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Abstract

We give the details of the proof of equality (29) in Caponio et al. (2010) [3].

Résumé

On donne les détails de la preuve de l’équation (29) dans Caponio et al. (2010) [3].
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1. Introduction

In [3, Eq. (29)], we claim that the relative homology groups H∗(Ẽc
|X ∩ Õ∗, Ẽc

|X ∩ Õ∗ \ {0}) and H∗(Ẽc ∩
Õ∗, Ẽc ∩ Õ∗ \ {0}) are isomorphic, where, we recall, X = C1

0([0,1],U), U is a neighbourhood of 0 ∈ R
n,
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Ẽ:H 1
0 ([0,1],U) → R, Ẽ(x) = ∫ 1

0 G̃(s, x, ẋ)ds, 0 ∈ H 1
0 ([0,1],U) is a non-degenerate critical point of Ẽ, c = Ẽ(0),

Ẽc = {x ∈ H 1
0 ([0,1],U) | Ẽ(x) � c} and Õ∗ is a neighbourhood of 0 in H 1

0 ([0,1],U).
For this we refer to the following result by Palais [12, Theorem 16]:

Theorem 1. (See Palais [12].) Let V1 and V2 be two locally convex topological vector spaces, f be a continuous
linear map from V1 onto a dense linear subspace of V2 and let O be an open subset of V2 and Õ = f −1(O). If V1
and V2 are metrizable then f̃ = f|Õ : Õ → O is a homotopy equivalence.

As a consequence, if E is a Banach space which is dense and continuously immersed in a Hilbert space H and
(A,B) is a pair of open subsets of H with B ⊂ A, then the relative homology groups H∗(A,B) and H∗(Ã, B̃), where
Ã = A ∩ E and B̃ = B ∩ E, are isomorphic.

In this addendum we would like to make clear how the above result can be applied to get

H∗
(
Ẽc|X ∩ Õ∗, Ẽc|X ∩ Õ∗ \ {0}) ∼= H∗

(
Ẽc ∩ Õ∗, Ẽc ∩ Õ∗ \ {0}).

Although it is not difficult to find some open subsets which are homotopically equivalent, with respect to the H 1

topology, to the ones involved in the computations of the critical groups (cf., for example, [5, Ch. III, Corollary 1.2]),
it is not trivial to ensure, after applying Palais’s result, that the intersections of these subsets with X continue to be
homotopically equivalent in the C1 topology.

Actually, the equality between the critical groups of a Dirichlet functional with respect to the H 1 and C1 topology
is not a novelty (cf. [5,6,10]). Anyway, there are some issues for the functional Ẽ that we would like to point out.
First, Ẽ is not C2 with respect to the H 1 topology (this is a very general phenomenon for smooth, at most quadratic
in the velocities Lagrangians, cf. [1, Prop. 3.2]); moreover, as G̃ is not everywhere twice differentiable, Ẽ is not also
twice Gateaux differentiable at any non-G̃-regular curve (see Definition 2). Secondly, although its flow is well defined
on X, the gradient of Ẽ is not of the type identity plus a compact operator, thus we cannot immediately state that it
possesses the retractible property in [4, §III], which ensures that the deformation retracts involved in the computation
of the critical groups are also continuous in X, where the Palais–Smale condition does not hold. To overcome this
problem, we extend a result in [1], constructing a smooth vector field, which is a pseudo-gradient in U \ B̄(0, r),
where U is a neighbourhood of 0 in H 1

0 ([0,1],U) and B̄(0, r) is the closure of a ball, and whose flow satisfies the
retractible property.

The proof we give in the next section (without Lemma 4, which becomes superfluous) also holds for any smooth
Lagrangian on [0,1] × T M , where M is a finite dimensional manifold, which is fiberwise strongly convex and has
at most quadratic growth in each fibre. We can also consider, with minor modifications, more general boundary
conditions as the curves joining two given submanifolds in M . The Lagrangian action functional will be then defined
on the Hilbert manifold of the H 1 curves between the two submanifolds. As we have already mentioned above,
such functional is in general not C2. Assuming that at least one of the submanifolds is compact and that all the
critical points are non-degenerate, we can obtain, as in [3, Theorem 9], the Morse relations for the solutions of the
corresponding Lagrangian system. In this case, the number of the conjugate instants along a geodesic, counted with
their multiplicity, is replaced by the number of the “focal instants” with respect to one of the two submanifold (counted
with multiplicities) along a solution plus the index of a bilinear symmetric form related to the other submanifold [7].
We recall that a Morse complex for the action functional of such kind of Lagrangian, whose homology is isomorphic
to the singular homology of the path space between the two submanifolds, has been obtained in [1].

2. Proof of the isomorphism between the critical groups in H 1 and C1

We recall that the Lagrangian G̃: [0,1] × U ×R
n → [0,+∞) is given by

G̃(t, q, y) = F 2(ϕ(t, q),dϕ(t, q)
[
(1, y)

])
,

where F is a Finsler metric on the n-dimensional smooth manifold M and ϕ: [0,1] × U → M is defined as ϕ(t, q) =
expγ0(t)

Pt (q); here, exp is the exponential map with respect to any auxiliary Riemannian metric h on M , γ0 is the
geodesic of (M,F) in which we want to compute the critical groups, Pt :U → Tγ0(t)M is given by Pt (q1, . . . , qn) =∑n

i=1 qiEi(t), where {Ei}i∈{1,...,n} are n-orthonormal smooth vector fields along γ0 and U is the Euclidean ball of
radius ρ/2, where ρ is the minimum of the injectivity radii (with respect to the metric h) at the points γ (t), t ∈ [0,1].
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The set Z where G̃ is not twice differentiable is defined by the equation dϕ(t, q)[1, y] = 0 and then it corresponds
to the subset of [0,1] × U ×R

n where the Lagrangian G̃(t, q, y) = F 2(ϕ(t, q),dϕ(t, q)[(1, y)]) vanishes. We recall
also that for each (t, q) ∈ [0,1]×U there is only one y ∈ R

n such that dϕ(t, q)[(1, y)] = 0. Indeed, dϕ(t, q)[(1, y)] =
∂tϕ(t, q) + ∂qϕ(t, q)[y] and, as ∂qϕ(t, q) is one-to-one, y ∈ R

n is the only vector such that

∂qϕ(t, q)[y] = −∂tϕ(t, q).

We recall also that the ϕ defines a smooth injective map ϕ∗ : H 1
0 ([0,1],U) → Ωp0,q0(M), ϕ∗(x)(t) = ϕ(t, x(t)),

such that Ẽ = E ◦ ϕ∗, where E is the energy functional of F , i.e. E(γ ) = 1
2

∫ 1
0 F 2(γ, γ̇ )dt and Ωp0,q0 is the Hilbert

manifold of the H 1 curves on M between p0 and q0. Observe that the curve of constant value 0 is mapped by ϕ∗ to
the geodesic γ0 (hence 0 is a critical point of Ẽ).

From the fact that F 2 is fiberwise positively homogeneous of degree 2 and ϕ is a smooth map, it follows that there
exists a constant c1, depending only on U , such that∥∥G̃qq(s, q, y)

∥∥ � c1
(
1 + |y|2), ∥∥G̃qy(s, q, y)

∥∥ � c1
(
1 + |y|), ∥∥G̃yy(s, q, y)

∥∥ � c1, (1)

for every (s, q, y) ∈ [0,1] × U × R
n \ Z, where | · | and ‖ · ‖ are, respectively, the Euclidean norm and the norm of

bilinear forms on R
n.

Moreover, since F 2 is fiberwise strongly convex, there exists a positive constant c2 such that

G̃yy(s, q, y)[w,w] � c2|w|2, (2)

for each (s, q, y) ∈ [0,1] × U ×R
n \ Z and w ∈R

n.

Definition 2. A curve x ∈ H 1
0 ([0,1],U) is said to be G̃-regular if the set of points t ∈ [0,1] where (t, x(t), ẋ(t)) ∈ Z

is negligible.

Let α:Rn → R be a smooth function such that α|U ′ = 1, α|UC = 0, where U ′ is an open subset of Rn such that

0 ∈ U ′ and Ū ′ ⊂ U . Consider the Lagrangian L :R×R
n ×R

n → R, L (t, q, y) = α(q)G̃(t, q, y) + (1 − α(q))|y|2.
Clearly, by the definition of α, 0 is also a critical point of the action functional AL (x) = 1

2

∫ 1
0 L (s, x, ẋ)ds. Notice

also that, like Ẽ, AL :H 1
0 ([0,1],Rn) →R is a C1 functional with locally Lipschitz differential.

Let B be a closed ball in H 1
0 ([0,1],Rn), centred in 0 and containing curves that have support in U ′.

As L = G̃ on R × U ′ × R
n, we have that AL |B = Ẽ|B . Since Ẽ satisfies the Palais–Smale condition (see [2]),

we also have that AL satisfies the Palais–Smale condition in B.
Moreover, from (1) it follows that Ẽ is twice Gateaux differentiable at any G̃-regular curve x ∈ H 1

0 ([0,1],U) and
then the same property is satisfied by AL .

Observe that, as the endpoints of the geodesic γ0 are not conjugate, then we can assume that B is an isolating
neighbourhood of the critical point 0. Moreover, the non-conjugacy assumption implies also that 0 is a non-degenerate
critical point of Ẽ, that is, the kernel of the operator A, which represents the second Gateaux differential at 0 of both
Ẽ and AL , with respect to the scalar product 〈·,·〉 in H 1

0 ([0,1],Rn), is empty.
The following proposition has been obtained in [1, Lemma 4.1 and formula (4.8)] for the action functional of a C2,

time-dependent, fiberwise strongly convex, at most quadratic in the velocities, Lagrangian on T M .

Proposition 3. There exist a neighbourhood U ′ of 0 in H 1
0 ([0,1],Rn) (that we can assume it is contained in B) and

a positive constant μ0, such that the linear vector field x ∈ U ′ �→ Ax, satisfies the inequality

dAL (x)[Ax] � μ0
∥∥∇AL (x)

∥∥2
0, (3)

for each x ∈ U ′.

Here ‖ · ‖0 is the H 1
0 norm. In our setting, the Lagrangian L is not twice differentiable on Z ⊂ T M and this leads

to some differences between the proof of [1, Lemma 4.1] and ours, which we outline in Lemmata 4, 7 and 8.

Lemma 4. Let x be a smooth curve (non-necessarily G̃-regular) in H 1
0 ([0,1],U). Then the curves t ∈ [0,1] �→ sx(t)

can be non-G̃-regular for s in a subset of [0,1] which is at most countable.



964 E. Caponio et al. / Ann. I. H. Poincaré – AN 30 (2013) 961–968
Proof. We recall that w ∈ H 1
0 ([0,1],U), w = w(t), is not G̃-regular if (t,w(t), ẇ(t)) ∈ Z for each t in a subset of

positive Lebesgue measure in [0,1]. Now, for x: [0,1] → U , smooth and x(0) = x(1) = 0, let us consider the map
f : [0,1] × [0,1] → M defined as f (s, t) = ϕ(t, sx(t)). Observe that for each t̄ ∈ [0,1], s �→ f (s, t̄) is the affinely
parametrized geodesic σt̄ of the Riemannian metric h defined by σt̄ (s) = ϕ(t̄, sx(t̄)) = expγ (t̄)(sx(t̄)) (for t̄ = 0 and
t̄ = 1 the geodesics are constant) while, for each s̄ ∈ [0,1], t �→ f (s̄, t) is the curve γs̄ corresponding to s̄x by the
map ϕ∗ (for s̄ = 0 and s̄ = 1, we get respectively γ0, the geodesic of (M,F), and the curve γ1 = ϕ∗(x)). Thus
f = f (s, t) defines a geodesic congruence and, then, s �→ Jt (s) = ∂tf (s, t) = γ̇s(t) defines a Jacobi field along σt

for each t ∈ (0,1) where x(t) �= 0. Observe that at the instants t̄ where x(t̄) = 0 (if they exist), σt̄ is constant and
equal to γ0(t̄). Since there is only one y ∈ R

n such that (t̄ ,0, y) ∈ Z and such y cannot be equal to 0 (otherwise
0 = dϕ(t̄,0)[1,0] = ∂tϕ(t̄,0) + ∂qϕ(t̄,0)[0] = ∂tϕ(t̄,0) = γ̇0(t̄) �= 0), there can be at most one s ∈ (0,1] such that
(t̄ , sx(t̄), sẋ(t̄)) = (t̄ ,0, sẋ(t̄)) ∈ Z. Now let us assume that for s, s ′ ∈ (0,1], s �= s′, the curves sx and s′x are not
G̃-regular. From what we have recalled above, this is equivalent to the fact that the curves γs and γs′ have velocity
vector fields vanishing on, respectively, Zs ⊂ [0,1] and Zs′ ⊂ [0,1] with |Zs |, |Zs′ | > 0. We claim that Zs ∩ Zs′ = ∅.
Indeed, if there exists t̄ ∈ Zs ∩ Zs′ , then x(t̄) must be different from 0 and this implies that the Jacobi field Jt̄ is well
defined and equal to 0 at the instants s and s′. Thus the points σt̄ (s) and σt̄ (s

′) are conjugate along σt̄ , but this is
impossible (see, e.g., [8, Prop. 2.2, p. 267]) because such geodesic has length less than the injectivity radius at γ0(t̄).
Therefore the set Z of s ∈ [0,1] such that |Zs | > 0 is at most countable. Indeed, by contradiction, assume that Z
is uncountable and consider the set Ah = {s ∈ (0,1]: |Zs | > 1

h
}. Since

⋃
h∈N Ah = Z , there must exist at least one

k ∈ N such that Ak is uncountable. Thus, for infinitely many s ∈ [0,1], we would have disjoint subsets Zs ⊂ [0,1]
having measure greater than 1

h
, which is impossible. �

Remark 5. From Lemma 4, it also follows that any smooth non-G̃-regular curve x ∈ H 1
0 ([0,1],U) is the limit, in the

H 1 topology, of some sequence (xk) ⊂ H 1
0 ([0,1],U) of smooth G̃-regular curves. Indeed, it is enough to consider a

sequence (sn) ⊂ [0,1] such that sn → 1 and snx is G̃-regular.

Remark 6. From (2), the second Gateaux differential of Ẽ at a G̃-regular curve x is represented by a linear bounded
self-adjoint operator on H 1

0 ([0,1],Rn) of the type Ax = Bx + Kx where Bx is a strictly positive definite operator and
Kx is compact. Moreover from (1), if a sequence of G̃-regular curves {xn} converges to a G̃-regular curve x in the H 1

topology then Kxn converges to Kx in the norm topology of the bounded operators and Bxn converges strongly to Bx ,
i.e. Bxn [ξ ] → Bx[ξ ] for each ξ ∈ H 1

0 ([0,1],Rn) (cf. Claims 1 and 2 of the proof of Lemma 4.1 in [1]). We recall that
from [3, Lemma 2], A ≡ A0 is given by I + K (that is, B0 is the identity operator).

The following two results are analogous to, respectively, Eq. (4.5) and Claim 3 in [1].

Lemma 7. Let (xn) ⊂ H 1
0 ([0,1],U) be a sequence of smooth G̃-regular curves such that xn → 0 in the H 1 topology.

Then

dẼ(xn)[Axn] =
1∫

0

〈(
B

1/2
sxn

+ Ksxn

)2
xn, xn

〉
ds + o

(‖xn‖2
0

)
, as n → ∞.

Proof. Eqs. (1)–(2) imply that G̃(t, q, y) satisfies assumptions (L1′) and (L2′) on page 605 of [1], for each (t, q, y) ∈
[0,1] × U ×R

n \ Z. Hence the lemma follows arguing as in [1, Lemma 4.1], taking into account that

dẼ(x)[Ax] = 〈∇Ẽ(x), x + K(x)
〉 =

( 1∫
0

d

ds

〈∇Ẽ(sx), x + K(x)
〉
ds

)

=
1∫ 〈

(Bsx + Ksx)x, x + K(x)
〉
ds. (4)
0
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In fact, d
ds

∇Ẽ(sx) = (Bsx + Ksx)[x] at the points s where the curve t ∈ [0,1] �→ sx(t) is G̃-regular. From Lemma 4,

the set of points s ∈ [0,1] where sx is not G̃-regular is at most countable. �
The next lemma follows as in Claim 3 of [1, Lemma 4.1], recalling Remark 6 and the fact that 0 is a non-degenerate

critical point of Ẽ.

Lemma 8. There exist a number μ > 0 and a neighbourhood U ′′ of 0 in H 1
0 ([0,1],U) such that, for each smooth

and G̃-regular curve x ∈ U ′′, the spectrum of the self-adjoint operator B
1/2
x + Kx is disjoint from [−μ,μ].

Proof of Proposition 3. Since AL |B = Ẽ|B , it is enough to prove the proposition for the functional Ẽ. From
Lemmata 7 and 8, we get that there exists a positive constant μ1, such that

dẼ(x)[Ax] � μ1‖x‖2
0, (5)

for each smooth G̃-regular curve x ∈ U ′′. From Remark 5 and the continuity of dẼ and A with respect to the H 1

topology, inequality (5) can be extended to any smooth curve in U ′′ and then, since smooth curves are dense in
H 1

0 ([0,1],U), to any x ∈ U ′′. As ∇Ẽ is a locally Lipschitz field and ∇Ẽ(0) = 0, we get

dẼ(x)[Ax] � μ0
∥∥∇Ẽ(x)

∥∥2
0,

for some positive constant μ0 and for all x in some neighbourhood U ′ of 0. �
Now let η0:H 1

0 ([0,1],Rn) → [0,1] be a smooth bump function such that suppη0 ⊂ U ′ and η0(x) = 1, for all
x ∈ U , where U is an open neighbourhood of 0 in H 1

0 ([0,1],Rn) with U ⊂ U ′. Let us consider the vector field on
H 1

0 ([0,1],Rn) defined as

Y(x) = −η0(x)Ax − (
1 − η0(x)

)∇AL (x).

We point out that we cannot state that Y is a pseudo-gradient vector field because we are not able to prove that

‖Ax‖0 � μ2
∥∥dAL (x)

∥∥
0, (6)

for some constant μ2 > μ0 and all x in some neighbourhood of 0.3 Anyway (3) implies that Y satisfies the inequality

dAL (x)
[
Y(x)

]
� −μ

∥∥∇AL (x)
∥∥2

0, (7)

for each x ∈ H 1
0 ([0,1],Rn), where μ = min{μ0,1}. As we will show in Lemma 9, inequality (7) (together with the

remark in footnote 3) is enough to get a deformation result as in [11, Lemma 8.3]. For all x ∈ H 1
0 ([0,1],Rn), let

(ω−(x),ω+(x)) be the maximal interval of definition of the solution of{
ψ̇ = Y(ψ),

ψ(0) = x.
(8)

Observe that this problem is well defined because Y is a locally Lipschitz vector field in H 1
0 ([0,1],Rn), since A and

∇AL are. Furthermore, (7) implies that AL is decreasing along the flow of Y and as, Y|U = −A = −I − K , such
flow is given by

ψ(x, t) = e−t x −
t∫

0

e−t+sK
(
ψ(x, s)

)
ds (9)

for x ∈ U , whereas ψ(x, t) ∈ U . The following lemma is an adaptation of Lemma 8.1 in [11] to the flow of the vector
field Y .

3 Actually using that AL satisfies the Palais–Smale condition and 0 is an isolated critical point of AL , we can prove that Y satisfies (6) in any
open subset U \ B̄(0, r), where B(0, r) is an open ball strictly contained in U , for a constant μ2 depending on U \ B̄(0, r).
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Lemma 9. Let V be a closed neighbourhood of 0 contained in U . Then there exist ε > 0 and an open neighbourhood
O ′ ⊂ V of 0 in H 1

0 ([0,1],Rn) such that if x ∈ O ′, then the solution ψ(x, ·) of (8) either stays in V for all t ∈ [0,+∞)

or it stays in V at least until AL (ψ(x, t)) becomes less than c − ε (where c = AL (0) = Ẽ(0)).

Proof. Observe that, since Y|V = −A, ψ(x, ·) is defined for all times until it lies in V . Let B(0, ρ) be the ball of
radius ρ centred at 0 such that B̄(0, ρ) ⊂ V and let

C =
{
x ∈ H 1

0

([0,1],Rn
)
:

ρ

2
� ‖x‖0 � ρ

}
.

Since C ⊂ B, it is free of critical points and then

δ = inf
x∈C

∥∥∇AL (x)
∥∥

0 > 0, (10)

because AL satisfies the Palais–Smale condition on C . Moreover∥∥Y(x)
∥∥

0 = ‖Ax‖0 � ρ‖A‖0 �
ρ‖A‖0

δ

∥∥∇AL (x)
∥∥

0, (11)

for each x ∈ C . Let ν := ρ‖A‖0
δ

and O ′ = B(0, ρ/2) ∩
˚

A
c+ μδρ

4ν

L . If x ∈ O ′ is such that ψ(x, t̄) does not belong to V

for some t̄ > 0, then there exist 0 < t1 < t2 < ω+(x) such that ψ(x, t) ∈ C , for all t ∈ (t1, t2) and ‖ψ(x, t1)‖0 = ρ/2,
‖ψ(x, t2)‖0 = ρ. It follows that

AL
(
ψ(x, t2)

) = AL
(
ψ(x, t1)

) +
t2∫

t1

dAL
(
ψ(x, t)

)[
Y

(
ψ(x, t)

)]
dt

� AL (x) − μ

t2∫
t1

∥∥∇AL
(
ψ(x, t)

)∥∥2
0 dt

� c + μδρ

4ν
− μδ

t2∫
t1

∥∥∇AL
(
ψ(x, t)

)∥∥
0 dt

� c + μδρ

4ν
− μδ

ν

t2∫
t1

∥∥Y
(
ψ(x, t)

)∥∥
0 dt

� c + μδρ

4ν
− μδ

ν

(∥∥ψ(x, t2)
∥∥

0 − ∥∥ψ(x, t1)
∥∥

0

)
= c + μδρ

4ν
− μδρ

2ν
= c − μδρ

4ν
. (12)

In the first inequality above, we have used the fact that AL is decreasing in the flow of (8) and inequality (7); in the

second one, the fact that x ∈ O ′ ⊆ A
c+ μδρ

4ν

L and (10); in the third one, inequality (11); in the last one, the following
chain of inequalities:

t2∫
t1

∥∥Y
(
ψ(x, t)

)∥∥
0 dt =

t2∫
t1

∥∥ψ̇(x, t)
∥∥

0 dt �
∥∥∥∥∥

t2∫
t1

ψ̇(x, t)dt

∥∥∥∥∥
0

�
∥∥ψ(x, t2)

∥∥
0 − ∥∥ψ(x, t1)

∥∥
0.

Thus the conclusion follows with ε = μδρ
4ν

. �
Let V be the subset of H 1

0 ([0,1],Rn) given as V = ⋃
x∈O ′ ψ(x, [0,ω+(x))), where O ′ is the neighbourhood

of 0 associated to V by Lemma 9. Since O ′ is open, from standard results in ODE theory (cf. for example
[9, Corollary 4.2.10]), V is also an open subset of H 1

0 ([0,1],Rn). From Lemma 9, A −1
L ((c − ε, c + ε)) ∩ V \ {0}

is contained in V ⊂ U and it is free of critical points.
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Lemma 10. For every x ∈ A −1
L ([c, c + ε)) ∩ V , either there exists a unique T (x) ∈ [0,ω+(x)) such that

AL (ψ(x,T (x))) = c or ω+(x) = +∞ and ψ(x, t) → 0, in H 1
0 ([0,1],Rn), as t → +∞.

Proof. If AL (ψ(x, t)) > c, for all t ∈ [0,ω+(x)), then from Lemma 9, ω+(x) = +∞ and ψ(x, t) ∈ V , for each
t ∈ [0,+∞). From inequality (12),

+∞∫
0

∥∥∇AL
(
ψ(x, t)

)∥∥2
0 dt � 1

μ

(
AL (x) − c

)
< +∞,

hence lim inft→+∞ ‖∇AL (ψ(x, t))‖2
0 = 0 and the Palais–Smale condition implies the existence of a sequence {tn}

converging to +∞ such that ψ(x, tn) → 0. Hence the conclusion follows from Lemma 9. �
By Lemmata 9 and 10, as in [11, Lemma 8.3], we get that A c

L ∩ V is a strong deformation retract of
˚

A
c+ε/2
L

∩ V .

Analogously, A c−ε
L ∩ V is a strong deformation retract of both A c

L ∩ V \ {0} and
˚

A
c−ε/2
L

∩ V . Using that, for

A ⊂ B ⊂ C, if B is a strong deformation retract of C, then H∗(B,A) ∼= H∗(C,A) and if A is a strong deformation
retract of B , then H∗(C,A) ∼= H∗(C,B) (for the last property, see for example [13, Property H6–β]), we obtain

H∗
(
A c

L ∩ V,A c
L ∩ V \ {0}) ∼= H∗

( ˚
A

c+ε/2
L

∩ V,
˚

A
c−ε/2
L

∩ V
)
. (13)

Let O = ϕ∗(O ′) and γ0 = ϕ∗(0), then

C∗(E,γ0) = H∗
(
Ec ∩ O,Ec ∩ O \ {γ0}

) ∼= H∗
(
(E ◦ ϕ∗)c ∩ O ′, (E ◦ ϕ∗)c ∩ O ′ \ {0})

= H∗
(
Ẽc ∩ O ′, Ẽc ∩ O ′ \ {0}) = H∗

(
A c

L ∩ O ′,A c
L ∩ O ′ \ {0})

∼= H∗
(
A c

L ∩ V,A c
L ∩ V \ {0}), (14)

last equivalence, by the excision property of the singular relative homology groups. By Palais’s theorem above we get

H∗
( ˚
A

c+ε/2
L

∩ V,
˚

A
c−ε/2
L

∩ V
) ∼= H∗

( ˚
A

c+ε/2
L

∣∣
C1

0 ([0,1],Rn)
∩ V,

˚
A

c−ε/2
L

∣∣
C1

0 ([0,1],Rn)
∩ V

)
.

The above equivalence, together with (13) and (14), implies that

C∗(E,γ0) ∼= H∗
( ˚
A

c+ε/2
L

∣∣
C1

0 ([0,1],Rn)
∩ V,

˚
A

c−ε/2
L

∣∣
C1

0 ([0,1],Rn)
∩ V

)
.

It remains to prove that these last relative homology groups are isomorphic to the critical groups in X =
C1

0([0,1],U). To this end, let us consider the Cauchy problem (8), with x ∈ C1([0,1],Rn) ∩ A −1
L ((c − ε/2, c +

ε/2)) ∩ V . Since A −1
L ((c − ε/2, c + ε/2)) ∩ V ⊂ V ⊂ U , it holds (9) and the orbit ψ(x, ·), defined by x, is also in

C1
0([0,1],Rn).

As a consequence, the strong deformation retracts that we have considered above are well defined in
C1

0([0,1],Rn) × [0,1] and by the continuity of the flow (9) with respect to the C1 topology, we immediately de-
duce that they are also continuous at each point different from (0,1). Clearly, the continuity at the point (0,1) with
respect to the product topology of C1

0([0,1],Rn), with the C1 topology, and R, with the standard one, comes into play

only for the deformation map η:
˚

A
c+ε/2
L

∩ V × [0,1] → ˚
A

c+ε/2
L

∩ V of
˚

A
c+ε/2
L

∩ V in A c
L ∩ V , which is given by

η(x, t) =
{

ρ(x, t
t−1 ) if t ∈ [0,1),

lims→+∞ ρ(x, s) if t = 1,

where ρ:
˚

A
c+ε/2
L

∩ V × [0,+∞) → ˚
A

c+ε/2
L

∩ V is the map defined as follows: if AL (x) > c and there exists

T (x) > 0 such that AL (ψ(x,T (x))) = c, then

ρ(x, t) =
{

ψ(x, t) if t ∈ [0, T (x)],
ψ(x,T (x)) if t ∈ (T (x),+∞),
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if ψ(x, t) → 0 as t → +∞, then ρ(x, t) = ψ(x, t) and if AL (x) � c, then ρ(x, t) = x, for all t ∈ [0,+∞). Since the
flow ψ1 of the linear vector field x �→ −Ax = −Ix − Kx is given by (9) and K is bounded from H 1

0 ([0,1],Rn) to
C1

0([0,1],Rn), we have∥∥∥∥∥
t∫

0

e−t+sK
(
ψ1(x, s)

)
ds

∥∥∥∥∥
C1

� e−t

t∫
0

es
∥∥K

(
ψ1(x, s)

)∥∥
C1 ds � Ce−t

t∫
0

es
∥∥ψ1(x, s)

∥∥
0 ds.

Thus, if ψ(x, t) → 0 in H 1, as t → +∞, then, from Lemmata 9 and 10, ψ(x, t) = ψ1(x, t). Hence, for every ε > 0,
there exists t̄ > 0 such that for all t > t̄ , ‖ψ(x, t)‖0 < ε and then the last function in the above inequalities can be
estimated, for t > t̄ , as

e−t

t∫
0

es
∥∥ψ(x, s)

∥∥
0 ds = e−t

t̄∫
0

es
∥∥ψ(x, s)

∥∥
0 ds + e−t

t∫
t̄

es
∥∥ψ(x, s)

∥∥
0 ds

� e−t

t̄∫
0

es
∥∥ψ(x, s)

∥∥
0 ds + ε

(
1 − e−t et̄

)
.

Thus ψ(x, t) → 0 also with respect to the C1 topology, giving the continuity of the map η at the point (0,1) also with
respect to the product of such a topology and the Euclidean one on the interval [0,1].

In conclusion we have that the following groups are isomorphic

H∗
( ˚
A

c+ε/2
L

∣∣
C1

0 ([0,1],Rn)
∩ V,

˚
A

c−ε/2
L

∣∣
C1

0 ([0,1],Rn)
∩ V

)
∼= H∗

(
A c

L

∣∣
C1

0 ([0,1],Rn)
∩ V,A c

L

∣∣
C1

0 ([0,1],Rn)
∩ V \ {0}).

By excision, these last relative homology groups are isomorphic to

H∗
(
A c

L

∣∣
C1

0 ([0,1],Rn)
∩ O ′,A c

L

∣∣
C1

0 ([0,1],Rn)
∩ O ′ \ {0})

and then, since the curves in O ′ have their support in U , to

H∗
(
Ẽc

∣∣
C1

0 ([0,1],U)
∩ O ′, Ẽc

∣∣
C1

0 ([0,1],U)
∩ O ′ \ {0}).
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