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The purpose of this note is to correct an error that occurred in the proof of Theorem 1.2 of the paper ‘Fading
absorption in non-linear elliptic equations’ which appeared in Ann. I. H. Poincaré – AN, 2013.

The theorem itself is correct as stated. However Proposition 3.1 (used in its proof) and relation (3.18) are wrong.
We restate Proposition 3.1 and provide a modified argument to replace the part of the proof from (3.18) to the end.

Let Uj , j = 1,2, . . . be the unique solution of the boundary value problem

−�Uj + h̄U
q
j = 0 in R

N+ ,

Uj

(
x′,0

) = γj

(
x′) for x′ ∈R

N−1 (0.1)

dominated by the harmonic function
∫
RN−1 P(x, y′)γj (y

′) dy′. Here h̄ and γj are given by (1.3) and (3.2) respectively.
Proposition 3.1 is replaced by:

Proposition 3.1′. Under the assumptions of Theorem 1.2,

lim
j→∞Uj (0, xN) = ∞ ∀xN > 0. (0.2)

Proof. The proof is based on (3.17) and the inequality uj � Uj in Ωj . This inequality follows from the comparison
principle and the fact that h̄� aj in Ωj while uj � Uj on ∂Ωj . This inequality and (3.17) yield

uj−1
(
x′,0

)
� Uj

(
x′, τj

) ∀j � j0,
∣∣x′∣∣ < rj−1.

Therefore by the comparison principle applied in Ωj−1,

uj−1
(
x′, xN

)
� Uj

(
x′, xN + τj

) ∀j � j0, x ∈ Ωj−1. (0.3)

Let j > j0 and 0 � k � j − j0. Using (0.3), (3.17) and induction on k we obtain,

uj−k−1
(
x′, xN

)
�Uj

(
x′, xN +

k∑
i=0

τj−i

)
∀x ∈ Ωj−k−1. (0.4)
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By (1.10) and (3.16)
∑∞

j=0 τj = ∞ and supm�0 τm = τ̄ < ∞. Therefore, if b > τ̄ then, for every j � jb , there

exists an integer λj = λj (b) such that 0 � b − ∑j

λj +1 τm =: δj � τλj
and λj → ∞ as j → ∞. Hence by (0.4)

uλj

(
x′, δj

)
� Uj

(
x′, δj +

j∑
λj +1

τm

)
= Uj

(
x′, b

) ∀x′:
∣∣x′∣∣ < rλj

. (0.5)

Applying the comparison principle to uλj
in Ωλj

and using (3.12) we find that the inequality 0 � δj � τλj
implies

uλj
(0, δj ) � 1

4α
uλj

(0, τλj
). Therefore (0.5) and (3.17) imply,

1

4α
A−1

λj −1 �
1

4α
γλj −1(0) � 1

4α
uλj

(0, τλj
) �Uj (0, b).

Finally, as limk→∞ Ak = 0, this inequality implies (0.2) for xN > τ̄ . It is easy to see that if (0.2) fails for some xN > 0
then it fails for all larger values of xN . Therefore (0.2) holds for every xN > 0. �
Completion of proof of Theorem 1.2. Let vj be the solution of (3.3) where γj is replaced by Γj = A−1

j rN−1
j δ0 on

∂Ωj ∩ [xN = 0]. As in Section 3.1, the function ṽj defined by ṽj (y) = Ajvj (rj y), y ∈ D0 satisfies the boundary
value problem (3.9) with γ̃ replaced by Γ̃ = δ0. Denote the solution of this problem by ṽ. Next we apply Lemma 3.1
to ṽ in D0 ∩ [xN > b] (b a fixed positive number). We conclude that choosing β > 0 sufficiently large 0 < c(β) �
ṽ(y′,β)
φ1(y

′) � 1 for |y′| < 1. Hence, if γ ′
j (x

′) := vj (x
′, rjβ) then c(β) � γ ′

j (x′)
A−1

j φ1(x
′/rj )

� 1 in the ball |x′| < rj . Obviously

u′
j (x) := vj (x

′, xN + rjβ) satisfies (3.3) with γj replaced by γ ′
j . Proceeding as in Section 3.2 we obtain a sequence

{τj } satisfying (3.16) and

γ ′
j−1

(
x′) � u′

j

(
x′, τj

)
,

∣∣x′∣∣� rj , j � j0.

Let U ′
j (resp. Vj ) be defined in the same way as Uj except that γj is replaced by γ ′

j (respectively Γj ) extended by
zero for |x′| � rj . Then Proposition 3.1′ applies to {U ′

j } so that

lim
j→∞U ′

j (0, xN) = ∞. (0.6)

Furthermore Vj � vj in Ωj so that Vj (x
′, rjβ) > γ ′

j (x
′), |x′| < rj . By the comparison principle, Vj (x

′, xN + rjβ) �
U ′

j (x) in R
N+ . Hence

lim
j→∞Vj (0, xN) = ∞ ∀xN > 0. �
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