (22) we get the estimates σ(t)� σ0 for any t � 0 and

j ′ − 4f ′ = j ′ + 4j � κ2j
σ ′

σ
= κ1κ2σ

− d
2 (1−m)ff ′ � κ1κ2σ

− d
2 (1−m)

0 ff ′.

Integrating from 0 to ∞ with respect to t and taking into account the fact that limt→∞ f (t) = limt→∞ f (t) = 0, we
get

−j0 + 4f0 � −1

2
κ1κ2σ

− d
2 (1−m)

0 f 2
0 .

By rewriting this estimate in terms of Fσ0[u0] = f0, Iσ0[u0] = j0 and after omitting the index 0, we have achieved
our key estimate, which can be written using

Cm,d := d3

2mKM

(m − mc)(m − m1)(1 − m)2

as follows.

Theorem 8. Let d � 1, m ∈ (m1,1) and assume that u is a non-negative function in L1(Rd) such that um and x →
|x|2u are both integrable on R

d . Let σ = 1
KM

∫
Rd |x|2u(x) dx where M = ∫

Rd u(x) dx. Then the following inequality
holds

4Fσ [u] + Cm,d

(Fσ [u])2

σ
d
2 (1−m)

� Iσ [u]. (23)

Recall that KM = K1M
γ , with γ = (d+2)m−d

d(m−mc)
. See Appendix A for details. Notice that this definition of γ is

compatible with the one of Theorem 1 if p = 1/(2m − 1).

Remark 4. If we do not drop any term in the proof of Proposition 3 and Lemma 7, an ODE can be obtained for j ,
based on (10) and (21) and we can replace (22) by a system of coupled ODEs that reads⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f ′ = −j � 0,

σ ′ = −κ1σ
d
2 (m−mc)f � 0,

j ′ + 4j = d(1 − m)(j − 4f )
σ ′

σ
+ κ2j

σ ′

σ
− r

where r := 2σd(m−mc)
∫

d um(|∇z|2 − (1 − m)(∇ · z)2) dx � 0 and z := σ
d
2 (m−mc)∇um−1 − 2x.
R
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It is then clear that the estimates σ � σ0 and j ′ + 4j � κ2j
σ ′
σ

, which have been used for the proof of Theorem 8,
are not optimal.

6. Proofs of Theorem 1 and Corollary 2

Let us start by rephrasing Theorem 8 in terms of f = um−1/2. Assume that

M =
∫

Rd

u dx =
∫

Rd

|f |2p dx and σ = 1

KM

∫

Rd

|x|2udx =
∫

Rd

|x|2|f |2p dx

where p = 1/(2m − 1) and using the notation f
(p)

M,0,σ ∈M
(p)
d defined in Section 1, consider the functional

R(p)[f ] := − 2p

p + 1

∫

Rd

[|f |p+1 − (
f

(p)

M,0,σ

)p+1]
dx.

In preparation for the proof of Theorem 1, we can state the following result.

Corollary 9. Let d � 2, p > 1 and assume that p < d/(d − 2) if d � 3. For any f ∈ Lp+1 ∩ D1,2(Rd) such that
condition (5) holds, we have∫

Rd

|∇f |2 dx +
∫

Rd

|f |p+1 dx − Kp,d

( ∫

Rd

|f |2p dx

)γ

� Cp,d

(R(p)[f ])2

(
∫
Rd |f |2p dx)γ

where γ is given by (4).

This results is slightly more precise than the one given in Theorem 1, as we simply measure the distance to a special
function in M

(p)
d , the one with the same mass and second moment, centered at 0. The constant Cp,d is the same as in

Theorem 1: see Appendix A for its expression.

Proof of Corollary 9. By expanding the square in Iσ [u] and collecting the terms with the ones of Fσ [u], we find that

1

4
Iσ [u] −Fσ [u] = m(1 − m)

(2m − 1)2
σ

d
2 (m−mc)

∫

Rd

∣∣∇um− 1
2
∣∣2

dx

+ d
m − m1

1 − m

∫

Rd

um dx + 1

1 − m

(
mKMσ

d
2 (1−m) −

∫

Rd

Bm
σ dx

)
.

The last term of the right hand side can be rewritten as

1

1 − m

(
mKMσ

d
2 (1−m) −

∫

Rd

Bm
σ dx

)
= − m

1 − m

d(m − mc)

(d + 2)m − d
σ

d
2 (1−m)C1M

γ

with γ = (d+2)m−d
d(m−mc)

(as in the previous section) and C1 = M
1−γ∗ (see Appendix A for details). Consequently inequal-

ity (23) can be equivalently rewritten as

m(1 − m)

(2m − 1)2
σ

d
2 (m−mc)

∫

Rd

∣∣∇um− 1
2
∣∣2

dx + d
m − m1

1 − m

∫

Rd

um dx

� m

1 − m

d(m − mc)

(d + 2)m − d
σ

d
2 (1−m)C1M

γ + d3(m − mc)(m − m1)(1 − m)2

8mK1

(Fσ [u])2

Mγ σ
d
2 (1−m)

. (24)

This inequality is invariant under scaling and homogeneous. As already noticed in (12), condition (5) means σ = σ∗,

that is m(1−m)

(2m−1)2 σ
d
2 (m−mc) = d m−m1

1−m
. Using the explicit expressions that can be found in Appendix A and reexpressing

all quantities in terms of p = 1 completes the proof of Corollary 9. See Appendix A for an expression of Cp,d . �
2m−1
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Proof of Theorem 1. It is itself a simple consequence of Corollary 9.
Let us consider the relative entropy with respect to a general Barenblatt function, not even necessarily normalized

with respect to its mass. For a given function u ∈ L1+(Rd) with um ∈ L1(Rd) and |x|2u ∈ L1(Rd), we can consider on
(0,∞) ×R

d × (0,∞) the function h defined by

h(C,y,σ ) = 1

m − 1

∫

Rd

[
um − Bm

C,y,σ − mBm−1
C,y,σ (u − BC,y,σ )

]
dx

where BC,y,σ is a general Barenblatt function

BC,y,σ (x) := σ− d
2
(
C + 1

σ
|x − y|2) 1

m−1 ∀x ∈ R
d .

An elementary computation shows that

∂h

∂C
= mσ

d
2 (1−m)

1 − m

∫

Rd

(u − BC,y,σ ) dx,

∇yh = 2mσ− d
2 (m−mc)

1 − m

∫

Rd

(x − y)(u − BC,y,σ ) dx,

∂h

∂σ
= m

d

2
σ− d

2 (m−mc)

[
C

∫

Rd

(u − BC,y,σ ) dx − m − mc

1 − m

1

σ

∫

Rd

|x − y|2(u − BC,y,σ ) dx

]
.

Optimizing with respect to C fixes C = CM , with M = ∫
Rd u dx. Once C = CM is assumed, optimizing with respect

to σ amounts to choose it such that
∫
Rd |x|2BC,y,σ dx = ∫

Rd |x − y|2udx as it has been shown in Lemma 5.
This completes the proof of Theorem 1, since R(p)[f ]� R(p)[f ] by definition of R(p) (see Section 1). Notice that

optimizing on y amounts to fix the center of mass of the Barenblatt function to be the same as the one of u. This is
however required neither in the proof of Corollary 9 nor in the one of Theorem 1. �
Proof of Corollary 2. It is a straightforward consequence of Theorem 1 and of the Csiszár–Kullback inequality (6)
when f ∈ D1,2(Rd) is such that ‖f ‖2,2p is finite. However, ‖f ‖2,2p does not enter in the inequality. Since smooth
functions with compact support (for which ‖f ‖2,2p is obviously finite) are dense D1,2(Rd), the inequality therefore
holds without restriction, by density. �
7. Concluding remarks

Let us conclude this paper with a few remarks. First of all, notice that Theorem 4 gives a stronger information than
Theorem 1, as not only the L1(Rd, dx) norm is controlled, but also a stronger norm involving the second moment,
properly scaled.

No condition is imposed on the location of the center of mass, which simply has to satisfy (
∫
Rd xudx)2 �∫

Rd u dx
∫
Rd |x|2udx = σMKM according to the Cauchy–Schwarz inequality. Hence in the definition of R[f ] and

R(p)[f ] (in Theorem 1) as well as in Corollary 2, the result holds without optimizing on y ∈ R
d . In [8,19], improved

asymptotic rates were obtained by fixing the center of mass in order to kill the linear mode associated to the trans-
lation invariance of the Barenblatt functions. Here this is not required since, as t → ∞, the squared relative entropy
is simply of higher order. Our improvement is better when the relative entropy is large, and is clearly not optimal for
large values of t .

Our approach differs from the one of G. Bianchi and H. Egnell in [5] and the one of A. Cianchi, N. Fusco, F. Maggi
and A. Pratelli [15]. It gives fully explicit constants in the subcritical regime. The norms involved in the corrective
term are not of the same nature.
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Let us list a series of remarks which help for the understanding of our results.
(i) Scaling properties of the Barenblatt profiles. Consider the scaling λ → uλ with uλ(x) := λdu(λx) for any

x ∈R
d . Then we have

σλ := 1

KM

∫

Rd

|x|2uλ dx = 1

λ2

1

KM

∫

Rd

|x|2udx = σ

λ2

and may observe that

Bσλ(x) = λdBσ (λx).

As a consequence, we find that Fσ [uλ] = λd(m−1)Fσ [u].
(ii) Homogeneity properties of the Barenblatt profiles. Similarly notice that for any m ∈ (m1,1), we have CM =

C1M
− 2(1−m)

d(m−mc) and KM = K1M
1− 2(1−m)

d(m−mc) . Let uλ := λu and denote by Bσλ the corresponding best matching Barenblatt
function. Using the fact that ‖uλ‖1 = λM if ‖u‖1 = M and observing that

KλM = KMλ
1− 2(1−m)

d(m−mc) and
∫

Rd

|x|2uλ dx = λ

∫

Rd

|x|2udx,

we find

σλ = 1

KλM

∫

Rd

|x|2uλ dx = λ
2(1−m)

d(m−mc) σ.

Since CλM = λ
− 2(1−m)

d(m−mc) CM , we find that

Bσλ(x) = (
λ

2(1−m)
d(m−mc) σ

)− d
2

(
λ

− 2(1−m)
d(m−mc) CM + |x|2

λ
2(1−m)

d(m−mc) σ

) 1
m−1 = λBσ (x).

As a consequence, we find that Fσ [uλ] = λmFσ [u].
(iii) The m = 1 limit. As m → 1, which also corresponds to p → 1, we observe that the constant Cp,d in Theorem 1

has a finite limit. Hence we get no improvement by dividing the improved Gagliardo–Nirenberg inequality by (p − 1)

and passing to the limit p → 1+, since R(p)[f ] = O(p − 1). By doing so, we simply recover the logarithmic Sobolev
inequality as in [16].

This is consistent with the fact that, as m → 1−, we have Cm,d ∼ (1 − m)2, σ = O(K−1
M ) = O(1 − m) and, since

Bσ (x) ∼ B0(x) := M

(
dM

2π
∫
Rd |x|2udx

) d
2

exp

(
−d

2

M∫
Rd |x|2udx

|x|2
)

,

we also get that Fσ [u] ∼ ∫
Rd u log( u

B0
) dx. Hence, in Theorem 8, the additional term in (23) is of the order of 1 − m

and disappears when passing to the limit m → 1−.
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Appendix A. Computation of the constants

Let us recall first some useful formulae. The surface of the d −1 dimensional unit sphere Sd−1 is given by |Sd−1| =
2πd/2/Γ (d/2). Using the integral representation of Euler’s Beta function (see [1, 6.2.1 p. 258]), we have∫

Rd

(
1 + |x|2)−a

dx = π
d
2
Γ (a − d

2 )

Γ (a)
.

With this formula in hand, various quantities associated with Barenblatt functions can be computed. Applied to the

function B(x) := (1 + |x|2) 1
m−1 , x ∈ R

d , we find that

M∗ :=
∫

Rd

B dx = π
d
2
Γ

(
d(m−mc)
2(1−m)

)
Γ

( 1
1−m

) .

Notice that when M = M∗, B = B1 with the notation (11) of Section 3. As a consequence, for B1(x) = (CM +
|x|2) 1

m−1 , a simple change of variables shows that

M :=
∫

Rd

B1 dx =
∫

Rd

(
CM + |x|2) 1

m−1 dx = M∗C
− d(m−mc)

2(1−m)

M ,

which determines the value of CM , namely

CM =
(

M∗
M

) 2(1−m)
d(m−mc)

.

A useful equivalent formula is CM = C1M
− 2(1−m)

d(m−mc) where C1 = M
2(1−m)

d(m−mc)∗ .
By recalling (20) and observing that∫

Rd

Bm
1 dx =

∫

Rd

Bm−1
1 B1 dx =

∫

Rd

(
CM + |x|2)B1 dx = MCM + KM

where KM := ∫
Rd |x|2B1 dx, using MCM = C1M

γ with γ = (d+2)m−d
d(m−mc)

, we find that

KM = d(1 − m)

(d + 2)m − d
C1M

γ and
∫

Rd

Bm
1 dx = 2m

(d + 2)m − d
C1M

γ . (25)

Consider the sub-family of Gagliardo–Nirenberg–Sobolev inequalities (1). It has been established in [16, Theo-
rem 1] that optimal functions are all given by (2), up to multiplications by a constant, translations and scalings. This
allows to compute CGN

p,d . All computations done, we find

CGN
p,d =

(
(p−1)p+1

(p+1)d+1−p(d−1)

)η(
d+2−p(d−2)

2(p−1)

) 1
2p

(
Γ (

p+1
p−1 )

(2πd)
d
2 Γ (

p+1
p−1 − d

2 )

)(p−1)η

with 1/η = p(d + 2 − p(d − 2)).

It is easy to relate CGN
p,d and Kp,d . As in [16], apply (3) to fλ such that fλ(x) = λ

d
2p f (λx) for any x ∈ R

d . With

a := ∫
Rd |∇f |2 dx, b := ∫

Rd |f |p+1 dx, α := d
p

+ 2 − d and β := d
p−1
2p

, inequality (3) amounts to

aλα + bλ−β � Kp,d

( ∫

Rd

|f |2p dx

)γ

.

Optimizing the left hand side with respect to λ > 0 shows that

Kp,d

(
CGN

p,d

)2pγ = α + β
α

α+β
β

α+β

.

α + β
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Let us consider (24). With p = 1
2m−1 , that is, m = p+1

2p
, and F[u] = m

1−m
R(p)[f ] with u = f 2p , it is straightfor-

ward to check that

Kp,d =
(

2m − 1

1 − m

)2
d(m − mc)

(d + 2)m − d

M
1−γ∗

σ
d(m−m1)∗

= 4

(p − 1)2

d − p(d − 4)

d + 2 − p(d − 2)
M

1−γ∗ σ
d

p−1
p

−1
∗

since u = Bσ always provides the equality case. Hence, using identity (12), inequality (24) amounts to∫

Rd

|∇f |2 dx +
∫

Rd

|f |p+1 dx − Kp,d

( ∫

Rd

|f |2p dx

)γ

� (2m − 1)2

m(1 − m)
σ

− d
2 (m−mc)∗

d3(m − mc)(m − m1)(1 − m)2

8mK1

( m
1−m

R(p)[f ])2

Mγ σ
d
2 (1−m)

∗
.

Using K1 = d(1−m)
(d+2)m−d

M
1−γ∗ and expressing everything in terms of p, we finally get

Cp,d = (2m − 1)2

8(1 − m)2

(
(d + 2)m − d

)
d2(m − mc)(m − m1)

M
γ−1∗
σ∗

= (d − p(d − 4))(d − p(d − 2))(d + 2 − p(d − 2))

16p3(p − 1)2

M
γ−1∗

σ∗(p)
.
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